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ABSTRACT Most existing solutions that guarantee finite-time convergence of a constrained first-order
sliding mode either assume that the structure of the perturbation is known apriori, or the perturbation
and its derivative are bounded by unknown constants. Moreover, convergence is usually guaranteed only
in a small domain of attraction of the predefined constrained region through discontinuous control action.
In contrast with these approaches, the sliding mode is assumed to be subject to perturbations with a state-
dependent structure in this study, and two adaptive integral control strategies are proposed that guarantee
finite-time convergence of this perturbed sliding mode from any initial condition within the predefined
constrained region. First, an invertible nonlinear map is used to transform the constrained system into a
constraint-free system, and an adaptive integral control strategy is used to guarantee finite-time convergence
of the resulting sliding mode to a uniform ultimate bound using continuous and bounded control action.
Subsequently, an alternative barrier-function based adaptive control policy is synthesized that ensures sliding
mode convergence in a prescribed time to a prescribed bound that is independent of the magnitude of
the perturbation term. Experimental studies of vision-based leader-follower formation control are used to
validate and demonstrate superior performance of the proposed schemes compared to leading alternative
designs.

INDEX TERMS Sliding mode, adaptive control, finite-time convergence, state constraint, state-dependent
uncertainty.

I. INTRODUCTION
The problem of finite-time convergence of a perturbed first-
order sliding mode (FOSM) when subjected to a state
constraint is considered in this study. This is a problem
of fundamental importance with direct relevance to robotic
applications such as visual formation tracking and visual
servo control, where the camera’s field-of-view constraints
need to be explicitly taken into account for successful
realization of the tracking objective [1].

Conventional sliding mode algorithms tackle this problem
by relying on prior knowledge of the upper bound of
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the perturbation term to synthesize discontinuous control
action that guarantees finite-time convergence. This leads
to overestimation of the control gains resulting in high-
frequency chatter, which is a major drawback during
practical implementation [2]. While chattering effects can be
mitigated by switching to saturation function-based control
that guarantees convergence to a boundary layer, the lack of
prior information of the disturbance’s upper bound motivates
the need for adaptive sliding mode control (ASMC) strategies
where control gains are designed to adapt to the disturbance
online [3].

Adaptive first-order sliding mode control (FOSMC)
strategies can be broadly classified under three categories
based on the adaptation of control gains: monotonically
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increasing FOSMC [4], [5], equivalent control FOSMC [6],
[7], and increasing-decreasing FOSMC that assume that the
perturbation and/or its derivative are bounded by unknown
constants [8], [9], [10], [11], [12], [13], [14], [15], or that
the perturbation satisfies a fairly restrictive growth condition
that is known apriori [16], [17], [18], [19], or rely on
discontinuous control action to achieve convergence [10],
[12]. Unconventional fuzzy logic controllers have also been
developed in [20] and [21] under the assumption that
the state-dependent approximation error is bounded by an
unknown constant. Adaptive control strategies have also been
developed for a class of nonlinear systems that guarantee
prescribed performance for systems with unknown control
direction [22], as well as those that rely on monitoring and
barrier functions to achieve prescribed-bound convergence in
a fixed- or prescribed-time [23], [24].Moreover, an additional
complication arises by relying on homogeneity assumptions
that no longer hold true in the presence of state constraints,
which renders some of these schemes inapplicable [25].

Recent ASMC strategies using barrier functions for
achieving predefined time convergence to a prescribed bound
have also been considered in [11] and [12], where the size
of the ultimate bound is independent of the disturbance
magnitude. However, these studies suffer from a lack of
global stability guarantee, causing the system to break down
if the system trajectory escapes from the prescribed bound
in the event of a sudden change in the switching gain
which limits its practical applicability. In a recent study [13],
these drawbacks are sought to be overcome by relying on
the time-based generator system to adaptively tune control
gains online so as to ensure prescribed-time prescribed
bound (PTPB) convergence through continuous and bounded
control action even in the face of a sudden change in the
magnitude of the exogenous disturbance. However, this study
does not account for state constraints as well as the state-
dependent structure of the perturbation term, thus possibly
leading to large tracking errors and limiting its applicability
to practical systems [3].
The problem of controller synthesis for constrained

nonlinear systems has also been considered in [26], [27],
[28], and [29]. In particular, the studies in [26] and [27]
consider the synthesis of a second-order sliding mode for a
constrained and perturbed double-integrator system, where
the control policy is shown to drive the system states to
zero in a finite-time along with guaranteed satisfaction of
state constraints. In contrast, the study in [28] considers the
problem of controller synthesis for nonlinear systems subject
to input and state constraints that ensures maximization of
the attendant domain of attraction. However, a common
drawback of these studies is that they only guarantee finite-
time convergence in a small domain of attraction of the
predefined region, whereas the objective of the current study
is the synthesis of an adaptive control policy that guarantees
finite-time convergence from any initial condition located
within the predefined state constraint set. Finally, the study
in [29] realizes a discontinuous control policy for state-

constrained higher-order systems with perturbation having
a known upper bound, where the policy is used to ensure
that constraint violation does not last beyond a finite-time
which may be adjusted through controller parameter tuning.
Thus, in essence, the approaches proposed in [26], [27],
[28], and [29] cannot be applied to the system considered
in this study. To the best of this author’s knowledge, the
problem of synthesizing a continuous control policy for state-
constrained FOSM subject to an exogenous disturbance (with
an unknown upper bound) is still an area of open research.

In order to overcome these drawbacks, two novel adaptive
strategies are considered in this study. First, an invertible
nonlinear mapping is invoked to transform the constrained
system into a constraint-free system that is perturbed by a
state-dependent uncertainty term. Then, inspired by recent
results in ASMC literarture [3], [30], a proportional-integral
(PI) slidingmode is constructed and a state-dependent control
policy is synthesized that guarantees finite-time convergence
of the unconstrained error to a uniform ultimate bound
(UUB) using continuous (and bounded) control action. Then,
an alternative ASMC scheme is also synthesized in this
study that offers the advantage of realizing continuous
control action to accomplish prescribed-time convergence to
a prescribed bound that is independent of the size of the
perturbation term. It is shown that this approach is the key to
ensuring finite-time convergence of the constrained system to
a small bound with attendant satisfaction of state constraints.
The following are the key contributions of this study:

• This study guarantees uniform finite-time FOSM con-
vergence through the synthesis of ASMC schemes that
realize continuous and bounded control action in the face
of (possibly) stringent state constraints and unknown
exogenous perturbations.

