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Artificial gauge fields in the t-z mapping for optical
pulses: Spatiotemporal wave packet control and
quantum Hall physics
Christopher Oliver1*, Sebabrata Mukherjee2, Mikael C. Rechstman3, Iacopo Carusotto4,
Hannah M. Price1

We extend the t-z mapping of time-dependent paraxial optics by engineering a synthetic magnetic vector po-
tential, leading to a nontrivial band topology. We consider an inhomogeneous 1D array of coupled optical wave-
guides and show that the wave equation describing paraxial propagation of optical pulses can be recast as a
Schrödinger equation, including a synthetic magnetic field whose strength can be controlled via the spatial
gradient of the waveguide properties across the array. We use an experimentally motivated model of a laser-
written array to demonstrate that this synthetic magnetic field can be engineered in realistic setups and can
produce interesting physics such as cyclotron motion, a controllable Hall drift of the pulse in space or time,
and propagation in chiral edge states. These results substantially extend the physics that can be explored
within propagating geometries and pave the way for higher-dimensional topological physics and strongly cor-
related fluids of light.
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INTRODUCTION
A remarkable result of paraxial optics is that the electromagnetic
field of paraxially propagating classical light can be described by a
Schrödinger-like equation (1). In this equation, the usual time evo-
lution of a wave function is replaced by the propagation of the elec-
tric field envelope along the optical axis, z, of the medium. In
practice, a major platform for investigating paraxial propagation
is arrays of coupled optical waveguides, laser-written into a sub-
strate (2). In general, these propagating geometries can be used to
emulate a variety of single-particle quantum phenomena (3–8) or
mean-field interacting physics if the medium is nonlinear (9–15).
This interacting physics includes Bose-Einstein condensates of
photons and opens the way to studies of fluids of light (16–18),
with interesting perspectives toward quantum features (19).

One exciting avenue that has been explored intensively over the
past 15 years is that of topological photonics (20, 21). In this field,
the physics of topological phases of matter, originally discovered
within the context of electrons in solids, is applied to photonics.
Propagating geometries have proven to be a very fruitful platform
in this context, with a major early achievement (22) being the inves-
tigation of Floquet topological insulators in which a honeycomb
array of waveguides acquires a nontrivial topology when a helical
patterning of thewaveguides is introduced. Because the propagation
distance z plays the role of the temporal evolution, the breaking of
the translational symmetry along the z direction of the helical wave-
guide system is analogous to the breaking of time-translation sym-
metry in a two-dimensional (2D) tight-binding model of electrons
under a temporally periodic modulation (23). More generally,
similar propagating geometries have proven to be a powerful tool

for studying a wide variety of topological physics, including the in-
vestigation of the interplay between nonlinearity and topology (24–
26), topological physics in non-2D geometries (27–30), non-Hermi-
tian effects in topology (31, 32), disorder (33, 34), Thouless
pumping schemes (35, 36), transport (37), and quantum walks (38).

So far, most, if not all, works on topological photonic effects
using propagating geometries have used monochromatic light and
so do not make substantial use of the temporal dynamics associated
with an optical pulse. From paraxial optics (1), it is well known that
the Schrödinger-like equation describing the propagation of an
optical pulse in a dispersive medium also includes a second-order
time derivative term, with the same structure as a kinetic energy
term in quantum mechanics. This allows us to interpret time t as
an additional spatial dimension in addition to the transverse x, y
ones, while the coordinate z along the propagation direction plays
the role of a time. This interchange of the role of space and time is
known as the t-z mapping and has also been investigated at the
quantum level in (19, 39–41).

In this work, we propose a novel configuration based on an array
of coupled optical waveguides where a synthetic gauge field natural-
ly appears when the temporal dynamics of an optical pulse is taken
into account under the t-z mapping. In particular, we consider
propagation across a 1D array of coupled optical waveguides with
slightly different properties and show that the 2D wave equation
for the classical optical field propagation in a mixed spatial-j/tem-
poral-t plane has the form of a Schrödinger equation including a
synthetic vector potential term as in the coupled wire model of
quantum Hall physics (42–44). A realistic configuration resulting
in a sizable synthetic magnetic field and a nontrivial band topology
is put forward, and experimentally accessible signatures of the mag-
netic effects are pointed out. These include a cyclotron motion of
light wave packets in the spatiotemporal j-t plane, a Hall drift in re-
sponse to additional synthetic electric fields in either the spatial or
the temporal direction, and unidirectional propagation in chiral
edge states. As compared to previous schemes (20, 45) for synthetic
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magnetic fields and synthetic dimensions in arrays of microcavities
(46, 47) or waveguides (48–51), our proposal has the crucial advan-
tage that it does not require a dynamical modulation of the system
and provides a new tool for the manipulation of the spatiotemporal
shape of optical wave packets. Moreover, the local interactions in
our system suggest exciting prospects for strongly correlated
fluids of photons if the interaction strength can be scaled up.

The structure of the article is the following: We first summarize
the mapping of the paraxial wave equation onto the Schrödinger
equation with a synthetic magnetic field. The quantum Hall
coupled wiremodel is then reviewed, and an experimentally realistic
configuration for realizing it is presented. Observable signatures of
the synthetic magnetic field and the nontrivial band topology are
next presented.We finish by sketching conclusions and perspectives
toward quantum topological photonics and quantum fluids of light.

RESULTS
Mapping the paraxial wave equation onto a Schrödinger
equation with a synthetic magnetic field
In this first section, we review the derivation of the well-knownwave
equation for the paraxial propagation of a pulse though an array of
coupled waveguides (1). For suitably designed inhomogeneous
arrays, we then map the wave equation onto a Schrödinger equation
for a particle in a synthetic magnetic field, where time plays the role
of a synthetic spatial dimension and propagation through the array
corresponds to time evolution. This equation will be our workhorse
for the rest of the paper.

