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ABSTRACT
Automotive radars at the Terahertz (THz) frequency band have the
potential to be compact and lightweight while providing high (nearly-
optical) angular resolution. In this paper, we propose a bistatic THz
automotive radar that employs the recently proposed orthogonal chirp
division multiplexing (OCDM) multi-carrier waveform. As a stand-
alone communications waveform, OCDM has been investigated for
robustness against interference in time-frequency selective channels.
The THz-band path loss, and, hence, radar signal bandwidth, are
range-dependent. We address this unique feature through a multi-
carrier wideband OCDM sensing transceiver that exploits the coher-
ence bandwidth of the THz channel. We develop an optimal scheme
to combine the returns at different ranges/bandwidths by assigning
weights based on the Cramér-Rao lower bound on the range and
velocity estimates. Numerical experiments demonstrate improved
target estimates that can be obtained using our proposed combined
estimation from measurements with varied attenuation at THz bands.

Index Terms— Automotive radar, orthogonal chirp-division mul-
tiplexing, spectral co-design, THz band, vehicular communications.

1. INTRODUCTION

Autonomous driving is one of the mega-trends of the automotive
industry, wherein the majority of automakers have already introduced
various levels of autonomy into commercially available vehicles [1,
2]. While multiple sensors such as camera, radar, lidar, and ultrason-
ics are used to enable autonomy in vehicles, radar is preferred as an
inexpensive, all-weather sensor [3]. However, at present, millimeter-
wave automotive radars with a few GHz bandwidth [4] at 24 and
77 GHz are unable to achieve the high-resolution images of optical
sensors [5]. As a result, there is a gradual push to sense the automo-
tive environment at Terahertz (THz) frequency band [6–8]. There
are multiple advantages of higher frequency operation, such as a
smaller size system, the feasibility of a larger number of channels
leading to higher angular resolution, and the availability of higher
bandwidth that yields higher range resolution. Currently, low-THz
frequencies, such as 0.15 THz and 0.3 THz bands provide 6 GHz
and 16 GHz unlicensed contiguous bandwidths, respectively. These
wide frequency bands enable automotive radars to achieve lidar-like
imaging capabilities [9–11].

A major drawback of operating automotive radars above 100 GHz
is the high propagation losses because of increased atmospheric ab-
sorption and attenuation [12]. Further, the low-THz spectrum exhibits
distance-dependent spectral windows. While the entire band may be
considered as a single transmission window with a bandwidth of the
order of a THz at distances below 1 meter, there are multiple trans-
mission windows that are tens or hundreds of GHz wide at higher

distances because of increased molecular absorption. In fact, the
bandwidth of each transmission window shrinks with the transmis-
sion distance and reduces by an order of magnitude when the distance
is increased from 1 to 10 meters due to high absorption peaks [13].
Thus, in the THz band, there is a critical trade-off between operating
the automotive radar at high bandwidth, thereby improving range
resolution, and maintaining an adequate maximum detectable range.

Several interesting works, focusing on classical techniques such
as MIMO beamforming and precoding [7], transceiver design [14],
and waveform design [13, 15] have been investigated to tackle high
propagation losses and power limitations of THz bands [16]. In [17],
a single-band pulse-based scheme is proposed at the THz frequencies.
However, this modulation is valid mainly for very short transmission
distances, e.g., in nano networks, where distance-dependent spectral
windows do not appear. In [13], a multi-narrowband system is de-
veloped. However, the resulting number of sub-bands is large and
the hierarchical modulation is complicated. Moreover, the effect of
inter-channel interference is neglected.

Traditionally, single carrier (SC) radar probing waveforms have
been explored for sensing [18, 19] above 90 GHz because of higher
spectral and energy efficiency and lower interference along with
reduced implementation complexity compared to multi-carrier wave-
forms [16]. However, frequency selectivity as function of the target
distance, number of multipaths, pulse bandwidth, and center fre-
quency can still arise in low-THz systems because of frequency- and
distance-dependent molecular absorption losses. In this context, our
goal is to investigate the efficacy of an emerging multicarrier wave-
form – orthogonal chirp-division multiplexing (OCDM) [20, 21] –
for THz automotive sensing. The motivation for using OCDM as the
underlying waveform for radar comes from the fact that it is a spread
spectrum technique that employs multiplexing of orthogonal chirp sig-
nals as carriers for data transmission. These orthogonal chirp signals
are also well-suited for radar applications due to their superior pulse
compression characteristics, better robustness against interference,
and comparable implementation complexity as opposed to conven-
tional orthogonal frequency-division multiplexing (OFDM) [21, 22].

