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Abstract
We study a variant of the multi-armed bandit problem (MABP) which we call as MABs 
with dependent arms. Multiple arms are grouped together to form a cluster, and the reward 
distributions of arms in the same cluster are known functions of an unknown parameter 
that is a characteristic of the cluster. Thus, pulling an arm i not only reveals information 
about its own reward distribution, but also about all arms belonging to the same cluster. 
This “correlation” among the arms complicates the exploration–exploitation trade-off that 
is encountered in the MABP because the observation dependencies allow us to test simul-
taneously multiple hypotheses regarding the optimality of an arm.  We develop learning 
algorithms based on the principle of optimism in the face of uncertainty (Lattimore and 
Szepesvári in Bandit algorithms, Cambridge University Press, 2020), which know the 
clusters, and hence utilize these additional side observations appropriately while perform-
ing exploration–exploitation trade-off. We show that the regret of our algorithms grows 
as O(K log T) , where K is the number of clusters. In contrast, for an algorithm such as 
the vanilla UCB that does not utilize these dependencies, the regret scales as O(M logT) , 
where M is the number of arms. When K ≪ M , i.e. there is a lot of dependencies among 
arms, our proposed algorithm drastically reduces the dependence of regret on the number 
of arms.
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1 Introduction

The Multi-armed Bandit Problem (MABP)  (Lattimore & Szepesvári, 2020; Bubeck & 
Cesa-Bianchi, 2012; Gittins et  al., 2011; Berry & Fristedt, 1985; Lai & Robbins, 1985) 
has numerous and diverse applications, and hence is an extremely well studied problem. At 
each discrete time t, a decision maker (DM) has to choose to “play” one out of M arms. At 
each of these time instants he receives a random reward, where the probability distribution 
of the reward received at time t depends upon the arm pulled at t. DM’s goal is to make 
these choices sequentially so as to maximize the expected value of the cumulative reward 
that it collects over either a finite, or an infinite time-horizon. The reward distributions are 
not known to the DM, and hence it inevitably needs to perform an exploration–exploita-
tion trade-off (Lattimore & Szepesvári, 2020; Bubeck & Cesa-Bianchi, 2012; Gittins et al., 
2011), in which the arms are prioritized by jointly considering the amount of information 
yielded by pulling an arm and the estimated reward received by pulling it.

Bandit algorithms have been used in various domains such as the optimal design of 
clinical trials, advertisement placements on websites so as to maximize the click-through 
rates, personalized recommendations of news articles and advertisements to Internet users, 
learning the optimal price of a new commodity in market, and optimal routing/scheduling 
of data packets in networks (Gai et al., 2012; Awerbuch & Kleinberg, 2008). The efficiency 
of a learning algorithm is measured by its regret, which is the sub-optimality in the cumu-
lative reward collected by it as compared with an optimal DM that knows the probability 
distributions of the rewards of all the arms. It is well known that the regret of learning 
algorithms scales linearly with the number of arms M if no further assumption is made 
regarding these reward distributions (Lai & Robbins, 1985; Lattimore & Szepesvári, 2020). 
This creates a significant difficulty in using multi-armed bandit techniques to solve practi-
cal machine learning problems with a huge number of arms.

In many applications, when a DM pulls an arm not only does it receive a reward from 
this arm, but it also gets to learn “something” about the reward distributions of other arms, 
i.e., the arms are dependent. For example, patients having similar demographic features 
are likely to respond similarly upon injection of the same drug, and hence the biological 
response received from a patient can be used in order to cleverly devise drugs for another 
patient on the basis of how similar the new patient is to this first patient. Similarly, in net-
work control applications, the end-to-end traffic delays on two paths are highly correlated 
if these paths share links; this means that the delay encountered on a single path can be 
used to “predict” traffic delays on other paths as well. In another example, internet users 
that have similar “features” (e.g. age, demographics, location, etc.) are likely to give simi-
lar ratings to the same internet advertisement. In the scenarios just mentioned, we expect a 
cleverly designed learning algorithm to incorporate these “side-observations” while mak-
ing choices about which arms to pull. Works such as Atan et al. (2015) have shown that 
utilizing this side-information arising due to such dependency among the arms can signifi-
cantly accelerate the convergence of decisions, and the speed-ups are significant when the 
number of arms is large. Our work addresses precisely this problem.

1.1  Existing works

Our dependent arms model and the algorithms that we develop, generalizes and unifies 
several important existing bandit models. We describe each of these in more detail below.
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1.1.1  Bandits with side observations

In Side Observations Model (Mannor & Shamir, 2011; Caron et al., 2012; Buccapatnam 
et  al., 2014), the observation dependencies among the arms are captured by means of a 
dependency graph; pulling an arm yields reward from not only this arm, but also allows 
one to observe the rewards from those arms that are connected to it by an edge. However, 
the assumption made in these works that an arm pull yields a realization of the rewards 
of all the arms connected to it, is too restrictive. A more realistic scenario is that the arms 
merely share a parameter that describes their reward distributions; so that loosely speaking 
an arm pull yields us a “noisy sample of the reward of all the arms belonging to the same 
cluster”. In the terminology of (Mannor & Shamir, 2011; Caron et al., 2012; Buccapatnam 
et al., 2014), arms in the same cluster can be viewed as connected to each other. This is 
the idea behind our dependent arms model. Thus, our model can be viewed as a relaxation 
of the side observations model. The key insight obtained while designing efficient algo-
rithms for the side observation model is that while making sequential decisions regarding 
which arm to pull next, one has to take into account not only the estimates of mean rewards 
and the number of pulls of arms so far, but also the location of an arm in the dependence 
graph. Hence, for example, an arm with a low value of mean reward estimate might be con-
nected to many “relatively unexplored” arms, so that pulling this “seemingly sub-optimal 
arm” will yield “free information” about all of these connected arms. We show that this 
novel and useful insight does carry over to the dependent arms model, though the concept 
requires an appropriate modification.

1.1.2  Linear bandits

A popular model which assumes that the mean rewards of arms are dependent upon a 
set of commonly shared parameters is the linear bandit model of (Li, et  al., 2010; Chu 
et al., 2011; Langford & Zhang, 2008; Rusmevichientong & Tsitsiklis, 2010; Abbasi-Yad-
kori et al., 2011). This model has been employed for developing online recommendation 
engines; for example learning algorithms that present news articles to users on the basis 
of their personal preferences. Preferences of users and the features of an item (e.g. a news 
article) are abstracted out as finite dimensional vectors. It is then assumed that the reward 
of an arm (e.g. the probability that a user clicks on news article) is equal to the dot product 
between these two vectors, and hence the mean rewards of the arms are solely a function 
of the (unknown) feature vector of the user.  Our dependent arms model generalizes the 
linear bandits model by relaxing the assumption that all the M arms share the same vector 
of parameters, so that now only those arms that belong to the same cluster share parameter.

1.1.3  MABP with clustered arms

One way to model the distribution dependencies among the arms is to employ a Bayesian 
framework, in which the unknown arm parameters are assumed to be random variables. The 
dependencies are then modeled by assuming that these random variables are correlated. 
The work Pandey et al. (2007) employs such an approach and derives an index rule which 
is similar to the popular Gittins index rule Gittins et al. (2011). Its key drawback is that the 
analysis is limited to maximizing the sum of discounted (and not undiscounted) rewards. 
Bouneffouf et al. (2019) study multi-armed bandits and contextual bandits in which arms 
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are clustered into multiple clusters, and propose UCB based algorithm that incorporates 
clustering information while making decisions. Carlsson et al. (2021) also studies a similar 
setup, and develops policies that are based upon Thompson Sampling (Russo et al., 2018). 
The algorithms proposed in these works maintain an estimate of the optimal reward that 
can be earned from each cluster, in addition to maintaining separate estimates of rewards 
for each arm. For example, the policy proposed in Bouneffouf et al. (2019) is as follows: at 
each time t it firstly picks a cluster that has the highest value of optimistic index, and then 
plays an arm from within this cluster that has highest UCB index. Similarly, the policy in 
Carlsson et  al. (2021) firstly samples from the posterior distributions of optimal reward 
from each cluster, then picks a cluster that has maximum reward value in this sample. 
Thereafter it samples from the posterior distribution of each arm belonging to this cho-
sen cluster, and plays the arm that has the maximum reward according to these samples. 
Both these works assume that the mean values of the arms are “tightly clustered,” i.e. the 
arm with the highest mean in each suboptimal cluster has a mean reward lesser than the 
worst arm in the cluster that contains the optimal arm. In departure from these works, our 
work does not make such clustering assumption. Instead, we make few assumptions on the 
reward distributions (Assumption 1 and Assumption 2), and show that they hold for com-
monly encountered examples such as finitely supported distributions.