Consider an optical pulse propagating through a 1D array of j =
1, …, N single-mode waveguides whose optical axis points in the z
direction, as shown schematically in Fig. 1A. We can write the elec-
tric field in waveguide j as

Ejðr; tÞ ¼ ejðx; yÞajðz; tÞei½βjref ðω0Þz� ω0t� ð1Þ

where ej(x, y) is the electric field profile in the plane perpendicular
to the optical axis, ω0 is the pulse carrier frequency, and βjref(ω0) is

the carrier propagation constant in the j = jref waveguide used as a
reference. We choose this decomposition to separate out the enve-
lope aj(z, t), which, within the paraxial approximation, is assumed
to be slowly varying as a function of z and t. We do not consider
nontrivial polarization effects, so Ej can represent any polarization
component of the electric field. We assume that the waveguides are
effectively single mode, meaning that any excited modes are well
separated from the fundamental mode in propagation constant so
that they play no role in the dynamics. We also neglect loss and dis-
order in the optical medium.

In frequency space, the propagation of the pulse is described by
the coupled equations for the field amplitudes in the different wave-
guides

i
∂~aj
∂z
¼ � ½βjðω0 þ ω0Þ � βjref ðω0Þ�~aj � Cð~aj� 1 þ ~ajþ1Þ ð2Þ

where ~ajðz;ω0Þ is the Fourier transform of aj(z, t) with respect to t in
terms of the frequency variable ω0 = ω − ω0 and C is the evanescent
coupling between neighboring waveguides. For simplicity, this cou-
pling is assumed to be frequency independent in the range of inter-
est and constant across the array. In typical implementations where
the coupling strength is controlled by the spacing between wave-
guides, this latter condition may require an appropriate modulation
of the spacing across the array to compensate for the variable size of
the waveguides.

We now Taylor-expand βj(ω) about ω0

βjðωÞ � βjðω0Þ

þ
dβjðωÞ
dω

�
�
�
�
�
ω0

ðω � ω0Þ þ
1
2
d2βjðωÞ
dω2

�
�
�
�
�
ω0

ðω � ω0Þ
2
ð3Þ

where we neglect terms O[(ω − ω0)3] and higher. We then identify

vðjÞg ¼
dβj
dω

�
�
�
�
�
ω0

" #� 1

;Dj ¼
d2βj
dω2

�
�
�
�
�
ω0

ð4Þ

Fig. 1. Our basic setup and target quantum Hall model. (A) A schematic of our proposed setup consisting of an inhomogeneous 1D array of coupled single-mode
waveguides. Each waveguide has a propagation constant βj=1,…,N(ω), and neighboring waveguides are coupled together evanescently with a coupling strength C. The
waveguide axis lies along the z direction. The waveguide properties (e.g., the width and refractive index) vary across the array to engineer a nontrivial synthetic magnetic
field. (B) Example of the band structure of a quantum Hall coupled wire model formed by N = 10 wires with periodic boundary conditions in the continuous x direction.
For each state of the band structure, the color coding indicates its average spatial position along y. We measure kx in units of 1/lB, where lB ¼

ffiffiffiffiffiffiffiffiffiffi
ħ=qB

p
is the magnetic

length. The one free parameter of the Hamiltonian, the ratio of the two energy scales r ≡ (ℏ2/ml2B)/(ℏJ ), is set to unity. We find, at low energies, dispersionless bulk Landau
levels and chiral states localized on the system edge in the gaps, as is characteristic of a quantum Hall model.
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as the group velocity and the group velocity dispersion in waveguide
j, respectively. Substituting this expansion into Eq. 2 and Fourier-
transforming back to the time domain produces the wave equation

i
∂aj
∂z
¼

Dj

2
∂2aj
∂t2
�

i
vðjÞg

∂aj
∂t
� ½βjðω0Þ � βjref ðω0Þ� aj � Cðajþ1

þ aj� 1Þ ð5Þ

which can be easily mapped onto a Schrödinger equation.
To this purpose, we transform to a frame comoving with the

group velocity vðrefÞg ≡ dβjref/dω∣ω0
in the jref reference waveguide

using a Galilean transformation with space and time interchanged,
ζ ≡ z and τ ≡ t − z/vðrefÞg . After completing the square to eliminate
the first time derivative, Eq. 5 becomes

i
∂a0j
∂ζ
¼

1
2mj

� i
∂
∂τ
� AðτÞj

� �2

a0j þ Vj a0j � Cða0jþ1 þ a0j� 1Þ ð6Þ

where we have defined

mj ¼ �
1
Dj
;AðτÞj ¼

1
Dj

1
vðjÞg
�

1
vðrefÞg

" #

;Vj

¼
1

2Dj

1
vðjÞg
�

1
vðrefÞg

" #2

� ½βjðω0Þ � βjref ðω0Þ� ð7Þ

and where a0j(ζ, τ) is the electric field envelope in the comoving
frame (denoted from now on by the prime symbol).

This set of equations has the form of coupled Schrödinger equa-
tions, where propagation along the optical axis of the waveguide
array plays the role of time evolution, as we expect from the t-z
mapping. The particle with unit charge moves in a 2D system
with one discrete ( j) dimension and one continuous (τ) dimension:
In the former direction, the hopping amplitude isC; in the latter, the
particle has a (position-dependent) mass mj determined by the
group velocity dispersion of the waveguides.