We propose a THz radar sensing framework using multi-carrier
wideband OCDM (MCW-OCDM) based transceivers, each tuned to
center frequencies of available spectral windows that are artifacts
of the THz band. The target is independently estimated at each of
these windows. We develop a multi-stage sensing framework for the
MCW-OCDM THz system, which exploits the strength of radar re-
turns for optimally combining the individual estimates at each sensing
processor to localize the range and velocity of targets. The proposed
system is able to tackle both distance and frequency-dependent path
losses in the THz band. Our numerical experiments show that the
proposed system realizes sub-millimeter-level accuracy for range esti-
mation, which is a three-orders of magnitude improvement, comparedIC
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to processing the returns from a single transmission window. Further-
more, the velocity estimates are significantly improved over that of
an individual transmission window, across varying target distances.

2. SYSTEM MODEL

We consider a bistatic automotive system, where the signal transmit-
ted by a transmit (Tx) vehicle is reflected off P targets of interest
and then captured by a receive (Rx) vehicle. The radar scene com-
prises P non-fluctuating point-targets following the Swerling-0 target
model [23]. We assume that a target position relative to the bistatic
radar varies linearly throughout the time-on-target of the Tx signal,
i.e., rp(t) = rp + vpt, where rp is the initial range at t = 0 and vp
is the constant radial velocity. The signal emitted by the Tx passes
through a frequency-selective time-varying channel in the THz band
with impulse response [24]

h(t, τ) =

P−1∑
p=0

hp exp(j2πfDpt)δ(τ − τp), (2.1)

where hp is the complex scattering coefficient of the p-th point target,
τp = τ

(1)
p + τ

(2)
p is the time delay, which is linearly proportional

to the target’s bi-static range rp = cτp (superscripts (1) and (2)
denote the variable’s dependency on the Tx-target and target-Rx
paths, respectively), fDp = f

(1)
Dp

+ f
(2)
Dp

is the Doppler shift induced

by the target’s linear motion vp = c
fDp

fc
, with fc being the operating

frequency and c denoting the speed of light. Note that the path gain
of the received signal power due to reflection from the p-th target is
characterized by the path loss of the THz band channel

PLLoS(fc, rp) =

(
4πfcrp

c

)2

ekabs(fc)rp , (2.2)

where kabs is the frequency-dependent absorption coefficient of the
medium [12, 25].

The Tx waveform is an OCDM signal, which multiplexes a bank
of chirps in the same time period and bandwidth. The total bandwidth
B is divided into K subbands, with the ith subband spanning a of
bandwidth Bi at center frequency fci , i ∈ {1, · · · ,K}. The input
from payload data frames is mapped into K independent OCDM
modulator blocks as shown in Fig. 1. The Tx frame in the ith subband
consists of Ni temporal symbols obtained by modulating the phase
and amplitude of Mi sub-chirps using the data bits and occupying a
total bandwidth Bi = Mi∆fi, where ∆fi is the bandwidth of each
chirp and Mi is an even positive integer. With such a chirp basis, the
baseband Tx OCDM signal at the ith modulator output is [22]

Si = ΦH
Mi

Xi

where ΦMi = Θ1FMiΘ2,with FMi =

[
1√
Mi

e
j 2π
Mi

uv

]
, (2.3)

Θ1 = diag{Θ1,0; · · · ; Θ1,Mi−1}, Θ1,u = e−jπ
4 e

j π
Mi

u2

,

Θ2 = diag{Θ2,0; · · · ; Θ2,Mi−1}, Θ2,v = e
j π
Mi

v2

, (2.4)

where u, v ∈ {0, · · · ,Mi−1}, ΦH
Mi

∈ CMi×Mi denotes the inverse
discrete Fresnel transform (IDFnT) of order Mi and Xi ∈ CMi×Ni

is the matrix of data symbols, [Xi]m,n, where m = {0, · · · ,Mi−1}
is the chirp index and n = {0, · · · , Ni−1} is the symbol index. The
IDFnT is the product of the discrete Fourier transform (DFT) matrix
FMi and additional quadratic phases. Furthermore, the matrix ΦMi

is circulant. Hence, using the eigendecomposition property, (2.3)
becomes

Si = FH
Mi

ΓHFMiXi = FH
Mi

Zi (2.5)

