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Stability of the chiral crystal phase and
breakdown of the cholesteric phase in mixtures of
active–passive chiral rods†

Jayeeta Chattopadhyay, ‡§ Jaydeep Mandal‡ and Prabal K. Maiti *

In this study, we aim to explore the effect of chirality on the phase behavior of active helical particles

driven by two-temperature scalar activity. We first calculate the equation of state of soft helical particles

of various intrinsic chiralities using molecular dynamics (MD) simulation. In equilibrium, the emergence

of various liquid crystal (LC) phases such as nematic (N), cholesteric N�c
� �

, smectic (Sm) and crystal (K)

crucially depends on the presence of walls that induce planar alignment. Next, we introduce activity

through the two-temperature model: keep increasing the temperature of half of the helical particles

(labeled as ‘hot’ particles) while maintaining the temperature of the other half at a lower value (labeled

as ‘cold’ particles). Starting from a homogeneous isotropic (I) phase, we find the emergence of 2-TIPS:

two temperature-induced phase separations between the hot and cold particles. We also observe that

the cold particles undergo an ordering transition to various LC phases even in the absence of a wall.

This observation reveals that the hot–cold interface in the active system plays the role of a wall in the

equilibrium system by inducing an alignment direction for the cold particles. However, in the case of a

cholesteric phase, we observe that activity destabilizes the N�c phase by inducing smectic ordering in the

cold zone while an isotropic structure in the hot zone. The smectic ordering in the cold zone eventually

transforms to a chiral crystal phase with high enough activity.

1 Introduction

Understanding how chirality spreads from the molecular scale
to the macroscopic scale is important due to its immense
contribution to basic science and industrial applications.
Chiral particles that only interact sterically are one particularly
intriguing example. Helix is one of the most basic models in
this class that gives rise to the cholesteric phase (or chiral
nematic),1–3 in which particles undergo rotation around a
specific helical axis. The wavelength associated with this rota-
tion is called the pitch of the macroscopic cholesteric phase
Pchol. This wavelength can have values that are many orders of
magnitude larger than the molecular size. Cholesteric phases
can be observed in different systems like DNA,4–6 fd viruses,7

amyloid fibrils8 and others.9–11 They have applications in wide
areas of optoelectronic technology.12 Another important aspect
of the cholesteric phases is the sense of rotation or handedness.

It is important to study the relationship between the intrinsic
helicity of the molecules and the macroscopic chiral phase.
Right-handed DNA forms a left-handed chiral macrophase.13

Left-handed filamentous viruses are observed to form right-
handed cholesteric phases.11 Liquid crystal ordering can be
seen in ultrashort double-stranded DNA14 and RNA,15 which
are right-handed helices.

Different theoretical and computational models have been
proposed to understand the link between molecular and macro-
scopic chirality. Theoretical studies have been used to predict the
pitch of the cholesteric phase.16 Odijk17 has studied the pitch of
the cholesteric phase using particle models where rod-like parti-
cles are enveloped by thin chiral threads. Using the corkscrew
model, Pelcovits18 showed that the pitch of the cholesteric phase
is independent of the flexibility of the molecules, but depends on
the intrinsic chirality and the concentration. The chiral liquid
crystal phases have also been investigated using Gay–Berne-type
models, in which chirality is encoded in the orientation-
dependent potential.19–21 However, soft and hard spherocylinder
models provide a computationally more efficient way to study a
variety of liquid crystalline phases.22–25 Recent studies involving
hard helices26,27–29 have explored the different phases obtained
for various molecular chiralities. Dussi et al.30 have used twisted
polyhedral-shaped hard particles and obtained entropically
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driven stable chiral nematic phases along with other novel
phases. Cholesteric phases are difficult to obtain in numerical
simulations as advanced methodologies and large simulation
boxes are needed in order to replicate the macroscopic pitch
correctly. Hence, many attempts have been made to address this
aspect as well. Cinacchi et al.3 have studied the cholesteric phase
by considering the hard helix model using both Monte Carlo
(MC) and molecular dynamics (MD) simulations and observed
the existence of the cholesteric phase in a confined system. Wu
and Sun31,32 have used a flexible chain model where chiral
centers are helically arranged on the surface of backbone beads
and showed that the pitch of the resultant cholesteric phase
depends on the chirality and flexibility of the molecules. Similar
results were observed by Tortora and Doye33 Therefore, the
study of the interplay between the microscopic and macroscopic
helicity and the underlying interactions is a fascinating field of
research.