On top of this, the particle experiences a magnetic vector poten-
tial in the τ-direction AðτÞj and a scalar potential Vj. Crucially, the
magnetic vector potential is oriented along τ and is waveguide de-
pendent, so nontrivial magnetic field effects can be engineered by
introducing a spatial gradient of the waveguides’ characteristics
across the array. Because time reversal is automatically broken by
propagation, our proposal does not require any dynamical modula-
tion of the system (52, 53). In contrast to models where a synthetic
dimension is encoded in momentum-space quantities (52, 53) or in
the light frequency (46–51), our proposed topological model is
based on propagation in real space-time coordinates, which is of
utmost interest in the long term to integrate local nonlinearities
and realize strongly interacting photon models.

We also note that if one is not to make the Taylor expansion in
Eq. 3 and wishes to keep the complete form of the waveguide dis-
persion βj(ω), then one obtains in the comoving frame the following
form of the evolution equation in Fourier space

i
∂~a0j
∂ζ
¼ � βjðω0 þ ω0Þ � βjref ðω0Þ �

ω0

vðrefÞg

" #

~a0j � Cð~a0jþ1

þ ~a0j� 1Þ ð8Þ

For both this and our Schrödinger equation (Eq. 6), the propa-
gation eigenmodes of the array are then obtained by searching for
stationary solutions of this equation in the form

~a0jðζ;ω
0Þ ¼ ei Δβ

0 ζ ~a0jðω
0Þ ð9Þ

where the propagation constant in the comoving frame, Δβ0, is
related to the laboratory frame one by

βðωÞ ¼ βjref ðω0Þ þ
ω � ω0

vðrefÞg
þ Δβ0ðωÞ ð10Þ

For visualization purposes, in the following, we will study the
dispersion in terms of Δβ0, where Δ highlights that we consider
propagation constants relative to a reference.

Last, we note that, in the simplest limit where the mass is cons-
tant across the array (mj =m), the scalar potential vanishes (Vj = 0),
and the vector potential displays a linear gradient along j, AðτÞj =
−ℬj, with ℬ being a uniform magnetic field, this equation
reduces to the well-known quantum Hall coupled wire model. In
the next section, we briefly move away from optics to review the
physics of this model in general. This simple model will serve as
an intuitive guide for the following developments of the paper.

The quantum Hall coupled wire model
In the quantum Hall coupled wire model, a charged particle is
subject to a uniform magnetic field and moves within a system of
N coupled wires: The particle can either freely move along each wire
(as denoted by the continuous dimension, x) or hop between neigh-
boring wires (along the discrete dimension, y) (42). Hence, this
model lies between the fully continuous Landau levels for a particle
in free space and the fully discrete Harper-Hofstadter model for a
particle on a 2D square lattice (54). Originally, the coupled wire
model was investigated in the context of the fractional quantum
Hall effect (42–44); its interest is related to the ability to control
the band flatness by varying the hopping between wires. Recently,
it has also been realized experimentally using the internal atomic
states as a (discrete) synthetic dimension in addition to a real
spatial dimension (55).

In mathematical terms, the coupled wire model is summarized
by the Hamiltonian

Ĥ ¼
ħ2

2m
k̂x þ

qB
ħ

y
� �2

þ ħJ
X

y
ðjx; yþ aihx; y jþH:C:Þ ð11Þ

where q and m are the particle’s charge and mass along x, respec-
tively, and J is the hopping between adjacent sites along the discrete
dimension y, of lattice spacing a. The magnetic field is uniform and
equal to B, and a Landau gauge is adopted with the vector potential
oriented along the continuous x direction, A ¼ � Byêx. In our t-z–
mapped Schrödinger equation (Eq. 6), the waveguide index j corre-
sponds to y and the time in the comoving frame τ corresponds to x.
The hopping J corresponds to the evanescent coupling C between
neighboring waveguides, and the particle mass corresponds to the
(reciprocal of the) group velocity dispersion. The magnetic vector
potential −By corresponds to our AðτÞj . However, we emphasize
that, as highlighted above, the quantum Hall coupled wire model
is a general model that is of interest to several communities. We
also note that, if we measure kx in units of the inverse of the mag-
netic length lB ;

ffiffiffiffiffiffiffiffiffiffi
ħ=qB

p
and the Hamiltonian in units of ℏJ, there

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Oliver et al., Sci. Adv. 9, eadj0360 (2023) 20 October 2023 3 of 11

D
ow

nloaded from
 https://w

w
w

.science.org at Indian Institute of Science, B
angalore on February 20, 2024



is only one free parameter, namely, the ratio of the two kinetic
energy scales r ≡ (ℏ2/ml2B)/(ℏJ).

To gain some intuition for the physics of the coupled wire
model, we take periodic boundary conditions along the continuous
(x) direction, as in (42). This allows us to exploit the conserved mo-
mentum kx to diagonalize the Hamiltonian. An example of the
coupled wire model band structure calculated from the above pro-
cedure is shown in Fig. 1B, where the coloring of the states denotes
their average position with respect to the discrete dimension.

Physically, the most important features of this band structure are
the existence, at low energies, of dispersionless bulk band states and
of unidirectionally propagating edge states. The former are localized
in the discrete bulk (green/blue coloring) and have an almost cons-
tant energy, corresponding to no group velocity; hence, they are a
semidiscrete analog of the flat Landau levels of charged particles
subject to homogeneous magnetic field in free space. The latter
are localized on the edges of the system (yellow/purple coloring),
and their kx-dependent energy falls in the gaps between the flat
levels; these states are one-way chiral edge states with nonzero
group velocity and are protected by the nontrivial topology of the
model, i.e., the nonzero Chern number of the bands.

