
R E S E A R CH A R T I C L E

The alteration of structural network upon transient association
between proteins studied using graph theory

Vasam Manjveekar Prabantu1 | Himani Tandon1,2 | Sankaran Sandhya3 |

Ramanathan Sowdhamini1,4,5 | Narayanaswamy Srinivasan1

1Molecular Biophysics Unit, Indian Institute of

Science, Bangalore, India

2Structural Studies Division, MRC Laboratory

of Molecular Biology, Cambridge, UK

3Faculty of Life and Health Sciences,

Department of Biotechnology, Ramaiah

University of Applied Sciences, Bangalore,

India

4National Centre for Biological Sciences (TIFR),

Bangalore, India

5Institute of Bioinformatics and Applied

Biotechnology, Bangalore, India

Correspondence

Ramanathan Sowdhamini, Molecular

Biophysics Unit, Indian Institute of Science,

Bangalore, India.

Email: mini@ncbs.res.in

Funding information

Department of Biotechnology, Ministry of

Science and Technology, India, Grant/Award

Number: BT/PR40187/BTIS/137/9/2021;

Institute of Bioinformatics and Applied

Biotechnology, Grant/Award Number: IBAB/

MSCB/182/2022; Science and Engineering

Research Board, Grant/Award Number:

JBR/2021/000006

Abstract

Proteins such as enzymes perform their function by predominant non-covalent bond

interactions between transiently interacting units. There is an impact on the overall

structural topology of the protein, albeit transient nature of such interactions, that

enable proteins to deactivate or activate. This aspect of the alteration of the struc-

tural topology is studied by employing protein structural networks, which are node-

edge representative models of protein structure, reported as a robust tool for captur-

ing interactions between residues. Several methods have been optimized to collect

meaningful, functionally relevant information by studying alteration of structural net-

works. In this article, different methods of comparing protein structural networks are

employed, along with spectral decomposition of graphs to study the subtle impact of

protein–protein interactions. A detailed analysis of the structural network of interact-

ing partners is performed across a dataset of around 900 pairs of bound complexes

and corresponding unbound protein structures. The variation in network parameters

at, around, and far away from the interface are analyzed. Finally, we present interest-

ing case studies, where an allosteric mechanism of structural impact is understood

from communication-path detection methods. The results of this analysis are benefi-

cial in understanding protein stability, for future engineering, and docking studies.
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1 | INTRODUCTION

The importance of molecular flexibility for a protein to function is well

documented.1–3 The analysis of different structural states helps in

analyzing its function.4 Several proteins are very rigid and exist

in fewer distinct conformations. However, most proteins exist pre-

dominantly in an inactive state and seldom in an active state. The dif-

ference between the structural states arises from subtle changes in

local conformations at specific sites or from large structural excursions

with altered topology. Some proteins also populate an intermediate

state, which may be stabilized in a dynamic equilibrium due to strong

interactions.5,6 The stabilization of such a transient state is generally

brought about by external perturbations like post translational modifi-

cations, mutations, or various binding partners.7–9 One such scenario

is the perturbation of the protein structure due to binding with

another protein. The changes brought about at the site of their inter-

face is generally allosterically transmitted across the structure of the

protein to impact or present its active site.10–12 Although this is intui-

tive to understand, the mechanism of this signaling has not been thor-

oughly analyzed across all proteins.

The analysis of allosteric signaling can often be approached

using protein structural networks (PSN).13–15 It is a simplisticRamanathan Sowdhamini and Narayanaswamy Srinivasan are joint corresponding authors.
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mathematical model of the residue interactions that exist in a well-

ordered globular protein structure, where the residues are consid-

ered as nodes and any interaction between them is considered by

drawing an edge between them. The edge signifies a relationship

between the interacting residues, generally pertaining to features

such as non-covalent bonding, proximity between atoms in space

and sometimes also based on energy parameters that can be defined

for interactions.16–19

A further advancement on the use of these structure networks is

the application of a graph-spectral method for the global comparison

of proteins.20,21 This method is robust and sensitive to even minute

structural perturbations that can be observed between any pair of

networks that are given as input.22,23 The method described by

Vasundhara and co-workers is an advanced comparison metric that

has been applied in the validation of protein structure models and in

understanding the amount of structural variability in an ensemble of

structures of a given protein.24–26 The method has been employed in

the current work for the global comparison of PSNs.