• In contrast with standard ASMC approaches that invoke
apriori boundedness of the system state in order
to guarantee finite-time convergence, the proposed
state-dependent ASMC strategies are synthesized with
state boundedness shown aposteriori and finite-time
convergence achieved from any initial condition located
within the predefined stateconstraint set.

• The proposed schemes are shown to provide a sys-
tematic pathway to accomplish robust tracking control
though adaptive regulation of a PI sliding mode.

Moreover, in contrast with the schemes proposed in this
study, note that standard ASMC schemes such as [3], [12],
and [13] cannot be easily integrated in PI control loops
due to a lack of integral action. Experimental studies for
achieving accurate ground robot formation control using
visual feedback are further used to validate the proposed
schemes. A performance comparison study with the leading
alternative ASMC schemes in [1], [12], [13], and [31] is also
used to illustrate the advantages and superior performance of
the proposed schemes.

The rest of this article is organized as follows. In Section II,
the mathematical framework describing the constrained and
perturbed FOSM dynamical system is formulated, which is
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used in Section III to present the design of a robust ASMC
policy that relies on a nonlinear state transformation and
leverages state-dependent structure of the resulting perturba-
tion term to accomplish finite-time convergence. Section IV
presents an improved scheme that guarantees convergence of
the FOSM to a user-prescribed bound in prescribed finite-
time. In Section V, experimental demonstration of mobile
robot-based visual formation control is used to provide
further validation of the proposed schemes. A performance
comparison study with a leading alternative ASMC design
is also undertaken to demonstrate the advantages of the
proposed schemes. SectionVI presents the conclusions of this
study.

Throughout the rest of this article, the following notations
will be used. For a given vector x = [x1, . . . , xn]⊤ ∈ Rn,
and for a real number r ∈ R, the multivariable sign function
is defined as ⌈x⌋0 = x/||x||, and ⌈x⌋r = ||x||r⌈x⌋0.
For a function f (t) ∈ Rn

∀n ∈ [1,∞), f (t) ∈ L∞

when supt ||f (t)|| < ∞, where ||.|| denotes the 2-norm
in Rn. Finally, λmin{P} and λmax{P} denote the minimum
and maximum eigenvalues of the symmetric positive definite
matrix P.

II. PROBLEM STATEMENT
Consider the following perturbed first-order system

ẋ(t) = α(x, t) + β(x, t)8u(t) (1)

where x(t) ∈ Rn is the state vector that is assumed available
for feedback, 8 is a known invertible regressor coefficient,
u(t) ∈ Rn is the control input, and α(x, t) ∈ Rn is a state-
dependent external disturbance. The parameter β(x, t) is an
uncertain positive function such that β ≥ β(x, t) ≥ β > 0,
where β exists but is unknown, and β is a known constant
[11], [12], [25].
Assumption 1: The perturbation α(x, t) is a uniformly

bounded function with an upper bound that can be decom-
posed as ||α(x, t)|| ≤ max{α0(x), 1}α, where α0 : Rn

→

R>0 is a known (and possibly nonlinear) function, and the
bound α > 0 exists but is unknown.
Remark 1: Assumption 1 is motivated by practical

considerations that is naturally satisfied by a large class of
Euler-Lagrangian systems [3], and is a common assumption
invoked in standard ASMC literature [3], [25], [31]. Further-
more, the structure of the upper bound of this perturbation
term in Assumption 1 is more general compared to the
studies in [12] and [13] that assume a constant upper bound
apriori, and the studies in [16], [17], [18], [19], [20], and [21]
which assume the upper bound to satisfy a restrictive growth
condition in order to accomplish convergence. Finally, the
assumption that the regressor coefficient 8 is invertible
ensures that the relative degree of the sliding variable σ (to
be defined below) with respect to the control input u is one,
which is similar to the assumption invoked in [8], [9], [10],
[11], [12], and [13].

The objective of current study is to synthesize an adaptive
multivariable control policy u(t) that drives the state x(t)

to a small bound around the origin in finite-time under
the constraint x(t) ∈ [δ1, δ2], with δ1, δ2 ∈ Rn being
known constants satisfying δ2 > 0 > δ1. Note that the
state constraint condition violates the homogeneity property
of the closed-loop system, which renders most existing
homogeneity-based FOSMC techniques inapplicable [25].

Thus, given the constrained dynamical system (1), this
study will investigate stability in the sense of uniform
ultimate boundedness, which is in line with stability results
for sliding mode regulation in adaptive control literature.

III. ADAPTIVE SLIDING MODE CONTROL DESIGN
In this section, an adaptive sliding mode control policy is
designed that drives a nonlinear map-based transformed state
variable to a small bound around the origin through online
estimation and rejection of the uncertainty α(t). To this end,
we now invoke the following definition:
Definition 1: [30] For the multivariable signal ξ (t) ∈ Rn,

assume that there exist positive constants ν1, ν̃ satisfying ν̃ >
ν1 > 0, and that there exists a T ≥ 0 and ν2 > 0 such that
||ξ (t0)|| ≤ ν1 implies

||ξ (t)|| ≤ ν2 ∀ t ≥ t0 + T , (2)

where ν1 can be arbitrarily large. Then the signal ξ (t) is said
to be uniformly ultimately bounded by the ultimate bound ν2.

We then have the following Lemma characterizing the
global uniform ultimate boundedness of ξ (t).
Lemma 1: [32] Let V (ξ ) be a continuously differentiable

function such that

c1 ||ξ ||
2

≤ V (ξ ) ≤ c2 ||ξ ||
2

V̇ (ξ ) ≤ −c3 V (ξ ) ∀ ||ξ || ≥ ν1, (3)

with c1, c2, c3 > 0. Then, for a ball B of radius r , we define
a positive constant σ ≤ ν1 ≜ r(c1/c2)1/2. Then for every
initial state ξ (t0) satisfying ||ξ (t0)||2 ≤ ν1, there exists a
positive constant T such that the inequality (2) holds with
ν2 ≜ σ (c1/c2)1/2, and ν1 can be arbitrarily large.