Intuitively, the appearance of these two types of states can be
simply understood from Eq. 11. In the absence of the interwire cou-
pling J, the dispersion consists of N parabolae (corresponding to
each of the N wires), which are equally spaced along kx because of
the uniform magnetic field, and their minima have all the same
energy. As energy increases, each parabola crosses sequentially
with those of the neighboring wires, except for the ones at the
edges of the array, where neighbors are only present on one side.
Turning on the interwire coupling J then lifts the degeneracies
around the crossings, mixing states and giving rise to the flat bulk
bands in the center of the band structure and the localized one-way
states at the edges that are visible in Fig. 1B.

Having reviewed the physics of this general coupled wire model,
we return to optics in the next section, where we will see how the
model can be naturally realized by the coupled Schrödinger equa-
tions (Eq. 6) in a suitably designed waveguide array. We will also
assess the impact of additional features such as the on-site potential
Vj and position-dependent mass mj terms.

An experimentally motivated model of a laser-written
waveguide array
From our discussion in the previous sections, the key ingredient to
generate the synthetic magnetic field for photons is to design the j
dependence of the waveguide dispersion βj(ω) to obtain a finite gra-
dient along j of the group velocity. To this purpose, we consider a
model of N waveguides embedded in a medium of frequency-de-
pendent refractive index n0(ω), and for simplicity, we restrict our
attention to a single transverse coordinate x. Within each waveguide
j, light is confined by a (frequency-independent, for simplicity)
lateral spatial profile of the refractive index. More precisely,

njðx;ωÞ ¼ n0ðωÞ þ δnj exp �
x2

2σ2j

 !m" #

ð12Þ

where for concreteness and with no loss of generality, we consider
the specific example of the refractive index n0(ω) of fused silica glass
(56) used in many recent experiments (57). Experimentally moti-
vated m = 10 and δnj > 0 values are taken for the super-Gaussian

power of the spatial profile and the refractive index shift,
respectively.

To obtain the synthetic magnetic field, different values of the
width σj and the refractive index depth nj ≪ 1 must be taken for
the different waveguides. In experiments, these parameters are con-
trolled by varying the speed at which the optical medium is trans-
lated across the beam used for writing.

We calculate the dispersions βj(ω) for our refractive index profile
by numerically solving the Helmholtz equation for our refractive
index profile (1, 20)

i
∂~ajðx; z;ωÞ

∂z
¼ �

c
2n0ðωÞω

∂2~ajðx; z;ωÞ
∂x2

�
ω
c
δnj exp �

x2

2σ2j

 !m" #

~ajðx; z;ωÞ ð13Þ

which has the form of a Schrödinger equation in which the refrac-
tive index perturbation plays the role of a potential well. We write
~ajðx; z;ωÞ ¼ ~ajðx;ωÞeiδβjðωÞz, where δβj(ω) is the part of the propa-
gation constant due to the waveguide itself, and we diagonalize the
resulting equation. We choose the fundamental mode and verify
that the other modes are well separated in propagation constant.
This produces the total dispersion βj(ω) ≡ n0(ω)ω/c + δβj(ω). We
can then use our mapping (Eq. 10) to change to the comov-
ing frame.

We then need to adjust our free parameters of the array, δnj and
σj, to make our comoving frame dispersion curves as close as pos-
sible to the coupled wire model, i.e., a uniform horizontal spacing
between the curves corresponding to a uniform magnetic field, and
the minima of the curves all being level vertically, corresponding to
no on-site potential. The method for doing this is described in Ma-
terials and Methods. The end results in the laboratory frame are
plotted in Fig. 2A and in the comoving frame in Fig. 2B.

Including the evanescent coupling C into our uncoupled disper-
sion and diagonalization of the comoving frame equation (Eq. 8)
gives the eigenmodes shown in Fig. 2C and, in a magnified view,
in the inset of this panel. The qualitative resemblance with the
quantum Hall coupled wire model is apparent: The bottom of the
dispersion forms isolated bands corresponding to almost flat
Landau levels that transform into edge states on the sides of the dis-
persion. The color scale highlights the spatial location of the differ-
ent states: As expected, Landau levels are localized in the bulk, while
the chiral edge states sit on the extreme waveguides j = 1 (purple)
and j = N (yellow).

For comparison, we also calculate the band structure for the
waveguide array using our Schrödinger equation (Eq. 6). To this
purpose, we use our laboratory frame waveguide dispersions βj(ω)
to calculate the effective mass, scalar on-site potential, andmagnetic
vector potential around the reference waveguide and carrier fre-
quency, as shown in the Supplementary Materials. We then diago-
nalize the Schrödinger equation (Eq. 6) for different values of ω0 to
find the propagation constants in the comoving frame. The results
for no coupling (C = 0) and for a finite coupling C are shown in
Fig. 2 (D and E) for the same parameters as for Fig. 2 (B and C).
The agreement between the two calculations is excellent, which
further confirms the power of our configuration to generate a non-
trivial synthetic magnetic field and thus realize a topological
quantum Hall coupled wire model. As an aside, we mention that
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the engineering of the photonic band structure to have quantum
Hall features is not unique to this model. In the Supplementary Ma-
terials, we present an analytically solvable toy model, whose band
structure we also tune to resemble the coupled wire model (see Sup-
plementary Materials). In the next section, we will investigate ob-
servable signatures of the synthetic magnetic field on optical
quantities of experimental interest.