We have compared the bound and the unbound forms of the

same protein that has been crystallized when bound to interacting

partners as well as independently. The ProPairs database is a large

consortium of available bound and unbound proteins structures and

provides this information. Any changes in network parameters, both

local and global, are discussed along with interesting clinically relevant

scenarios where the network may have changed considerably without

affecting its overall structure topology. The rearrangement, gain and

loss of network connectivity are discussed further, illustrated using

case studies.

2 | MATERIALS AND METHODS

2.1 | Dataset

The Propairs database27 of legitimate protein–protein docking com-

plexes enlists crystal structures of bound complexes, defined as bio-

logical complexes in the Protein Data Bank (PDB),28 and their

corresponding unbound protein structure(s). A total of 2378 bound

complexes that have corresponding unbound structures of the inter-

acting partners were collected. It was ensured that the crystal struc-

tures of the bound complex are of better than 3 Å resolution.

Structures in the bound form were required to have the same oligo-

meric state as in the unbound form to ensure that the perturbation is

not influenced by the docking of any other protein molecule. The

dataset was further curated to remove structures with missing resi-

dues. Any multiple occupancies were corrected to obtain a conformer

with single occupancy, based on highest occupancy value, for all its

atoms. A total of 895 chains from a bound complex with interfacial

sites were paired with the corresponding chain in the unbound form

to make the working dataset for this analysis. Topologically equivalent

residues are identified using the TM Align tool. The list of all the pro-

tein chains along with the analysis of their network information can

be found in Table S1.

2.2 | Interface and non-interface definition based
on atom contacts

Non-covalent bonding between associating protein units form the

interface in-between partnering molecules that form a complex. In this

analysis, any pair of residues from the interacting partners, whose

atoms fall within a distance of 4.5 Å are considered to form the inter-

facial sites. This concept is based on proximity and is called an atom

contact, is also similar to the method used in the construction of

edges to make a structural network of the protein. The distance-based

method effectively captures the interfacial sites in the bound form of

the complex (Table S5). Any non-adjacent residue within the structural

network that comes directly in contact with the interfacial sites by

making atom contacts are termed as primary contacts. These sites

make up the rim of the interface around the interfacial core. All the

remaining residues that are away from the interface makeup the non-

interfacial sites.

2.3 | Network construction and analysis

The PSN is a weighted graph representation of residues intercon-

nected to depict a network of interactions. Each residue in the PSN is

a node and they are connected to other nodes using edges based on

their 3D coordinates. Spatial distance, chemical non-covalent bonds,

charge, energy, or many other features are several means of defining

network edges. In the current analysis, inter-atomic distance between

atoms of non-adjacent residues are used to define interactions. A dis-

tance proximity cut-off of 4.5 Å is used to define atom contacts.25

The weight of an edge is defined as the ratio of the total number of

atom contacts made between a pair of residues and the maximum

number of atom contacts found in the entire dataset between the cor-

responding amino acids.29

The degree parameter and node strength obtained from the sum

of all edge weights connected to a node describes the connectivity

around the corresponding residues in the PSN. A higher degree would

suggest that the well-connected node is a hub in the network. Upon

binding, any significant change in the node strength or degree of sites,

especially hubs, corresponding to loss or gain of crucial connectivity in

the PSN are analyzed.

2.4 | Global network and structure comparison

Structures in their bound form are aligned with the corresponding

structures in their unbound form and information of structural devia-

tion (RMSD) between all pairs of chains are obtained. TM-align is used

to compute the RMSD, which is a measure of Cα deviation between

topologically equivalent residues. This is followed by global network

comparison of the same equivalent residues using the network dissim-

ilarity method discussed by Gadiyaram and coworkers.25

The method of computing network dissimilarity involves storing

the PSN as an adjacency matrix which is normalized to a Laplacian of
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the network graph followed by its spectral decomposition to obtain

the eigen values and eigen vectors. A Forbenious norm of the differ-

ence between the adjacency matrices of the two structural networks

provides the edge difference score (EDS). A difference in the local and

global clustering of residues in the network is captured using the

Edge-weighted cosine score (EWCS) and the correspondence scores,

respectively. The component scores are then used to compile the Net-

work Dissimilarity Score (NDS) between the compared networks.

Identical networks would have a NDS of zero. No two networks can

have a dissimilarity greater than √3.