Interesting traits in spatial ordering and persistent dynamics
for the systems of chiral particles appear when activity is incorpo-
rated into the system.34,35 The presence of a wall on the system of
chiral active particles is shown to have a rich array of diverse
effects.36 These phenomena appear due to one characteristic of the
system: activity. Active matter is driven out of equilibrium by a
constant supply of free energy, which is consumed either from the
ambient environment or from its own mechanism and dissipates
it by performing mechanical work.37–39 In most cases, activity is
vectorial in nature due to the force of self-propulsion. However,
many physical and biological processes (like chromatin separation
in the nucleus40 and phase separation in colloidal systems) are
governed by unequal sharing of available energy and are thus
scalar in nature. Such systems can be modeled simply by assigning
different diffusivities between the constituents of the system41 or
by coupling them to two different thermostats.42,43 Such a ‘two-
temperature model’ often results in a phase separation phenom-
enon termed as 2-TIPS44 and has been used extensively for the last
few years in a diverse setting of systems from Lennard-Jones (LJ)
particles,44,45 polymers,46,47 dumbbells48 in our previous works on
rod-like particles.49,50 One of the aims of this study is to explore the
effect of the two-temperature model in a system of soft chiral
particles.

To validate and benchmark our model of soft helices, we
first investigated the equilibrium phase behavior of a system of
helical particles with different chiralities. This allowed us to
study the dependence of macroscopic pitches on the density
and intrinsic pitch of the constituent chiral particles in the
presence and absence of a wall in the system. Having estab-
lished the correct equilibrium phase behavior of the system, we
also examined the behavior of a mixture of active and passive
helical particles driven by a two-temperature scalar activity. The
mixture of particles shows phase separation. The particles in
the cold domain experience an ordering transition from iso-
tropic to nematic to the smectic and crystalline structures,
whereas the particles in the hot domain remain in the isotropic
phase, even when we start from an ordered structure. However,
starting from a cholesteric phase, we observe that the activity
destabilizes the N�c phase by inducing smectic ordering in the

cold zone while forming an isotropic structure in the hot zone.
At a high enough activity, the smectic ordering in the cold zone
eventually transforms into a chiral crystal phase.

The paper is organized as follows: in Section 2, we introduce
the model and details of the simulation methods and techni-
ques used. In Section 3, we report various results from equili-
brium simulations. We then report the results with the non-
equilibrium results – namely the behaviour of a system of active
and passive chiral particles, which show the resulting phase
separation phenomena (2-TIPS). There is also an ordering
transition occurring in the cold zone. Finally, conclusions are
drawn along with the main results, and the future outlook of
our work is presented in Section 4.

2 Model and simulation methods

Helices can be modeled as a collection of a number of partially
overlapping beads of diameter D arranged rigidly around a helical
axis û, which is denoted as the long axis of the molecule (Fig. 1). Our
system is made of N such left-handed helical particles with a fixed
contour length L = 10D. The chirality of a molecule can be defined
by the pitch p (the distance after which one bead makes a full
rotation around the helical axis) and radius, r, varying, which allows
the generation of different helical particles ranging from straight
rods to coils (Fig. 2). Our model is similar to that of Kolli et al.25,28 A
schematic diagram of the model is presented in Fig. 2.

In our system, two beads belonging to two different particles
interact via the repulsive part U(rij) of the Lennard-Jones (LJ)
potential defined as51

U rij
� �

¼
4e

D

rij

� �12

� D

rij

� �6
" #

þ e; rij o 21=6D

0; rij � 21=6D;

8>><
>>: (1)

Fig. 1 Schematic details of the left-handed soft helical particles con-
structed using the beads. The position of the beads rotate around a major
axis (û), in a clockwise fashion as shown by the angle a in the figure, which
renders the intrinsic chirality of the molecule to be left-handed. v̂ and ŵ
are the minor or short axis. The pitch p of the particle is the wavelength
associated with the helical arrangement of the position of the beads, as
shown in the figure. The diameter D of the beads is taken to be 1.0 for our
calculations.
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where rij is the distance between the ith and jth atoms belong-
ing to the two different particles, and e is the unit of energy and
denotes the strength of the interaction.