We note that the couplings used throughout this work are C ∼
0.001 mm−1 in magnitude and require correspondingly long wave-
guides or state recycling techniques (58) to observe any dynamics,
as discussed in the next section. While such a regime could be ob-
tained in experiment by the use of sufficiently large interwaveguide
spacings and long glass samples, the system might turn out to be
sensitive to disorder in the optical medium, which we do not
include in our model. If required, the analytical treatment in this
section suggests several strategies to overcome the difficulty: The
viable range of C and the required waveguide length are determined
by the characteristic “kinetic energy” Δβchar0 ≏ DjΔω02 in the tem-
poral direction, which is determined by the bandwidth of the light
source (here taken to be Δω0 ∼ 10−3ω0) and by the group velocity
dispersionDj of the waveguides. The former can be increased using,
e.g., shorter light pulses or wider tunable sources. The latter can be
increased by using a different material with a stronger dispersion
(that is, a lower Abbe number) than weakly dispersive fused silica
glass or a narrower waveguide geometry with tighter transverse light
confinement, e.g., on an integrated photonics platform (59). This
would increase the characteristic kinetic energy Δβchar0 and would

correspondingly allow for larger values of the coupling C and
shorter waveguide lengths.

Observable signatures of the synthetic magnetic field
Having engineered our waveguide band structure in the comoving
frame to resemble that of a quantum Hall coupled wire model, we
now numerically demonstrate previously unseen optical effects that
result from the synthetic magnetic field. These provide the smoking
gun for nontrivial topological physics in this system.

Cyclotron orbits
As a first example, we consider the optical equivalent of bulk cyclo-
tron orbits that arise for a semiclassical charged particle in a mag-
netic field. As discussed above, equispaced Landau levels are present
in the bulk of the coupled wire model (Fig. 1B). A wave packet pre-
pared in a suitable superposition of Landau levels will then execute
semiclassical cyclotron orbits, moving in a circular trajectory with
the characteristic cyclotron frequency set by the level spacing and a
(clockwise or anticlockwise) direction set by the sign of the effective
magnetic field. In the presence of an additional synthetic electric
field, the cyclotron motion will be supplemented by a so-called
Hall drift, which is a sideways motion perpendicular to the direction
of the applied electric field.

As we now show, such orbits naturally arise for photons in our
system. To this purpose, we prepare an initial Gaussian wave packet
in the j − ω0 space, spatially centered in the bulk of the array and
with a central frequency located in the Landau level region of the
bands. The Gaussian spatial width sj is taken of the order of the

Fig. 2. Propagation constants for themodel. (A) Propagation constants in the laboratory frame for an array ofN = 11 uncoupledwaveguides with refractive index profile
as in Eq. 12, after the waveguide widths and refractive index perturbations have been tuned to make the comoving frame coupled array band structure have similar
features as the quantum Hall coupled wire model. The insets show two different frequency ranges, with the order of the curves reversed between the two, showing that
the curves intersect each other. (B) The uncoupled propagation constants in (A) transformed into the comoving frame as described in the text. We find minima at
approximately the same propagation constant value and approximately uniform spacing in frequency. Physically, these correspond to having an almost-constant
scalar potential and a near-uniform magnetic field, respectively. (C) The dispersion curves in (B) when a nearest-neighbor evanescent coupling of C = −0.002 mm−1

is included, showing avoided crossings. The color of each state denotes the expectation value of its position with respect to the discrete direction. We see that this
band structure includes bulk states (green) that are nearly dispersionless (see inset) and chiral edge modes (purple/yellow) within the gap like in the coupled wire
model. (D and E) The uncoupled (D) and coupled (E) comoving frame dispersions calculated from our Schrödinger equation (Eq. 6), showing excellent agreement
with (B) and (C). Throughout this figure, the parameters are as in Fig. 5.
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interwaveguide spacing, while the chosen frequency-space width sω0
corresponds to a Gaussian pulse duration on the order of 100 fs.
Such pulse durations are well within the range of standard tech-
niques in ultrafast optics such as mode-locked lasers, and the
light then has to be focused onto the input facet of the array with
the appropriate spot waist to realize the desired Gaussian spatial
profile. The wave packet is then evolved along ζ according to the
Fourier-space comoving-frame evolution equation (Eq. 8) and
Fourier-transformed into−τ space. The details of the numerical cal-
culations throughout this section are discussed in Materials
and Methods.

Figure 3A shows an example trajectory of the pulse center of
mass, calculated for the waveguide array parameters used in
Fig. 2. A clear cyclotron orbit is visible, where the amplitude of
the oscillations along the spatial direction j is of the order of a wave-
guide, so they are detectable in experiments. To further characterize
the oscillations, we repeat these simulations for different values of
the interwaveguide coupling C, which physically corresponds to
varying their spacing. For each calculation, the cyclotron frequency
is extracted from a fit of the ζ evolution, the details of which are dis-
cussed in Materials and Methods. The blue line in Fig. 3B shows the
value of the fitted cyclotron frequency as a function of the coupling
C; as expected, it grows for increasing values of the coupling.

A deeper insight into the cyclotron oscillations can be obtained
by comparing these numerical results with the prediction of an ap-
proximate classical calculation based on the equations of motion for
a classical particle with constant, yet anisotropic masses and subject
to the synthetic magnetic field according to the coupled wire model
with no external potential (60). This calculation leads to the predic-
tion

ωc ¼
jB j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðτÞ mðjÞ
p ¼ jB j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 jC Djref j

q

ð14Þ

where ∣m(τ),( j)∣ = 1/∣Djref∣,1/(2∣C∣) are the absolute values of the ef-
fective masses in the temporal and spatial directions, respectively,
and ℬ ≡ ½AðτÞj¼N � AðτÞj¼1�/(N − 1) is the approximately uniform mag-
netic field corresponding to our magnetic vector potential. Depend-
ing on the relative sign of the masses in the two directions (namely,

of C and Djref ), the Landau levels appear for states displaying the
same or opposite phases in neighboring wires. The result of this ap-
proximate calculation is shown as an orange line in Fig. 3B and dis-
plays a good agreement with the numerics for the full model (blue).
The small deviation between the two curves is principally due to the
minor differences between the ideal coupled-wire model bands and
our full optical results in Fig. 2.

