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Abstract— This paper proposes Bézier curve based guidance
for autonomous landing of quadrotor. The trajectory is gener-
ated using a fourth-order Bézier curve which satisfies curvature
and heading constraints of the landing guidance problem.
Numerical simulations validate the proposed tracking guidance
law.

Index Terms— Bézier Curve, Landing Guidance

I. INTRODUCTION

Autonomous landing is arguably the most intricate and

challenging phase of UAV flight. UAVs must autonomously

land in order to effectively complete the objectives in a

variety of UAV applications, including surveillance, agricul-

tural, and both civilian and military activities, such as search

and rescue missions. Therefore, it is necessary to formulate

a guidance law that gives the UAV steering instructions it

needs to follow the specified trajectory and land on a static

platform.

A typical Guidance, Navigation, and Control (GNC) ar-

chitecture for a quadrotor involves the use of onboard sen-

sors to measure the actual state of the quadrotor which is

then processed by the navigation subsystem to estimate the

current state. The guidance subsystem uses this information

to generate the desired trajectory and provide attitude and

thrust commands to the quadrotor’s actuators, while the

low-level control subsystem nullify any errors between the

current and desired states. However, this paper solely focuses

on the design of the trajectory guidance algorithm. In this

regard several methods have been proposed to formulate the

guidance algorithm for fixed-wing and rotor UAV’s.

Autonomous landing for fixed wing UAV’s on a stationary

platform comprising of approach followed by descent phase

are discussed in Refs. [1], [2]. Those works involve a

constant glide slope during the approach phase, followed

by an exponential path for descent, leading to a smooth

touchdown. Another approach consists of a spiral maneuver

during the approach phase, followed by a glide path towards

a specified landing point is discussed in Ref. [3]. That

method requires two user-defined waypoints; the approach

point and the landing point. The UAV orbits around the

approach point as it descends to a specified altitude, then

it breaks out of its orbit and follows a glide slope to the
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landing point. Ref. [4] presents a bees inspired autonomous

landing algorithm using optic flow information for sensing

and controlling the height above the ground. At low heights,

when optic flow is unreliable, stereo-based range information

is used to guide descent close to touchdown. In Ref. [5]

UAV attitude and speed profiles is expressed as exponential

functions of horizontal separation between UAV and plat-

form, which ensures smooth landing on that platform. These

methods may not be appropriate for rotor UAVs since they

do not rely on forward speed to generate lift.

Multirotor UAVs have capabilities for hovering, but this

has limited most of the guidance-based landing techniques

to vertical landing [6]–[8]. In Ref. [6] quadrotor tracks a

moving target along a linear path until it is directly above the

landing pad and then descends vertically to land. Similarly,

Ref. [7] proposes vector field method for hovering and

landing. In Ref. [8] proposes a log of polynomial velocity

profile with two design parameters for vertical descent.

Therein, the closing velocity of UAV to target logarithmically

decays to zero as the distance to landing point goes to zero.

It is to be noted that this hovering and landing approaches

increases flight time. In contrast, Refs [9]–[11] provides a

smooth trajectory from the UAV’s initial point to its final

landing point avoiding the need to hover before vertical

descent. Ref. [9] uses pure pursuit based guidance law to

land on a stationary target with explicit control over the UAV

velocity proposed as a log of polynomial. Ref. [10] uses

vector-fields for autonomous landing. Therein, the desired

trajectory is a combination of three straight line segments that

connects initial UAV position to the landing site. Further, the

discontinuous trajectory is approximated by smooth function

using Maslov Dequantization. Another approach is where

the trajectory expressed as a polynomial function of time

[11] and the coefficients of the polynomial are determined

satisfying constraints on initial and final position. Refs. [12]–

[15] uses vision based approach for autonomous landing

of quadrotors on static and moving platforms. Vision-based

landing algorithms require image processing techniques to

extract the position information of the UAV using the images

captured by the onboard cameras(stereo vision, monocular)

which is computationally demanding.

As the main contribution of this work, desired quadrotor

trajectory is generated using fourth-order Bezier curve which

satisfies heading and curvature constraints. The guidance

algorithm proposed in the paper requires UAV position

information with respect to the landing point which can

be acquired using simple range and bearing measuring on-

board sensors. The proposed approach also eliminates the

requirement of hovering before vertical landing. Overall, the
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Fig. 1: Landing scenario

proposed guidance method is computationally inexpensive

and easy to implement.

The remainder of this paper is organized as follows:

The problem statement is defined in Section II. Section

III discusses the methodology used in trajectory planning.

Tracking guidance law is discussed in Sec. IV. Section V

presents simulation studies and Sec. VI concludes this paper.