For convenience, the thermodynamic and structural quanti-
ties are scaled by the system parameters e and D and calculated in
reduced units, temperature T* = kBT/e, pressure P* = P/(kBT), and
packing fraction Z = rv0, where r = N/V is the number density and
v0 is the effective volume of the helical particle.25 In Fig. 3, we
show that the results obtained from bead model, when used to
mimic straight rods, agrees quite well with that of the soft
repulsive spherocylinders (SRS).

Obtaining cholesteric phases in computer simulations using
the periodic boundary condition (PBC) is a difficult task, as the

length scale of the N�c phase may be incommensurate with the
dimensions of the box. To overcome this issue, we adopt a
procedure similar to that of Kolli et al.3 by inserting a wall along
a specific direction of the simulation box. The presence of a
wall makes the system non-periodic along the wall direction.
We inserted a wall on both sides of the x̂ direction, which
helped the system align and exhibited different liquid crystal-
line phases. The interaction between the wall and any bead of
the helical particles is of the following form:

UðrÞ ¼
e

2

15

D

r

� �9

� D

r

� �3
" #

þ e; ro 0:41=6D

0; r � 0:41=6D;

8>><
>>: (2)

where r is the distance between the wall and any bead.
We built a system of N = 2000 and 10 000 particles in a cubic

simulation box using the PACKMOL software.52,53 Our simulation
is done in the following way: first, we equilibrate the system at a
certain density. Then, a wall is inserted along one direction (x)
taking care to remove particles whose constituent beads overlap
with the wall. This lowers the density of the initially built system.
We equilibrate such a system for 0.2 million (M) MD steps in an
NVT ensemble. Finally, we increase the pressure of the confined
system slowly under the NPT ensemble using a semi-isotropic
barostat, i.e. allowing the simulation box to fluctuate only in the
y–z plane. The MD simulations in the NPT ensemble are done
using the LAMMPS software.54 We use rigid body dynamics to
integrate the equation of motion with a time step of Dt = 0.001 in

reduced units (in units of D
ffiffiffiffiffiffiffiffi
m=e

p
). The temperature of the

system is controlled by the Noose–Hoover thermostat55,56 with
a temperature relaxation time tT = 100 � Dt and pressure is
controlled by the semi-isotropic Noose–Hoover barostat with a
pressure relaxation time tP = 1000 � Dt. We run up to 50 M MD
steps to equilibrate the system and another 10 million steps to
calculate the thermodynamic quantities.

The cholesteric phase is quantified by calculating the macro-
scopic pitch Pchol. We divide the simulation box along the wall-
direction x in a number of slabs and calculate the local nematic
director n̂(x) for each of the slabs, which is the eigenvector
corresponding to the largest eigenvalue of the traceless sym-
metric tensor Q defined as

Qab ¼
1

N

XN
i¼1

3

2
uiauib �

1

2
dab: (3)

In the above expression, uia is the ath component of the long
axis of the ith particle. The pitch is calculated by fitting the
value of |n̂(0)�n̂(x)| to the function |cos(qx)| where the choles-
teric pitch is defined as Pchol = 2p/q. The local nematic director
n̂(x) is perpendicular to the helical axis and rotates around it in
a helical manner, as shown in the snapshot of Fig. 8(b) where
the helical axis is along the x direction.

Next, we incorporate activity into the system using a two-
temperature model. We introduce activity by randomly choosing
half of the helices and assigning a higher temperature to them
while keeping the other particles’ temperature fixed at a lower

Fig. 2 Schematic diagram of the straight rod made of soft beads in (a).
The structures of the left-handed helices of different intrinsic chiralities are
shown in (b)–(d), and (e) for the molecular pitches p = 9.92D, 6.67D, 5.33D,
and 2.67D respectively, where D is the diameter of one bead. Its long axis is
defined by û and short axes by v̂ and ŵ, respectively.

Fig. 3 The phase behavior of rods made of soft beads with an effective
aspect ratio Aeff = 4.8 is compared to that of soft repulsive spherocylinders.
(a) The nematic order parameter S and (b) reduced pressure P* = P/kBT are
plotted as a function of the packing fraction Z for these two models, which
match quite well.
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value equal to that of the initial equilibrium system. Let T�h and
T�c be the temperatures of the hot and cold particles, respec-
tively. Initially, we equilibrate the system at T�h ¼ T�c ¼ 100, and
then increase T�h in small steps up to T�h ¼ 20:0, allowing the
system to reach a steady state after each increase in T�h , keeping
the volume of the simulation box constant throughout the
simulation.

