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Abstract 

The study discusses updating the global response sensitivity indices (GRSI) of an instrument-
ed structure by employing factor mapping method in conjunction with an implicit Bayesian 
framework for combined state and parameter estimation. In conventional factor mapping-
based approaches, an ensemble of structural parameters are classified into two disjoint sets, 
depending on whether a sample vector produces a response in a predefined range of interest or 
not. A probabilistic distance between the samples, thus classified, is measured for each pa-
rameter or group of parameters. In this study, we use Bhattacharyya’s distance as the proba-
bilistic distance measure to determine the sensitivity of the associated individual parameters 
or groups of parameters. The estimation of this distance requires the probability density func-
tions (pdfs) of the underlying random variables. This in turn allows one to employ the poste-
rior pdfs of parameters in computing Bhattacharya’s distance-based GRSI. These posterior 
pdfs are obtained from the combined state and parameter estimation problem, which ensures 
the assimilation of the measurement data while computing the GRSI values. In this study, the 
developed method of updating GRSI has been demonstrated on a five-storied, bending-torsion 
coupled, instrumented building frame subject to a scaled recorded ground motion. An applica-
tion of GRSI in the context of structural engineering problems, specifically for model reduc-
tion is also discussed.  

Keywords: Global response sensitivity analysis, Bayesian framework, implicit Kalman filter, 
MCMC, factor mapping, Bhattacharyya’s distance 
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1 INTRODUCTION 
The methods of global response sensitivity analysis (GRSA) offer powerful tools in the 

study of randomly parametered and/or randomly excited engineering systems. These tools aim 
to establish the relative importance of underlying random variables in terms of their contribu-
tions to the variability in a chosen response quantity of interest. The importance measures thus 
determined are valuable in probabilistic model reduction and in planning experiments to col-
lect data on underlying random quantities. Several methods exist to achieve these goals, in-
cluding those based on Sobol’s decomposition [1], probabilistic model distance measures [2], 
and factor mapping method [3,4]. To the best of the authors’ knowledge, the available studies 
focus on performing GRSA on mathematical models of engineering systems, and hardly any 
study focuses on GRSA as applied to instrumented existing structures. The proposed study 
aims to remedy this situation. Accordingly, we consider the problem of updating global re-
sponse sensitivity indices (GRSI) of a numerically stiff, instrumented, linear building frame 
subject to earthquake-induced dynamic loads based on the measured response of the system. 
The problem is formulated within the Bayesian state and parameter estimation framework 
based on implicit state space models [5]. The steps involved in the study are as follows: 

 
Step-1 Prior model for the GRSI: Here, we consider a finite element model for the building 
frame and treat the system parameters (encompassing, stiffness, damping, and mass properties) 
as a set of non-Gaussian dependent random variables. We employ the factor mapping method 
to estimate the GRSI with respect to individual or groups of random variables [6]. 
 
Step-2 Combined state and parameter estimation: Here, we combine implicit Kalman filter 
tools for state estimation [5] and MCMC-based sampling schemes for parameter estimation. 
The prior models for system parameters are taken to coincide with those used in Step 1. This 
results in an ensemble of samples for the system parameters and response quantities of inter-
est from which the posterior probability density functions for these quantities can be estimated. 
  
Step-3 Updating of the GRSI. Here, we employ the samples from the posterior pdfs of identi-
fied system parameters and response quantities of interest within the framework of the factor 
mapping method and arrive at the updated estimates for the GRSI. 
 
The proposed framework is illustrated based on experimental data on a bending torsion cou-
pled five-storied building frame model tested on a multi-axes earthquake shake table. The pri-
or GRSI values and posterior GRSI values are computed and compared. Also, the question on 
model reductions based on GRSI values of the parameters is addressed.   