II. PROBLEM STATEMENT

Consider a quadrotor with its instantaneous Cartesian po-

sition is given by (xu,yu)∈R
2 as shown in Fig. 1. Quantities

r and θ represent the instantaneous position and orientation

of the quadrotor in polar coordinates, respectively. V and χ

denote the UAV speed and heading angle, respectively. The

kinematic equations of motion of the UAV can be described

as

ṙ = V cos(χ −θ) (1)

θ̇ =
V

r
sin(χ −θ) (2)

The objective is to generate a feasible trajectory and for-

mulate the tracking guidance command χ which governs

the instantaneous heading angle of quadrotor to track the

proposed trajectory. Furthermore, the trajectory is desired

to satisfy the following quadrotor heading angle χ and

curvature κ constraints.

χ(t = 0) = χi χ(t = t f ) = χ f (3)

κ(t = 0) = κ(t = t f ) = 0 (4)

In Eqs. (3) and (4), subscripts i and f denote corresponding

initial and final quantities, respectively. To accomplish the

above noted objectives, a fourth order Bézier curve based

trajectory is proposed in this work as shown in red dashed

curve in Fig. 1. The curve is characterized by five control

points Pi : i = {0,1,2,3,4} shown in Fig. 1. The control

points P0 and P4 corresponds to the initial and final position

of the quadrotor. The remaining three control points P1,P2,P3

account for the design flexibility of the trajectory which will

be discussed subsequently. Next section briefly introduces

the generic Bézier curve and subsequently discusses specific

fourth-order Bézier curve with the formulation of the guid-

ance command.

III. TRAJECTORY PLANNING

A. Salient features of Bézier curve

A Bézier curve is a parametric curve which uses Bernstein

polynomials as a basis function [16]. The formula for general

nth order Bézier curve Q(τ) = (x(τ),y(τ)) is given by

Q(τ) = (x(τ),y(τ)) =
n

∑
i=0

PiBi,n(τ) (5)

where, Pi represents control points and τ = [0,1] is the curve

parameter. The Bernstein polynomial Bi,n(τ) is given as

Bi,n(τ) =

(

n

i

)

τ i(1− τ)n−i (6)

The nth order Bézier curve Q(τ) with the control points

P0,P1, ...,Pn has the following properties.

1) Endpoints are the first and last control points.

τ = 0 ⇒ B0,n(0) = 1 ⇒ Q(0) = P0 (7)

τ = 1 ⇒ Bn,n(0) = 1 ⇒ Q(1) = P1 (8)

2) Curve is tangent to the control polygon at the end-

points.
dQ(τ)

dτ
=

n

∑
i=0

PiḂi,n(τ) (9)

Q̇(0) = n(P1 −P0) Q̇(1) = n(Pn −Pn−1) (10)

3) Bézier curve is invariant under affine transformation

(translation and rotation).

4) Bézier curve always lies inside the convex hull of it’s

control points.

The tangent-to-curve γ(τ) and curvature κ(τ) variation along

the trajectory is

γ(τ) = tan−1

(

dy(τ)/dτ

dx(τ)/dτ

)

(11)

κ(τ) =
dχ(τ)/dτ

ds/dτ
(12)

where ds/dτ =

√

(

dx(τ)/dτ
)2

+
(

dy(τ)/dτ
)2

. Using

Eq. (11) and Eq. (12), the curvature can be deduced as

κ(τ) =
ẋ(τ)ÿ(τ)− ẏ(τ)ẍ(τ)
(

ẋ(τ)2 + ẏ(τ)2
)3/2

(13)

where, terms ẋ(τ) = dx(τ)
dτ

, ẏ(τ) = dy(τ)
dτ

, ẍ(τ) = d2x(τ)
dτ2 and

ÿ(τ) = d2y(τ)
d2τ

.

B. Fourth order Bézier curve

The fourth order Bézier curve consisting of five control

points Pi = (xi,yi); i = {0,1,2,3,4} is represented as
[

x(τ)
y(τ)

]

=
4

∑
i=0

PiBi,4(τ) (14)

Differentiating Eq. (14) with respect to τ
[

dx(τ)
dτ

dy(τ)
dτ

]

= AP (15)
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where,

A =

[

−4(1− τ)3 4(1− τ)2(1−4τ)
12τ(1− τ)(1−2τ) 4τ2(3−4τ) 4τ3

]

(16)

and

P =
[

P0 P1 P2 P3 P4

]T

(17)

The tangent-to-curve is given as

γ(τ) = tan−1

(

dy(τ)/dτ

dx(τ)/dτ

)

(18)

Using Eq. (7) and Eq. (8) initial and final control points of

the proposed trajectory are P0 = (x0,y0) and P4 = (x4,y4). It

is desired that the tangent-to-curve is −π at P0 and −π/2 at

P4, which is ensured by choosing control points P1 and P3

collinear to P0 and P4, respectively. Further, zero curvature of

the Bezier curve at points P0 and P4 is achieved by placing the

control point P2 to be collinear to both the tangent segments

P0P1 and P3P4. The equations of tangent segments P0P2 and

P2P4 can be expressed as

y2 − y0 = m1 (x2 − x0) (19)

y2 − y4 = m2 (x2 − x4) (20)

