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Abstract— This paper addresses the problem of position
estimation in UAVs operating in a cluttered environment where
GPS information is unavailable. A learning-based approach is
proposed that takes in the rotor RPMs and past state as input
and predicts the one-step-ahead position of the UAV using a
novel spectral-normalized memory neural network (SN-MNN).
The spectral normalization guarantees stable and reliable
prediction performance. The predicted position is transformed
to the global coordinate frame (GPS), which is then fused
along with the odometry of other peripheral sensors like IMU,
barometer, compass, etc., using the onboard extended Kalman
filter (EKF) to estimate the states of the UAV. The experimental
flight data collected from an RTK-GPS facility using a micro-
UAV is used to train the SN-MNN. The PX4-ECL library is
used to fuse the predicted data using the SN-MNN, and the
estimated position is compared with actual ground truth data.
The proposed algorithm doesn’t require any additional onboard
sensors and is computationally light. The performance of the
proposed approach is compared with the current state-of-art
GPS-denied algorithms, and it can be seen that the proposed
algorithm has the least RMSE for position estimates.

I. INTRODUCTION

Advancements in UAV technology have enabled their

widespread usage in logistic transportation, urban air mo-

bility, and agriculture. A crucial aspect of the UAV flight is

the accuracy of the onboard navigation system that provides

a sense of whereabouts to the UAV controller. The onboard

navigation system relies heavily on GPS sensors that accu-

rately estimate the position of the UAV. However, in cluttered

environments like forests and indoor environments, there is

an intermittent loss of GPS (sometimes no GPS signal),

which can lead to inaccurate position estimates, rendering

the UAV unstable. Thus, it is crucial to look for GPS-denied

alternatives to provide reliable position information to the

UAV.

The existing literature on algorithms developed for GPS-

denied operation can be broadly divided into two categories:

algorithms that use reliable position estimates generated by

either vision-based systems or simultaneous localization and

mapping (SLAM)-based systems. In [1], stereo camera-based

localization is employed for fast and agile navigation of

the UAV in the presence of surrounding obstacles. In [2],

the concept of image moments is utilized from environment

images to estimate the translational velocity of the UAV re-

liably. A combination of optical flow and ultrasound sensors

has been used in [3] to achieve a stable indoor hovering
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performance of a micro aerial vehicle. However, vision-

based localization systems fail to provide reliable odometry

in varying lighting conditions and exhibit drift when no

features are available to track. Further, one needs to tune

the parameters meticulously to achieve reliable performance

in a known environment[4].

On the other hand, SLAM-based methods mostly require

LiDAR sensors or compatible vision-based sensors. In [5],

a 6-DOF SLAM is proposed that builds a relative map from

surrounding features and provides odometry measurements

relative to this map. In [6], a vision-based SLAM algorithm

is employed using a monocular camera and an ultrasound

camera for navigation. To alleviate the problems specific

to vision-based sensors, [7] employs an infrared thermal

sensor to obtain localization information in the presence

of dark, texture-less environments with dust-filled / smoke-

filled settings. However, SLAM-based methods work effi-

ciently only in a cluttered environment with some external

objects that can be tracked throughout the flight. When

flying in areas without any surrounding objects or in fast

dynamic environments, vision-based odometry and SLAM-

based methods fail to provide accurate position estimates

to the UAV. Reliable vision-based odometry systems require

high FPS performance cameras that are prohibitively expen-

sive. Moreover, these methods require additional onboard

specialized sensors that can be limiting in a micro-UAV

setting and tend to consume extra power that can limit the

overall endurance of the UAV.

In this paper, a data-driven model learning-based approach

is proposed to estimate the UAV position using a Spectrally

Normalized Memory Neuron Network (SN-MNN) that is

invariant to the environmental features and external factors

like surrounding objects, varying lighting conditions, etc.