For the chosen system parameters, the typical period ζc = 2π/ωc
of the cyclotron oscillations is of the order of meters, which may be
very demanding compared to the typical length of waveguide arrays
fabricated in experiment. However, this difficulty could be mitigat-
ed by using state recycling techniques to increase the effective
lengthscale explored in experiments (58) or by switching to differ-
ent material platforms. The cyclotron orbit length scale is deter-
mined by the characteristic kinetic energy scale Δβ0char which, as
discussed above, may be increased using a wider operating band-
width or samples with a stronger dispersion.

Hall drift on the pulse arrival time
We now exploit another feature of quantum Hall physics to intro-
duce a Hall drift into the cyclotron dynamics that we found above.
As mentioned previously, if an additional electric field is applied to
a particle in a quantumHall system, we expect the particle to drift in
the in-plane direction perpendicular to that field. We first consider
applying a synthetic electric field across the array in the j direction,
which will correspond to a drift in the τ direction. If this drift could
be controlled, then natural applications of the resulting delay/
advance include delay lines, which have widespread uses through-
out optics, including interferometry, ultrafast optics, and
telecommunications.

The Hall drift can be introduced, with controllable magnitude
and direction, by imposing suitable perturbations to the waveguide
array, e.g., a temperature gradient along j. This induces a corre-
sponding spatial gradient of the refractive index Δnj along j. Formal-
ly, this can be described by including an additional term of the form

i
∂~a0j
∂ζ
¼ . . .þ Δnjðω0=cÞ ~a0j ð15Þ

Fig. 3. Bulk cyclotron orbits in the comoving frame. (A) In our wave packet dynamics with Eq. 9, we find cyclotron orbits, as shown here by the wave packet center of
mass colored according to the position along the optical axis, ζ. (B) The frequencies of the cyclotron orbits extracted with a fit (blue) compared to the coupled wire model
classical theory (orange), showing excellent agreement. (C) We apply a temperature gradient across the array, corresponding to an on-site potential. Tuning the strength
of this potential introduces a Hall drift into the dynamics. The parameters used are the same as in Fig. 2. The example results in (A) and (C) use a coupling C = −0.002
mm−1. For the coupled-modewave packet dynamics, thewave packet is preparedwith an initial center of mass of j0 = 5 and ω0 = 0 andwith widths of sω0 = 1/500 × 10

15 Hz
(corresponding to a Gaussian pulse length of 500 fs), and sj = 1. In (C), we use an electric potential of Δnj

ω0
c

� �
¼ 0:001 j mm� 1.
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to the right-hand side of our model equation (Eq. 8). An elementary
calculation within the coupled wire model shows that the temporal
drift under a synthetic electric field Etherm = −(ω0/c)(dΔnj/dj) in the
spatial direction is equal to

τH ¼ � ζ
Etherm

B
ð16Þ

An example of this effect is illustrated in Fig. 3C, where we show
the appearance of the Hall drift along τ under the effect of a poten-
tial gradient as small as Δnj(ω0/c) = 0.001 jmm−1, corresponding to
a refractive index perturbation of ∼10−7. We note that the upper
limit on the perturbation strength is due to the size of the
bandgap in Fig. 2C; a perturbation of the order of or larger than
the gap will introduce nonadiabatic effects and blur out the effect
shown in Fig. 3C.

Hall drift in real space
In the previous subsection, we showed how the displacement along
the τ direction can be introduced. Now, we propose a method to
exploit the same quantum Hall effect to control the spatial displace-
ment of a wave packet across the array, i.e., along the j direction, in
response to a perturbation along the temporal τ direction.

The idea of the scheme is to implement a spatial displacement in
a reconfigurable way by means of a traveling refractive index pertur-
bation. This could be realized in experiments by means of the
electro-optic or acousto-optical effects, as was recently investigated
in (49, 51). In the simplest case, we consider a refractive index per-
turbation that is uniform across the array and travels along thewave-
guides at the same speed as the reference group velocity vðrefÞg

Δnðz; tÞ ¼ Δn
z � vðrefÞg t

‘
ð17Þ

where ‘ is the length of the device in z and Δn is the strength of the
perturbation. Such a perturbation can be included in our model by
adding a term of the form

i
∂a0j
∂ζ
¼ . . . � Etravτa0j ð18Þ

to the right-hand side of the Schrödinger equation (Eq. 6), where
Etrav ¼ Δn ω0 vðrefÞg =ð‘cÞ is the synthetic electric field along the τ
direction. Two examples of light propagation under such a pertur-
bation are shown in Fig. 4 (A1, A2, and B) for the same magnitudes
of the synthetic electric field but opposite signs. We see the wave
packet, prepared in the system bulk, transported across the array
toward larger or smaller j. These numerics are carried out using
the frequency space Eq. 9, where the perturbation appears as a
term of the form iEtrav∂~a0j=∂ω0 added to the right-hand side. Note
also that the displacement appears despite the modulation being in-
dependent of j; this further confirms its origin from the synthetic
magnetic field via the quantum Hall effect.