2 PROBLEM STATEMENT 
Consider a five-storied, bending-torsion coupled, building frame subjected to a scaled rec-

orded ground excitation, such that the response of the frame remains within the elastic regime. 
A 15 degrees of freedom (DOFs) model is derived with each floor having two translational 
and one rotational degrees of freedom. The governing equation of motion is given as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 0 0                (1)gt t t u t t+ + = − + = =M C K M 0   X X X L X X                                     

where ( )M  , ( )C  , and ( )K   are mass, damping, and stiffness matrices respectively, 
n , denotes a vector random variable, that contains the uncertain system parameters, 

( )gu t  is the ground acceleration, L is the influence vector, and ( )t  is a vector random pro-
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cess that models the imperfections in formulating the mathematical model and the errors asso-
ciated with the measurement of the forcing function. Here, we have considered Rayleigh’s 
proportional damping model, 1 2 = +C M K . For the current study, mass matrix M is treated 
as deterministic, while the components of the stiffness matrix and damping ratios are treated 
as a set of dependent and non-Gaussian random variables. The performance of the building 
frame is characterized in terms of three response measures, namely (1) maximum inter-story 
drift ratio ( )1PM , (2) maximum inter-story rotation ( )2PM , and (3) maximum base shear ( )3PM , 
given by 

                                

( ) ( ) ( ) ( )
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Here, ( ) ( ),  x y
i it t  are two orthogonal components of the translational motion of the th  i floor, 

( )i t  represents the rotational motion of the th  i floor, ih  represents the height of the th  i story, 

1k  represents the combined stiffness of all columns at 1st story level, 1c  represents damping 
constant associated with the 1st story level, and fN indicates the number of floors in the 
frame. The samples of the response function, ( )PM f=   are obtained using equation (2) for 
each realization of  , generated using Monte Carlo simulations. Here, the response function 
PM could be any predefined candidate response from  1 2 3, ,PM PM PM . The problem on 
hand is to perform the global response sensitivity analysis of an instrumented structure based 
on implicit state space models with respect to uncertain system parameters or their various 
groups. This requires defining a reference set A, such that  A a PM b=    encompasses the 
region of interest of the response quantity. We consider m disjoint groups formed from the 
components of the parameter vector  , such that, 1 2 m     = , and 

1 2  ;mn n n n+ + + =  jn , the number of components in thj group. We then classify the samples of 

 into two sets 1 2 m
A A A A     = , and 1 2

c c c c
m

A A A A
     = , such that ( ) A f A   =  

and ( ) c
c

A
f A   = . A measure of sensitivity of PM with respect to the group j  is defined 

as ( )dist , c
j j

j A A
d =   , which is often termed as global response sensitivity index (GRSI) asso-

ciated with group j . Here the samples contained in  and c
j j

A A
  are assumed to be generated 

from two jn dimensional multivariate pdf-s of non-Gaussian random variables 
 and c

j j
A A

  .These two multivariate pdfs, ( ) ( )
A cA

 and j jp p
 

u u  are not known in closed form 

expression, but the samples from these pdfs are available in  and c
j j

A A
  . Here ( )dist ,• • is a le-

gitimate distance metric between two random variables. In this study, we consider 
Bhattacharyya’s distance [7] to estimate ( )dist , c

j j
j A A

d =   , which is defined as, 

                  ( ) ( )
A cA

ln ;  where  ;  1,2 ,j jj j jd p p d j m 


= − = =  
u u u                                       (3) 

The integral in equation (3) is evaluated using Monte Carlo integration technique, given by 
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Here ( )cA
N  is the number of samples in cA

 and ( ) ( )cA A
N N N+ =  , where N is the num-

ber of Monte Carlo samples used. The multivariate pdfs  ( ) ( )
A cA

 and j jp p
 

u u  in equation (4), 

which are in general non-gaussian in nature are to be approximated. Estimation of joint pdf-s 
employing a normalized histogram approach, which works well for low dimensional random 
vectors, becomes infeasible as the dimension of the random vector increases [8]. To circum-
vent this problem, we apply Nataf’s model-based approximation [9] for the joint pdf-s in-
volved in equation (4), which is recently developed by the authors [6]. As the expression of 
Bhattacharyya’s distance involves the joint pdf-s of the system parameters  , it offers a strat-
egy to update the global response sensitivity indices, by employing posterior joint pdfs of the 
system parameters ( )Dp D


 instead of ( )p 

. Here, D is the measurement data. Thus, the 
updated GRSI can be obtained as, 

                     ( ) ( )
A cA

ln ;  where  ;  1,2 ,j jj j j D D
d p D p D d j m 



= − = =  
u u u                         (5) 

where posterior pdf-s are obtained, in general, using Bayes’ theorem [10] given by 

       ( ) ( ) ( ) ( ) ( ) ( )
A AA A AA

1 2,  and, j j j jj j
c cc

D DD D
p D c p D p p D c p D p= =

    
u u u u u u                         (6) 