Solving Eqs. (19) and (20) for P2 (x2,y2) leads to
(

(y0 −m1x0)− (y4 −m2x4)

m2 −m1
,

m1m2 (x4 − x0)+(m2y0 −m1y4)

m2 −m1

)

(21)

Here, slopes m1 = − tan χi and m2 = − tan χ f are derived

from the tangent-to-curve constraints given in Eq. (3). The

control points P1 and P3 are determined using

P1(x1,y1) =

(

αx2 + x0

α +1
,

αy2 + y0

α +1

)

(22)

and

P3(x3,y3) =

(

αx4 + x2

α +1
,

αy4 + y2

α +1

)

(23)

where, α ∈ (0,1] is the quantity with which the tangent

segments P0P2 and P2P4 are divided by control points P1

and P3, respectively.

IV. TRACKING GUIDANCE LAW

In order to steer the quadrotor along the designed Bézier

curve discussed in Section. 3, we must determine the appro-

priate heading angle, χ . We uniformly divide the parametric

domain τ = [0,1] of Bézier curve Q(τ) = (x(τ),y(τ)) into 2n

sub-intervals as 0 = τ0 < τ1 < ... < τi < ... < τn = 1. Let, Pτi

be the approximate path length of Bézier curve obtained at

ith instant as,

Pτi
= Pτi−1

+
√

(xi − xi−1)2 +(yi − yi−1)2 (24)

Similarly, let the parametric domain of kinematic equations

given in Eqs. (1) and (2) , t = [0, t f ] be divided arbitrarily

during numerical integration into sub-intervals 0 = t0 < t1 <

TABLE I: Parameters for Case 1

Control points Coordinates

P0 (10 m,10 m)
P4 (0 m,0 m)
P2 (0 m,10 m)

P1,P3 (5 m,10 m),(0 m,5 m)

... < ti < ... < tn = t f . Let, Lτi
be the path length obtained by

quadrotor motion at ith instant of numerical integration as,

Lti =V × ti (25)

We interpolate Pτi
to obtain that instantaneous τins that equals

Pτi
= Lti , re-parameterizing Bézier curve with τnew = [0,1].

We now have one-to-one correspondence map, t = [0, t f ]→
τnew = [0,1]. The guidance command can then be derived as,

χ(t) = γ(τnew) = tan−1

(

dy(τnew)/dτnew

dx(τnew)/dτnew

)

(26)

It can be readily seen from Eq. (26) that χ(t = 0) = −180

deg. and χ(t = t f ) = −90 deg. which is our guidance

objective, that is, to satisfy Eqs. (3) and (4). This attributes

to the generation of Bézier curve, which involves carefully

selecting the appropriate control points as discussed in the

preceding section. After considering the analysis that has

been elucidated thus far, the process for determining control

points Pi and subsequently generating the guidance command

using Eq. (26) is explicated in Algorithm 1.

Algorithm 1 Guidance logic

1: Input: P0,P4.

2: Compute intermediate control points P2,P1,P3 using

Eqs. (21), (22) and (23).

3: Using control points Pi, generate Bézier curve using

Eq. (14).

4: Compute guidance command χd using Eq. (26).

V. SIMULATION RESULTS

This section discusses numerical simulation results of

the proposed method . Simulation results consider variety

of scenarios to generate landing trajectory while satisfying

design constraints discussed in Section I. The simulation

studies are carried out using first order heading control

described as

χ̇ = k (χd −χ) (27)

where, commanded course angle χd is obtained using

Eq. (26) and k is the controller gain. Unless specified, speed

of UAV is kept constant at 1 m/s and α = 0.5.

1) Case 1: Sample landing scenario: The landing tra-

jectory of quadrotor is generated using parameters listed in

Table I. Eq. (21) gives control point P2. Control points P1
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(a) UAV trajectory (b) Distance profile

(c) Heading angle profile (d) Curvature profile

Fig. 2: Results for landing scenario

TABLE II: Parameters for Case 2

α P1(x1 m,y1 m) P3(x3 m,y3 m)
0.1 (9,10) (0,9)
0.3 (7,10) (0,7)
0.5 (5,10) (0,5)
0.7 (3,10) (0,3)
0.9 (1,10) (0,1)

and P3 are calculated using Eq. (22) and (23) with α = 1 as

P1 = (x1,y1) =

(

x0 + x2

2
,

y0 + y2

2

)

(28)

P3 = (x3,y3) =

(

x2 + x4

2
,

y2 + y4

2

)

(29)

Figure 2 shows the simulation results. Figure 2a shows UAV

trajectory tracks the desired path leading to the landing point.