As an alternative scheme, the same effect could be realized by
means of a variation of the magnetic vector potential AðτÞj in
the Schrödinger equation (Eq. 6) during the evolution. According
to the t-z mapping, this requires us to vary the waveguide
properties along the waveguide axis. Analogously to classical
electrodynamics, this produces an effective synthetic electric field
Ez−mod = −dAðτÞj (ζ)/dζ oriented along the τ direction, which, by

the quantum Hall effect, induces a drift along the orthogonal
spatial direction j. As an example, the spatial gradient of AðτÞj ðzÞ
in the z direction could be obtained in our setup by designing the
waveguide parameters as

δnjðzÞ ¼ δnj� wzðz ¼ 0Þ ð19Þ

σjðzÞ ¼ σj� wzðz ¼ 0Þ ð20Þ

where evaluation of the waveguide parameters at the continuous-
valued j − wz is obtained by interpolating their values at z = 0 in-
between neighboring waveguides. Within the coupled wire model,
this leads to

Ez� mod ¼ �
dAðτÞj ðζÞ

dζ
¼ � wB ð21Þ

and the corresponding Hall drift in the spatial direction can be
straightforwardly evaluated to be

jH ¼ � ζ
Ez� mod

B
ð22Þ

Despite their different optical implementation, it is worth noting
that these two approaches are actually the same from the point of
view of the band structure. Both of them are based on an adiabatic
transport of the state along the band, corresponding to a change in
the spatial position along the j direction, as indicated by the coloring
of the bands in Fig. 2C.

Propagation along the edge
The plots in Fig. 4 (A1, A2, and B) refer to relatively short propaga-
tion distances so that the Hall-drifted wave packets are still within
the bulk of the waveguide array. At longer propagation distances,
the wave packet can reach the spatial edge of the waveguide array
at j = 1 or j = N. At this point, as is usual in topological systems
under a synthetic electric field (61), the wave packet gets converted
into an edge excitation that propagates along the edge. The ensuing
fast chiral motion along the spatial edge of the system is clearly
visible in the plots in Fig. 4 (A3 to A5), as well as in movie S1;
because we are dealing with a spatial edge, the chiral motion is
along the temporal τ direction, with a different sign depending
on which edge the wave packet hits. Last, we note that we do not
have an edge in the τ direction, so any advance or delay that we
see from either the temperature gradient or from this chiral edge
mode propagation could be of arbitrary size.

DISCUSSION
In this work, we have demonstrated a novel framework to generate a
synthetic magnetic field for light in a 1D array of coupled wave-
guides. On the basis of the t-z mapping of paraxial propagation of
time-dependent optical pulses, a 2D model is obtained in the j-t
plane spanned by the (discrete) waveguide index and the (continu-
ous) temporal variable. With a suitable gradient of the waveguide
properties across the array, an effective synthetic magnetic field is
induced, which provides an optical realization of the quantum
Hall coupled wire model. Observable signatures of the synthetic
magnetic effects are anticipated as a chiral cyclotron motion in
the j-t plane, a Hall drift in the temporal or spatial direction
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under the effect of a synthetic electric field directed along the array
or in the temporal direction, and a fast propagation in chiral
edge states.

From an experimental point of view, important advantages of
our proposal over previous work on synthetic dimensions in pho-
tonics (45, 20) can be pointed out. Building atop available schemes
for topological photonics in waveguide arrays (6, 20), our proposal
only requires working with time-dependent pulses rather than
monochromatic light, and in particular, it does not require any ex-
ternal dynamical modulation of the system and does not involve all
the complexities of Floquet systems. Eventually, it will open new
avenues for the spatiotemporal manipulation of optical pulses
(52, 53).

Generalization of our proposal to physically 2Dwaveguide arrays
suggests a natural way to realize 3D models: Future work will be
devoted to the investigation of topological models involving two
discrete j1,2 coordinates and a continuous t one in our platform
and the identification of observable optical signatures of the geo-
metrical and topological properties of the peculiar features of 3D
band structures such as Weyl points and Fermi arcs.

While this work was focused on a specific implementation of our
proposed concept in laser-written waveguide array operating in the
visible light domain, future work will be devoted to the identifica-
tion of alternative realizations in different material systems and fre-
quency domains, e.g., integrated photonics devices for infrared/
visible light (59) or microwave waveguides (62), which may
provide a more pronounced dispersion and strong nonlinearities.

In the long run, our proposal holds great promise in view of re-
alizing exotic states of topological photonic matter. In contrast to
topological models exploiting the light frequency as a synthetic di-
mension (46–49) where nonlinearities would typically result in
long-range interactions along the frequency direction (60), the
fact that the spatial coordinates of the topological model are

encoded in the waveguide index j and the temporal variable t trans-
lates a spatially local nonlinearity of the medium into local interac-
tions in the topological model. This feature is of extreme
importance (57) when one is to scale up the interaction strength
and realize strongly correlated states like fractional quantum Hall
liquids of light (63, 64).

MATERIALS AND METHODS
Selection of parameters for the model of a laser-written
waveguide array
To select parameters for the model defined in Eq. 12, we sweep out
the (σ, δn) parameter space, and for each point in the space, we find
the dispersion β(ω) as described in Results. We choose the comov-
ing frame to be defined by the reference waveguide with parameters
δnref = 0.0005 and σref = 1.5 μm and choose a carrier frequency ω0
corresponding to a wavelength of 0.5 μm. Within this comoving
frame, we identify for each value of the model parameters (σ, δn)
the minimum of the dispersion. We then plot the values of the
Δβ0 propagation constant and of the ω0 frequency at this
minimum as a function of (σ, δn). The results of this are shown
in Fig. 5.

To select the parameters for our array, we choose the zero
contour of the minimum propagation constant surface to force all
the curves to have their minima at the same value, corresponding to
a vanishing on-site potential. We then sample N points from the
chosen contour for an array of N waveguides, placing the reference
waveguide in the center (the contour is shown in red, with the
sampled points in white). We choose the points to enforce a
chosen frequency spacing, Δω0, between adjacent dispersions (i.e.,
a chosen magnetic field strength). The end results in the laboratory
frame are plotted in Fig. 2A and in the comoving frame in Fig. 2B.