2.5 | Control dataset

The global comparison of the structure network was performed earlier

on a dataset of single-chain single-domain proteins to determine their

structure variability.26 There, all pairs of available multiple conformers

of the same protein are compared to determine the network dissimi-

larity (NDS) and structure deviation (RMSD) scores. In this work, the

data from the previous analysis have been used as a control to under-

stand the significance of the variability obtained upon transient asso-

ciation. The two-sample Kolmogorov–Smirnov test30 (KS test) is

performed to test the significance of the data obtained in the working

dataset as compared to the corresponding scores of the control

dataset.

3 | RESULTS

The dataset used for the analysis consists of 895 cases, corresponding

to a set of proteins that includes enzymes, few transport protein com-

plexes, and other structural oligomers. Proteins from diverse organ-

isms including eukaryotes, plants, and various animals are also present

in this working dataset. A total of 366 cases in the dataset are human

proteins of which 96 are known to have enzymatic activity. A detailed

list of all interacting partners undergoing transient associations that

are analyzed in this work have been presented in Table S2 along with

additional information regarding each case. In each case, the protein

chain from the bound complex is compared against its corresponding

chain in the unbound form. The structures are superposed to identify

topologically equivalent residues, modeled as nodes in the PSN con-

struct. Those residues that are in contact between the binding part-

ners are considered as interfacial sites and those in contact with the

interface are primary contacts.

A threshold of a minimum of 50 residues is used so that globular

domains are considered and not peptides. The smallest case with least

number of nodes is the ovalbumin enzyme inhibitor bound to differ-

ent binding partners (PDB ID 1HJA). Here, turkey ovalbumin protein

of 51 residues is complexed with the trimeric alpha-chymotrypsin to

inhibit its function (with 16 interfacial sites and 21 are primary contact

sites). The largest case, from PDB ID 2J8S, is the Acriflavine resistance

protein B trimer of 1032 residues in each chain bound to two mole-

cules of designed inhibitor (DARPin). One of the chains from the tri-

mer is unbound and the other two have differential contact. While

one chain has 20 interfacial sites with 31 primary contacts, the other

has only 7 interfacial sites with 20 primary contacts.

3.1 | Analyzing alteration in PSN upon transient
association

Preliminary analysis of the constructed PSNs was performed to study

the alteration of basic network parameters like average degree and

strength, change in hub status, loss or gain of edges and centrality

information. Figure S1 shows the degree of all nodes in the dataset.

The maximum degree of any node in all PSNs analyzed in this dataset

is 19. Nodes in the PSNs that have a very high degree are special hot-

spots with high connectivity that can alter the overall network when

perturbed. These nodes in the PSNs are identified as hubs. From the

degree distribution of the dataset, it is observed that nodes with

degree equal to 11 crosses the 90th percentile. Henceforth, for this

analysis, any node with degree greater than 10 is considered as a

hub node.

The change of degree and strength at all sites between the PSNs

of the bound and unbound forms of the proteins were next analyzed.

The alteration at the interfacial sites, primary contacts, and non-

interfacial sites were considered as the changes at, around, and away

from the interface, respectively. Figure S2 summarizes the changes

observed across all sites in the dataset. The variation upon transient

association are recognized by treating the unbound form as the refer-

ence structure and measuring all changes in the network when com-

plexed. Hence, any edges that are unique to the unbound form are

considered to be lost and those unique to the bound form are found

to be gained. Likewise, altering the hub status of nodes in the net-

works are also noted. If the size of the protein is large and has a com-

pact structure, there is an increased chance of finding more hubs.

Loss or gain of numerous hubs can point to change in local conforma-

tion of sidechains. The information on gain and loss of edges and hubs

in all cases is reported in Table S1.

Across the dataset, a net gain in hubs is observed more: In terms

of hubs, the net gain, loss, and indifference are 437, 333, and

125 cases, respectively. Human serum albumin in complex with beta-

2-microglobulin and IgG receptor (PDB ID 4K71) has the highest net

gain in the number of hubs (23) across the dataset. However, taking

percentage gain proportional to the length of the protein, the highest

gain in hubs is observed in another IgG Fab fragment (PDB ID 1NSN)

where there is a gain of 15 hubs in the 187-residue structure, which is

more than 8% of the protein. Such a tremendous gain in hubs upon

binding would suggest that the residues move closer to each other,

and the structure would be more compact upon binding. On the other

hand, the highest loss (33 hubs and 103 edges) is observed in the case

of Glutathione S-transferase when bound to Jasmonic amino acid syn-

thetase (PDB ID 5GZZ). Interestingly, 164 edges are lost, whereas

only 61 edges are gained and the loss of hubs from unbound form is

not accompanied by any gain of hubs when bound, which suggest that

there is a severe loss of connectivity in the protein as a result of pro-

tein binding. The information necessary to analyze each case in the

dataset is provided in Table S1.