Fig. 1. The MCW-OCDM radar Tx multiplexes several chirps in the
bandwidth B that is divided into K (not necessarily equal) subbands.
The input from payload data frames is mapped into K independent
OCDM modulator blocks.

where ΓH = FMiΦ
H
Mi

FH
Mi

and the matrix G ≜ ΓHFMi ∈
CMi×Mi transforms the input data symbols Xi into scaled frequency
domain symbols Zi ≜ GXi. Note that Γ ∈ CMi×Mi is a diagonal
matrix, whose mth diagonal entry Γ(m) is the mth eigenvalue of
ΦMi , and corresponds to the root Zadoff-Chu sequences as [22]

Γ(m) = e
−j π

Mi
m2

, ∀m, Mi ≡ 0 (mod2). (2.6)

The circulant property of discrete Fresnel transform (DFnT) (2.5)
allows the OCDM modulator to be integrated with a conventional
OFDM modulator, using an additional DFT-based precoding oper-
ation G. At the Tx, the data symbols are first mapped into Mi

sub-carriers and transformed to the frequency domain as in (2.5). The
resulting symbols are then serialized, passed through a pulse-shaping
filter, up-converted, and transmitted. Define Ti =

1
∆fi

as the OCDM
symbol duration. The time-domain OCDM signal can be written as

si(t) =

Ni−1∑
n=0

Mi−1∑
m=0

[Xi]m,ne
jπ
4 e

−jπMi
T2
i

(
t−nTi−

mTi
Mi

)2

×ej2πfci trect(t− nTi), (2.7)

where rect(t) ≜

{
1 0 ≤ t ≤ T

0 otherwise
. The Rx receives the radar return

(2.7) over a doubly spread THz radar channel (2.1) as the sum of
reflections for each antenna output at frequency fci , characterized by
delay and Doppler shifts of the targets as follows

yrad
i (t)=

√
PLLoS(fci , rp)

P∑
p=1

hpsi(t− τp)e
j2πfciϑp(t−τp)+wi(t),

(2.8)

where ϑp =
vp
c

is the normalized velocity and wi(t) ∼ CN (0, ϵ2i )
represents the additive white Gaussian noise (AWGN). Here, we

assume 1
MiNi

Ni−1∑
n=0

Mi−1∑
m=0

E[|[Xi]m,n|]2 ≤ Pavg, and thus the signal
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Fig. 2. The receiver processing requires combining the estimates by
assigning optimal weights to each subband.

satisfies an average power constraint. Also, the subcarrier spacing is
set to be larger than the maximum Doppler shift to maintain orthog-
onality, i.e., fmax

Di
≪ ∆fi, ∀i, and thus ∆fi is chosen based on the

maximum velocity, such that this inequality is satisfied. In order to
achieve unambiguous radar sensing at longer distances, waveform de-
sign without cyclic prefix is recommended [26]. Hence, we consider a
fixed phase constellation of payload data symbols that are modulated
onto the chirps, which can be later nullified at the receiver. Further,
to avoid any ambiguity in distinguishing targets due to aliasing, the
maximum delay spread of the targets should be less than the symbol
duration within each subband, i.e., ∆τmax < min

i
Ti [27].

3. COMBINED TARGET ESTIMATION

Each demodulator i tuned to center frequency fci (Fig. 2) receives
the radar signal (2.8). After down-conversion, the signal is sampled
at t = nTi +m Ti

Mi
to yield

[Yrad
i ]m,n =

P∑
p=1

h̃pie
j2π

fci
c

vp(nTi+m
Ti
Mi

)
Mi−1∑
m′=0

[Xi]n,m′ej
π
4

× e
−jπ

Mi
T2
i

{
(m−m′)

Ti
Mi

−τp

}2

+ [Wi]m,n. (3.1)

where h̃pi =
√

PLLoS(fci , rp)hp. Next, we apply DFnT to observe
the radar return across the chirps as follows

[Yrad
i ]m,n =

1

Mi

Mi−1∑
l=0

[Yrad
i ]l,n exp(−j

π

4
) exp

[
j
π

Mi
(m− l)2

]

≈
P∑

p=1

[Xi]m,nh̃pie
−jπMi

(
τp

T2
i

)2

ej2π(nϑpfciTi−mτp∆fi) + [Wi]m,n,

(3.2)

where the approximation follows because fmax
Di

≪ ∆fi. Since the
payload data Xi is known at the radar receiver, we remove them from
(3.2) by performing an element-wise division. Note that the noise
statistics do not change due to this operation [27]. Subsequently, the
radar observations are (dropping the constant phase term)