A. STATE TRANSFORMATION
We now introduce the logistic function to initiate a nonlinear
equality transformation9 : Rn

→ Rn to map the constrained
state, x(t), into an unconstrained variable ζ (t) ∈ Rn as,

x(t) = 4(ζ ) ≜ δ1+3(δ1, δ2)9(ζ ),

9(ζ ) = [ψ(ζ1), .., ψ(ζn)]⊤, ψ(ζk ) =
eζk

1+eζk
,

3(δ1, δ2) = diag[δ2k−δ1k ], k = {1, .., n}. (4)

Note that the nonlinear transformation ψ : (−∞,∞) →

(0, 1) is a smooth monotonically increasing function, and
hence is invertible. It then follows that x(t) ∈ (δ1, δ2)
∀ ζ (t) ∈ Rn, thus requiring that the transformed variable
ζ (t) remain bounded in order to satisfy the state constraints
∀t ≥ 0.
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Moreover, as the components of the transformed state ζ (t)
can be expressed as

ζk (t)=ψ−1(xk , δ1k , δ2k )=ln
(
xk−δ1k
δ2k−xk

)
, k={1, .., n}, (5)

we have ζ (t) = ζ 0 =

[
ln

(
−
δ11
δ21

)
, .., ln

(
−
δ1n
δ2n

)]⊤

when

x(t) = 0, so that the objective now translates to the synthesis
of a control policy u(t) that drives a new unconstrained state
error variable χ (t) = ζ (t) − ζ 0 to a uniform ultimate bound
in finite time in the presence of uncertain parameters β(ζ , t),
α(ζ , t).

Differentiating (4) and substituting in (1), we have,

ζ̇ (t) = g(ζ ) α̃(ζ , t)+β(ζ , t)g(ζ )3−1 8u(t),

α̃(ζ , t) = 3−1α(ζ , t), g(ζ )=
[
9ζ (ζ )

]−1
,

9ζ (ζ ) =
∂9(ζ )
∂ζ

=diag[9ζk ], 9ζk=
eζk

(1+eζk )2
, k=1, .., n.

(6)

Note that the uncertainty term α̃(ζ , t) is now bounded by
the unknown constant α∗ satisfying ||α̃(ζ , t)|| ≤ h(ζ )α∗,
with h(ζ ) = max{α0 ◦ 4(ζ ), 1} ≥ 1, α∗

= ||3−1
||α.

Consequently, observe that the uncertainty term g(ζ )α̃(ζ , t)
in (6) has a state-dependent structure with coefficient g(ζ )
that is radially unbounded, thus necessitating the need for
the synthesis of a state-dependent control policy that ensures
finite-time convergence though continuous and bounded
control action.

B. ADAPTIVE CONTROLLER DESIGN
Accordingly, the PI sliding variable σ (t) is defined as

σ (t) = χ (t) + �

∫ t

0
⌈χ (t)⌋µ dt, (7)

where σ (t) ∈ Rn is an available signal for feedback, � ∈

Rn×n is a diagonal positive-definite matrix, and 0 < µ ≤

1. Note that the conventional PI sliding mode is recovered
for µ = 1, while a non-singular terminal sliding mode is
obtained for 0 < µ < 1 [33], [34]. Then, taking the time-
derivative of (7) and using (6), we have,

σ̇ (t)=g(ζ ) α̃(ζ , t)+β(ζ , t)g(ζ )3−1 8u(t)+� ⌈χ (t)⌋µ.

(8)

Next, to tackle the state-dependent uncertainty term
g(ζ )α̃(ζ , t) in (8), inspired by [30], we propose the following
control law:

u(t) = β−18−13 9ζ (ζ ) v(t), f (ζ )=
[
g(ζ ) − �⌈χ⌋

µ
]
,

v(t) = −0σ − K (t) h(ζ ) ||f (ζ )|| sat(σ/ε)−�⌈χ⌋
µ,

˙K (t) = η h(ζ ) ||σ || ||f (ζ )|| − ρ ηK (t), K (0) > 0, (9)

where 0 is a symmetric positive definite matrix, ε is a design
constant chosen such that 0 < ε ≪ 1, sat(y/ε) is the

saturation function

sat(y/ε) =

{
y/ε if ||y|| < ε

⌈y⌋0 otherwise,
(10)

and ρ, η are positive design constants.

C. STABILITY ANALYSIS
We now demonstrate that the trajectories of system (1) under
the proposed control policy (9) achieve uniform finite-time
convergence while simultaneously satisfying predefined state
constraints as proof of the following theorem.
Theorem 1: Consider system (1) with an initial value such

that the state x(0) is within the constraint region, i.e., δ1 <

x(0) < δ2. Then, under Assumption 1, system (1) under
the proposed adaptive control policy (9) achieves finite-time
convergence of σ (t) to a uniform ultimate bound given by

ϖ =

√
ρq∗2

ω1−ω2
, where ω1 ≜ min{λmin{0},ρ/2}

max{1/2,1/2η} > 0, 0 < ω2 <

ω1, q∗
= α∗

+ β/β − 1, and γ (ζ , t) = β(ζ , t)/β − 1.
Furthermore, control policy (9) ensures that the trajectories of
system (1) lie within the full-state constraint set δ1 < x(t) <
δ2 ∀ t ≥ 0.
Proof: As a first step, note that ζ (0) = 9−1(x(0), δ1, δ2) is

well-defined for δ1 < x(0) < δ2. The dynamics of ζ (t) then
evolves according to system (6) under the control policy (9).
Then, by integrating the last equation in (9), we have,

K (t)=e−ρηtK (0)+η
∫ t

0
e−ρη(t−τ ) h(ζ )||f (ζ )|| ||σ || dτ.

(11)

As K (0) > 0 and h(ζ )||f (ζ )|| ||σ || ≥ 0, from (11), it can
clearly be concluded that K (t) > 0∀ t ≥ 0.