     To the best of the authors’ knowledge, studies available on global response sensitivity 
analysis mostly focus on performing GRSA on mathematical models of engineering systems, 
and hardly any study available focusing on GRSA applied to existing instrumented structures, 
or updating the GRSI, as measurement data become available in an instrumented system. 
Therefore, updating of GRSI conditioned on measurement in an instrumented structure sets 
the novelty of this study. Section 3 focuses on the GRSA employing Bhattacharyya’s dis-
tance-based factor mapping method applied to a mathematical model and section 4 focuses on 
the estimation of posterior joint pdfs in an instrumented system under the framework of com-
bined state and parameter estimation based on implicit state space models. 

3 BHATTACHARYYA’S DISTANCE-BASED GLOBAL RESPONSE SENSITIVITY 
ANALYSIS 

In the preceding section, we developed an estimator to evaluate the multi-fold integration 
in parameter space in equation (3). We still need to approximate the joint pdf-s, 

( ) ( )
A cA

 and j jp p
 

u u  from the available samples  and  c
j j

A A
  . For the sake of simplicity of nota-

tions, we consider a 1r   vector of random variables, U , for which the associated joint pdf 

( )pU u  is not known; instead, we have simulated data, ( )  ( )
1

UNk

k
p

=
Uu u . The objective here is 

to estimate the joint pdf ( )pU u  as a function of data ( ) 
1

UNk

k =
u . The steps involved in estimat-

ing the joint pdf based on available samples are discussed as follows: 
1. From the samples of each component of  

t
1 2 rU U UU = , estimate the 1st order 

pdf ( )ˆ ;  1,2, ,
iU ip u i r=  by employing a normalized histogram approach, i.e., normal-
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izing the ordinate of the histogram generated using data ( ) 
1

UNk
i k

u
=

, such that area under 

the histogram becomes unity. 
 

2. Next, estimate the 1st order CDFs, ( )ˆ ;  1,2, ,
iU iF u i r= , for each component of 

 
t

1 2 rU U UU =  by rank ordering the samples ( ) 
1

UNk
i k

u
=

 in ascending order. 

  
3. Next, we introduce an iso-probabilistic transformation ( ) ( )ˆ ;  1,2, ,

iU i iF u i r=  = . 
Here, i is a standard normal random variable and ( ) •  is the CDF of a standard 

normal random variable. Obtain the samples of i  from the samples, ( ) 
1

UNk
i k

u
=

, using 

the relation ( )1 ˆ ;  1,2, ,
ii U iF u i r −=  = . 

 
4. Estimate the covariance matrix  of the random vector  

t
1 2 r  = . This is 

essentially a matrix of correlation coefficients among the components of 
 

t
1 2 r  = , with diagonal entries as unity. 

  
5. Now, applying Nataf’s model, the joint pdf of the random vector U  can be approxi-

mated as,  

                        ( )  ( )
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0, U u                                           (7) 

Here, ( );r • 0,   denotes an r-dimensional Gaussian pdf with the mean vector as zero 
and covariance  . ( );0,1 •  denotes a 1st order pdf of a standard normal random vari-
able. Following steps 1-5, now, we can estimate the joint pdfs of the random variables 

,  and,  c
j j

A A
  based on their available samples and further, plugging the estimated joint 
pdfs in equation (4), we can estimate the Bhattacharyya coefficient,   j , as follows: 
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 Here, ( )  ( )
1

U

i

Nk
i ik

u p
=

U u . Again, for the simplicity of notation, we consider the vector 

random variables ,  and,  c
j j

AA
  as and, ,U  V in the above expressions. 
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6. Finally, one gets the estimator for the Bhattacharyya’s distance (or the GRSI associat-
ed with the group j ), ˆ ˆlnj jd = − . 
 