We parameterize the activity by

w ¼ T�h � T�c
T�c

(4)

For the active case, i.e., for w a 0, we choose the thermostat
relaxation time tT = 0.01 with an integration time-step Dt =
0.001 for both types of particles. We run the simulation for 3 M
to 4 M integration time steps to reach the steady state and
another 1 M steps to calculate thermodynamic and structural
quantities.

3 Results and discussion
3.1 Equilibrium properties of soft helical particles

3.1.1 Wall vs. no-wall. We simulate the system of soft
helical particles under periodic boundary conditions (PBCs)
using molecular dynamics (MD) simulations and find that, in
the absence of a wall, the system becomes stuck in a jammed
state [see (ESI†)57], which makes it challenging to obtain liquid
crystal ordering within our simulation time. This problem can
be overcome by inserting a wall that induces planar alignment,
which gives rise to the ordered LC phases. In Fig. 4, we show the
effect of the wall on the phase behavior of the system with a
molecular pitch p = 6.67D. It is observed that the nematic order
parameter is very small in the absence of a wall, while it
increases with the packing fraction in the presence of a wall.
Hence, the equilibrium phase behaviors for different molecular
pitches are studied only in the presence of the wall.

3.1.2 Equilibrium phase behavior of different molecular
pitches. We compute the equilibrium phase diagram of left-
handed helices with different molecular pitches p = 2.67D,
5.33D, 6.67D and 9.92D with r = 0.2D at a temperature T* = 1.

In Fig. 5, we show the different equilibrium phases found for
the system with molecular chirality p = 6.67D, which are (i)
isotropic (I), (ii) cholesteric N�c

� �
, (iii) nematic (N), (iv) smectic

(Sm) and (v) crystal (K), and present the phase diagram in
Fig. 6. The I–N phase transition is determined by calculating
the nematic order parameter S, as shown in Fig. 6(b). The
cholesteric phase is quantified by calculating the cholesteric
pitch Pchol as discussed in Section 2. We also calculate the
equation of state for the other pitches, as shown in Fig. 7. For
p = 5.33D, we observe four stable phases for the given range of
densities: (i) isotropic, (ii) cholesteric, (iii) nematic, and
(iv) smectic. For p = 9.92D, we observe three stable phases for
the given range of densities: (i) isotropic, (ii) cholesteric, and
(iii) smectic. The I �N�c transition occurs at a packing fraction
Z* E 0.30–0.32. Here, we did not find the existence of a nematic
phase. From the cholesteric phase, the system undergoes a
phase transition directly to the smectic phase, as can be seen in
Fig. 7(c). In the case of molecular pitch p = 2.67D, we observe

Fig. 4 Nematic order parameter S vs. packing fraction Z for the pitch p =
6.67D with and without wall. We observe that, in the absence of a wall, the
system becomes stuck in a jammed state; hence, the magnitude of the
nematic order parameter is very low. The presence of a wall induces planar
alignment, which gives rise to ordered liquid crystal phases. Hence, the
magnitude of S increases with Z.

Fig. 5 The equilibrium configurations for the system of soft helical
particles with molecular pitch p = 6.67D (the value of D is 1.0), obtained
using the wall in the simulations, with increasing pressure. (a) The isotropic,
(b) cholesteric, (c) nematic, (d) smectic, and (e), (f) chiral crystal phases are
obtained at pressures expressed in the reduced unit P* = Ps3/e = 0.5, 0.8,
1.0, 1.5 and 2.5 respectively. In the crystal phase, (e) indicates the positional
order along the direction parallel to the layer, and (f) shows the positional
ordering within the layers. In the cholesteric structure (b), particles are
colored according to their distance from the helical axis (x̂) to show the
relative rotation of the layers along the helical axis.
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three stable phases for the given range of densities: (i) isotropic,
(ii) nematic, and (iii) smectic. Here, we did not find an
emergence of the cholesteric phase, as shown in Fig. 7(a).