Now, to facilitate subsequent analysis, we consider the
following Lyapunov function candidate

V =
1
2
σ⊤σ +

1
2η

[K − q∗]2. (12)

Using (8) and (9), the time-derivative of (12) can be written
as,

V̇ = σ⊤σ̇+
1
η
[K−q∗] ˙K = σ⊤g(ζ )α̃(ζ , t) −

β

β
σ⊤

[
0σ

+ Kh(ζ ) ||f (ζ )|| sat(σ/ε)+�⌈χ⌋
µ
]
+σ⊤�⌈χ⌋

µ

+[K−q∗][h(ζ ) ||σ || ||f (ζ )||−ρK ]. (13)

As β(ζ , t) ≥ β, we introduce γ (ζ , t) = β(ζ , t)/β − 1 ≥ 0,
so that from (13), we have,

V̇=σ⊤g(ζ )α̃(ζ , t)−σ⊤0σ−Kh(ζ )||f (ζ )|| σ⊤sat(σ/ε)

−γ (ζ , t)
[
σ⊤0σ+K h(ζ )||f (ζ )|| σ⊤sat(σ/ε)

+σ⊤�⌈χ⌋
µ
]
+[K−q∗][h(ζ ) ||σ || ||f (ζ )|| − ρK ]. (14)

We now introduce the auxiliary variable q(ζ , t) = [α̃(ζ , t)⊤,
γ (ζ , t)]⊤, so that, by invoking the fact that h(ζ ) ≥ 1, we have
||q(ζ , t)|| ≤ h(ζ )q∗. Then, from (14),

V̇=σ⊤f (ζ )q(ζ , t)−σ⊤0σ−K h(ζ ) ||f (ζ )|| σ⊤sat(σ/ε)
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− γ (ζ , t)
[
σ⊤0σ + K h(ζ ) ||f (ζ )|| σ⊤sat(σ/ε)

]
+[K−q∗][h(ζ ) ||σ || ||f (ζ )|| − ρK ]. (15)

Using the definition of the saturation function, observe that
γ (ζ , t)

[
σ⊤0σ +K h(ζ ) ||f (ζ )|| σ⊤sat(σ/ε)

]
≥ 0, so that we

have,

V̇≤σ⊤f (ζ )q(ζ , t)−σ⊤0σ−K h(ζ ) ||f (ζ )|| σ⊤sat(σ/ε)

+ [K − q∗][h(ζ ) ||σ || ||f (ζ )|| − ρK ]

≤||σ || ||f (ζ )||h(ζ ) q∗
−λmin{0}||σ ||

2
−ρ[K

2
−Kq∗]

−K h(ζ ) ||f (ζ )|| ||σ ||+[K − q∗]h(ζ )||f (ζ )|| ||σ ||

≤ −λmin{0}||σ ||
2
− ρ[K

2
− Kq∗]. (16)

Then, using the fact that K
2

− Kq∗
≥

1
2 [K − q∗]2 −

1
2q

∗2,
we have from (16),

V̇ ≤ −λmin{0}||σ ||
2
−
ρ

2
[K − q∗]2 +

1
2
ρq∗2

≤ −ω1V +
1
2
ρq∗2, (17)

where ω1 ≜ min{λmin{0},ρ/2}
max{1/2,1/2η} > 0. For the choice of a scalar

ω2 satisfying 0 < ω2 < ω1, we have,

V̇ ≤ −ω2V − (ω1 − ω2)V +
1
2
ρq∗2

≤ −ω2V∀ V ≥ 2 =
ρq∗2

2(ω1 − ω2)
. (18)

Clearly then, it follows directly from Lemma 1 that any
trajectory enters the ball V =

{
{σ , K } ∈ Rn+1

|V ≤ 2
}

exponentially in finite-time and stays in V for all future
time. Observe that the size of the ball can be made suitably
small through a suitable choice of controller gains ρ, η and
0, so that by recognising that V ≥

1
2 ||σ ||

2, we have the

ultimate bound for σ (t) as ||σ (t)|| ≤ ϖ =

√
ρq∗2

ω1−ω2
. This

bound is uniform as it is independent of initial conditions.
Consequently, invoking Lemma 2 in [31], it can be concluded
that this ultimate bound ϖ also holds for the unconstrained
tracking error χ (t), and it follows from (4) that δ1 < x(t) <
δ2, so that state constraints are satisfied ∀ t ≥ 0. This ends
the proof. ■
Remark 2: Observe that the state-dependent uncertainty

term g(ζ )α̃(ζ , t) arises as a natural consequence of employing
the invertible transformation (4), and not as a result of
structural knowledge as usually considered in adaptive
control literature. In particular, the last two equations in (9)
can estimate this state-dependent uncertainty term without
imposing structural constraints on the perturbation term,
which marks a major difference with the standard adaptive
sliding mode control schemes in [16], [17], [18], [19], [20],
and [21].
Remark 3: As noted earlier, the problem of controller syn-

thesis for constrained nonlinear systems has been considered
in [26], [27], and [28] with the objective of maximizing the
attendant domain of attraction. However, as these studies
only guarantee finite-time convergence in a small domain

of attraction of the predefined region, it is apparent that
these studies cannot be applied to the system considered in
this study which is in contrast with the proposed scheme in
this study that guarantees finite-time convergence from any
initial condition located within the predefined state constraint
set.
Remark 4: For the proposed scheme (9), parameters �

and µ determine the convergence time of the unconstrained
error variable χ (t), with a larger (resp. smaller) choice of �

(resp. µ) implying faster convergence of χ (t) to the ultimate
bound around the origin. Furthermore, as noted earlier, the
size of this ultimate bound can be made sufficiently small
for a smaller choice of gain parameter η, and a suitably large
choice of parameters 0, ρ. However, an overly large choice
of0, �, ρmay result in a large control effort, while an overly
small choice of µ, ε needs to be avoided in order to prevent
control signal chattering.
Remark 5: In the absence of state constraints, note that

the unconstrained conventional PI sliding variable σ̃ (t) can
be directly constructed as σ̃ (t) = x(t) + �

∫ t
0 x(t) dt .

Consequently similar to (9), with h̃(x)=max{α0(x), 1}, the
alternative control policy for regulating the variable σ̃ (t)
(hence x(t)) can be obtained as

u(t) = β−18−1ṽ(t), f̃ (x)=
[
I − �x

]
,

ṽ(t) = −0σ̃−K 1h̃(x)||f̃ (x)||sat
(

σ̃

ε

)
−�x,

˙K 1(t) = ηh̃(x)||σ̃ || ||f̃ (x)||−ρηK 1(t), K 1(0)>0. (19)

IV. BARRIER FUNCTION-BASED ADAPTIVE CONTROL
In the previous section, an adaptive control strategy is
presented that guarantees state convergence to an ultimate
bound in a finite-time. However, it is apparent that this
ultimate bound ϖ is proportional to the magnitude of the
external disturbance q∗, which is usually unknown apriori,
and thus renders this strategy less desirable for implementa-
tion during practical applications. In order to overcome this
drawback, an alternative control strategy is now proposed
that relies on a barrier function to guarantee prescribed
finite-time convergence to a small uniform ultimate bound
that is independent of the magnitude of the external
perturbation q(t). To this end, we now invoke the following
Lemma.
Lemma 2: [35] Consider the differential equation