The SN-MNN predicts the position of the UAV based

on the rotor RPM input and previous UAV states. It is

shown theoretically that spectral normalization guarantees a

stable prediction performance by constraining the Lipschitz

constant of the fitted function. The look-ahead predicted

position is transformed to a global coordinate (GPS), and

extended Kalman filter-based state fusion is used to estimate

the UAV states. The experimental flight data from an RTK-

GPS facility is used for training the SN-MNN. The model

learning-based approach is validated using the PX4-ECL

library on sample test flights. Finally, the performance of the

proposed algorithm is compared with other state-of-art GPS-

denied algorithms. It can be seen that the proposed algorithm

has the least RMSE in predicting the position of the UAV in

comparison to other techniques.
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Fig. 1. Figure on the left shows a schematic block diagram of SN-MNN training. The error is used for backpropagation. The motor input ωωω is normalized
by the maximum rotor speed ωm before feeding to the SN-MNN. The figure on the right shows the schematic diagram of a fully connected SN-MNN
consisting of a single hidden layer.

II. SPECTRAL-NORMALIZED MEMORY NEURON

NETWORK-BASED STATE ESTIMATION

First, this section presents the UAV dynamic equations and

input-output model. Next, the novel data-driven spectrally

normalized memory neuron network is presented to predict

the position of the UAV from the past state and current input.

Finally, the predicted local position is converted to global

coordinates (GPS) and state fusion is carried out to estimate

the UAV states.

A. Input-Output Model of UAV

The physics-based mathematical model of a typical UAV

system is given below:

ẋxx = vvv, mv̇vv = mgk̂kk +RRRk̂kkft + f̃ff (1a)

ṘRR = RRRΩΩΩ×, JJJΩ̇ΩΩ +ΩΩΩ×JΩJΩJΩ = τττ + τ̃ττ (1b)

with, ft = Kω

(

ω2
1 + ω2

2 + ω2
3 + ω2

4

)

(1c)

τττ =





τx
τy
τz



 =





Kωl
(

ω2
3 − ω2

1

)

Kωl
(

ω2
4 − ω2

2

)

Kd

(

ω2
2 + ω2

4 − ω2
1 − ω2

3

)



 (1d)

where k̂kk = [0 0 1]
T

is the unit vector along the z−axis,

xxx ∈ R
3 is the position of the UAV with mass m ∈ R and

moment of inertia JJJ ∈ R
3×3, vvv ∈ R

3 is the linear velocity,

RRR ∈ R
3×3 is the rotation matrix that converts a vector from

the UAV-fixed body frame to the inertial frame, ΩΩΩ ∈ R
3 is

the angular velocity of the UAV, ft ∈ R is the input thrust

vector and τττ ∈ R
3 is the input torque vector given by Eq. (1c)

and (1d) respectively. The quantities ωi denotes the rotational

velocity of the ith motor in (rad/s), l denotes the arm length

of the UAV, and the constants Kω,Kd denote the motor

constant and the drag coefficient respectively. The operator

(.)× : R
3 → R

3×3 is the hat operator that converts a vector

to a skew-symmetric matrix. The quantities f̃ff , τ̃ττ represent

the external complex aerodynamic forces and torques on

the UAV that are mostly unknown or cannot be analytically

modelled. In real world, the dynamics given by Eq. (1) are

rudimentary and cannot be relied upon for estimating the

UAV states due to presence of noise, model uncertainties

and external disturbances.

In general, one can use billings theorem [8] to write the

input-output model of a dynamical system as:

yyyk+1 = f (yyyk, . . . , yyyk−n,uuuk, . . . ,uuuk−n) (2)

where f(.) is an unknown nonlinear function, n is the order

of the system, yyyk and uuuk is the output of and input to

the system, respectively at time step k. Note that one can

use a recurrent neural network to approximate the unknown

nonlinear function using the current input and past output. It

has been shown in the literature that the Memory Neuron

Network (MNN) [9] is more efficient in approximating

the dynamics accurately than other state-of-the-art recurrent

neural networks [10] and in time-series forecasting [11].

The presence of uncertainty in thrust and the unknown

disturbance influences the stability/reliability of prediction.

The next section proposes a spectrally normalized MNN to

learn the UAV model accurately.

B. Spectral-Normalized Memory Neural Network-based

Model Learning

The Spectrally Normalized Memory Neural Network (SN-

MNN) contains fully connected network neurons (white cir-

cle) with its associated memory neurons (black solid circle).

The unique nature of the connection between the Network

Neurons and the Memory Neurons (see Fig.1) makes the

network recurrent in nature. The network is parameterized by

θθθ =
{

(1WWW,1QQQ), . . . , (LWWW,LQQQ)
}

, the weights corresponding

to both the network neurons (WWW ) as well as the memory

neurons (QQQ). The left superscript denotes the layer number.