Gentile et al. (2014, 2017) derives adaptive clustering algorithms for linear (contextual) 
bandits where the goal is to serve content to a set of users organized into clusters such that 
users within each cluster behave similarly. Similarly, Gentile et al. (2017) develops recom-
mendation algorithms which suggest items to users in such a cluster model. Cesa-Bianchi 
et al. (2013) considers the benefit of using social relationships in order to improve the qual-
ity of recommendations by using a linear contextual bandit model in which each user has 
a coefficient vector that encodes its preferences over various items. It assumes that users 
that are nearby (having social relationships) have similar coefficient vectors. Vaswani et al. 
(2017) studies a similar setup using Gaussian Markov random fields, and derives more effi-
cient algorithms.

In order to analyze the performance of our algorithm, we derive finite-time concentra-
tion results on the maximum likelihood estimates in Sect.  5 (Theorem  2).  These results 
are of independent interest. Miao (2010) derives finite-time concentration results when the 
samples are assumed to be i.i.d. Yang et al. (2022) is a recent work that derives finite-time 
concentration results for the maximum likelihood estimates when the data is assumed to be 
drawn in an i.i.d. manner.

1.1.4  Global and regional bandits

Atan et al. (2015) introduce the “global bandits” model, in which the rewards of different 
arms are known functions of a common unknown parameter. Pulling an arm thus yields 
us “noisy information” about this parameter, which in turn yields information about the 
reward distributions of all the arms. However, the assumption that all the arms share the 
same parameter is too restrictive. The work by Gupta et al. (2020) also considers a model 
that is very closely related to the global bandits. Wang et  al. (2018a, 2018b) relax this 
model, and make an assumption that is a frequentist counterpart to the one that is made in 
Pandey et al. (2007). Thus, Wang et al. (2018a, 2018b) assumes that the arms are grouped 
together into multiple clusters, and only the arms that belong to the same cluster share 
parameter. This work is closely related to our work and analyzes this problem under the fol-
lowing assumptions on the reward distributions: (a) the unknown parameters that describe 
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distributions of a single cluster are assumed to be scalar, (b) the mean reward function is 
Hölder continuous, and also a monotonic function of the unknown parameter [see Assump-
tion 1 of Wang et  al. (2018a)]. Our work does not make the assumptions used in Wang 
et  al. (2018a, 2018b), but we instead place two assumptions on the reward distributions 
(see Assumption 1, Assumption 2). In Sect. 2.3 we give a few examples of commonly used 
reward distributions that do not satisfy the monotonicity assumption of Wang et al. (2018a, 
2018b), but these can be analyzed within our framework.

1.1.5  Structured bandits

This is a very general MABP setup studied in Lattimore and Munos (2014), Combes et al. 
(2017) and Gupta et al. (2018) in which the problem instance is described by an unknown 
parameter � ; and the maps �i(�) that yield the mean rewards of different arms as a function 
of � are known to the learner. It has been pointed out in Lattimore and Szepesvari (2017) 
that no algorithm that is based on the principle of optimism in the face of uncertainty (e.g. 
UCB-like learning rules), or Thompson sampling can yield minimal regret1 asymptotically. 
Thus, Lattimore and Munos (2014) and Combes et al. (2017) propose optimization-based 
algorithms that solve an optimization problem in order to decide how many times an arm 
should be sampled. However, the framework of Combes et al. (2017) has not been applied 
earlier in order to study “cluster-type dependencies” among arms, and moreover we are 
not sure how well can the assumptions made in Combes et  al. (2017) be used to model 
our problem. In contrast with the results of Lattimore & Munoas 2014 and Combes et al. 
2017, our work shows that a slight modification to the UCB rule yields optimal regret 
with respect to the parameter K (number of clusters) that captures degree of dependencies 
among arms. Our UCB based algorithm is much simpler to implement than the algorithms 
of Lattimore & Munoas Lattimore and Munos (2014) and Combes et al. 2017.

1.2  Our contributions

Our key contributions can be summarized as follows.

• We introduce a framework for analyzing the MABP when there are dependencies 
among the arms. We group together arms into multiple clusters, and arms within the 
same cluster share a parameter vector that describes the reward distributions of all the 
arms in this cluster. We assume that the algorithm has knowledge of the form of the 
reward distributions, and also the clusters.

• Though a similar cluster-based model has been considered earlier in Pandey et  al. 
(2007), Wang et  al. (2018a) and Wang et  al. (2018b), our novelty is that we derive 
efficient learning algorithms when the dependencies amongst arms satisfy a differ-
ent set of assumptions (see Assumptions 1, 2). In Sect. 2.3 we provide several impor-
tant instances of MABPs that cannot be analyzed by using the existing works, but our 
framework covers them. The analysis of Pandey et al. (2007) considers only the Bayes-
ian setup wherein the unknown parameters are assumed to be random variables.

• We prove that the regret of any consistent learning policy is lower bounded as 
O(K log T) asymptotically, where T is the time horizon and K is the number of arm 
clusters.

1 instance-dependent regret.
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• The UCB-D algorithm that we propose combines the principle of optimism in the face 
of uncertainty with the structure of the observation dependencies in order to perform 
efficient exploration–exploitation trade-off. Its regret scales as O(K log T) , where K is 
the number of clusters. Thus, UCB-D nearly2 achieves the asymptotic lower bound 
on the regret modulo a multiplicative factor independent of the dependency struc-
ture described by the partitioning of arms into clusters.  In comparison, the regret of 
popularly used bandit algorithms such as the KL-UCB  (Garivier and Cappé 2011), 
UCB (Auer, 2002) which do not utilize this structure, scales linearly with the number 
of arms.

• While analyzing the performance of UCB-D, we derive novel concentration results that 
yield an (probabilistic) upper-bound on the distance between the empirical estimate of 
the unknown parameter, and its true value. This concentration result relies upon the 
empirical process theory  (Wainwright, 2019). We then use this result in combination 
with the regret analysis of UCB algorithms in Auer (2002), Bubeck and Cesa-Bianchi 
(2012) and Garivier and Cappé (2011) to analyze the regret of UCB-D.

2  Problem studied

The decision maker (DM) has to pull one out of M arms at each discrete time t = 1, 2,… . 
The arms are indexed by [M] ∶= {1, 2,… ,M} . Upon pulling an arm, the DM receives a 
random reward whose distribution depends upon the choice of arm.

These M arms are divided into K “clusters” such that each arm belongs to a unique clus-
ter. We let Ci be the cluster of arm i, and use i ∈ C to denote that arm i belongs to the cluster 
C . All arms within the same cluster C share the same d-dimensional unknown vector param-
eter 𝜃⋆

C
∈ 𝛩 ⊂ ℝ

d , where d is a natural number. The set � is the set of “allowable param-
eters,” and is known to the DM. The vector 𝜃⋆ =

{
𝜃
⋆

C

}
 denotes the true parameters that 

are unknown to the DM. We let ri,t be the random reward received upon playing arm i for 
the t-th time. We let ri,t, t = 1, 2,… be i.i.d., and moreover ri,t are also independent across 
arms. If the true parameter that describes the reward distributions is equal to � = {�C} , then 
the probability density function of the reward obtained by pulling arm i is equal to fi(⋅, �Ci ) , 
�i(�) = ∫

ℝ
xfi(x, �Ci )dx is its expected reward, and 𝜇⋆(𝜃) ∶= maxi∈[M] 𝜇i(𝜃) is the mean 

reward of an optimal arm. To simplify the notation, we let �i and 𝜇⋆ denote these quanti-
ties when � is equal to 𝜃⋆ , i.e., �i denotes the true mean reward of arm i, and 𝜇⋆ denotes the 
reward of an optimal arm.

We denote the DM’s choice of arm at time t by u(t), and the reward received at time 
t by y(t). Let Ni(t) be the number of times arm i has been played until t, and Ft−1 be the 
sigma-algebra generated by the random variables {u(s)}t−1

s=1
, {y(s)}t−1

s=1
  (Resnick, 2019). A 

learning policy � is a collection of maps Ft−1 ↦ [M] , t = 1, 2,… , that chooses at each time 
t an arm u(t) on the basis of the operational history Ft−1 . Our goal is to design a learning 
policy that maximizes the cumulative expected reward earned over a time period. Its per-
formance until time T is measured by the regret R

�
(�,T) , defined as follows (Bubeck and 

Cesa-Bianchi 2012),

(1)R
𝜃
(𝜋,T) ∶=

M∑
i=1

Ni(T)
(
𝜇
⋆ − 𝜇i

)
.

2 The relative gap between the lower bound and regret of UCB-D vanishes as K → ∞.
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Subscript � denotes the dependence upon the problem instance �.