Remarks:  
 

a. In the approximation of joint pdfs using Nataf’s model, we consider the infor-
mation upto 2nd central moment (covariance) of the component random variables. 
Higher order moments information can be retained while approximating the joint 
pdfs using Copula based pdf model [11] or independent component analysis-based 
approaches [12]. However, these approaches are not discussed in this study. 

b. While evaluating Bhattacharyya’s coefficient ˆ j using the samples, ( ) 
1

UNk
i k

u
=

, one 

may notice that ( )( )ˆ
i

k
U ip u  values are readily available, as the samples ( ) 

1

UNk
i k

u
=

 are 

realized from the density function ( )( )ˆ
i

k
U ip u . One may need to employ a suitable in-

terpolation scheme to determine ( )( )ˆ
i

k
V ip u . If ( )k

iu  lies outside the domain of iV , 

then ( )( )ˆ
i

k
V ip u  should be taken as zero. 

c. For the cases, where GRSI values are sought with respect to individual system pa-
rameters, ;  1,2, ,i i n = , the problem reduces to estimating Bhattacharyya’s dis-
tance between two univariate pdfs. Thus, the integration in equation (4) becomes a 
one-dimensional integration, involving 1st order pdf of ( ) ( )and cA i A i

  . Here, 
 and cA A

  are the underlying vector random variables for the samples  

( ) A f A   =  and ( ) c
c

A
f A   = . In these cases, we do not require to esti-

mate any joint pdf through Nataf’s model, that makes the estimation of 
Bhattacharyya’s coefficient, and subsequently Bhattacharyya’s distance straight-
forward.  

4 COMBINED STATE AND PARAMETER ESTIMATION USING BAYESIAN 
FRAMEWORK BASED ON IMPLICIT STATE SPACE MODELS 

To proceed further, we interpret equation (1) as an Ito’s stochastic differential equation. 
The frame under consideration exhibits numerical stiff behaviour and hence preferably discre-
tized using the order 1.5 strong Ito’s implicit numerical integration scheme [13], leading to 
the process equation of the form,  

                     ( ) ( ) ( ) ( )1 1 1 ; 0,1,2,k k k k k k k k k+ + += + + =G F Qy y y H + w                              (9) 

Here ( )kF   and ( )1k+G   are x xN N  matrices, the vector ( )kH   of size 1xN   repre-
sents the applied external excitations, ( )kQ   is the coefficient matrix of process noise of 
size x wN N , and kw  is the process noise vector of size 1wN   with  E 0k =w  and 

tE , , 0,1,2,
kk l kl k l  = =  

w
w w . Furthermore, it is assumed that the system is instrumented 

with a set of sN  number of sensors leading to the measurement equation of the form given by, 

                                              ( ) ( ) ;  1, 2, ,k k k k k Tk N= + =h Rz y                                            (10) 
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where kz  is the 1sN   vector of measurements, 1, 2, , Tk N=  are the discrete-time instants at 
which measurements are recorded, ( )kh   is the s xN N  matrix that relates the sensor out-

puts to the system state vector ky , ; 1,2, ,k Tk N=  is a sequence of independent vector ran-

dom variables with   tE 0, E , , 1, 2,
k

k k l kl Tk l N= = =   

    , and ( )kR   is the s sN N  

coefficient matrix of the measurement noise. It is assumed that the forcing vector ( )tu  is 
measured. Also, it is assumed that the vectors , 1,2, ,k Tk N= , the initial condition vector 

0X , and the noise process d ( )tB are independent. The measurement equation here is taken to 
be linear. Equations (9) and (10) together constitute the linear dynamic state space model for 
the combined state and parameter estimation problem. The aim is to estimate the filtering pdf 

( )1:,k kp zy   from which we deduce ( )1:k kp zy and ( )1:kp z , and the associated moments of 
interest given by  
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The first three of these equations provide the solution to the problem of state estimation, while 
the last three provide solution to the problem of system identification. Here we employ an im-
plicit Kalman filter for dynamic state estimation in conjunction with an adaptive metropolis 
algorithm [14] for parameter estimation, the detailed algorithm of which is outlined as follows: 
 

Step 1:  Input ( )0 p  ,  

For the sake of clarity, here, we mention the definition of the symbols  , and,  . 

Here,    represents a random variable and  represents a realization of  . 

Step 2:  Run one state estimation algorithm for 0  using an implicit Kalman filter. 

a. Initialization for implicit Kalman filter: 

Input ( ) ( ) ( ) ( )0 00 0 0 0 0 0ˆ, , , ,− −P hRy   ( ) ( ) ( )
00 00 0 0 0 0 0, , , ,wQ Fz H


     

b. For 0,1, Tk N=  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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= z C z    

Step 3:  Set 1, pi N= , where pN represents the sample size and input 0 , 0 , 0.234. =  

Step 4:  Compute 1 1i i i
− −

=C  . Draw ( )1,ˆ N i

i
i− C   and sample a uniform random variable  

 U 0,1u . 