ϕ̇(t) = −p(t)ϕ(t), p(t) =
ϑ̇(t)

1 − ϑ(t) + ι
, (20)

where 0 < ι ≪ 1, and ϑ(t) satisfies the following properties:
(i) ϑ(t) is atleast C2 on (0, ∞).
(ii) ϑ(t) is continuous and non-decreasing on [0, Tc], where

Tc < ∞ is a predefined time instant. Also, we have ϑ(0) = 0,
and ϑ(Tc) = 1.
(iii) ϑ̇(0) = ϑ̇(Tc) = 0, ϑ(t) = 1 and ϑ̇(t) = 0∀t ≥ Tc.
Then the system trajectory reaches the value ι

1+ιϕ(0) at
time Tc.
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A. ADAPTIVE BARRIER FUNCTION DESIGN
Then, inspired by [13], we propose the following control law
to tackle the state-dependent uncertainty in (8):

u(t) = β−18−13 9ζ (ζ )w(t), κ̇(t)= − p(t)κ(t)

w(t) = −p(t)κ(t)−K (t) h(ζ ) ||f (ζ )|| ⌈e⌋0−�⌈χ⌋
µ,

K (t) =
ϱ||e(t)||
ε̃ − ||e(t)||

, e(t) = σ (t) − κ(t), (21)

with κ(0) = σ (0), ϱ and ε̃ are positive user-defined constants,
and ϑ(t) in (20) is chosen as [13],

ϑ(t) =

 10
( t
Tc

)6
− 24

( t
Tc

)5
+ 15

( t
Tc

)4 if t ≤ Tc

1 t > Tc.

(22)

Observe that the controller gain K (t) in (21) has a barrier
function-like structure, so that K (t) is a monotonically
increasing function on [0, ε̃) that takes its minimum value
at e(t) = 0. Furthermore, note that we have e(0) = χ (0) −

κ(0) = 0.

B. STABILITY ANALYSIS
We now demonstrate that the trajectories of system (1) under
the proposed control policy (21) evolve within the predefined
state constraint set, and achieve uniform convergence in a
prescribed time Tc, as proof the following theorem.
Theorem 2: Consider system (1) with an initial value such

that the state x(0) is within the constraint region, i.e., δ1 <

x(0) < δ2. Then, under Assumption 1, system (1) under
the proposed adaptive control policy (21) achieves finite-
time convergence of σ (t) to a uniform ultimate bound in
prescribed time Tc, with the ultimate bound given by ϖ1 =

ε̃+ ι
1+ι ||σ (0)||, and ensures satisfaction of the state constraint

δ1 < x(t) < δ2 ∀ t ≥ 0.
Proof: As before, note that ζ (0) = 9−1(x(0), δ1, δ2) is

well-defined for δ1 < x(0) < δ2. The dynamics of ζ (t) then
evolves according to system (6) under the control policy (21).
To facilitate subsequent analysis, we consider the follow-

ing Lyapunov function candidate

W =
1
2
e⊤ e. (23)

Using (8) and (21), the time-derivative of (23) can be written
as,

Ẇ=e⊤[σ̇−κ̇]=e⊤
[
g(ζ )α̃(ζ , t)+�⌈χ⌋

µ
+p(t)κ(t)

]
−
β

β
e⊤

[
p(t)κ(t)+K (t) h(ζ ) ||f (ζ )||⌈e⌋0+�⌈χ⌋

µ
]
.

(24)

Then, invoking the fact that γ (ζ , t) = β(ζ , t)/β − 1 ≥ 0,
we have,

Ẇ = e⊤
[
g(ζ )α̃(ζ , t)−K (t) h(ζ ) ||f (ζ )|| ⌈e⌋0

]
− γ (ζ , t)e⊤

[
p(t)κ(t)+K (t) h(ζ ) ||f (ζ )|| ⌈e⌋0+�⌈χ⌋

µ
]

≤ e⊤
[
f (ζ )q(ζ , t)−K (t) h(ζ ) ||f (ζ )|| ⌈e⌋0

]
− γ (ζ , t)e⊤

[
p(t)κ(t)+K (t) h(ζ ) ||f (ζ )|| ⌈e⌋0

]
. (25)

Observe that from (22), we have 0 ≤ ϑ(t) ≤ 1, so that
from Lemma 2, it follows that p(t) ≥ 0. Then, from
(21), we have κ(t) = e−

∫ t
0 p(t) dtκ(0), so that ||κ(t)|| ≤

||κ(0)||. Consequently, there exists a positive constant p∗

satisfying p∗
= supt {p(t) ||κ(t)||}. Then, using the fact that

h(ζ )||f (ζ )|| ≥ h(ζ )||g(ζ )|| ≥ 1, we have from (25),

Ẇ ≤ −[K (t) − q∗] h(ζ ) ||f (ζ )|| ||e||

− γ (ζ , t)
[
K (t) h(ζ ) ||f (ζ )|| − sup

t
{p(t)||κ(t)||}

]
||e||

≤ −[K (t) − q∗] ||e||−γ (ζ , t)[K (t) − p∗] ||e||. (26)

Then, using (21) and (26), we can derive that Ẇ ≤ 0 provided
||e(t)|| ≥

q̃ε̃
ϱ+q̃ , with q̃ = max{p∗, q∗

}. Thus, it follows that

||e(t)|| ≤
q̃ε̃
ϱ+q̃ < ε̃ for all t ≥ 0 as e(0) = 0.