Definition 1 (Uniformly Good Policy) A learning policy � is said to be uniformly good if 
for all values of parameter � ∈ �

K and ∀a > 0 , we have that

2.1  Notation

Throughout, if x and y are integers that satisfy x < y , then we use [x, y] to denote the set 
{x, x + 1,… , y} . If x is a positive integer, then we use [x] to denote the set {1, 2,… , x} . If 
E is an event, then 1(E) denotes the corresponding indicator random variable. We let NC(t) 
be the total number of plays of arms belonging to cluster C , i.e., NC(t) ∶=

∑
i∈C Ni(t) , where 

Ni(t) is the number of plays of arm i until t. For two probability density functions f, g, we 
define KL(f||g) to be the KL-divergence (Lattimore & Szepesvári, 2020) between them, i.e.,

𝛩 ⊂ ℝ
d denotes the set of allowable parameters for a single cluster. We denote its diameter 

as follows, diam(�) ∶= sup
�,��∈� ‖� − �

�‖ . For an arm i ∈ [M] , we also abbreviate,

For a vector x ∈ ℝ
d , we let ‖x‖ denote its Euclidean norm, and ‖x‖1 its 1-norm. Through-

out, we let i⋆ denote the optimal arm, and define the sub-optimality gap of arm i as, 
𝛥i ∶= 𝜇

⋆ − 𝜇i, i ∈ [M] . Also let 𝛥min ∶= min
{
𝛥i > 0

}
 and �max ∶= max

{
�i

}
 . A random 

variable X is sub-Gaussian  (Ledoux & Talagrand, 2013; Lattimore & Szepesvári, 2020) 
with sub-Gaussianity parameter � if we have

Define

where 𝜅 > 0 is a parameter that satisfies (27). For each arm i, define the following “KL-
ball” of radius r > 0 centered around �,

In the definitions below, we let �, �� ∈ � . For x > 0 , we denote

lim sup
T→∞

�(R
�
(�, T))

Ta
= 0.

KL(f ||g) ∶= ∫
ℝ

f (x) log
f (x)

g(x)
dx.

KLi(𝜃||𝜃) ∶= KL(fi(⋅, 𝜃)||fi(⋅, 𝜃)), ∀𝜃, 𝜃 ∈ 𝛩.

𝔼
[
exp(�X)

] ≤ exp
(
�
2
�
2∕2

)
,∀� ∈ ℝ.

(2)d(s, t) ∶=
√
� log(t)∕s, t ∈ [1, T],

(3)Bi(�, r) ∶=
{
x ∈ � ∶ KLi(�, x) ≤ r

}
.

(4)� i(x) ∶ = sup
{||�i(�) − �i(�

�)|| ∶ KLi(�||��) ≤ x
}
,

(5)�
−1
i
(x) ∶ = inf

{
KLi(�||��) ∶ ||�i(�) − �i(�

�)|| ≥ x
}
,
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Also define,

where in case the set is empty, we take the infimum to be ∞ . Let C⋆ ∶= Ci⋆ be the cluster of 
optimal arm.

2.2  Assumptions

We make the following assumptions regarding the reward distributions.

Assumption 1 The probability distributions of rewards satisfy the following two 
properties. 

1. For any two arms i, j ∈ C , and parameters �1, �2 ∈ � , we have, 

 where �b(j,i) > 0.
2. For any arm i we have 

 where we clearly have that B ≥ 1.

Assumption 1 allows us to efficiently merge the information gained by pulling vari-
ous arms from a cluster C . Next, we make some assumptions regarding the smoothness 
of the reward distributions.

Assumption 2 The reward distributions fi(⋅, 𝜃⋆Ci ) satisfy the following: 

1. The rewards {ri,t ∶ t = 1, 2,…}i∈[M] are sub-Gaussian with parameter 𝜎 > 0 , i.e., 

2. The log-likelihood ratio function log
fi(r,𝜃

⋆

Ci
)

fi(r,⋅)
 is Lf -Lipschitz continuous for each arm i, 

i.e., 

 where Lf > 0.

(6)�i(�,�) ∶ = inf

{
max
j∈Ci

KLj(�||��) ∶ �i(�
�) ≥ �

}
.

�̃�i(𝜃,𝜇) ∶= inf

{
max
j∈Ci,j≠i

KLj(𝜃||𝜃�) ∶ KLi(𝜃||𝜃�) = 0,∃j ∈ Ci s.t. 𝜇j(𝜃
�) ≥ 𝜇

}
,

(7)KLj
(
�1||�2

) ≥ �b(j,i)KLi
(
�1||�2

)
,

KLi
(
�1||�2

) ≤ B ⋅ KLi
(
�2||�1

)
,

(8)𝔼
(
exp(�ri,1)

) ≤ exp(�2�2∕2),∀� ∈ ℝ.

(9)

�����
log

fi(r, 𝜃
⋆

Ci
)

fi(r, 𝜃1)
− log

fi(r, 𝜃
⋆

Ci
)

fi(r, 𝜃2)

�����
≤ Lf‖𝜃1 − 𝜃2‖,

∀𝜃1, 𝜃2, 𝜃
⋆

Ci
∈ 𝛩,
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It is easily verified that both the above stated assumptions are satisfied by several impor-
tant class of random variables, e.g. Gaussian, or discrete random variables that assume 
values from a finite set.

2.3  Comparison of assumptions

The bandit model employed in Wang et al. (2018a, 2018b) is quite similar to our dependent 
arms model. However, these works make certain assumptions on the reward distributions, 
and our work relaxes these. For an arm i ∈ C the following must hold Wang et al. (2018a, 
2018b),

where c1,i > 1 , and also

where c2,i ∈ (0, 1] . We do not require these but instead place two separate assumptions on 
the reward distributions.  As shown in Example  1 below, this assumption is violated for 
the commonly encountered Gaussian distributions. However, these distributions satisfy our 
assumption.

We proceed to give a few important bandit problems that are covered under our 
analysis, but don’t satisfy the assumptions required by Wang et  al. (2018a),Wang et  al. 
(2018b).  Thereafter, we also give examples of distributions which fail to satisfy our 
assumptions.

Example 1 Gaussian Distributions Let the reward distributions be Gaussian with variance 
1, and the cluster parameter controls the mean values of rewards. Within a cluster we have 
two arms with parameters given by � and r� , where r > 0 . Note that for Gaussian distribu-
tions with mean values �,�′ we have that KL(�||��) = (� − �

�)2.
Verifying our assumptions: Assumption 1 is satisfied with the parameters �b(i,j) equal to 

r2 and 1∕r2 . Since the KL-divergence is a symmetric function of the mean values, Assump-
tion 1 is clearly satisfied with B = 1 . Assumption 2 is also easily seen to hold true.

Verifying assumptions of Wang et al. (2018a, 2018b): Let �1, �2 ∈ � denote two parameters. 
Then (10) would require that, 

(
�1 − �2

) ≥ D1,i(�1 − �2)
c , r

(
�1 − �2

) ≥ D1,i(�1 − �2)
c , where 

c > 1 , so that (�1 − �2)
c−1 ≤ 1

D1,i

 and also (�1 − �2)
c−1 ≤ 1

r⋅D1,i

 . Equivalently, we must have 

|�1 − �2| ≤
(

1

D1,i

)1∕(c−1)

⋅ (min{1, 1∕r})1∕(c−1).  This means that the setup of Wang et  al. 

(2018a, 2018b) cannot be used in case we have diam (�) ≥ (
1

D1,i

)1∕(c−1)

⋅

(
min{1,

1

r
}
)1∕(c−1)

.

Example 2 Finitely Supported Distributions Assume that the rewards assume finitely many 
values, and the number of possible outcomes is N > 2 . As in the example above, assume 
that there is a single cluster with two arms. The probabilities for N outcomes are repre-
sented by N − 1-dimensional parameter � =

�
�(1), �(2),… , �(N − 1), 1 −

∑N−1

�=1
�(�)

�
 for 

arm 1, and by the vector A(�) for the second arm. The function A is known. Clearly, this 

(10)
Monotonicity :

|�i(�C) − �i(�
�
C
)| ≥ D1,i|�C − �

�
C
|c1,i ,

(11)
Smoothness :

|�i(�C) − �i(�
�
C
)| ≤ D2,i|�C − �

�
C
|c2,i ,
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model is general enough to approximate many problems of practical interest. Since Wang 
et al. (2018a) allows � to only assume scalar values, we cannot employ their setup. In the 
discussion below we let A be a linear function, so that the i-th component of A(�) is given 
by 

∑N−1

j=1
Ai,j�(j) . In the discussion below, we assume min

i,j
A2
i,j
> 0 , min

𝜃∈𝛩,�∈[N−1]
𝜃(�) > 0 . 

Verifying our conditions: After using Pinsker’s inequality and performing some manipula-
tions, we obtain the following,

Also, from inverse Pinsker’s inequality, we have

Combining (12) and (13) we get

Similarly, we can also show that

This shows that Assumption 1 is satisfied with the constants �b(j,i) set equal to

We now show that Assumption 1 also holds true. We have

where the first inequality is Pinsker’s inequality (Cover 1999), while the second inequality 
is inverse Pinsker’s inequality (Götze et al. 2019; Binette 2019). Combining the above two 
relations, we obtain the following,

A similar inequality can be shown for arm 2 also. This shows that Assumption 1 also holds. 
Assumption 2 is easily seen to be true.