3.1.3 Emergence of a cholesteric phase. We mainly focus
on the emergence of a cholesteric phase N�c for the aforemen-
tioned molecular pitches. In Fig. 8, the configuration of a
cholesteric phase is for pitch p = 9.92D for pressure P* = 1,
temperature T* = 1 and packing fraction Z = 0.4. In Fig. 9(a), we
plot the cosine of the angle y (the angle between the local
nematic director of each slab n̂(x) with that of the slab at x = 0,
i.e. n̂(0)) with the distance along the helical axis x and fit it with
the function |cos(qx)|. We obtain the magnitude of the choles-
teric pitch as Pchol = 125.66D with q = 0.05. Our calculated values
are in quantitative agreement with the cholesteric pitch
reported by Kolli et al.3 (q = 0.055) for hard helices using MC
simulations. Interestingly, we find the cholesteric phase for
pitches, p = 6.67D, 5.33D, which was predicted theoretically
earlier by Dijkstra et al.29 In Fig. 9(b), we show the time
variation of the pitch for a system with p = 9.92 at P* = 0.8.
For a given molecular pitch p, Pchol decreases with the density,
as shown in Fig. 10(a). The magnitude of Pchol-also depends on
the molecular pitch, p of the helix, as shown in Fig. 10(b). We
find that, at a certain packing fraction Z, Pchol decreases with an

increase of the molecular pitch, p. However, more analysis is
needed to establish a generalized relationship between micro-
scopic and macroscopic chirality. The cholesteric phase
becomes unstable for a very low molecular pitch (p = 2.67D),
and the system shows a screw-like nematic phase. This

Fig. 6 (a) The equation of state and (b) nematic order parameter S vs. packing fraction Z for pitch p = 6.67D. Here, we obtain five equilibrium phases at a
temperature T* = 1.0 for the given range of pressure (P*): isotropic (I), cholesteric N�c

� �
, nematic (N), smectic (Sm) and crystal (K). The dotted lines indicate

the coexistence regions near the phase transition points.

Fig. 7 The equation of state for different molecular pitches: (a) p = 2.67D, (b) p = 5.33D, and (c) p = 9.92D with r = 0.20D at a temperature T* = 1.0. We
find three stable phases for the given range of pressure for p = 2.67D: isotropic, nematic, and smectic; four stable phases for pitch p = 5.33D: isotropic,
cholesteric, nematic and smectic; three stable phases for p = 9.92D: isotropic, cholesteric, and smectic. The dotted lines indicate phase boundaries.

Fig. 8 (a) Configuration of the system in the cholesteric phase for the
molecular pitch p = 9.92D at a packing fraction Z* = 0.40. (b) Configu-
ration of the system divided into a number of slabs. The local nematic
director corresponding to each slab is shown by the white arrow. The
particles are colored according to their distance along the x-axis: red, blue
and gray colors denote the position of the two edges and center of the box
respectively along the x̂ direction. We see that the local nematic director is
rotating around the helical axis (x̂). For convenience, only 5 slabs are
shown.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
1 

Fe
br

ua
ry

 2
02

4.
 D

ow
nl

oa
de

d 
by

 I
nd

ia
n 

In
st

itu
te

 o
f 

Sc
ie

nc
e 

on
 3

/2
2/

20
24

 9
:2

3:
53

 A
M

. 
View Article Online

https://doi.org/10.1039/d3sm01567j


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 2464–2473 |  2469

observation is consistent with the results reported by Kolli
et al.3,28 for hard helices.

3.2 Activity-induced phase separation

After obtaining the equilibrium phase behavior of the soft
helical particles, we investigate how these phase behaviors
are affected by scalar activity using the two-temperature model.

Starting from a homogeneous isotropic structure, we find the
emergence of a 2-TIPS (2-temperature induced phase separa-
tion) phenomenon, in which we observe a local phase separa-
tion between hot and cold particles that increases with activity
till a well-defined interface is formed. In Fig. 11, we show the
configuration of the phase-separated structure. The extent of
phase separation is quantified by calculating the density order
parameter f in the same way as mentioned in our earlier
works.44,45,49,50 Here, we briefly mention it for completeness.
We divide the simulation box into a number of sub-boxes Nbox,
and for each sub-box we calculate the number difference
between hot nh and cold nc particles divided by the total number
of particles in each box. We then calculate f by averaging over
all the sub-boxes and over a sufficient number of configurations
to obtain stable statistics.

f ¼ 1

Nbox

XNbox

i¼1

nic � nih
�� ��
nic þ nih
� �

* +
ss

; (5)

where h. . .iss denotes the steady state average of the configurations.
f is offset by its initial value in equilibrium at w = 0.49 In Fig. 12, we
plot f as a function of activities w for different molecular pitches at
the packing fractions Z = 0.14, 0.20. These packing fractions
correspond to the isotropic phase at equilibrium for the given
pitches, as shown in Fig. 6 and 7. We observe that phase separa-
tion does not depend much on the molecular pitches. For each
packing fraction, the magnitude of f increases with the activities
up to a certain value and then saturates, ensuring macroscopic
phase separation between hot and cold particles.