Furthermore, using Lemma 2, it follows that the auxiliary
variable κ(t) attains the value of ι

1+ισ (0) for all t ≥ Tc.
As ||σ (t)|| ≤ ||e(t)|| + ||κ(t)||, we have

||σ (t)|| ≤ ϖ1 = ε̃ +
ι

1 + ι
||σ (0)|| ∀ t ≥ Tc. (27)

As ι is a very small positive constant, the second term
in (27) can be neglected, so that the ultimate bound
ϖ1 is independent of the magnitude of the size of the
disturbance q∗. Furthermore, this bound is now uniform as it
is independent of initial conditions. Consequently, as before,
as the state variable ζ (t) converges in a finite-time to this
small bound around ζ 0, it follows from (4) that δ1 < x(t) <
δ2, so that the state constraints are satisfied ∀ t ≥ 0. This ends
the proof. ■
Remark 6: From the previous analysis, it is clear that for

the proposed scheme (21), the gain parameters ϱ (resp. ε̃)
may be chosen to be suitably large (resp. suitably small) to
ensure convergence to an arbitarily small bound. As before,
the parameter � (resp. µ) may be chosen to be suitably
large (resp. small) to ensure faster convergence of the
unconstrained error χ (t) to the ultimate bound around the
origin. Furthermore, prescribing an overly small convergence
time Tc may impose a large control effort, while overly small
values of ε̃ and µ may result in control signal chattering.
Remark 7: Note that the adaptive barrier-function based

strategy (21) behaves differently from [12] in two key aspects:
(i) it avoids introducing a discontinuity at e(t) = 0, and (ii)
prescribed-time convergence is achieved by relying on the
time-based generator system (20) that precludes the need for
adopting a switching gain strategy. Thus, in contrast with the
barrier function based strategy in [12], this policy realizes
prescribed-time convergence of the error through smooth
and bounded control action that alleviates chattering, while
remaining bounded at the prescribed time Tc.
Remark 8: In contrast with prevalent sliding mode control

schemes in adaptive control literature, note that the last two
equations in (21) provide online adaptation and rejection of
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the state-dependent disturbance term g(ζ )α̃(ζ , t). In particu-
lar, unlike the adaptive schemes proposed in [11], [12], and
[31], the adaptive barrier function strategy assures uniform
convergence in user-prescribed finite time to a perturbation-
independent ultimate bound ϖ1. If the trajectory were to
escape the bound ϖ1 in response to a sudden change in the
perturbation signal α(x, t), a straightforward time-resetting
scheme, similar to the strategy considered in [13], may be
adopted to ensure that the system trajectory converges to this
ultimate bound again within the predefined time Tc.
Remark 9: It is evident that the proposed policy (21)

inherits all the advantages of the barrier function-based
strategy in [13] while tackling the key drawback of not
accounting for the state-dependent structure of the perturba-
tion term α(x, t), which becomes critical to realizing bounded
control action for achieving prescribed-time prescribed-
bound convergence in the face of an unknown exogenous
disturbance, as demonstrated in the current study.

V. EXPERIMENTAL VALIDATION
In this section, the problem of accomplishing visual forma-
tion control is used to experimentally validate the proposed
strategies, and a performance comparison study with the
controllers in [1], [12], [13], and [31] is used to highlight the
advantages of the proposed schemes.

A. IMAGE-PLANE FORMATION KINEMATICS
Consider the motion of a pair of leader-follower robots with
the leader Ri and the follower Rj (Fig. 1(a)). The kinematics
of the k th velocity-controlled robot Rk (k ∈ {i, j}) is given
as ẋk=bk cos θk , ẏk=bk sin θk , θ̇k=ωk , where rk = [xk , yk ]⊤

and θk are respectively the position and orientation of the
robotRk in a fixed reference frame, bk andwk are respectively
the linear and angular velocities of the robot in the body-fixed
reference frame Bk = [xbk , ybk , zbk ]⊤. The relative position
of the leader Ri with respect to the follower frame Bj is then
given by [1]:

rij =

[
xij
yij

]
=

[
cos θj sin θj

− sin θj cos θj

]
(ri − rj) (28)

Taking the time derivative of (28), we have,

ṙij = [bi cos θij−bj+yijωj, bi sin θij−xijωj]⊤ (29)

where θij = θi − θj is the relative orientation between the
leader and the follower.

The follower robot Rj is now equipped with a forward-
looking perspective camera mounted on the follower robot.
The reference frame is given by Cj = {xcj, ycj, zcj}, with
the optical centre of the camera located at the origin of
the reference frame Bj, the camera’s positive vertical axis
pointing straight up and perpendicular to the ground plane,
and the camera’s optical axis (zcj-axis) aligned with the xbj
axis as shown in Fig. 1(a). The normalized image-plane
coordinates of a single point feature P rigidly located on the
leader robot Ri are then given by π=[uij, vij]⊤=[ yijxij ,

zi
xij
]⊤.

Finally, the image plane formation kinematics can be derived
as [1],

π̇=β8u(t) + α(π , t),u(t)=[bcmd, ωcmd]⊤, θ̇ij=ωi − ωj,

α=

[
sin θij−uij cos θij

−vij cos θij

]
vij
zi
bi,8=

[
uij

vij
zi

−u2ij−1
v2ij
zi

−uijvij

]
.

(30)

where bcmd, ωcmd are the linear and angular velocity
commands supplied to the follower robot. The parameter
β(t) is used to account for the internal dynamics of the
follower robot which is usually modeled as a first-order
system with an input-delay [36], so that we have β(t) ≥ β =

min{inft [bj/bcmd], inft [ωj/ωcmd]}. Detailed calibration tests
are undertaken by recording the follower robot’s velocity data
in response to reference step commands, which are shown in
Fig. 2. Clearly, from this figure, it is apparent that β = 0.5.
For practical perspective systems, it is reasonable to

assume that the point feature is located ahead of the camera,
so that xij > 0. Furthermore, we have zi ̸= 0, so that
vij = zi/xij ̸= 0. Thus, the determinant of 8 satisfies
Det[8] = v2ij/zi ̸= 0, ensuring that the matrix 8 is
invertible. Furthermore, note that ||α(π , t)|| ≤ α0(π )α,
where α0(π ) = |vij|

√
1 + u2ij + v2ij is available for feedback,

and α = supt {|bi(t)|}/|zi| is unknown.
Then, given the desired formation pattern rdij =[
xdij , y

d
ij

]⊤

and the corresponding desired coordinates πd
=

[udij, v
d
ij]

⊤
=

[
ydij/x

d
ij , zi/x

d
ij

]
, control policies (9), (21) are used

to synthesize u(t) that drive the image-plane error 1π =

[1uij, 1vij]⊤ := π − πd (thus formation error 1rij =

[1xij,1yij]⊤) to a small bound around the origin in a finite
time in the presence of uncertainty α(π , t) and visibility
constraints u−

≤ uij ≤ u+, v− ≤ vij ≤ v+, where
u−, u+, v−, v+ are known constants.