Next, we describe an example in which Assumption 1 does not hold. Consider a bandit 
problem in which there is a single cluster that has two arms which yield rewards accord-
ing to Bernoulli distribution. Reward distributions for arms in a cluster are parameterized 

(12)KL2(�1���2) ≥ min
i,j

A2
i,j

�‖�1 − �2‖1
�2
.

(13)KL1(�1���2) ≤
�‖�1 − �2‖1

�2
min

�∈�,�∈[N] �(�)
,

KL2(�1||�2) ≥
min
i,j

A2
i,j

min
�∈�,�∈[N−1]

�(�)

2
KL1(�1||�2).

KL1(�1||�2) ≥ min
�∈�,�∈[N−1] �(�)

max
i,j

A2
i,j

KL2(�1||�2).

min
�∈�,�∈[N−1] �(�)

max
i,j

A2
i,j

,

min
i,j

A2
i,j
min

�∈�,�∈[N] �(�)

2
.

KL1(�1���2) ≥ �‖�1 − �2‖1
�2
,

KL1(�2���1) ≤
� �‖�1 − �2‖1

�2
min

�
min

�∈[N] �(�)

�
,

KL1(�1||�2) ≥
(
min
�

min
�∈[N]

�(�)

)
KL1(�2||�1).
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by a � ∈ (0, .5] . Mean reward of arm 1 is equal to � , and that of arm 2 is 1 − 2� . Con-
sider two different parameter values �1 = .5 and �2 = .25 . We have KL2(�2||�1) = ∞ , while 
KL1(�1||�2) is finite. Hence, Assumption 1 does not hold. However, this example does sat-
isfy the assumptions of Wang et al. (2018a, 2018b).

3  Lower bound on regret

The following result derives a lower bound on the regret.

Theorem 1 If � is a uniformly good policy, then its expected regret can be lower-bounded 
as follows,

Proof We begin by analyzing the regret due to playing suboptimal arms in clusters which 
do not contain i⋆. Let C be a suboptimal cluster, and consider a modified multi-armed ban-
dit problem instance in which the parameters have been modified as follows: 𝜃⋆

C
 has been 

changed to �′
C
 , while the parameters of other clusters are same as earlier. Let i ∈ C . The 

parameter �′
C
 has been chosen so as to satisfy the following conditions,

It follows from the definition of �i that such a �′
C
 can be chosen. We let ℙ

�,� denote the 
probabilities induced when policy � is used on the bandit problem instance with parameter 
equal to �. We have

where the first inequality follows from (Lattimore & Szepesvári 2020, Lemma 15.1), while 
the second follows from (15). If E is an event, then it follows from (Lattimore & Szepesvári 
2020, Theorem 14.2) that,

Substituting (17) in the above, we get

(14)

lim inf
T→∞

�
(
R
𝜃
(𝜋,T)

)
log T

≥ ∑
C≠C⋆

(
min
i∈C

𝛥i

)(
max
i∈C

1

𝜙i(𝜃
⋆

C
,𝜇⋆)

)

+

(
min

i∈C⋆,i≠i⋆ 𝛥i

)
1

�̃�i⋆ (𝜃
⋆

C
,𝜇⋆)

.

(15)KLj(𝜃
⋆

C
||𝜃�

C
) ≤ 𝜙i(𝜃

⋆

C
,𝜇⋆) + 𝜖,∀j ∈ C,

(16)and 𝜇i(𝜃
�
C
) > 𝜇

⋆.

(17)

KL
(
ℙ
𝜋,𝜃⋆ ||ℙ𝜋,𝜃�

) ≤ ∑
j∈C

𝔼
𝜋,𝜃⋆Nj(T)KLj(𝜃

⋆

C
||𝜃�

C
)

≤ ∑
j∈C

𝔼
𝜋,𝜃⋆Nj(T)

[
𝜙i(𝜃

⋆

C
,𝜇⋆) + 𝜖

]
,

ℙ
𝜋,𝜃⋆ (E) + ℙ

𝜋,𝜃� (E
c) ≥ 1

2
exp

(
−KL

(
ℙ
𝜋,𝜃⋆ ||ℙ𝜋,𝜃�

))
.

(18)ℙ
𝜋,𝜃⋆ (E) + ℙ

𝜋,𝜃� (E
c) ≥ 1

2
exp

(
−
[
𝜙i(𝜃

⋆

C
,𝜇⋆) + 𝜖

]∑
j∈C

𝔼
𝜋,𝜃⋆Nj(T)

)
.
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Define

Also let R,R′ denote the expected value of regrets under the two bandit problem instances 
with parameters 𝜃⋆, 𝜃′ respectively. After substituting (18) into the definition of regret, we 
obtain the following

Re-arranging the above yields us the following,

Upon dividing both sides by logT  , letting T → ∞ , and observing that since � is asymptoti-
cally good, we must have R,R� = o(Ta) for all a > 0 , and noting that a similar lower-bound 
is also obtained by consideration of other arms belonging to Ci , we get 
�
𝜋,𝜃⋆

(
NC(T)

) ≥ maxi∈C
1

𝜙i(𝜃
⋆

C
,𝜇⋆)

 . Since the regret arising from playing arms in C is lower-

bounded by 
(
mini∈C 𝛥i

)
�
𝜋,𝜃⋆

(
NC(T)

)
 , this shows that the regret due to playing arms in the 

suboptimal clusters is at least 
∑

C≠C⋆
�
mini∈C 𝛥i

��
maxi∈C

1

𝜙i(𝜃
⋆

C
,𝜇⋆)

�
.

We now consider the regret arising due to playing suboptimal arms from Ci⋆ . Construct 
a modified problem instance in which 𝜃⋆

C
⋆
 has been changed to 𝜃′

C
⋆
 , while the parameters of 

the other clusters are unchanged. 𝜃′
C
⋆
 has been chosen so as to satisfy the following,

Similar to (17) we get,

Upon considering the events E =
{
𝜔 ∶ N

�
(T) ≥ T∕2

}
, Ec =

{
𝜔 ∶ N

�
(T) < T∕2

}
 , and let-

ting R,R′ be the regrets under 𝜃⋆, 𝜃′ respectively, we clearly have,

Upon performing some algebraic manipulations, and observing that since � is asymptoti-
cally good, we must have R,R� = o(Ta) for all a > 0 , we get

E ∶=
{
𝜔 ∶ Ni(T) ≥ T∕2

}
, so that Ec =

{
𝜔 ∶ Ni(T) < T∕2

}
.

R + R� ≥ T

2

(
min

{
𝛥i,𝜇i(𝜃

�) − 𝜇
⋆
})

×
1

2
exp

(
−
[
𝜙i(𝜃

⋆

C
,𝜇⋆) + 𝜖

]
�
𝜋,𝜃⋆

{
NC(T)

})
.

�
𝜋,𝜃⋆

(
NC(T)

) ≥ 1

𝜙i(𝜃
⋆

C
,𝜇⋆) + 𝜖

log

(
T min

{
𝛥i,𝜇i(𝜃

�) − 𝜇
⋆
}

4(R + R�)

)
.

(19)KLj(𝜃
⋆

C
||𝜃�

C
) ≤ �̃�i⋆ (𝜃

⋆

C
⋆
,𝜇⋆) + 𝜖,∀j ∈ C

⋆,

(20)and 𝜇
�
(𝜃�

C
⋆
) > 𝜇

⋆, for some arm � ∈ Ci⋆ .

(21)KL
(
ℙ
𝜋,𝜃⋆ ||ℙ𝜋,𝜃�

) ≤ ∑
j∈C⋆,j≠i⋆

𝔼
𝜋,𝜃⋆Nj(T)

[
�̃�i⋆ (𝜃

⋆

C
⋆
,𝜇⋆) + 𝜖

]
.

R + R� ≥ T

2

(
min

{
𝛥
�
,𝜇

�
(𝜃�) − 𝜇

⋆
})

×
1

2
exp

(
−
[
�̃�i⋆ (𝜃

⋆

C
,𝜇⋆) + 𝜖

]
�
𝜋,𝜃⋆

{ ∑
j∈C⋆,j≠i⋆

Nj(T)

})
.
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This shows that the regret due to playing suboptimal arms from C⋆ is lower bounded by (
mini∈C⋆,i≠i⋆ 𝛥i

)
1

�̃�i⋆ (𝜃
⋆

C
,𝜇⋆)

 . This completes the proof.    ◻

4  Upper confidence bounds‑dependent arms (UCB‑D)

The algorithm that we propose is based on the principle of optimism in the face of uncertainty 
(Auer, 2002; Garivier & Cappé, 2011). We denote by �̂�C(t) the Maximum Likelihood Estimate 
(MLE) of 𝜃⋆

C
 at time t. �̂�C(t) is derived by solving the following optimization problem:

The algorithm also maintains a confidence ball OC(t) around the estimate �̂�C(t) for each 
cluster C,

where for a cluster C we define

Define,

where �b(i,j) is as in (7). The parameter � satisfies,

�
𝜋,𝜃⋆

( ∑
j∈C⋆,j≠i⋆

Nj(T)

)
≥ 1

�̃�i⋆ (𝜃
⋆

C
,𝜇⋆)

.