3.3 Activity-induced liquid crystal ordering

The hot particles receive a sustained energy flux from the hot
bath and transfer it to the cold particles through collisions. Cold
particles reject the excess energy to the cold bath, resulting in a
steady flow of energy throughout the system.50 After phase
separation, hot particles exert an extra kinetic pressure on the
interface, resulting in an ordering transition in the cold
zone.49,50 Starting from a homogeneous isotropic state, we
observe cold particles undergoing a phase transition from
isotropic to nematic and then other higher-ordered states, while
hot particles remain in the isotropic state with a low density.
This is interesting as the cold particles show an ordering
transition even in the absence of a wall, which is not possible
in the equilibrium case as discussed in Section 3.2. Presumably,
one can assume that the interface in the active system provides
an alignment direction to the cold particles, thus playing the
role of the wall in equilibrium.

We quantify the ordering transition by calculating the
nematic order parameter of the cold particles Scold, as shown
in Fig. 13. We find that Scold increases with increasing activity
for the given molecular pitches; however, at a certain activity,
Scold have different values for different molecular pitches,
indicating different local orderings of the cold particles. For
example, at a specific value of w, p = 5.33D exhibits higher
ordering for both densities, while p = 9.92D exhibits lower
ordering at Z = 0.14 and p = 6.67D exhibits lower ordering at

Fig. 9 Determination of the cholesteric pitch Pchol for molecular pitch p =
9.92D at packing fraction Z = 0.40. (a) The plot of cos y(x) = |n̂(x)�n̂(0)| as a
function of the distance along the helical axis x̂, where n̂(x) is the local
nematic director of each slab located at x. The purple line shows the
simulation data and the black smooth curve indicates the linear fitting with
the function |cos(qx)|, from which the cholesteric pitch Pchol = 2p/q is
calculated. Inset: Variation of cos y(x) for different time windows (purple
curve for initial 0–1M steps, green curve for system at 49–50M steps). (b)
The calculated value of q with time for reduced pressure P* = 0.8. We
calculate the cholesteric pitch Pchol by taking the average of q for a time
window 40–50M, where the fluctuation in the values of q is reduced.

Fig. 10 (a) The dependence of the macroscopic pitch of the cholesteric
phase Pchol with the packing fraction Z for the molecular pitch p = 6.67D.
(b) The dependence of the Pchol on the molecular pitch p at a specific
pressure P* = 0.8. We see that, for a given molecular pitch p, Pchol

decreases with an increase of the pressure and for a given pressure, Pchol

decreases with an increase of the molecular pitch p.
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Z = 0.20. In the case of p = 9.92D, we perform a two-temperature
simulation in the presence of the wall, where we find better
ordering. In Fig. 14, we observe that for p = 9.92D, Scold

increases drastically in the presence of the wall than that of
the system without a wall at the same activity. Thus, the wall
also promotes higher ordering in the active cases.

Fig. 11 (a) Equilibrium configuration of N = 2000 soft helical particles with pitch p = 6.67D at the state point (Z = 0.20 T* = 1) in the absence of activity
w = 0. Both hot (red) and cold (green) particles are well mixed at the same temperature. (b) Steady-state configuration after the phase separation at w = 9.
It is clearly visible that the cold particles are segregated and ordered, whereas the surrounding hot particles are disordered.

Fig. 12 Density order parameter f vs. activity w for different molecular pitches p (in units of D) at the packing fractions (a) Z = 0.14 and (b) Z = 0.20. f0

indicates the magnitude of the density order parameter in the equilibrium system, i.e. at w = 0.