Step 5:  Repeat step 2 for ˆ i  and compute ( ) ( ) ( )1: 2 1:
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Step 7:  If AM
iu  , accept ˆ i and set ˆ

i
i=  , otherwise reject ˆ i  and set 1i i−=  . 

Step 8:  Set ( ) ( ) ( ) ( )ˆ ; k ki k i i k ik k = = Pm y    . 

Step 9:  Obtain a new estimate for the target covariance, ( )0cov , ii =   . 

Step 10:  Compute ( , 1/ 2, 1i i  −=  , the gain sequence. 

Step 11:  Compute ( )AM
1log logi i i i   −= + − . 

Step 12:  If  pi N , go to Step 4, else stop. 

Step 13:  Computation of moments of the state vector 

a. ( )|
1

1 p

k k

N

ik k
ipN =

= a m    

b. ( ) ( ) ( )|
t

1

1 p

k kk k

N

k k i i ik k
ipN =

 = +
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In the above algorithm, steps 2 and 5 make use of the implicit Kalman filter for state estima-
tion. While step 2 involves one run of implicit Kalman filter algorithm for the prior sample 

0 , step 5 involves pN  runs of state estimation algorithm for , 1, .i pi N=  Thus, any com-
putational gain offered by the implicit state estimation algorithm can result in a considerable 
gain in the combined state and parameter estimation problem of linear stiff systems.  
 

5 NUMERICAL ILLUSTRATIONS 
   In this study, we consider a five-storied bending-torsion coupled building frame subject to 
El Centro ground acceleration (North-South component, recorded at Imperial valley station) 
[15]. The peak ground acceleration is scaled to a value of 0.12g. The frame is supported by 
four fixed base columns, out of which three columns are made of steel and one is of alumi-
num, resulting in stiffness asymmetry in the frame. Also, eccentric masses are placed on 1st, 
2nd, 3rd, and 5th floor levels to simulate the effect of mass asymmetry in the response of the 
frame. The details of geometric dimensions, floor masses, cross-sectional properties, material 
properties, sensor locations, and applied ground motion can be found in an earlier study by the 
authors [5]. 
 

 
 Figure 1. Experimental frame: sensor locations and types of sensors are indicated. 

 
 
     In the present study, we consider uncertainty in modeling the damping and column stiff-
nesses, while the floor masses are treated as deterministic quantities. Therefore, we have 15 
damping ratios corresponding to 15 normal modes of vibrations and 20 stiffness parameters, 
considering each column stiffness in every story as a separate variable. We also consider the 
torsional stiffness of each floor due to the combined effect of all four columns, which results 
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in another 5 parameters for the overall frame. Thus, we have a total of 40 random variables 
for the stochastic response analysis of the frame. The random variables are arranged in a 40-
dimensional random vector, 

t1 1 1 1 1 2 5 5
1 2 3 4 1 4 1 2 15k k k k k k k k       = . 

Here, the random variables, 1 ;  1 5jk j  denotes the story stiffnesses associated with alumini-
um column (marked as column A0-A5 in Figure 1), 2 3 4, , ;  1 5j j jk k k j  , are the story stiff-
nesses associated with steel columns (marked as column B0-B5, C0-C5, and, D0-D5 in Figure 
1), ;  1 5jk j   , are the torsional stiffnesses of jth story, and r = damping ratio correspond-
ing to rth mode of vibration. 
     A stochastic response analysis is performed using 10000 samples of the vector random 
variable  , generated through Monte Carlo simulations. All the random variables denoting 
modal damping are assumed to be independent, whereas the random variables denoting the 
column stiffnesses within a story are considered to be dependent through a correlation coeffi-
cient matrix. The prior probability models and associated parameters for the system parame-
ters are given in Table 1.  