B. EXPERIMENTAL SETUP
Figure 1(b) depicts the experimental setup consisting of the
Qualisys® motion capture system, a ground station, and
a leader robot with a fiducial marker as the feature to be
tracked, and a follower with a monocular camera. In these
experiments, the centroid of an Aruco marker pattern is used
as a binary fiducial marker, which is detected and tracked in
a manner similar to [37]. The motion capture system obtains
the ground truth trajectories of the leader and the follower
in the global reference frame. An Intel RealSense D435i
camera is used to obtain 640 × 480 grayscale images that
are subsequently used to detect and track the fiducial marker
to accomplish formation control onboard. The height of the
centroid of the feature pattern is computed as 0.25 m, and the
focal length of the camera is 610.5 pixels. The normalized
image-plane coordinates are then directly obtained using the
above procedure as πd

= [−0.016, 0.17]⊤. The adaptive
controller and the image processing algorithm are directly
implemented on the onboard computer of the follower robot,
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FIGURE 1. (a) Planar coordinate definition and perspective vision system diagram. (b) Experimental setup, system architecture and the data flow diagram.

FIGURE 2. Time-trajectory of linear and angular velocity, and the
corresponding command inputs.

with the camera images and feedback loop running at a
frequency of 30 Hz. The control algorithm is written in
Python and implemented on a setup comprising the Robot
Operating System (ROS) Melodic framework running on
Ubuntu 18.04.

C. RESULTS AND DISCUSSION
The experimental results are obtained using different con-
trollers for a circular trajectory for two different cases of the
leader’s velocity profile:

• Constant leader velocity of bi = 0.1 m/s, ωi =

0.07 rad/s
• leader velocity varies bi = 0.1 → 0.25 m/s, ωi =

0.07 → 0.17 rad/s at t = 39 s.
For this setup, the visibility bounds are directly obtained

as δ1 = [−0.38,−0.47]⊤, δ2 = [0.40, 0.11]⊤. Figures 3,
4 depict the results obtained with the proposed scheme (9)
for the two different cases of varying leader velocity with
gain parameters chosen as � = 0.2I, 0 = 0.0005I, η =

0.025, ρ = 500, ε = 0.1, K (0) = 0.01, µ = 1.
From Figs. 3(a)-(c), it is evident that formation errors in
configuration space and in the image-plane nearly converge
to the origin in a finite time under continuous and bounded
control action (Fig. 3(d)). Note that these conclusions hold
true even when a sharp and significant discontinuity in the
perturbation term α(π , t) is introduced, as is the case with
the varying leader velocity profile (Fig. 4).
Figures 5, 6 depict the results obtained with the proposed

scheme (21) for the two different cases of varying leader

velocity with gain parameters chosen as � = 0.1I, ι =

0.1, ε̃ = 1, ϱ = 0.015, µ = 1. The prescribed convergence
time is chosen as Tc = 10 seconds. From Fig. 5(a)-(c), it is
again evident that controller (21) drives the formation errors
nearly to the origin under continuous and bounded control
action (Fig. 5(d)). As before, the controller ensures that the
formation errors are driven to the origin even in the presence
of a significant change in the perturbation term arising from
the abrupt change in the leader’s velocity profile (Fig. 6).

Figure 7 depicts the results obtained with the alternative
scheme (19) with gain parameters chosen the same as in
proposed scheme (9). However, in contrast with previous
cases, the absence of enforcement of state constraints in
this case results in controller (19) driving the formation
errors away from the origin, thus leading to the violation of
the visibility constraint and resulting in the loss of feature
tracking and formation control. Thus, this highlights the
importance of the synthesis of the proposed strategies under
the nonlinear mapping (4) that ensures that the formation
control objective is achieved by ensuring satisfaction of the
visibility constraints during the tracking process.

Finally, in order to further illustrate the advantages of the
proposed schemes, experimental results are also obtained
with the (i) prescribed-time prescribed-bound (PTPB) barrier
function-based controller [13], (ii) the adaptive PI control
scheme in [31], (iii) the alternative barrier function-based
adaptive controller scheme [12], and (iv) the prescribed
performance controller (PPC) [1]. Note that the adaptive
schemes in [12] and [13] do not admit state constraints as
well as the state-dependent structure of the perturbation term
α(π , t). For the controller in [13], the gain parameters are
chosen as

PTPB : α = 0.06, Tc = 1, ϵ = 0.18, κ = 0.1, 2 = 1.

For the controller in [31], the gain parameters are chosen as

Adaptive PI : K p = 0.05, β = 0.1, ι = 0.5, σ = 0.1,

γ = 0.05, η0 = 0.5, η∞ = 0.25, a0 = 0.5.
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FIGURE 3. Experimental results obtained with proposed controller (9) for the constant velocity case and µ = 1. (a) Leader and follower trajectories with
snapshots provided every 40 seconds. (b) Time-trajectories of normalized image-plane formation errors. (c) Time-trajectories of formation errors in
configuration space. (d) Control commands executed by the follower robot.

FIGURE 4. Experimental results obtained with proposed controller (9) for the varying velocity case and µ = 1. (a) Leader and follower trajectories with
snapshots provided every 25 seconds. (b) Time-trajectories of normalized image-plane formation errors. (c) Time-trajectories of formation errors in
configuration space. (d) Control commands executed by the follower robot.

FIGURE 5. Experimental results obtained with proposed controller (21) for the constant velocity case and µ = 1. (a) Leader and follower trajectories
with snapshots provided every 40 seconds. (b) Time-trajectories of normalized image-plane formation errors. (c) Time-trajectories of formation errors in
configuration space. (d) Control commands executed by the follower robot.

FIGURE 6. Experimental results obtained with proposed controller (21) for the varying velocity case and µ = 1. (a) Leader and follower trajectories with
snapshots provided every 25 seconds. (b) Time-trajectories of normalized image-plane formation errors. (c) Time-trajectories of formation errors in
configuration space. (d) Control commands executed by the follower robot.

For the controller in [1], the gain parameters are chosen as

PPC : K1=diag[0.1, 0.16], K2=diag[0.0025, 0.001],

ρ∞ = 0.1, l = 0.2.

For [12], the controller structure is given by u(t) =

−8−1[Kusign(1uij), Kvsign(1vij)]⊤, with the adaptive

gains given by

Ka(t)=

 γa, γ̇a=12.2|1aij(t)|, if |1aij| > ϵa/2
ϵaFa

ϵa−|1aij|
, otherwise, a={u, v}.