[Zrad
i ]m,n =

P∑
p=1

h̃pie
j2π(nϑpfciTi−mτp∆fi) + [Wi]m,n. (3.3)

These observation samples are then fed to a sensing processor (SP)
corresponding to each demodulator output, which outputs target pa-
rameter estimates. Assuming the number of targets has been deter-
mined (e.g., via hypothesis testing [28] we find maximum likelihood
(ML) estimates of the target parameters θi = [θ1i , · · · , θPi ]

T such
that θpi = (rpi , vpi), ∀p, ∀i. We index the estimates rpi , vpi by
the subband index i because a separate estimate is obtained at each
subband. The ground truth range and velocity are represented by rp
and vp, respectively. The simplified log-likelihood function ∀p is

L (Zrad
i ; θpi) = 2h̃piR

[∑
m,n

[Zrad
i ]m,ne

−j2πnϑpfciTiej2πmτp∆fi

]
− h̃2

pi .

(3.4)

Clearly, the parameters to be estimated in θp, ∀p are decoupled.
Note that the equation (3.4) is a two-dimensional (2D) complex pe-
riodogram. The periodogram can be calculated by quantizing the
frequencies and taking FFTs along the desired dimension [27]. By
discretizing (3.4), the log-likelihood function is

Lq(Z
rad
i ;m′, n′) = 2h̃piR

[
MPer−1∑
m=0

NPer−1∑
n=0

[Zrad
i ]m,ne

−j2π nn′
NPer e

j2π mm′
MPer

]
,

(3.5)

where m′ := τp∆fi and n′ := ϑpfciTi are the discretized fre-
quencies in (3.4) over the search grid m′ = 0, · · · ,MPer − 1 and
n′ = −NPer

2
, · · · , NPer

2
− 1, with MPer > Mi and NPer > Ni, ∀i.

Note that (3.5) is a 2D-DFT applied to Zrad
i ∈ CM×N with oversam-

pling in both dimensions. The ML solution of θpi is

[m̂′, n̂′] = argmaxm′∈M,n′∈N Lq(Z
rad
i ;m′, n′) (3.6)

Thus, we obtain peaks at m′
pth and n′

pth bin of (3.5), which corre-
spond to the delay and Doppler, respectively, at each SP i as follows

τ̂pi =
m̂′

∆fiMPer
, ϑ̂pi =

n′

2πfciTiNPer
(3.7)

The range and velocity of the target (rpi , vpi), ∀p are thus estimated.

In our optimal weighted combining (OWC), the estimates from
each of the K sensing processors need to be combined to get a
final estimate of the target range and velocity θp = (rp, vp), ∀p.
Without loss of generality, we present the combining scheme for a
single target scenario. Hence, we drop the target subscript p in the
subsequent analysis. The estimated parameters of the target at each
demodulator block i can be linearized under a first-order Taylor series
approximation, considering small errors, as

ζ̂ = 1Kζ + eζ ∈ CK . (3.8)

where ζ̂ = [ζ̂1, · · · , ζ̂K ]T with ζi ∈ {r̂i, v̂i} being the estimated
parameter at SP i, ζ ∈ {r, v} is the true target parameter and eζ =
[eζ1 , · · · , eζK ]T is the estimation error. At high SNR, the DFT-based
estimator achieves the Cramér-Rao lower bound (CRLB). Thus, we
can approximate the variance of eζ at high SNR as [21]:

σ2
ri ≈

6ϵ2i

(2π)2MiNi(N2
i − 1) |h̃i|2Pavg

(
c

∆fi

)2

σ2
vi ≈

6ϵ2i

(2π)2MiNi(M2
i − 1)|h̃i|2Pavg

(
c

Tifci

)2

.

(3.9)
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Fig. 3. (a) Effect of frequency-dependent THz path loss on range estimation versus the SNR, with r = 0.1 m; effect of distance and
frequency-dependent THz path loss on (b) range estimation (c) velocity estimation versus the SNR.

Proposition 1. Define T (ζ̂) = βT ζ̂; then T (ζ̂) is a sufficient statis-
tic for estimating ζ, where β = [β1, · · · , βK ]T ∈ RK denotes the
weights of the linear combiner.