Table 1. Probability models for the parameters  
 

Parameters Probability distribution  Mean  COV 
1 ;  1 5jk j   Lognormal distribution ( )46.0845 10 kN/m  0.05 

2 3 4, , ;  1 5j j jk k k j   Lognormal distribution ( )418.050 10 kN/m  0.05 

;  1 5jk j    Lognormal distribution ( )40.7535 10 kNm/rad  0.05 

;1 15j j    Lognormal distribution 0.04 0.10 
 
 
The coefficients of correlations are taken as follows: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

1 2 1 3 1 4 1 5 2 3 2 4

2 5 3 4 3 5 4 5

, 0.6,  , 0.45,  , 0.3,  , 0.2,  , 0.3,  , 0.2,  

, 0.1,  , 0.2,  , 0.1,  , 0.5; 1,2, ,5.

, 0;  ;

, ;  Kronecker's delta

i i i i i i i i i i i i

i i i i i i i i

i j
k m

i j ij ij

k k k k k k k k k k k k

k k k k k k k k i

k k i j

     

   



    

= = = = = =

= = = = =

= 

= =

 

     The performance of the building frame is assessed in terms of three performance measures, 
namely, 1 2 3, ,  and, PM PM PM , as discussed in section 2. As per prior response analysis, the 
average maximum inter-story drift is observed to be 0.14% of the story height and the average 
maximum inter-story rotation is found to be 0.0008 radians. The average base shear was rec-
orded to be 19.27% of the weight of the building frame. In this study, for the calculation of 

3PM , we take 1 0c =  assuming the contribution of damping force is negligible towards max-
imum base shear, compared to the contribution of elastic restoring force.   
     The experimental frame is instrumented with 6 strain gauges, 5 uni-axial accelerometers, 4 
rotary accelerometers, and 5 LVDTs (to measure inter-story drift), as shown in Figure 1. The 
arrangement for mounting LVDT consists of a combination of rigid wooden plank connected 
to the slab and a magnetic base that is anchored to the slab above. The applied base accelera-
tion is also measured. The frame is mounted on a servo-hydraulic controlled, multi-axes, 
shake table that operates in a displacement-controlled mode. For the combined state and pa-
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rameter estimation, eight sets of measurements are assimilated. These include inter-story 
drifts between the 1st  and 2nd  floor, 2nd  and 3rd, 3rd  and 4th  floor, 4th  and 5th  floor, strain in 
aluminium columns in 1st  and 3rd  floor along x and y direction respectively, strain in steel 
columns in 2nd  and 4th  floor along y and x direction respectively. Using the combined state 
and parameter estimation algorithm, which is discussed in section 4, we obtain the posterior 
joint pdf of the parameters.  
     The estimated pdfs of the three performance measures, based on prior samples and posteri-
or samples of the parameters are plotted in Figure 2. To compare the GRSI values observed 
based on prior responses and posterior responses, we select a common reference set A, for 
each response quantity of interest. The reference set, A, along with pdfs of prior and posterior 
responses are shown in Figure 2 (the interval between two dotted red lines indicates the set A). 
 

 
 

Figure 2. Pdfs of prior and posterior responses, (a) 1PM , reference set   31.41,1.45 10A −=   

(b) 2PM ,   30.7110,0.7280 10A −=  , (c) 3PM ,  ( )880,890 kNA =  
 
     In this study, we consider three different grouping schemes of random variables for GRSA, 
as discussed below: 
Case I. All the stiffness parameters associated with a particular story, are grouped together. 
Thus, we have five groups of random variables arising from the stiffness parameters of each 
story. This grouping scheme captures the effect of irregularity in stiffness distribution across 
different stories. We also derive three groups from the random variables pertaining to damp-
ing ratios, by collecting the damping ratios corresponding to 1st five natural modes into one 
group, similarly damping ratios corresponding to 6th through 10th normal modes, 11th through 
15th normal modes into other two groups respectively. In summary, the groups of random var-
iables are represented here as follows: 

t1 2 8     = ; 

1 2 3 4 ;   1 5,  story numberj j j j j jk k k k k j j
 =   =  ,  

 6
1 2 5 ;     =  7

6 7 10 ;     =  8
11 12 15 ;     =  

The results of GRSA based on prior pdfs and posterior pdfs of the parameters are plotted in 
Figures 3(a)-(c).  The top three groups of random variables as per prior and posterior GRSA 
are reported in Table 2. 
Case II. Here, the same 40 random variables are grouped into 8 groups following a different 
grouping scheme for the stiffness parameters. The stiffness parameters along a column line (in 
the vertical direction) are clubbed together to form a group, resulting in four groups. Another 
group is formed by collecting all the torsional stiffness parameters for all five stories. Three 
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other groups are formed from the damping ratios following the same scheme as discussed in 
case I.  In this case, the groups of random variables are represented as follows: 

t1 2 8     =  
1 2 3 4 5 ;   1 4,   number of column linej
j j j j jk k k k k j j =   =   

5 1 2 3 4 5 ;   k k k k k    
 =   6 7 8, and,      are the same as in Case I. 