The gain parameters are chosen as γu(0) = 15, γv(0) =

10, ϵu = 0.08, ϵv = 0.03, Fu = 17, and Fv = 9.
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FIGURE 7. Experimental results obtained with controller (19) without visibility constraints for the constant velocity case. (a) Leader and follower
trajectories with snapshots provided every 20 seconds. (b) Time-trajectories of normalized image-plane formation errors with vertical dashed line
denoting the instant of loss of feature tracking and formation control due to violation of visibility constraint. (c) Time-trajectories of formation errors in
configuration space. (d) Control commands executed by the follower robot.

FIGURE 8. Experimental results obtained with the PTPB controller [13] for the constant velocity case. (a) Leader and follower trajectories with snapshots
provided every 40 seconds. (b) Time-trajectories of normalized image-plane formation errors. (c) Time-trajectories of formation errors in configuration
space. (d) Control commands executed by the follower robot.

FIGURE 9. Experimental results obtained with the adaptive PI controller in [31] for the constant velocity case. (a) Leader and follower trajectories with
snapshots provided every 40 seconds. (b) Time-trajectories of normalized image-plane formation errors. (c) Time-trajectories of formation errors in
configuration space. (d) Control commands executed by the follower robot.

FIGURE 10. Experimental results obtained with barrier function-based controller [12] for the constant velocity case. (a) Leader and follower trajectories
with snapshots provided every 40 seconds. (b) Time-trajectories of normalized image-plane formation errors. (c) Time-trajectories of formation errors in
configuration space. (d) Control commands executed by the follower robot.

Figures 8-11 depict the results obtained using these schemes
for the constant leader velocity case. For the case of the
varying leader velocity profile, the control schemes [1], [12],
[31] lead to formation divergence (Figs. 13-15), whereas the
PTPB control scheme [13] is able to accomplish formation

control only at the cost of sustaining large errors in steady-
state (Fig. 12). Table 1 shows the statistical values of
the steady-state root-mean square error (RMSE) and mean
absolute percentage error (MAPE) metrics of the formation
error in configuration space, as well as the control input
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FIGURE 11. Experimental results obtained with the comparison controller in [1] for the constant velocity case. (a) Leader and follower trajectories with
snapshots provided every 40 seconds. (b) Time-trajectories of normalized image-plane formation errors. (c) Time-trajectories of formation errors in
configuration space. (d) Control commands executed by the follower robot.

FIGURE 12. Experimental results obtained with the PTPB controller [13] for the varying velocity case. (a) Leader and follower trajectories with snapshots
provided every 25 seconds. (b) Time-trajectories of normalized image-plane formation errors. (c) Time-trajectories of formation errors in configuration
space. (d) Control commands executed by the follower robot.

FIGURE 13. Experimental results obtained with the adaptive PI controller in [31] for the varying velocity case. (a) Leader and follower trajectories with
snapshots provided every 40 seconds. (b) Time-trajectories of normalized image-plane formation errors with vertical dashed line denoting the instant of
loss of feature tracking and formation control due to violation of performance constraint. (c) Time-trajectories of formation errors in configuration space.
(d) Control commands executed by the follower robot.

FIGURE 14. Experimental results obtained with barrier function-based controller [12] for the varying velocity case. (a) Leader and follower trajectories
with snapshots provided every 40 seconds. (b) Time-trajectories of normalized image-plane formation errors with vertical dashed line denoting the
instant of loss of feature tracking and formation control due to violation of prescribed bound. (c) Time-trajectories of formation errors in configuration
space. (d) Control commands executed by the follower robot.

metrics which are computed using various controllers over
the last 20 seconds of robot motion. The error metrics for the
proposed schemes are obtained for both the conventional PI
sliding mode (µ = 1) and the terminal non-singular sliding

mode (µ = 0.75). Clearly, the steady-state performance of
the adaptive strategy (9) is superior to the adaptive barrier
function-based controller scheme (21). Moreover, for both
these control schemes, formation errors are lower with the
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FIGURE 15. Experimental results obtained with the comparison controller in [1] for the varying velocity case. (a) Leader and follower trajectories with
snapshots provided every 25 seconds. (b) Time-trajectories of normalized image-plane formation errors with vertical dashed line denoting the instant of
loss of feature tracking and formation control due to violation of performance constraint. (c) Time-trajectories of formation errors in configuration space.
(d) Control commands executed by the follower robot.

TABLE 1. Comparison of the root mean square error (RMSE) and mean absolute percentage error (MAPE) for various control schemes considered in this
study.

conventional PI sliding mode compared to the terminal
non-singular sliding mode. Importantly, it is also apparent
that the steady-state performance of either of the proposed
schemes - (9) and (21) - is significantly superior to the rest
of the control schemes chosen for comparison with similar
levels of control effort. This can be attributed to the fact
that the state-dependent structure of the perturbation term
g(ζ )α̃(ζ , t) is explicitly accounted for in the proposed designs
of (9) and (21), which is not the case with the alternative
designs in [12] and [13], while the adaptive PI strategy in
[31] and the PPC strategy in [1] - which rely on performance
constraints to regulate formation control with gain parameters
tuned for the nominal case of constant leader velocity - fail in
the presence of a varying leader velocity profile due to an
abrupt and large increase in the magnitude of the disturbance
term α arising from a large increase in leader velocity. The
video of the formation control experiments undertaken with
the proposed schemes (9) and (21) can be found here.

VI. CONCLUSION
Two adaptive integral sliding mode control strategies are
presented to solve the problem of finite-time convergence
of a constrained and perturbed FOSM in this study.
In particular, the main contribution lies in the synthesis of
novel sliding-mode control schemes that rely on reduced
apriori knowledge of the system uncertainty to achieve
finite time convergence from any initial condition within
the predefined state constraint set. This is accomplished by
relying on a nonlinear map that transforms the constrained
system into an unconstrained one, which subsequently

enables the synthesis of adaptive integral control policies
that guarantee finite-time convergence to a small bound
using continuous and bounded control action. Experimental
studies of leader-follower formation control are used to
validate the performance of the proposed schemes in the
presence of measurement noise. A detailed performance
comparison study with leading alternative designs is also
undertaken to demonstrate the superior performance of the
proposed schemes. Future work would potentially expand
this framework to accomplish higher order sliding mode
control in the presence of constrained inputs.
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