(22)MLE: max
�∈�

�C(t, �), where

(23)�C(t, �) ∶=
1

t

t∑
s=1

1{u(s) ∈ C} log fu(s)(y(s), �).

(24)OC(t) ∶=

{
𝜃 ∈ 𝛩 ∶

∑
i∈C

Ni(t)

NC(t)
KLi(�̂�C(t)||𝜃) ≤ dC(t)

}
,

(25)dC(t) ∶=

√
�

log t

NC(t)
.

(26)�C ∶= min
i,j∈C

�b(i,j),�C ∶= max
i,j∈C

�b(i,j),

Algorithm 1  UCB-D
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where m is a natural number greater than 3, and �C,�C are as in  (26).  For times 
t = 1, 2,… ,K , it plays a single arm from each of the K clusters. For times 
t = K + 1,K + 2,… , T  , it derives the estimates �̂�C(t) , and also computes an “upper confi-
dence index” for each arm i as follows

It then plays an arm that has the highest value of the upper confidence index, i.e.,

4.1  Computational complexity

At each time t, UCB-D needs to compute the indices (28) for each of the M arms. When 
the functions �i(�) and KLi(�||⋅) are convex, then (28) is a convex optimization problem 
and can be solved efficiently (Boyd & Vandenberghe, 2004). In such cases the complexity 
increases linearly with the number of arms. Few examples when this holds are (1) rewards 
are Gaussian, and the mean value of arms is a convex function of � , (2) rewards are Ber-
noulli, and the mean values of arms are convex functions of �.

5  Concentration results for MLE estimates

Consider an arm cluster C . Recall that for an arm i ∈ C , the sequence of rewards 
ri,t, t = 1, 2,… are i.i.d. with the distribution fi(⋅, 𝜃⋆C ) . Consider the n-step interaction of 
the DM with the MAB. Let us consider a deterministic policy that fixes in advance (at time 
t = 0 ) the decisions regarding which arm it will play at each time t = 1, 2,… , n . Assume 
that this policy chooses arms only from the cluster C . Let ni denote the number of times it 
chooses arm i. �̂�C(n) is obtained by solving the following optimization problem,

Equivalently, the MLE can also be obtained as the solution of the following modified 
problem,

(27)𝜅 > max
C

𝛤
2
C

𝛴
2
C

(|C| + m)
(
2B2L2

p
𝜎
2
)
,

(28)uci(t) ∶= sup
�∈OCi

(t)

�i(�).

(29)u(t) ∈ argmax
{
uci(t), i ∈ [M]

}
.

(30)max
�∈�

1

n

∑
i∈C

ni∑
t=1

log fi(ri,t, �).

(31)min
�∈�

LC(�)

(32)where LC(𝜃) ∶ =
1

n

∑
i∈C

ni∑
t=1

log
fi(ri,t, 𝜃

⋆

C
)

fi(ri,t, 𝜃)
.
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Note that since 𝜃⋆
C

 is not known to the DM, it cannot solve  (31),  (32). Nonetheless, the 
above reformulation of the MLE problem (30) helps us in developing concentration results 
for �̂�C(n).

For a cluster C and a parameter � ∈ � define

The following result is proved in Appendix 1.

Theorem 2 We have

where B1 ∶= Lf ⋅ diam(�)
√
� , and Lp is Lipschitz constant of the function3 

𝜉({ri,t ∶ t ∈ [1, ni]}i∈C) ∶= sup
𝜃∈𝛩

||L(𝜃) − D(𝜃⋆||𝜃)
n

||.  Moreover, if the arms are pulled 
sequentially, i.e. u(t) is adapted to Ft−1 and hence allowed to be dependent upon the obser-
vation history, then we have that

6  Regret analysis

We begin by bounding the number of plays of a sub-optimal arm i.

Lemma 1 The expected number of plays of sub-optimal arms within a cluster C can be 
bounded as follows,

Proof Consider a sub-optimal arm j that belongs to a cluster C . Recall that C⋆ denotes the 
cluster of optimal arm. In the discussion below, for an arm j we let

(33)D(𝜃⋆
C
||𝜃) ∶= ∑

i∈C

niKLi(𝜃
⋆

C
||𝜃).

(34)

ℙ

�
KLi(𝜃

⋆

C
���̂�C(n)) > 2(min

j∈C
�b(j,i))

−1

�
B1√
n
+ x

��

≤ exp

�
−

nx2

2L2
p
𝜎
2

�
,∀i ∈ C.

(35)

ℙ

�
KLi(𝜃

⋆

C
���̂�C(t)) > 2(min

j∈C
�b(j,i))

−1

�
B1√
n
+ x

��

≤ exp

�
−
NC(t)x

2

2L2
p
𝜎
2

�
NC(t)

�C�, ∀t ∈ [n].

�

( ∑
j∈C,j≠i⋆

Nj(T)

)
≤ max

j∈C,j≠i⋆
𝜅 logT(

𝛴j𝜓
−1
j

(
𝛥j

2

))2
+ 1 +

𝜋
2

3
.

3 See Appendix 2 for more details.
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We have,

Note that 
∑K

t=1

∑
j∈C 1{u(t) = j} = 1 since in the first K steps, the algorithm plays a single 

arm from each of the K clusters. Upon substituting this into the above bound, and summing 
up over all the sub-optimal arms in cluster C , we obtain

where the second inequality follows from Lemma 5.
It thus remains to bound the summation on the r.h.s. above. It follows from Lemma 5 

that if NC(t) ≥ yj,t , then in order for arm j to be played, either the confidence ball of j or that 
of i⋆ should be violated. Thus, if s1 denotes the number of plays (at time t) of cluster C⋆ , 
and s2 the number of plays of C , then at least one of the following two conditions must be 
true:

where d(s, t) =
√
� log(t)∕s. Under Assumption 1, the above argument implies that at least 

one of the below must be true,

yj,t ∶=
� log t(

�j�
−1
j

(
�j

2

))2
, zj ∶=

� log T(
�j�

−1
j

(
�j

2

))2
.

(36)

Nj(T) =

K∑
t=1

1{u(t) = j}

+

T∑
t=K+1

(
1
{
u(t) = j,NC(t) ≤ yj,t

}
+ 1

{
u(t) = j,NC(t) ≥ yj,t

})

≤
K∑
t=1

1{u(t) = j}

+

T∑
t=K+1

1
{
u(t) = j,NC(t) ≤ zj

}
+

T∑
t=K+1

1
{
u(t) = j,NC(t) ≥ yj,t

}
.

(37)

∑
j∈C,j≠i⋆

Nj(T) ≤ 1 +
∑

j∈C,j≠i⋆

T∑
t=1

1
{
u(t) = j,NC(t) ≤ zj

}

+
∑

j∈C,j≠i⋆

T∑
t=1

1
{
u(t) = j,NC(t) ≥ yj,t

}

≤ 1 + max
j∈C,j≠i⋆ zj +

∑
j∈C,j≠i⋆

T∑
t=1

1
{
u(t) = j,NC(t) ≥ yj,t

}
,

(38)KLi⋆ (�̂�C⋆ (t)||𝜃⋆C⋆ ) >
(
max
k∈C⋆

�b(k,i⋆)

)−1

d(s1, t),

(39)or KLj(�̂�C(t)||𝜃⋆C ) >
(
max
k∈C

�b(k,i)

)−1

d(s2, t),
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Let i be a fixed arm belonging to the cluster C. If (41) holds, then from (7) we have that,

In order to bound the last term in (37) that involves summation, we use (40) and (42) to get,

This gives,

(m is a positive integer as in  (27)), where the first inequality follows from the concen-
tration inequality  (35), while the third inequality follows by substituting the value of 
d(s1, t), d(s2, t) from (2) and noting that � satisfies (27). Summing the above over time t, we 
get

(40)KLi⋆ (𝜃
⋆

C
⋆
||�̂�C⋆ (t)) >

(
Bmax

k∈C⋆
�b(k,i⋆)

)−1

d(s1, t),

(41)or KLj(𝜃
⋆

C
||�̂�C(t)) >

(
Bmax

k∈C
�b(k,j)

)−1

d(s2, t).

(42)KLi(𝜃
⋆

C
||�̂�C(t)) > �b(i,j)

(
Bmax

k∈C
�b(k,j)

)−1

d(s2, t), ∀j ∈ C, j ≠ i⋆.