PRABANTU ET AL. 3
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3.2 | Global comparison in working dataset as
compared to control

Next, the 895 cases from the bound versus unbound pairs of protein

chains are subject to global comparison by computing the NDS and

RMSD for structure deviation between backbone conformations. The

information obtained from the working dataset is illustrated as a scat-

ter plot as shown in Figure 1A and the comparison scores have been

presented in Table S3. Similar information obtained in the control

where only multiple structures of the same protein that are known to

be single-chain single-domain is also plotted in the background of the

scatter.26 The statistics of the data points corresponding to each of

the datasets is marked with horizontal and vertical lines to depict the

mean of the data points. The structure deviation in the control was

about 0.34 Å with a standard deviation of about 0.3 Å, whereas the

mean deviation of the working dataset is about 1.14 Å with a standard

deviation of about 0.94 Å. By performing a KS test, it is also

understood that the RMSD scores obtained in the working dataset is

significantly much higher than what was observed in the control (p-

value < .0001). Hence, the spread of the topological variation of the

backbone is much larger when proteins undergo transient associations

than the structural variability obtained from multiple conformers of

the same protein.

Likewise, the network dissimilarity observed in the control had a

mean of 0.112 ± 0.047, whereas that observed from the working data-

set is 0.173 ± 0.065. Furthermore, KS-test results (p-value < .0001)

show that the dissimilarity in the networks is significantly higher in

transiently binding proteins as compared to the dissimilarity in PSNs of

multiple conformers of the same protein (control dataset). It is interest-

ing to analyze those cases where the variability in the network arises

without much change in the backbone conformation. The contribution

to network dissimilarity specifically arises from variability in local side-

chain conformations. The network comparison scores, and structure

deviation of these cases are greater and lower than mean of the data-

set, respectively and can be found clustered on the top left of the scat-

ter shown in Figure 1A. A total of 194 cases from the working dataset

show such a trend (with RMSD <1.14 Å and NDS >0.173). A list of top

12 cases with such network alterations are listed in Figure 1B, a few

highlighted cases are studied in detail.

3.3 | Network alteration without change in the
overall topology

The scenario where the protein connectivity is altered upon transient

association without much deviation in the backbone conformation are

interesting. This suggests that the signal from the interface to non-

interface residues can be transmitted via small, concerted, side-chain

conformational changes without undergoing any large backbone con-

formational changes. The data points corresponding to such cases can

be found on the upper left quadrant of the scatter plot, where the

NDS is high and RMSD is very low. A detailed list of all the cases that

F IGURE 1 Diversity in structural network and backbone topology upon transient association. (A) The structure deviation information
obtained by computing Cα-RMSD (Å) is compared against NDS information obtained by comparing structural networks based on atom contacts.
The RMSD is plot on the x-axis and the NDS is plot on the y-axis. The variability observed in 46% of the cases is lower than the mean comparison

scores. About 194 cases (21.65%) show strong dissimilarity in network even though there is no significant change in their topology, the alteration
of the network in these cases is analyzed in detail. The control data shown in yellow dots correspond to similar information obtained from
structure variability of single chain single domain proteins that do not associate transiently. The mean of the working dataset is significantly
greater than the mean of the control. (B) Those cases with high network dissimilarity without much structural deviation found on the top left
region of the scatter plot as listed. Only the top 12 cases out of which four interesting cases are picked for detailed case studies are highlighted.
Their corresponding datapoints are marked on the scatter plot shown on the left. The list of 197 cases that fall in this region are tabulated in
Figure S4.

4 PRABANTU ET AL.
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fall into this category can be found in Table S4 along with their com-

puted comparison metrics. Of the 194 cases that show such variabil-

ity, few interesting cases have been chosen for detailed studies

below.