Distance variation which is reducing to zero is shown in

Fig. 2b. Figure 2c shows the heading angle profile satisfying

initial and final heading angle constraints, that is, χ(t = 0) =
−π rad. and χ(t = t f ) =−π/2 rad., respectively. Figure 2d

shows the corresponding curvature profile which is zero at

κ(t = 0) and κ(t = t f ).
2) Case 2: Different control points P1,P3: In this case, the

control points P1 and P3 are computed by dividing tangents

P0P2 and P2P4 at different ratios. The ratios at which the

control points P1 and P3 divides the tangents P0P2 and P2P4

is denoted by α . The control points P0,P2 and P4 are fixed as

used in Case 1. The control points P1 and P3 corresponding to

each α = {0.1,0.3,0.5,0.7,0.9} is computed using Eq. (22)

and Eq. (23) and are tabulated in Table II. The simulation

results are shown in Fig. 3. Multiple landing trajectories are

generated in Fig. 3a. These trajectories have fixed initial and

final points, but the positions of control points P1 and P3 are

varied as listed in Table II. All of these landing trajectories

lead to the same landing point, as shown in Fig. 3b, where

(a) UAV trajectories (b) Distance profiles

(c) Heading angle profiles (d) Curvature profiles

Fig. 3: Results for different control points

TABLE III: Parameters for Case 3

P0(x0 m,y0 m) P1(x1 m,y1 m) P2(x2 m,y2 m) P3(x3 m,y3 m)
(10,15) (0,15) (0,15) (0,7.5)
(9,13) (4.5,13) (0,13) (0,6.5)
(8,11) (4,11) (0,11) (0,5.5)
(6,10) (3,10) (0,10) (0,5)

the distance profile goes down to zero. Furthermore, Fig. 3c

displays the variation of the heading angle profile, while

Fig. 3d shows the corresponding curvature profiles that

satisfy trajectory constraints. This simulations show high

design flexibility of Bezier trajectory using varying α while

satisfying terminal trajectory constraints. Choice of α affects

the maximum curvature as evident from Fig. 3d. It can be

readily seen in Fig. 3d that α = 0.5 corresponds to the lowest

maximum curvature whereas, α = 0.1 and α = 0.9 leads to

the highest maximum curvature.

3) Case 3: Varying control point P0: In this case, multiple

initial control points P0 with fixed final control point P4 =
(0 m,0 m), is considered for simulation studies. The corre-

sponding intermediate control points P2,P1,P3 are computed

accordingly, using Eqs. (21), (28) and (29), respectively and

are listed in Table III. Fig. 4 illustrates the simulation results.

Figure 4a shows multiple trajectory profiles. Distance profiles

are shown in Fig. 4b, which reduces to zero. Figs. 4c and

4d shows heading and curvature plots satisfying the corre-

sponding heading and curvature constraints, respectively.

4) Case 4: Varying initial heading angle χ0: In this case,

multiple initial heading angles χ0 are considered, with fixed

P0 = (10 m,10 m) and P4 = (0 m,0 m), for simulation

studies. With α = 0.1, the corresponding intermediate control

points P2,P1,P3 are computed accordingly, using Eqs. (21),

(28) and (29), respectively and are listed in Table IV. The

simulation results are presented in Fig 5. Figure 5a shows

multiple trajectory profiles with the corresponding distance
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(a) UAV trajectories (b) Distance profiles

(c) Heading angle profiles (d) Curvature profiles

Fig. 4: Results for multiple P0 landing scenarios

TABLE IV: Parameters for Case 4

χ0deg. P1(x1 m,y1 m) P2(x2 m,y2 m) P3(x3 m,y3 m)
−180 (5,10) (0,10) (0,5)
−170 (5,9.12) (0,8.24) (0,4.12)
−160 (5,8.18) (0,6.36) (0,3.18)
−150 (5,7.11) (0,4.23) (0,2.11)

(a) UAV trajectories (b) Distance profiles

(c) Heading angle profiles (d) Curvature profiles

Fig. 5: Results for different initial heading angle χ0

profiles attenuates to zero as indicated in Figure 5b. The

heading angle profiles, which satisfy the desired heading

constraints, are plotted in Figure 5c. Figure 5d shows the cor-

responding curvature profiles. This case study demonstrates

that the final and the initial curvature constraint along with

the final heading requirement is achieved even though the

initial heading constraint is relaxed.

VI. CONCLUSIONS

In this study, we propose a new guidance approach for

autonomous quadrotor landing using Bezier curves. The key

contribution is the design of control points for the curve that

adheres to the quadrotor’s heading and curvature constraints

along the curve. The efficacy of the proposed guidance

approach is validated through numerical simulations.
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