(43)

∪j∈C,j≠i⋆
{
u(t) = j,NC(t) ≥ yj,t

}

⊆

[
∪t
s1=1

{
KLi⋆ (𝜃

⋆

C
⋆
||�̂�C⋆ (t)) ≥ d(s1, t)

Bmaxk∈C⋆ �b(k,i⋆)

}]

∪

[
∪t
s2=1

{
KLi(𝜃

⋆

C
||�̂�C(t)) >

�b(i,j)d(s2, t)

Bmaxk,k̃∈C �b(k,k̃)

}]
.

∑

j∈,j≠i⋆
�
(

1
{

u(t) = j,N(t) ≥ yj
})

≤
t

∑

s1=1
exp

(

−
s1d2(s1, t)

2L2p�2B2 maxk∈⋆ �b2(k,i⋆)

)

s||1

+
t

∑

s2=1
exp

(

−
�b2(i,j)s2d

2(s2, t)

2L2p�2B2� 2


)

s||2 ≤
t

∑

s1=1
exp

(

−
s1d2(s1, t)

2L2p�2B2� 2
⋆

)

s||1

+
t

∑

s2=1
exp

(

−
�2

s2d
2(s2, t)

2L2p�2B2� 2


)

s||2 ≤
t

∑

s1=1

s||1

s||+m1

+
t

∑

s2=1

s||2

s||+m2

=
t

∑

s1=1

1
sm1

+
t

∑

s2=1

1
sm2

,

T∑
t=1

�
(
1
{
u(t) = j,NC(t) ≥ yj

}) ≤
T∑
t=1

t∑
s1=1

1

sm
1

+

T∑
t=1

t∑
s2=1

1

sm
2

=

T∑
t=1

1

tm−1
+

T∑
t=1

1

tm−1

<
𝜋
2

3
,
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where the inequality follows since m > 3 , and because 
∑∞

t=1

1

t2
=

�
2

6
 , see Basel prob-

lem (Ayoub, 1974) for more details. The proof is then completed by substituting this bound 
into (37).  ◻

Theorem 3 The expected regret of UCB-D (Algorithm 1) can be upper-bounded as follows,

for all values of parameter � ∈ �
K.

Proof The proof follows by substituting the upper-bounds on the number of plays of sub-
optimal arms belonging to a cluster C that were derived in Lemma 1, into the definition of 
expected regret (1).   ◻

Note that for a fixed number of arms M, the number of clusters K captures the “degree 
of arms dependency”; so for example a low value of K implies that the arms are highly 
dependent. After getting rid of constant multiplicative factors that do not depend upon 
K, we have that the expected regret of UCB-D can be upper-bounded as O(K log T) , and 
this matches the O(K log T) lower bound that was derived in Theorem 3.

7  Simulations

We compare the performance of Algorithm 1, i.e. UCB-D, with the UCB-g Algorithm of 
Wang et al. (2018a), the KL-UCB algorithm (Garivier & Cappé 2011), HUCBC algorithm 
of Bouneffouf et al. (2019), and TSC algorithm of Carlsson et al. (2021). We perform sim-
ulations for the following two scenarios.

(44)
�
�
R
𝜃
(T)

� ≤ �
C

�
max
j∈C

𝛥j

�⎡⎢⎢⎢⎣
max

j∈C,j≠i⋆
𝜅 log T�

𝛴j𝜓
−1
j

�
𝛥j

2

��2

⎤⎥⎥⎥⎦
+ K + �C�𝜋2

3
,

Fig. 1  Bernoulli rewards: Mean rewards of arms in a cluster that has parameter value � , are equal to � and 
1 − � . Left: K = 3 clusters with parameter values equal to .1,  .4,  .7. Right: K = 5 clusters with parameter 
values equal to .1, .5, .2, .3, .4
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Bernoulli Rewards Within each cluster there are two arms, with mean value of rewards 
of arms equal to � and 1 − � . We plot the average regrets along with confidence intervals in 
Fig. 1.

Gaussian Rewards The rewards are Gaussian with a variance equal to 1. There are two 
arms in each cluster, and the mean rewards of each arm are a constant multiple of the 
cluster parameter � ∈ ℝ.  We plot the average regrets along with confidence intervals in 
Fig. 2. Plots are obtained after averaging the results of multiple runs.

Next, we consider a scenario in which the reward distributions are misspecified, i.e. the 
true reward distributions do not match with those assumed by the algorithm. This allows 
us to investigate the robustness of the suggested approach. Figure 3 compares the perfor-
mance of Algorithm 1 when the underlying rewards distributions are Gumbel, Gaussian 
and Exponential, while the algorithm assumes that these are generated according to Gauss-
ian distribution. Note that a Gumbel distribution is described using two parameters, and 
hence the mean and variance of the misspecified distributions are assumed to be the same 
as that of the corresponding Gaussian distribution. However, since an exponential distri-
bution is completely described by specifying a single parameter, we only ensure that the 
mean rewards in the exponential case are the same as that of Gaussian rewards.

We now perform simulations to analyze the sensitivity of Algorithm 1 to the choice of 
parameter � that decides the size of the confidence intervals as in (2). Results are shown in 

Fig. 2  Gaussian rewards. Left: K = 3 clusters with � values equal to −1, 1, 1.5. There are two arms in each 
cluster, having mean rewards equal to � and 1.2� . Right: K = 4 clusters with � values equal to −1, 1, .8, .5
. There are two arms in each cluster, having mean rewards equal to � and 1.1�

Fig. 3  Misspecified rewards distributions. Left: K = 4 clusters with � values equal to .4,  .3,  .49,  .39, the 
number of arms within each cluster equal to 2, with mean rewards equal to �, 1.1� . Right: K = 3 clusters 
with � values equal to .1, .2, .3, and, with two arms per cluster with mean rewards �, 1.2�



64 Machine Learning (2024) 113:45–71

1 3

Fig. 4. These show that the performance of Algorithm 1 is not very sensitive to small vari-
ations in the value of �.

8  Conclusions

We introduced a very general MAB model that is able to describe the dependencies among 
the bandit arms. We proposed algorithms that are able to exploit these dependencies in 
order to yield a regret that scales as O(K log T) , where K is the number of clusters. We plan 
to extend the model to the case when parameters are non-stationary. Another interesting 
direction for further research is to develop algorithms that are robust to misspecification of 
the form of the reward distribution functions.

Appendix 1: Proof of Theorem 2 (concentration of  ̂�(n))

Throughout this proof, we drop the subscript C since the discussion is only for a single 
fixed cluster C . Denote S1 ∶= {ri,t ∶ t ∈ [1, ni]}i∈C to be the set of rewards obtained by n 
pulls of arms in C . Consider the function � defined as follows,

We begin by deriving a few preliminary results that will be utilized while proving the main 
result.

Lemma 2 The function � is a Lipschitz continuous function of the rewards obtained, i.e., 
for two sample-paths �1,�2 we have that,

where Lp > 0.

(45)𝜉({ri,t ∶ t ∈ [1, ni]}i∈C) ∶= sup
𝜃∈𝛩

|||||
L(𝜃) −

D(𝜃⋆||𝜃)
n

|||||
.

(46)��(�1) − �(�2)� ≤ Lp‖S1(�1) − S2(�2)‖,

Fig. 4  Sensitivity to � : Plot of regret as the parameter � is varied. Left: K = 3 clusters with two arms per-
cluster, having Bernoulli rewards �, 1 − �.  Values of � are .2,  .3,  .4. Right: Plot of regret after T = 1000 
steps for K = 3 clusters with two arms in each cluster, having Bernoulli rewards with means �, 1 − � . Values 
of � for three clusters are equal to .3, .4, .5
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Proof From Assumption 2 we have that the log-likelihood ratio fi(r,𝜃
⋆)

fi(r,𝜃)
 is a Lipschitz contin-

uous function of � . The proof then follows since Lipschitz continuity is preserved upon 
averaging, and also when two Lipschitz continuous functions are composed.   ◻

We now derive an upper-bound on the expectation of �.

Lemma 3 We have

Lf  is as in (9).

Proof Let S2 ∶= {r̃i,t ∶ t ∈ [1, ni]}i∈C be an independent copy of S1 = {ri,t ∶ t ∈ [1, ni]}i∈C . 
We then have that

where the inequality follows from Jensen’s inequality Rudin (2006). Let {�i,t ∶ t ∈ [1, ni]}i∈C 
be a sequence of i.i.d. random variables that assume binary values {1,−1} with a probabil-
ity .5 each.

Let N(Lf diam(�), �) denote an �-covering. The inequality (47) then yields us

where the first inequality follows by using a symmetrization argument that is similar to 
(Wain-wright, 2019,  p. 107), while the second inequality follows from Lemma  6, and 
the third inequality follows by bounding the covering number by using a volume bound 
(Akshay, 2016; Yang, 2016; Wainwright, 2019).   ◻

We now derive a concentration result for � around its mean.