The proposition follows from the fact that error at each SP is indepen-
dent and hence T (ζ̂) can be modeled as being corrupted by AWGN
using the central limit theorem when there are a large number of
estimates. Then, it is easy to show that T (ζ̂) can be factorized to
satisfy Neymen Fisher factorization theorem [29].

Theorem 2. The optimal combining scheme is a linear weighted
combination of the estimates obtained from the K sensing processors.
It minimizes the estimation error, i.e.,

min
β

E
{(

βH ζ̂ − ζ
)2

}
s.t. 1H

Kβ = 1, (3.10)

and the optimal combining weights are given by

βk =
σ−2
ζk∑K

i=1 σ
−2
ζi

, ∀k ∈ {1, · · · ,K}. (3.11)

Proof: The optimization problem in (3.10) can be simpli-
fied as min

β1,··· ,βk

[
βHReζβ

]
subject to 1H

Kβ = 1, where Reζ =

E[eζe
H
ζ ] is the error covariance matrix, with σ2

ζi
, ∀i (3.9) its di-

agonal elements. The Lagrangian of this optimization problem is
L = βHReζβ + λ(1H

Kβ − 1), where λ is the Lagrange parameter.
Taking the derivatives with respect to β and λ, setting it to zero, and
simplifying, we get β = −λ

2
R−1

eζ 1K and λ = − 2
1H
K

Reζ
1K

, which

results in the optimal weights given by (3.11).

4. NUMERICAL EXPERIMENTS

We evaluate the performance of the proposed THz MCW-OCDM
system through numerical experiments. Throughout all experiments,
the total bandwidth B is set to 1.4 THz. Based on the available
distance-dependent transmission windows [13], we divide the total
bandwidth into subbands Bi, each spanning 1 GHz. We consider
an equal number of chirps and OCDM symbols, i.e., M = 256 and
N = 256, for each subband. Thus, the spacing ∆fi between two
chirps at each subband is 3.9 MHz, which is well within the coherence
bandwidth of the THz channel [16]. The OCDM frame time T is
0.25 µs. We place a reference target at different distances from the
radar transceiver, and with a Doppler velocity of 23 m/s. The noise

variance ϵ2i is 1 and the THz path loss at each fci for different r is
given by (2.2) [13]. We set the Tx power such that at r = 0.1 m and
for SP-1, the received SNR is varied from −12 dB to 15 dB. This
is the reference Rx SNR for all the plots at all distances. We use

the metric root mean square error (RMSE) =
√

E
{
||ζ̂ − ζ||2

}
to

quantify the estimation accuracy.
Fig. 3a compares the RMSE of range using our proposed OWC

scheme with that of individual SP estimates at THz frequencies as a
function of the SNR when the target is at a distance of r = 0.1 m.
Note that, at this distance, radar returns are obtained at all bandwidth
windows [13], and OWC yields sub-millimeter level sensing accu-
racy at reasonable Rx SNR levels (> 0 dB). Further, at RMSE of
10−3, OWC outperforms the estimates from SPs at the first and last
bandwidth windows by 6 dB approximately. This is also the case
when the SP estimates are not combined and only the average RMSE
is considered. Furthermore, Fig. 3b shows the impact of target dis-
tance on RMSE as a function of SNR. Clearly, the OWC significantly
outperforms the estimates of a single SP at all distances and the im-
provement is more pronounced at lower distances. This is because,
by assigning optimal weights, the combiner is able to tackle the THz
band path loss much better than the single estimate at SP-1. Further,
a higher number of SPs are available at lower distances, resulting in
better target localization.

Fig. 3c highlights the OWC advantage in velocity estimation for
different bistatic target distances r. The OWC improves the RMSE by
nearly 6 dB for all target ranges. As the target range increases, radar
returns are obtained from a smaller number of bandwidth windows
and the path loss also becomes more severe. The increase of path loss
with frequency also results in the worsening of the velocity estimates
across THz subbands, which, in turn, increases the estimation error.

5. SUMMARY

We presented a multi-wideband OCDM framework to overcome the
limitation of both frequency and distance-dependent path losses at
the THz band in radar target parameter estimation. We provided a
novel multi-stage sensing algorithm to make use of data frames from
different THz subbands. To this end, we derived optimal combining
weights across the different sensing processors based on the Cramér-
Rao lower bound on the parameter estimates. We demonstrated that
using an optimal weighted combiner for processing the radar returns
from different THz transmission windows significantly enhances the
estimation accuracy by prioritizing the more accurate estimates from
subbands that experience lower absorption losses.
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