Fig. 4. Controllable Hall drift of awave packet in the comoving frame. (A1 to A5) We apply a traveling refractive indexmodulation to create an effective electric field in
the τ direction, which causes a displacement of the wave packet across the waveguides as we expect for a quantum Hall system (see movie S1). We use the same system
parameters as in Fig. 3, with an additional electric fieldEtrav = 0.00001(fs mm)

−1. (B) Reversing the sign of the refractive indexmodulation reverses the electric field toEtrav

= −0.00001(fs mm)−1 and, thus, the direction of displacement.
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Details of wave packet dynamics simulations
As discussed in Results, we use wave packet dynamics simulations to
investigate bulk cyclotron orbits and other physical observables. We
prepare a Gaussian wave packet of the form

~a0jðζ ¼ 0;ω0Þ ¼ Aeikjðj� j0Þe
�
ðj� j0Þ

2

2s2j eikω0 ðω
0 � ω00Þe

�
ðω0 � ω00Þ

2

2s2ω 0 ð23Þ

where A is a normalization constant, k( j,ω0) is the wave packet mo-
mentum in the two directions, ( j, ω0)0 is the initial center-of-mass
position, and s(j,ω0) is the wave packet width along the two direc-
tions. We choose the wave packet to be localized in the j bulk and
to have an initial frequency in the bulk part of the bands to target
Landau level states. We then numerically propagate the wave packet
through the array by discretizing the ω0 dimension into M ≫ 1
points and hence representing our initial wave packet as an NM-
component column vector aðζ ¼ 0Þ. We then evolve the initial

vector via

aðζþ δζÞ ¼ e� iHδζaðζÞ ð24Þ

where δζ is our small “time step” and H is the NM × NM matrix
representing the right-hand side of the coupled mode equation
(Eq. 8) in our finite difference basis. More precisely, we have

H ¼ Hdiag �

0 C 0 � � � 0

C . .
. . .

. . .
. ..

.

0 . .
.

0
..
. . .

.
C

0 � � � 0 C 0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

� Iω0 ð25Þ

where Hdiag is a diagonal matrix formed by placing (−1 times) the
discretized comoving frame propagation constants βj(ω) − βjref(ω0)
− ω0/vðrefÞg along the main diagonal. The second term, representing

Fig. 5. Selection of parameters for the model. (A) The comoving frame propagation constant at the minimum of the waveguide dispersion and (B) the corresponding
ω0 value, each as a function of the two main model parameters. We choose the minimum Δβ0 = 0 contour (red) and choose points along it (white) that correspond to a
uniform target spacing of Δω0 = 0.001 ω0 ω0 . The reference waveguide is located in the center and has refractive index depth and width δnref = 0.0005 and σref = 1.5 μm,
respectively. As discussed in detail in the text, material parameters are inspired from laser-written waveguides in fused silica glass, and a carrier frequency corresponding
to a wavelength of 0.5 μm is considered.

Fig. 6. Details of the cyclotron orbit numerical simulations. (A) Examples of wave packet density plotted at different evolution times ζ starting from a Gaussian wave
packet prepared in the bulk. We see part of a cyclotron orbit with a Hall drift. (B) Plot of the center of mass of thewave packet in (A) in the discrete direction as a function of
ζ together with a fit to Eq. 26, showing that the fitting function captures our data very well and can be used to extract the cyclotron frequency. We use the same pa-
rameters as the wave packet dynamics simulations in Fig. 3, with a coupling C = −0.002 mm−1.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Oliver et al., Sci. Adv. 9, eadj0360 (2023) 20 October 2023 9 of 11

D
ow

nloaded from
 https://w

w
w

.science.org at Indian Institute of Science, B
angalore on February 20, 2024



the coupling between neighboring waveguides, is an N × N tridiag-
onal matrix with the couplings inserted on to the two diagonals
either side of the main diagonal. We then Fourier-transform the
state with respect to ω0 to map it into τ space and consider the cor-
responding j − τ density as a function of ζ. An example of the wave
packet density for the optical model is shown in Fig. 6A, corre-
sponding to the center-of-mass trajectory plotted in Fig. 3A. We
use this density to calculate the wave packet center of mass as a func-
tion of ζ, jCOM(ζ), and τCOM(ζ).

When investigating bulk cyclotron orbits, we fit to the jCOM(ζ)
trajectory using the function

f ðζÞ ¼ Asinðωcζþ ϕÞe� gζ þ B ð26Þ

and extract the cyclotron frequency ωc, an example of which is
shown in Fig. 6B. We choose this function because we expect cyclo-
tron orbits to be circular trajectories in ( j, τ). We include an expo-
nential damping factor to take into account the small damping seen
in some of our numerics. We see that the fit captures our numerical
data well, and it performs similarly well on all our numerics.

As discussed in Results, besides the bulk cyclotron orbits, we also
investigate two other physical observables. The first is a traveling
refractive index perturbation. We model this with a term of the
form iEtrav∂~a0j=∂ω0 which corresponds, in the Schrödinger equation,
to an effective electric field along the τ direction, −Etravτa0j. We
include this term within our numerical scheme by representing
the ∂/∂ω0 operator by a standardM ×M finite difference first deriv-
ative matrix dω0. We hence include the term in our total finite dif-
ference matrix as H → H + iEtravIj ⊗ dω0, where Ij is the N × N
identity matrix. Last, we also consider applying a temperature gra-
dient across the array, which we model with a term of the form
Δnjðω0=cÞ~a0j, where we choose Δnj = Uj. We include this in our nu-
merical scheme by H → H + UJ ⊗ Iω0, where J = diag (1, …, N) and
Iω0 is the M × M identity matrix.
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