The computed GRSI for prior and posterior models of the parameters are shown in Figures 4 
(a)-(c). Top three important groups of random variables for the considered three performance 
measures are listed in Table 3.   
Case III. Here, we compute the GRSI with respect to 40 individual random variables. The 
GRSI values are reported as GRSI (j); j =1, 2,…,40. Here, j is the number, that enumerates the 
position of the random variables in the vector  .  

t1 1 1 1 1 2 5 5
1 2 3 4 1 4 1 2 15k k k k k k k k       =   

The results of GRSA for all three performance measures, with respect to individual parame-
ters, based on their prior samples and posterior samples are compared in Figures 5(a)-5(c). All 
40 random variables are ranked according to their relative importance measured through 
GRSI values, and the top 10 random variables are reported in Table 4. 
  

 

 
Figure 3 (a). Prior and posterior GRSI values for 1PM  in Case I 
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Figure 3 (b). Prior and posterior GRSI values for 2PM  in Case I 

 
Figure 3 (c). Prior and posterior GRSI values for 3PM  in Case I 

 
Figure 4 (a). Prior and posterior GRSI values for 1PM  in Case II 
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Figure 4 (b). Prior and posterior GRSI values for 2PM  in Case II 

 
Figure 4 (c) Prior and posterior GRSI values for 3PM  in Case II 

 
 

 
Figure 5 (a). Prior and posterior GRSI values for 1PM  in Case III 
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Figure 5 (b). Prior and posterior GRSI values for 2PM  in Case III 

 
Figure 5 (c). Prior and posterior GRSI values for 3PM  in Case III 

 
Table 2. Top three groups based on prior and posterior GRSI for case I 

 
Performance Measures 

(PMs) 
Top three groups based on  

Prior GRSI 
Top three groups based Pos-

terior GRSI 
1PM  1,3,6 1,3,6 

2PM  1,6,3 6,1,3 

3PM  1,6,3 1,3,6 
 

Table 3. Top three groups based on prior and posterior GRSI for case II 
 

Performance Measures 
(PMs) 

Top three groups based on  
Prior GRSI 

Top three groups based Pos-
terior GRSI 

1PM  1,3,2 1,2,3 

2PM  1,6,4 1,4,3 

3PM  1,3,2 1,6,3 
 

Table 4. Top 10 random variables based on prior and posterior GRSI for case III 
 

Performance Measures 
(PMs) 

Top ten random variables 
based on Prior GRSI 

Top ten random variables 
based Posterior GRSI 

1PM  4,2,3,12,14,13,11,8,26,39 4,2,3,14,13,12,1,26,27,11 
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2PM  26,27,13,4,2,1,3,29,17,22 26,27,4,2,1,3,13,28,7,29 

3PM  14,13,12,4,26,27,11,17,19,1 14,13,2,12,3,4,27,26,11,1 
     
     Based on the results shown in Figures 3-5, and, Tables 2-4, the following observations are 
made: 
 
1. The GRSI values change significantly when they are calculated based on the posterior pdf 
of the parameters. This may lead to an alteration of the ranking of the parameters. In Table 2, 
we notice that the top three groups of random variables for 1PM  appear to be in the same or-
der of importance in both prior and posterior GRSI-based rank ordering, although, there are 
significant differences in their prior and posterior GRSI values. For 2PM  and 3PM , the top 
three groups of random variables remain the same in both prior and posterior GRSA, but their 
order of importance changes. Considering all three PMs, we observe that the groups of ran-
dom variables designated as 1,3 and, 6 are the most important in controlling the variability in 
the responses. Here, group 1 represents the combined stiffness of 1st story columns, group 3 
represents the combined stiffness of 3rd story columns, and group 6 represents the set of 
damping ratios corresponding to 1st five normal modes of vibration.  
 