Thus, the output of SN-MNN f(ppp,θθθ) to an input ppp can be

compactly represented as:

LWWW ·
(

. . . φ
(

2WWW ·
(

φ
(

1WWWppp+1 QQQ1rrr
))

+2 QQQ2rrr
)

. . .
)

+L QQQLrrr = f(ppp,θθθ)
(3)

where φ(.) denotes the activation function and lrrr denotes the

output of the memory neurons present in the lth layer. The

recurrence relationship between the memory neurons and the

network neurons can be represented as:

lrrrk =l αααlnnnk−1 + (1−l ααα)lrrrk−1 (4)
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where lnnn = φ(.) is the output of the activation function in

the lth layer and lααα is the weight of the feedback connections

between the network and the memory neurons in the lth layer

(see Fig. 1).

The Lipschitz constant γ of a real valued function f :
R
n → R is defined mathematically as:

∥f (ppp2)− f(ppp1)∥2 ≤ γ ∥ppp2 − ppp1∥2 (5)

The Lipschitz constant of a differentiable function is the

maximum spectral norm of its Jacobian over the function’s

domain: γ = supppp ρ(∇f(ppp)), where ρ(AAA) denotes the

spectral norm of the matrix AAA which is defined as the

square root of maximum eigenvalue of the matrix AHA. As

demonstrated in [12], it is essential to limit the Lipschitz con-

stant of a neural network to ensure stable reliable prediction

performance that is comparable with the actual dynamics of

the UAV. The following Theorem guarantees the Lipschitz

constant of the SN-MNN:

Theorem 1. The Lipschitz constant of the entire spectrally

normalized memory neuron network satisfies the inequality

∥f(ppp,θθθ)∥
2
≤ γ under the spectral weight normalization:

WWW =

(

WWW

ρ(WWW )

)

· γ
1
L , QQQ =

(

QQQ

ρ(QQQ)

)

· γ
1
L (6)

with γ being the intended Lipschitz constant of the network,

and tanh(.) as the activation function.

Proof: The spectral norm of of a linear map g(ppp) =
WpWpWp + bbb can be simplified as: suppppρ(∇g) = suppppρ(WWW ) =
ρ(WWW ). Moreover, using the inequality Lip (g1 ◦ g2) ≤
Lip (g1) · Lip (g2) and the fact that Lip (tanh(.)) = 1 along

with Eq. (3) leads to:

∥f (ppp,θθθ)∥
2
= Lip

(

LWWW ·
(

. . . φ
(

2WWW ·
(

φ
(

1WWWppp

+1QQQ
1
rrr
))

+2 QQQ
2
rrr
)

. . .
)

+L QQQ
L
rrr
) (7)

≤

L
∏

l=1

ρ(WWW ) =

L
∏

l=1

γ
1
L = γ (8)

Here, the term iQQQQQQQQQirrr can be considered as a ”time-varying”

bias that is independent of input pppk at current time step k, and

thus, doesn’t affect the Lipschitz constant. However, the term

rrr depends on pppk−1 through Eq. 4 which is why the weight

matrix QQQ corresponding to the memory neurons must also

undergo spectral normalization.

For training the network, the modified backpropagation

approach as described in [9] is used, with the following cost

function being minimized during training at every time step:

θθθ∗ = argmin
θθθ

N
∑

k=1

1

T
∥yyyk − f(pppk, θθθ)∥

2

2
(9a)

such that, ∥f(pppk, θθθ)∥2 ≤ γ (9b)

where the input pppk =
[

yyyTk−1
ωωωT

k ΘΘΘT
k

]T
consists of the

previous position of the UAV yyyk−1 ∈ R
3, the roll-pitch-yaw

x y

z

(ϕ′, λ′, z′)
(x′, y′, z′)

Fig. 2. Figure shows the GPS Conversion from East-North-Up (ENU)
coordinate vector xxx = (x′, y′, z′) shown in to geodetic (latitude, longitude
and altitude) coordinate vector ζζζ = (ϕ′, λ′, z′).

orientation of the UAV ΘΘΘk ∈ R
3 and the current normalized

motor RPM ωωωk ∈ R
4. The training process of the network

is illustrated in Fig. 1. Let eee be the error vector. Due to the

constraint of Eq. (9b), the update rules for WWW and QQQ are as

follows:

lWWW k+1 =
γ

1
L

ρ(lWWW k)

(

lWWW k − η ·l nnnkeee
T
)

lQQQk+1 =
γ

1
L

ρ(lQQQk)

(

lQQQk − η ·l rrrkeee
T
)

(10)

(11)

More details of the update rule derivation are provided in

the supplementary material [13].