Fig. 13 Nematic order parameter of the cold particles Scold as a function of activity w for different molecular pitches p at the packing fractions (a) Z = 0.14
and (b) Z = 0.20. p is expressed in units of D.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
1 

Fe
br

ua
ry

 2
02

4.
 D

ow
nl

oa
de

d 
by

 I
nd

ia
n 

In
st

itu
te

 o
f 

Sc
ie

nc
e 

on
 3

/2
2/

20
24

 9
:2

3:
53

 A
M

. 
View Article Online

https://doi.org/10.1039/d3sm01567j


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 2464–2473 |  2471

3.4 Breakdown of the cholesteric phase

Starting from a cholesteric phase, we observe that the activity
destabilizes the cholesteric phase by driving the cold particles
through a phase transition to the next higher-ordered state and
the hot particles to a state of less order. This result is consistent
with our previous work on SRS, as mentioned in ref. 49,50. In
Fig. 15(b), we see that, for p = 6.67D, the cold particles form a
smectic phase while the hot zone shows an isotropic structure.
The breakdown of the N�c phase is quantified by plotting
cos y(x) with the distance perpendicular to the hot–cold inter-
face (y is the relative angle between the local nematic directors
at a slab x and at x = 0, see Section 3.1.3). Fig. 15(c) shows the

behaviour of cos y(x) for the initial cholesteric structure,
whereas in Fig. 15(d), we see that cos y(x) is homogeneous in
the segregated cold-dominated zone, indicating the disappear-
ance of the cholesteric phase. At a high enough activity, the
smectic ordering in the cold zone eventually transforms into a
chiral crystal phase.

Similar phenomena have been observed when we start from
an initial cholesteric phase for a system of particles with
microscopic pitch p = 9.92D. Starting with a cholesteric phase
at pressure P* = 0.9, we introduce activity into the system using
the two-temperature model. We observe a phase separation
between active and passive particles. There is a fraction of cold
particles trapped inside the hot zone and a fraction of hot
particles trapped inside the cold zone. The ordering of cold or
passive particles gradually increases with activity, but choles-
teric ordering cannot persist in the region, whereas the hot
particles form a disordered isotropic phase (see (ESI†)57). A
smectic layering occurs in the cold domain. The isotropic phase
forms at the interior of the system, whereas the smectic domain
forms close to the walls. Therefore, we conclude that the
disappearance of the cholesteric phase with the introduction
of scalar activity is a universal phenomenon as far as different
microscopic pitches are concerned.

4 Conclusion and future outlook

In this work, we examined the effect of chirality on the phase
behavior of equilibrium and active helical particles driven by
two-temperature scalar activity. We first construct an equation
of state for soft helical rod-like particles of various intrinsic
chiralities using molecular dynamics (MD) simulations. We
observe the occurrence of ordered nematic (N) and cholesteric
N�c
� �

phases in the presence of a wall for various values of
molecular pitch p, namely p = 9.92D, 6.67D and 5.33D. Next, we
introduce an activity into the system using a two-temperature
model. Starting from a homogeneous isotropic (I) phase, we
find that the activity causes the hot and cold particles to phase-
separate and the cold particles to undergo an ordering transi-
tion even in the absence of a wall. This observation unveiled
that the hot–cold interface in the active system acts as a wall in
equilibrium by giving the cold particles some alignment direc-
tions. However, starting from a cholesteric phase, the activity
destabilizes the N�c phase by inducing smectic ordering in the
cold zone and the isotropic structure in the hot zone. Smectic
(Sm) ordering in the cold zone eventually transforms into a
chiral crystal phase at a high enough activity.

The future outlook of this work is as follows: in equilibrium,
another interesting prospect would be to determine the hand-
edness of the macroscopic cholesteric phase and how they
depend on the density and chirality of the constituent particles.
It would be interesting to explore a full phase diagram using
molecular dynamics simulations. The existence of a cholesteric
phase for systems with microscopic pitches, which has not
been reported earlier, also calls for an extensive study on the
equilibrium properties of such systems. A similar model can

Fig. 14 Nematic order parameters of the cold Scold and hot Shot particles
with and without a wall with activity w for the pitch p = 9.92D at a packing
fraction Z = 0.14. We observe that Scold increases in the presence of the
wall.

Fig. 15 Breakdown of the cholesteric phase for molecular pitch p = 6.67D
at pressure P* = 0.55. (a) Initial configuration at w = 0, indicating the
cholesteric phase. (b) Configuration of the phase-separated system at
w = 14. (c) Positions of the top beads of the molecules within a layer in the
smectic-like phase, and (d) the positional ordering of the top beads of the
molecules within a layer in the higher-ordered chiral crystal phase.
The cold and hot particles are represented by green and red colors,
respectively. Calculation of the cholesteric pitch Pchol for (e) w = 0 and (f)
w = 14. In equilibrium, Pchol = 133D, and cos y(x) is homogeneous in the
segregated zone, as shown in (d).
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also be used to study emerging phases in a collection of chiral
active swimmers.58
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