2. In Table 3, we observe that the top three important groups of random variables remain the 
same as per prior and posterior GRSA (for the performance measure 1PM ), but their order in 
ranking as per their relative importance changes. For 2PM , groups 1, 4, and 3 appear to be in 
the top three important groups as per posterior GRSA, whereas group 3 does not appear in the 
top three, while the ranking is done as per prior GRSA.  A similar observation is made for 

3PM . 
  
3. In Table 4, we observe that, for the case of 1PM , 8 random variables are common in the 
lists of top ten random variables obtained in both prior and posterior GRSA. These random 
variables are designated by the numbers 2,3,4,11,12,13,14,26 .  Also, it can be noticed that 
for the cases of 2PM , and, 3PM , 8 random variables appear in common to both the list of top 
ten random variables produced by prior and posterior GRSA. Three random variables desig-
nated by the numbers  4,13,26 appear in all lists of the top ten random variables irrespective 
of prior or posterior GRSA. These three random variables represent the random variables 
 1 3

4 3 1, ,k k  . Here, 1 3
4 3,k k  are 1st story and 3rd story column (steel column) stiffnesses respec-

tively, and 1  represents the damping ratio corresponding to 1st normal mode of vibration.  
  
4. Based on prior GRSI values shown in Figures 5(a)-(b), we observe that the damping ratios 
corresponding to all 15 normal modes of vibration seem to be equally important, whereas pos-
terior GRSI values suggest that only two modal damping ratios, corresponding to 1st and 2nd 
modes of vibration play a crucial role in producing variability in the responses 1PM , and 

2PM  respectively. According to Figure 5(c), both prior and posterior GRSI values corrobo-
rate the fact, that modal damping associated with the first two modes governs the variability 
in the response 3PM . 
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5. Furthermore, it can be noticed in Figures 5(a)-(c), that posterior GRSA produces negligibly 
small GRSI values for the non-important random variables, whereas the GRSI values for the 
important random variables remain significantly large. Thus, posterior GRSA acts like a filter, 
that removes noises from the GRSI values and enhances the capability of classifying im-
portant and non-important random variables. Identifying the set of important and non-
important random variables pertaining to an uncertain system helps in developing a model 
reduction scheme, where the response uncertainty is captured through a lesser number of ran-
dom variables.  

 
 

Figure 6. Estimation of CDFs of 1PM  for (a) reduced posterior model, (b) reduced prior mod-
el), (c)full posterior model, (d) full prior model.  (Reduced models consider only the 10 top-

most important random variables) 
 

We also repeat the stochastic response analyses considering only the top 10 most important 
parameters as random variables, while the remaining parameters are treated as deterministic, 
setting their values to the specified mean values. We plot the CDF of the responses (here only 
results for 1PM  are shown in Figure 6) obtained based on reduced prior and posterior models 
and compared with the CDFs of the responses when all 40 parameters are considered as ran-
dom variables. Thus, we achieve a meaningful model reduction (in terms of random variables). 
The CDFs of 1PM  for reduced and full model match well. Also, it is noted that the CDFs for 
the prior and posterior parameter models do not coincide, as the top 10 important random var-
iables are different in these two cases, for a given parameter model (be it prior or posterior). 
Thus, GRSI values can play an important role in achieving model reduction.  

6 CONCLUSIONS  
      This study focuses on updating GRSI values in an instrumented structure. We employ 
an MCMC sampler coupled with a recently developed implicit version of Kalman filter to 
estimate the parameter and states of a system simultaneously. Then, we perform GRSA by 
applying the factor mapping method on the converged parameter samples obtained in the 
combined parameter and state estimation step. It is observed that the GRSI values, thus ob-
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tained based on the posterior parameter model, can be significantly different from the GRSI 
values achieved using the prior parameter model and this may lead to a difference in meas-
uring the relative importance of the parameters and thus in rank order. The method has been 
applied to a five-storied bending-torsion coupled randomly parametered building frame 
(with uncertain parameters designated by 40 random variables). GRSA based on both prior 
and posterior samples of parameters was performed with respect to three performance 
measures, namely, maximum inter-story drift ratio, maximum inter-story rotation, and max-
imum base shear. The sets of important random variables or groups of random variables are 
identified, that govern the variability of the performance measures in a region of interest. It 
has been observed that the posterior GRSI values offer better means to classify the im-
portant and non-important random variables. The role of GRSI in stochastic model reduc-
tion is also studied. 
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