3.3.1 | The acriflavine resistance protein B
undergoes network rearrangement

The acriflavine resistance protein B (AcrB) is a multidrug efflux pump

found in the inner membrane component of the AcrAB-ToiC drug

efflux system found in Escherichia coli. The overexpression of this pro-

tein machinery in the organism renders it resistant to a wide range of

drugs as it functions to efflux the molecules out of the cell. The mech-

anism of function of the protein have been well studied. There are

three distinct domains in each subunit of the AcrB protein, the trans-

membrane domain (TM-domain), pore domain, and the ToiC docking

domain. Drug molecules enter the protein from the central cavity in

the TM-domain domain, which are passed into the pore through chan-

nels that can open and close based on conformation coupling in the

helices of the protein. The molecules efflux into the docking domain

via the central funnel.31–33

In the bound form, the AcrB trimer is bound to two molecules of

designed ankyrin-repeat protein (DARPin) inhibitors (PDB ID 2J8S

shown in Figure S3A). This binding mimics the different functional

states of the proteins, where the three chains of AcrB are locked in

three different states, which reveal the mechanism of drug efflux from

the channels of each chain. Alteration of the network around the

channel in the pore domain of AcrB (Chain A) is observed upon bind-

ing with the DARPin molecule (Figure 2A). The pore domain has an

open channel that allows for the efflux of drug molecules, which is

closed in the inhibitor bound form of the protein. The closing of this

channel is mediated by rearrangement of sidechain interactions facing

outwards of the channel to face inwards thus closing the gate. This

leads to a significant rearrangement of the network in the protein and

hence the high network dissimilarity is observed.

3.3.2 | Net loss of connectivity in pancreatic
α-amylase protein when bound to inhibitor

The porcine pancreatic α-amylase protein (PPA) that is secreted by

pancreatic acinar cells is responsible for the catalyzing the initial step

in starch hydrolysis and is an essential enzyme for producing glucose.

Function of the protein is the endohydrolysis of (1–4)-alpha-D-

glucosidic linkages in polysaccharides containing three or more (1–4)-

alpha-linked D-glucose units.34 This is performed when the carboxylic

oxygens of the catalytically competent residues Glu233 and Asp300

F IGURE 2 Alteration of structural network in case studies analyzed from change in basic network parameters. The observed changes are
illustrated on cartoon diagram of the structure networks. Edges that are gained and lost are shown as orange and blue lines, respectively. Those
hubs that are gained and lost are shown as orange and blue spheres, respectively. (A) Rearrangement of edges in the pore domain of the chain A
in AcrB protein is shown, where most of the edges around the pore are lost and those within the pore are gained. (B) Loss of hubs in the
C-terminal domain of the amylase protein is observed. (C) Several edges and hubs are gained around the binding site of the Iota toxin component
upon interaction with actin protein. (D) Loss of edges far from the binding site is observed in human DLD protein.

PRABANTU ET AL. 5
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make hydrogen bonds with the “glycosidic” NH group of the acarvio-

sine group. This protein is a major component of pancreatic fluid mak-

ing it the primary target for the treatment of Type 2 diabetes.

Furthermore, its interaction with several inhibitors is well documented

as it is studied from perspective of several different diseases.35

In our case study, the protein is bound to the microbial inhibitor

tendamistat (PDB ID 1BVN shown in Figure S3B).36 This bound form

has the same topological fold as the unbound PPA; however, their

network is found to be altered.37 A net loss of hubs and edges is

observed along with loss of essential connectivity around the active

site residue, 233E, which functions as a proton donor. Most of the lost

edges are found in the C-terminal domain of the proteins, which binds

to the tedamistat inhibitor where, 17 hubs are lost, of which one is an

active site and only four hubs are gained (Figure 2B). Hence, the con-

nectivity in the functional C-terminal domain is lowered when bound

to the inhibitor which also blocks the active site of protein from per-

forming hydrolysis.

3.3.3 | Iota toxin-component has increased
connectivity when bound to actin protein

The Iota toxin component Ia is an ADP ribosylating toxin (ADPRT).

The C-terminal domain that houses the active site of this protein com-

plexed to NAD is essential for its function. It is known that the active

site loop along with residues Tyr60–Tyr62 of the toxin binds to actin

protein and inhibits its activity. Actin-specific ADPRTs perform ADP

ribosylation of G-actin at Arg117, leading to disorganization of the

cytoskeleton and cell death.38,39

In our analysis, significant dissimilarity is observed between the

actin bound form of the protein (PDB ID 3BUZ shown in Figure S3C)

and the unbound toxin. The actin-bound protein has few more new

interactions at the binding site and a net overall gain in connectivity.