PWM to
RPM (ESC)

RC Input ωωω

1

ωm

ωωω

ppp SN-MNN

... ...

Real World
UAV-Dynamics

ẋxx = f(xxx,ωωω)

Local Odometry System

Sensor
Suite EKF

ŷyy

ENU to

Geodetic

ζζζ

x̂xx

Fig. 3. Figure illustrates the state fusion replay process. Based on the RPM
input, the orientation of the UAV, and the previous position of the UAV, the
trained SN-MNN predicts the position of the UAV, which is provided to the
onboard EKF as GPS coordinates. The Sensor suite consists of peripheral
sensors like IMU, compass, magnetometer etc., and the state fusion process
is performed by the EKF.

C. GPS Conversion and State Estimation

The network predicts the position of the UAV based on the

rotor RPM input. This position estimate can be used during

state fusion typically performed by an onboard Extended

Kalman Filter (EKF), in addition to the state information

provided by other peripheral sensors like IMU, compass,

magnetometer, airflow sensor etc. In this work, the position

estimates given by the network are converted to GPS coor-

dinates ζζζk, also known as geodetic coordinates (latitude φ,

longitude λ, altitude z) and transformed GPS coordinates are

used by the EKF for state estimation. This is illustrated in

Fig. 2 and Fig. 3. Since many flight controllers offer out-of-

box support for real-time GPS fusion, it has been adopted

in this paper. Moreover, ground control software utilises

-1896-
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Fig. 4. Figure on the left shows a snapshot of the UAV flight while collecting data. Figure on the right shows a snapshot of the RTK-GPS facility.

Fig. 5. Figure on the left shows the variation of the training loss vs epoch number. Figure on the right shows the prediction of the SN-MNN for the
entire testing data set. The figures in the second row shows the performance of the network without spectral normalization.

GPS coordinates to visualise the UAV path and monitor its

itinerary and the course of navigation.

The ENU coordinates must first be converted to the

ECEF (Earth-Center, Earth-Fixed) coordinate system before

converting it to the GPS coordinates. Detailed information on

converting the ENU coordinates to the GPS coordinates (via

ECEF coordinates) is provided in the supplementary material

[13].

III. EXPERIMENTAL RESULTS

First, this section presents the RTK GPS setup and the

micro-UAV hardware configuration. Next, the experimental

flight data collection for training the SN-MNN is discussed.

Finally, the performance of SN-MNN prediction, flight eval-

uation and comparative study results are presented.

A. RTK GPS setup and UAV hardware

The experimental setup consists of an outdoor RTK GPS

facility (Here+ RTK Base with Here3 RTK GPS) with base

station survey-in accuracy of 1m (relative accuracy of 10cm)

and a custom-built micro-UAV (generic 250 racer frame)

with the Pixhawk 4 Flight Controller that runs on PX4

firmware. The RTK facility and a micro-UAV operating in

the facility are shown in Fig. 4. The drone weighs about 1.1

Kg, with a RaspberryPi 4 onboard computer. The onboard

sensors include an accelerometer, gyroscope, barometer and

a compass, all present inside the flight controller. In addition

to this, the Velox V2 1950KV T-motors are used with a 5-

inch 3 blade propeller configuration. The data is collected

on a typical day with mild steady wind influences.
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Fig. 6. Figures illustrate the performance of the proposed algorithm with
and without spectral normalization for the first sample test trajectory. For
convenience, the top views are shown on the right, corresponding to their
3D trajectories. The second-row figures show the performance without the
spectral normalization process.

B. Experimental Flight Data Collection and Processing

For training the network, experimental data is collected

from the test facility. The states of the UAV and the 4 rotor

rpm are logged for multiple flights. The DShot protocol

is used by the F55A electronic speed controller (ESC),

which measures the rotor RPM values based on the back-

EMF from the motor. The flight data mainly consists of

random trajectories performed manually and certain square

and circular trajectories performed autonomously by the

UAV. These flights ensure that all possible UAV configuration

in its state-space are captured.