Lemma 4 We have the following concentration result for �,

�(�) ≤ Lf ⋅ diam (�)
√
�

√
n

,

(47)

�(𝜉) = �S1
sup
𝜃∈𝛩

|||||
�S2

(
1

n

∑
i∈C

ni∑
t=1

log
fi(ri,t, 𝜃

⋆)

fi(ri,t, 𝜃)
−

1

n

∑
i∈C

ni∑
t=1

log
fi(r̃i,t, 𝜃

⋆)

fi(r̃i,t, 𝜃)

|||S1

)|||||
≤ � sup

𝜃∈𝛩

|||||
1

n

∑
i∈C

ni∑
t=1

log
fi(ri,t, 𝜃

⋆)

fi(ri,t, 𝜃)
−

1

n

∑
i∈C

ni∑
t=1

log
fi(r̃i,t, 𝜃

⋆)

fi(r̃i,t, 𝜃)

|||||
,

(48)

�(𝜉) ≤ 2� sup
𝜃∈𝛩

|||||
1

n

∑
i∈C

ni∑
t=1

𝜖i,t log
fi(ri,t, 𝜃

⋆)

fi(ri,t, 𝜃)

|||||

≤ 8

Lf diam(𝛩)

�
0

√
logN(Lf diam(𝛩), 𝛼)

n
d𝛼

≤ Lf diam(𝛩)

√
𝜋

n
,

(49)ℙ(|𝜉 − 𝔼(𝜉)| > x) ≤ exp

(
−

nx2

2L2
p
𝜎
2

)
,
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where � is as in (45), Lp is the Lipschitz constant associated with � as in (46), � is the sub-
Gaussianity parameter associated with the rewards as in (8) and n is the number of times 
arms from C are sampled.

Proof It was shown in Lemma 2 that � is a Lp Lipschitz function of {ri,t ∶ t ∈ [1, ni]}i∈C . 
Under Assumption  2 the rewards ri,t are sub-Gaussian and hence satisfy  (8). The rela-
tion (49) then follows from (Kontorovich, 2014, Theorem 1).   ◻

After having derived preliminary results, we are now in a position to prove the main 
result, i.e., Theorem 2.

Proof (Theorem 2) Consider the normalized and shifted likelihood function LC(⋅) as given 
in (32). Within this proof we let x > 0.

We obtain the following after using the results of Lemmas 3 and 4,

where B1 = Lf ⋅ diam(�)
√
� , x > 0 , and Lf  is as in (9). Thus, we have the following on a 

set that has a probability greater than exp
(
−

nx2

2 L2
p
�
2

)
,

The above yields us

Moreover, since �̂�(n) minimizes the loss function, we also have

After substituting (53) and (54) into the above inequality, we obtain the following,

(50)ℙ

�
sup
𝜃∈𝛩

�����
LC(𝜃) −

D(𝜃⋆
C
��𝜃)

n

�����
≥ B1√

n
+ x

�
≤ exp

�
−

nx2

2L2
p
𝜎
2

�
,

(51)
�����
L(𝜃⋆) −

D(𝜃⋆��𝜃⋆)
n

�����
≤ B1√

n
+ x,

(52)
�����
L(�̂�(n)) −

D(𝜃⋆���̂�(n))
n

�����
≤ B1√

n
+ x.

(53)L(𝜃⋆) ≤ B1√
n
+ x,

(54)and L(�̂�(n)) ≥ D(𝜃⋆���̂�(n))
n

−

�
B1√
n
+ x

�
.

L(�̂�(n)) ≤ L(𝜃⋆).

D(𝜃⋆���̂�(n))
n

≤ 2

�
B1√
n
+ x

�
.
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This proves that the estimate �̂�C(n) satisfies the following

where x > 0 . To see (34), note that under Assumption 1 we have

 (34) then follows by substituting this inequality into (55).
To see (35), we note that the vector which describes the number of plays of each arm 

in C , can assume atmost NC(t)
|C| values; this follows since the number of plays of each arm 

can assume values in the set [0,NC(t)] . The result then follows by combining the result (34) 
for non-adaptive plays with union bound.   ◻

Appendix 2: Some auxiliary results

The following result is utilized while analyzing the regret of UCB-D.

Lemma 5 Consider the confidence balls OC(t) (24) computed by UCB-D algorithm at time 
t. Let all the confidence balls hold true at time t, i.e. we have that 𝜃⋆

C
∈ OC(t), ∀C. Consider 

a cluster C , and let i ∈ C be a sub-optimal arm. Then, the UCB-D algorithm plays it only if

where �−1
i
,�i are as in (5) and (26) respectively.

Proof Since 𝜃⋆
C
∈ OC(t) , it follows from (24) that

It follows from Assumption 1 that ∀�1, �2 ∈ � and arms i, j ∈ C , we have the following

Upon substituting the above inequality into (56), and letting the cluster of interest be Ci , we 
obtain the following

from which it follows that

(55)ℙ

�
D(𝜃⋆

C
���̂�C(n))
n

> 2

�
B1√
n
+ x

��
≤ exp

�
−

nx2

2L2
p
𝜎
2

�
,

D(𝜃⋆||�̂�) ≥
(
min
j∈C

�b(j,i)

)
KLi(𝜃

⋆||�̂�).

NCi
(t) ≤ � log t(

�i�
−1
i

(
�i

2

))2
,

(56)
1

NC(t)

∑
j∈C

Nj(t)KLj(�̂�C(t)||𝜃⋆C ) ≤ dC(t), ∀C.

(57)KLj(�1||�2) ≥ �b(j,i)KLi(�1||�2).

(58)KLi(�̂�Ci (t)||𝜃⋆Ci ) ≤ 𝛴
−1
i
dCi (t),

(59)𝜇i(�̂�Ci (t)) ≤ 𝜇i + 𝜓 i

(
dCi (t)

𝛴i

)
.
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Similarly, it follows from the definition of confidence ball OCi
(t) that

The above two inequalities yield,

Under our assumption UCB-D algorithm plays arm i at time t, so that we have

which gives,

Substituting the above into (61), we obtain the following,

Since dCi (t) =
√

�
log t

NCi
(t)

 , the above reduces to

This completes the proof.   ◻

Lemma 6 Consider a set A ⊂ ℝ
n that satisfies ‖a‖ ≤ D,∀a ∈ A . Let {�i}ni=1 be i.i.d. and 

assume values 1,−1 with probability .5 each. We then have that

where N(�,A) denotes the minimum number of balls of radius � that are required to cover 
the set A.

Proof Within this proof, we let D denote the diameter of the set A. Consider a decreasing 
sequence of numbers �n = 2−nD, n = 1, 2,… . Let Ā be closure of A. Let Covn ⊂ Ā be an �n 
cover of the set A, and moreover let the cover formed by Covn+1 be a refinement of Covn . 
Fix an a ∈ A , and consider the sequence ân , where we have that ân is the point in the set 
Covn that is closest to a. Clearly, ‖a − ân‖ ≤ 𝛼n , and also ‖ân − ân+1‖ ≤ 𝛼n+1 . Let � be the 

(60)uci(t) ≤ 𝜇i(�̂�Ci (t)) + 𝜓 i

(
dCi (t)

𝛴i

)
.

(61)� i

(
dCi (t)

�i

)
≥ uci(t) − �i

2
, or, dCi (t) ≥ �i �

−1
i

(
uci(t) − �i

2

)
.

uci(t) ≥ uci⋆ (t) ≥ 𝜇i⋆ ,

uci(t) − �i ≥ �i.

(62)dCi (t) ≥ �i�
−1
i

(
�i

2

)
.

(63)

√
�

log t

NCi
(t)
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2

)
, or NCi
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sup
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1
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vector 
(
�1, �2,… , �N

)
 . Since a = â0 +

�∑N

n=1
ân − ân−1

�
+ a − âN , we obtain the 

following,

where the first inequality follows from Massart’s Finite Class Lemma (Kakade & Tewari, 
2008).  ◻
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logN(Ā, 𝛼) d𝛼 as 𝛼N → 0,

https://github.com/fangliu0302/ClusterBandit


70 Machine Learning (2024) 113:45–71

1 3

Akshay D Kamath, S.G. (2016). Cs 395t: Sublinear algorithms, lecture notes. https:// www. cs. utexas. edu/ 
~ecpri ce/ cours es/ subli near/ notes/ lec12. pdf

Atan, O., Tekin, C., & Schaar, M. (2015). Global multi-armed bandits with Hölder continuity. In: Artificial 
Intelligence and Statistics, (pp. 28–36)

Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine 
Learning Research, 3, 397–422.

Awerbuch, B., & Kleinberg, R. (2008). Online linear optimization and adaptive routing. Journal of Com-
puter and System Sciences, 74(1), 97–114.