New edges are found to be gained at the functional sites Arg352,

Glu378, Glu380 of the protein. A net gain in number of edges and

hubs is observed, which shows a more compact structure especially

around the binding site (Figure 2C).

3.3.4 | Dihydrolipoyl dehydrogenase loses
connectivity away from the binding site

The human mitochondrial dihydrolipoyl dehydrogenase (DLD, hE3 or

E3) along with pyruvate dehydrogenase (E1) and dihydrolipoyl transa-

cetylase (E2) form the pyruvate dehydrogenase complex (PDC), which

is known to link the glycolysis metabolic pathway with the citric acid

cycle. The primary function of the complex is to convert pyruvate to

acetyl-CoA, which is necessary for cellular respiration. The DLD protein

exists as a homodimer, where each subunit consists of a FAD- and

NAD-binding domain along with a central and an interface domain that

interacts with the E3-binding protein (E3BP) to form the PDC. At the

FAD-binding domain active site, flavin-mediated oxidation takes place

to oxidize the substrate, which is reversed to FAD resting state using

NAD+ resulting in NADH and H. Deficiency of this protein is associated

with autosomal recessive metabolic disorders.40–42

In this case, the E3 homodimer is bound to E3-binding domain of

E3BP forming a subcomplex with a strong hydrophobic interface

(PDB ID 1ZY8 shown in Figure S3D). It is reported that the central

hydrophobic patch along with numerous ionic and hydrogen bonds

between residues of the three chains add to the stability of the sub-

complex. The network dissimilarity between the bound and the

unbound form of this protein is found to be very high. A significant

loss in the number of edges, mostly far from the site of the interface

is observed (Figure 2D). While 19 hubs are lost all around the protein,

only three hubs are gained leading to a net severe loss of

connectivity.

4 | DISCUSSION

The ability of a protein to make and break interactions with another

protein in order to bind to it temporarily and perform a certain func-

tion allows for transient association between the proteins. The bind-

ing event is mostly brought about by non-covalent bonds at the

interface between the interacting proteins, which also determine

the nature and strength of interaction. The implication of such an

event can range from no structural change (due to weak interaction)

to long range (allosteric communication) of the perturbation signal.

The focus of our work was to study how direct associations play a role

in perturbing the connectivity of residues in globular proteins. The

effect of the perturbation at, around, and away from the interface is

studied by constructing a PSN of the connectivity within the protein

and analyzing the alteration of the network.

A collection of structures from the ProPairs database was used

for the analysis. After filtering structures based on their crystallo-

graphic properties, 895 protein chains have been identified that tran-

siently associate with other proteins and have the same oligomeric

state in the bound complex as well as the unbound form. The struc-

ture of the protein chain obtained as a part of a protein complex,

which is the bound form of the protein, is compared with the struc-

ture of the same protein chain when it is not bound to the interacting

partner but yet in the same oligomeric state. At the local level, the

change in network parameters such as number of edges, hubs, and

centrality measures are studied. The global comparison is made in

terms of the topological change, as in, their backbone deviation

(RMSD) and in terms of their structural network dissimilarity (NDS).

Graph spectral comparison methods are used in computing the

dissimilarity between the networks that involve spectral decomposi-

tion to obtain the eigen vectors and eigen values of the PSNs. Few

case studies with high network variation were identified using the

global and basic network comparison. A major contribution to

the NDS in these cases arises from its component, EWCS, which is

mostly responsible to compute the change in local clustering of resi-

dues. The Fiedler vectors (Fv) between a pair of PSNs can be exam-

ined to identify the sites with high variations in the clustering of

nodes. The eigen vector corresponding to the second smallest eigen
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value is called the Fiedler vector. This vector can provide meaningful

information on the algebraic connectivity of the network and can be

used in partitioning the network into clusters.43 This is illustrated with

a case study.

The first step is to identify the Fv from the spectra of the pair of

graphs. Figure 3A shows the aligned Fv between the bound and the

unbound form of the DLD protein. The absolute difference between

the aligned vectors is computed to find regions of the protein that

are not in agreement. Figure 3B shows the difference between the

Fv and highlights the region with variation between the vectors. The

sites with the most variation, having the highest absolute difference

are shown as sticks in Figure 3C. The cartoon diagram of the chain A

of DLD is colored based on the absolute difference between the

vectors and chain B is shown as gray surface. The interacting partner

E3BP protein is shown using yellow surface representation. Side

chains of the top five residues with highest absolute difference, yel-

low in the bound form, and red in the unbound form, are shown

using spheres.