Next, a common sampling frequency is chosen to sample

the data corresponding to different sensors (IMU, Barometer,

Fig. 7. Figures illustrate the performance of the proposed algorithm with
and without spectral normalization for the second sample test trajectory.
For convenience, the top views are shown on the right, corresponding to
their 3D trajectories. The second-row figures show the performance without
the spectral normalization process.

Compass, RPM data and the RTK GPS position information).

The RPM values are normalized based on the motor’s

maximum RPM. The final data consists of 12 columns: one

common timestamp for all other columns, 4 normalized rotor

rpm (from ESC), position, and quaternion orientation of the

UAV. The entire data is then split into training and testing

data in the ratio of 3:2.

C. SN-MNN Prediction Performance Evaluation

The SN-MNN is trained to predict the one-step-ahead

position of the UAV, with the current UAV position yyyk ∈ R
3,

orientation (Euler angles) qqqk ∈ R
4 and the normalized

rotor RPM ωωωk ∈ R
4 as the input to the network. Hence,

the selected architecture of SN-MNN is: 11 input neurons,
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100 hidden neurons and 3 output neurons. The network

neurons in the hidden layer uses tanh(.) activation and the

network neurons in output layer employ linear activation

function. The network is implemented in Python using

Numpy Library. The network is trained for a total of 50
epochs. The variation of the squared loss during training is

shown in Fig. 5 for with and without spectral normalization.

The output of the network for the entire test data (com-

bined into one) is shown in Fig. 5. The RMSE for the

entire position prediction is about 5.84cm, whereas, for the

network without spectral normalization, the RMSE error is

about 50cm, thus justifying the requirement for a spectrally

normalized network. It can be seen from Fig. 5 that the net-

work has successfully learned the UAV dynamics accurately.

The value of the Lipschitz constant γ (here γ = 1) of the

network plays an important role in the stabilization of the

network during the training process. It also determines ”how

fast” the network output can vary: For e.g. if the UAV is

mostly hovering and making slow movements, the Lipschitz

constant can be set to a low value. If the UAV is performing

aggressive sharp maneuvers frequently, then the Lipschitz

constant of the network must be set to a high value. In this

paper, the trajectory data is collected for a UAV that mostly

cruises and exhibits slow maneuvers.

D. State Fusion and Experimental data evaluation

Once the predicted position yyyk is obtained from the SN-

MNN, the GPS geodetic vector ζζζk is calculated, which is

then given to the EKF for state fusion along with other state

information like orientation, linear velocities (IMU) and UAV

heading (compass). This is illustrated in Fig. 3. An instance

of the PX4-ECL library is started on the onboard Raspberry-

pi computer, and the state estimation process using the

position predicted by the SN-MNN starts parallelly with the

state-estimation process on the PX4-Autopilot that uses the

GPS for the UAV flight. This is done to facilitate a real-time

comparison of the position obtained (after state fusion) from

the proposed algorithm vs. the position obtained (after state

fusion) using an RTK GPS.

TABLE I

RMSE COMPARISON

VINS-Mono VIO MNN + EKF SN-MNN + EKF

RMSE (m) 0.18 0.13 0.542 0.05953

The outputs for two sample test trajectories are shown

in Fig. 6 and Fig. 7 after the PX4-ECL state fusion is

performed. It must be noted that the GPS fusion only affects

the position and linear velocity of the UAV, not its rotational

components. The RMSE between the estimated positions and

the actual positions of the UAV for the course of the entire

test flight duration (all test trajectories combined) is around

6cm, whereas, for the network without spectral normaliza-

tion, the RMSE is around 55cm. Further, Table 1 shows a

comparison with two state-of-art methods, namely the Visual

Inertial Navigation System (VINS) and the Visual Inertial

Odometry (VIO). The RMSE reported by these methods is

compared along with the proposed method in this work. It

can be seen that the RMSE reduces by about 60% for VINS-

mono[14] and about 40% for VIO[15]. Further, the algorithm

is computationally light, as one has to implement only the

trained feedforward SN-MNN model. This implementation

can be done directly on the flight controller, requiring no

additional onboard computer. Thus, from the above results,

it can be concluded that the proposed algorithm can be used

to estimate the UAV states from the rotor RPM reliably.
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