Ayoub, R. (1974). Euler and the zeta function. The American Mathematical Monthly, 81(10), 1067–1086.
Berry, D.A., & Fristedt, B. (1985). Bandit problems: Sequential allocation of experiments (monographs on 

statistics and applied probability). (vol. 5(71-87), pp. 7–7). Chapman and Hall.
Binette, O. (2019). A note on reverse pinsker inequalities. IEEE Transactions on Information Theory, 65(7), 

4094–4096. https:// doi. org/ 10. 1109/ TIT. 2019. 28961 92
Bouneffouf, D., Parthasarathy, S., Samulowitz, H., & Wistuba, M. (2019). Optimal exploitation of cluster-

ing and history information in multi-armed bandit. In: Proceedings of the Twenty-Eighth International 
Joint Conference on Artificial Intelligence, IJCAI-19, International Joint Conferences on Artificial 
Intelligence Organization, (pp. 2016–2022). https:// doi. org/ 10. 24963/ ijcai. 2019/ 279

Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.
Bubeck, S., & Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic multi-armed bandit 

problems. arXiv preprint arXiv: 1204. 5721
Buccapatnam, S., Eryilmaz, A., & Shroff, N.B. (2014). Stochastic bandits with side observations on net-

works. In: The 2014 ACM international conference on Measurement and modeling of computer sys-
tems, (pp. 289–300)

Carlsson, E., Dubhashi, D., & Johansson, F.D. (2021). Thompson sampling for bandits with clustered arms. 
In: Zhou ZH (ed) Proceedings of the thirtieth international joint conference on artificial intelligence, 
IJCAI-21, International joint conferences on artificial intelligence organization, (pp. 2212–2218). 
https:// doi. org/ 10. 24963/ ijcai. 2021/ 305,main Track

Caron, S., Kveton, B., Lelarge, M., & Bhagat, S. (2012). Leveraging side observations in stochastic bandits. 
arXiv preprint arXiv: 1210. 4839

Cesa-Bianchi, N., Gentile, C., & Zappella, G. (2013). A gang of bandits. Advances in Neural Information 
Processing Systems 26

Chu, W., Li, L., Reyzin, L., & Schapire, R. (2011). Contextual bandits with linear payoff functions. In: 
Proceedings of the fourteenth international conference on artificial intelligence and statistics, (pp. 
208–214).

Combes, R., Magureanu, S., & Proutiere, A. (2017). Minimal exploration in structured stochastic bandits. 
In: Advances in Neural Information Processing Systems, (pp. 1763–1771)

Cover, T. M. (1999). Elements of information theory. John Wiley & Sons.
Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown vari-

ables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions 
on Networking, 20(5), 1466–1478.

Garivier, A., & Cappé, O. (2011). The kl-ucb algorithm for bounded stochastic bandits and beyond. In: Pro-
ceedings of the 24th annual conference on learning theory, (pp. 359–376).

Gentile, C., Li, S., & Zappella, G. (2014). Online clustering of bandits. In: International conference on 
machine learning, PMLR, pp 757–765

Gentile, C., Li, S., Kar, P., Karatzoglou, A., Zappella, G., & Etrue, E. (2017). On context-dependent cluster-
ing of bandits. In: International conference on machine learning, PMLR, (pp. 1253–1262).

Gittins, J., Glazebrook, K., & Weber, R. (2011). Multi-armed bandit allocation indices. John Wiley & Sons.
Götze, F., Sambale, H., & Sinulis, A. (2019). Higher order concentration for functions of weakly dependent 

random variables
Gupta, S., Joshi, G., & Yagan, O. (2018). Exploiting correlation in finite-armed structured bandits. arXiv 

preprint arXiv: 1810. 08164
Gupta, S., Joshi, G., & Yağan, O. (2020). Correlated multi-armed bandits with a latent random source. 

ICASSP 2020–2020 IEEE international conference on acoustics (pp. 3572–3576). IEEE: Speech and 
Signal Processing (ICASSP).

Kakade, S., & Tewari, A. (2008). Cmsc 35900 (spring 2008) learning theory, lecture notes: Massart’s finite 
class lemma and growth function. https:// ttic. uchic ago. edu/ ~tewari/ lectu res/ lectu re10. pdf

Kontorovich, A. (2014). Concentration in unbounded metric spaces and algorithmic stability. In: Interna-
tional conference on machine learning, (pp. 28–36)

Lai, T. L., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in Applied 
Mathematics, 6(1), 4–22.

https://www.cs.utexas.edu/%7eecprice/courses/sublinear/notes/lec12.pdf
https://www.cs.utexas.edu/%7eecprice/courses/sublinear/notes/lec12.pdf
https://doi.org/10.1109/TIT.2019.2896192
https://doi.org/10.24963/ijcai.2019/279
http://arxiv.org/abs/1204.5721
https://doi.org/10.24963/ijcai.2021/305,
http://arxiv.org/abs/1210.4839
http://arxiv.org/abs/1810.08164
https://ttic.uchicago.edu/%7etewari/lectures/lecture10.pdf


71Machine Learning (2024) 113:45–71 

1 3

Langford, J., & Zhang, T. (2008). The epoch-greedy algorithm for multi-armed bandits with side informa-
tion. In: Advances in neural information processing systems, (pp. 817–824).

Lattimore, T., & Munos, R. (2014). Bounded regret for finite-armed structured bandits. In: Advances in neu-
ral information processing systems, (pp. 550–558).

Lattimore, T., & Szepesvari, C. (2017). The end of optimism? an asymptotic analysis of finite-armed linear 
bandits. In: Artificial intelligence and statistics, PMLR, (pp. 728–737)

Lattimore, T., & Szepesvári, C. (2020). Bandit algorithms. Cambridge University Press.
Ledoux, M., & Talagrand, M. (2013). Probability in banach spaces: Isoperimetry and processes. Springer 

Science & Business Media
Li, L., Chu, W., Langford, J., & Schapire, R.E. (2010). A contextual-bandit approach to personalized news 

article recommendation. In: Proceedings of the 19th international conference on World Wide Web, (pp. 
661–670).

Mannor, S., & Shamir, O. (2011). From bandits to experts: On the value of side-observations. In: Advances 
in neural information processing systems, (pp. 684–692)

Miao, Y. (2010). Concentration inequality of maximum likelihood estimator. Applied Mathematics Letters, 
23(10), 1305–1309.

Pandey, S., Chakrabarti, D., & Agarwal, D. (2007). Multi-armed bandit problems with dependent arms. In: 
Proceedings of the 24th international conference on machine learning, (pp. 721–728).

Resnick, S. (2019). A probability path. Springer.
Rudin, W. (2006). Real and complex analysis. Tata McGraw-hill education.
Rusmevichientong, P., & Tsitsiklis, J. N. (2010). Linearly parameterized bandits. Mathematics of Opera-

tions Research, 35(2), 395–411.
Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., Wen, Z., et al. (2018). A tutorial on thompson sam-

pling. Foundations and Trends ®in Machine Learning, 11(1), 1–96.
Vaswani, S., Schmidt, M., & Lakshmanan, L. (2017). Horde of Bandits using Gaussian Markov Random 

Fields. In: Singh A, Zhu J (eds) Proceedings of the 20th international conference on artificial intel-
ligence and statistics, PMLR, proceedings of machine learning research, (vol 54, pp. 690–699). https:// 
proce edings. mlr. press/ v54/ vaswa ni17a. html

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint (Vol. 48). Cambridge 
University Press.

Wang, Z., Zhou, R., & Shen, C. (2018a). Regional multi-armed bandits. In: International Conference 
on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, 
Canary Islands, Spain, PMLR, Proceedings of Machine Learning Research, (vol. 84, pp. 510–518)

Wang, Z., Zhou, R., & Shen, C. (2018b). Regional multi-armed bandits with partial informativeness. IEEE 
Transactions on Signal Processing, 66(21), 5705–5717.

Yang, X., Liu, X., & Wei, H. (2022). Concentration inequalities of mle and robust mle. arXiv preprint 
arXiv: 2210. 09398

Yang, Y. (2016). Ece598: Information-theoretic methods in high-dimensional statistics. http:// www. stat. 
yale. edu/ ~yw562/ teach ing/ 598/ lec14. pdf

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.

https://proceedings.mlr.press/v54/vaswani17a.html
https://proceedings.mlr.press/v54/vaswani17a.html
http://arxiv.org/abs/2210.09398
http://www.stat.yale.edu/%7eyw562/teaching/598/lec14.pdf
http://www.stat.yale.edu/%7eyw562/teaching/598/lec14.pdf

	Multi-armed bandits with dependent arms
	Abstract
	1 Introduction
	1.1 Existing works
	1.1.1 Bandits with side observations
	1.1.2 Linear bandits
	1.1.3 MABP with clustered arms
	1.1.4 Global and regional bandits
	1.1.5 Structured bandits

	1.2 Our contributions

	2 Problem studied
	2.1 Notation
	2.2 Assumptions
	2.3 Comparison of assumptions

	3 Lower bound on regret
	4 Upper confidence bounds-dependent arms (UCB-D)
	4.1 Computational complexity

	5 Concentration results for MLE estimates
	6 Regret analysis
	7 Simulations
	8 Conclusions
	Appendix 1: Proof of Theorem 2 (concentration of )
	Appendix 2: Some auxiliary results
	References