Any alteration of network parameters close to the site of inter-

face is expected as the interfacial sites make new interactions with

the binding partner. However, more often, alterations are also

observed far from the site of binding due to allostery, which is the

transmission of the perturbation. The path of this allosteric signal can

be analyzed by drawing the shortest path between the site of pertur-

bation to the site of significant network alteration. The change in

shortest path between the site of binding to the site of perturbation is

analyzed in the case study and discussed in the Figure S4. A new edge

between spatially proximal nodes GLU 437 and ASP 350 in the bound

form reduces the shortest path when compared to the several possi-

ble short paths in the unbound form.

Most of the variability observed in the dataset occurs at the non-

interfacial sites. This is also evident from the variation of degree and

strength at, around, and away from the interface observed in

Figure S2. The network variation obtained only by considering the

structure network of non-interface sites says that in almost 89% of

the cases, the network dissimilarity is greater than 50% of the NDS

scored from all residues. This result also suggest that most of the net-

work away from the binding site is affected by the perturbation, but

all sites are not perturbed proportionally. As viewed from the absolute

difference between Fv of the DLD protein case study, only five nodes

of the entire length of the long protein were strongly affected to clus-

ter differently. The effect on all other sites are feeble and is a result of

subtle changes in the local conformation of sidechains, which shows

that most residues predominantly still remain in the same topology,

any interactions that are broken are counteracted by other interac-

tions being made. Hence there is predominantly a rearrangement of

interactions that is being observed. However, in about 60% of the

285 cases that are identified as enzymes, in the working dataset, a net

loss in connectivity is observed. Hence when the interacting protein is

an enzyme, the structure of the bound form may be less compact than

the unbound form, which may serve the process of functioning to cat-

alyze several different reactions.

F IGURE 3 Absolute difference between Fiedler vectors (Fv) of DLD protein. Fv components cluster the nodes of the PSN into groups.
(A) shows the aligned Fv components of the bound and unbound PSN of DLD protein. The clustering of most sites look almost similar since the
topological change in the backbone is not much. (B) The absolute difference between the vectors point to those nodes whose local clustering
have changed due to variation of edge weights. When the absolute difference between these vectors is taken, it is found that there are spikes at
specific sites that have been perturbed by being clustered differently. (C) These specific sites are mapped onto the cartoon diagram of the bound
protein. The binding partners are shown as surface. The sidechains of identified sites in the bound and unbound structures are shown as yellow
and red spheres, respectively.

PRABANTU ET AL. 7

 10970134, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.26606 by T

he L
ibrarian, W

iley O
nline L

ibrary on [17/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The case studies have been chosen such that their analysis has

certain clinical relevance and an impact on understanding their mecha-

nism. The alteration of the network in all the case studies can be

related to several human disease conditions like antibacterial resis-

tance, diabetes, toxin-induced cell death, and latic acidosis. We also

related to known information about the mechanisms of their function.

Hence, the analysis of the structure network is a necessary and bene-

ficial tool in the analysis of structural excursions. The development of

such tools that can analyze the impact of protein–protein interactions

will help in understanding allostery mechanism and the network analy-

sis of protein structures for stability engineering and docking studies.

5 | CONCLUSION

The alteration of the structure network upon transient interactions

between the structure of a protein complex of interacting partners is

analyzed by comparing it against an available unbound structure as a

reference. Studying the effect of perturbations using a network graph

of residue–residue interactions within the protein is a beneficial and

robust tool in the analysis of structural excursions. Comparing several

basic network parameters and using advanced graph spectral

approaches, a local and global difference between the unbound and

the bound form of protein chains is identified. It is understood that

even when there is no significant change in the overall fold of a given

protein, the network of interactions may rearrange themselves to

yield a preferred function or phenotype. Change of protein function

can be analyzed by studying the change in network parameters at the

active site. The protein binding event is found to increase the connec-

tivity within a protein in the case of a non-enzymatic toxin inhibitor. A

significant loss of connectivity in the case of DLD protein is associ-

ated with the formation of a strong hydrophobic patch in the bound

form of this homodimer enzyme. Probing the spectral properties of

the PSN yielded Fiedler vectors, which are compared to find nodes

that jump from one cluster to another. The path of communication

from the site of binding to the highest perturbed site is obtained by

building the shortest path between the nodes. These methods of

studying the effect of perturbations throw light on understanding the

allostery mechanisms.
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