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Abstract
The utilization of quantum entanglement as a cryptographic resource has superseded conventional
approaches to secure communication. Security andfidelity of intranetwork communication between
quantumdevices is the backbone of a quantumnetwork. This work presents an protocol that
generates entanglement between any two directly connected nodes of a quantumnetwork to be used
as a resource to enable quantum communication across that pair in the network. The protocol is based
on a directed discrete-time quantumwalk and paves theway for private inter-node quantum
communication channels in the network.We also present the simulation results of this protocol on
randomnetworks generated fromvariousmodels.We show that after implementation, the probability
of thewalker being at all nodes other than the source and target is negligible and this holds
independent of the randomgraph generationmodel. This constitutes a viablemethod for the practical
realisation of secure communication over any randomnetwork topology.

1. Introduction

Aquantumnetwork consists of a set of distributed quantumprocessors connected by quantum channels [1].
The quantumprocessors (nodes) are used for information processing tasks and the communication channels
enable the transfer of quantum information between nodes. This enables the network to be a scalable solution
for both quantum computationwith a high number of qubits, and quantum communication networks over a
large area [2]. This is a generalization of the classicalmodels of distributed computing and communication
[3–5]. Quantumclusters for distributed computing have the potential of providing amethod to significantly
improve the data processing capabilities of existing systemswith only a linear increase in the resources (i.e.,
devices) required to realise the network [6, 7]. Protocols intended for implementation of distributed quantum
computing are an active area of research [8–11], and the simulation of quantumnetworks and distributed
protocols [12–14] have also attracted significant interest from the research community in recent times.
Quantumnetworks to enhance communication have also been proposed and demonstrated. One of themost
accessible technologies in this regard are the quantumkey distribution (QKD) protocols to ensure secure
communication [15–17]. TheQKDnetworks have been deployed in largemetropolitan settings [18–22], and
have also been operationally demonstrated in networks connecting ground stations using satellites as trusted
nodes [23–27], highlighting the utility of this approach.

One of themethods to implement various network-based protocols is to use the toolkit of the quantumwalk
formalism.Quantumwalks on networks have been used for various applications such as search problems
[28–31], state transfer and quantum routing [32–35], evaluation of information flow through networks [36–39],
training of neural networks [40, 41], properties of percolation graphs [42–44], and universal quantum
computation [45–48].

RECEIVED

3 July 2023

REVISED

7 September 2023

ACCEPTED FOR PUBLICATION

18 September 2023

PUBLISHED

28 September 2023

© 2023 IOPPublishing Ltd

https://doi.org/10.1088/1402-4896/acfad0
https://orcid.org/0000-0001-8895-2791
https://orcid.org/0000-0001-8895-2791
https://orcid.org/0000-0003-4820-2317
https://orcid.org/0000-0003-4820-2317
mailto:prateekc@imsc.res.in
mailto:chandru@imsc.res.in
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/acfad0&domain=pdf&date_stamp=2023-09-28
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/acfad0&domain=pdf&date_stamp=2023-09-28


Quantumwalks are a quantumgeneralization of a classical randomwalk. Amajor distinguishing feature
between the two processes is that the quantumwalk does not have any randomness associatedwith the
dynamics, unlike a classical randomwalk. The randomness in the output of a quantumwalk stems from the
measurement-induced collapse of thewalker’s wavefunction [49]. Two of thewell-studied variants of a
quantumwalk are the discrete-time and continuous-time quantumwalks. The continuous-time variant is
described using only the positionHilbert space of thewalker, whereas, the discrete-time variant requires an
additional internalHilbert space, dubbed the coin space of thewalker. Continuous-time formalism, for
example, has been effectively used in spatial search protocols [50], in defining graph kernels [51],encryption
algorithms [52], and inmodelling of energy transfer in photosynthesis [53]. The discrete-time quantumwalk
(DTQW) formalismoffers the possibility of engineering the dynamics of thewalkerwithmore control, due to an
additional degree of freedomprovided by the coinHilbert space. Alongwith its use in search protocols [30,
54–56], it has been used tomodel topological phenomena [57–61], dynamics ofDirac cellular automata [62–67],
neutrino oscillations [68], among others.

Consider a quantumparticle in aHilbert space, defined as  w i= Ä , whereHw is theHilbert space
inwhich the quantumwalk takes place, and the state inHi encodes the information to be transported. Since both
the state undergoing the quantumwalk and the information-carrying state belong to differentHilbert spaces,
they are encoded in twodifferent degrees of freedomof the particle. The information-carrying state is only
accessible viameasurement if the particle is detected at the specific nodewhere themeasurement ismade. In this
manuscript, we focus on the quantumwalk protocol, as the transport of informationwill be trivially successful
after its implementation.

We propose a protocol thatmakes use of a directed variant of the discrete-time quantumwalk on a network
to create an entangled state between any two connected nodes of the network.We show that this protocol results
in thewalker being foundwith a high probability at either the source or the target nodes, andwith a negligibly
small chance of being found at any other node. This result is demonstrated over randomnetworks generated by a
fewdifferentmodels used to generate networks that share characteristics with some real-world large-scale
networks. This highlights the versatility of our protocol and prompts its utility on quantumnetworks at various
scales.

Since quantumwalks have also been experimentally realized in several systems, [69–71] and the operations
whichwe have used are all unitaries, it is indicative that the protocol proposed in this study is experimentally
realizable.

This paper is organized as follows. In section 2.1, we outline the formof directedDTQWon a network, and
we show the construction of the protocol in section 2.2. Further, section 2.3 describes a qualitative use of von
Neumann entropy as a secondary confirmation of theworking of the protocol. Section 3 showcases the results of
applying our protocol for several different network topologies.We summarize ourfindings and conclude in
section 4.

2.Quantumwalk protocol

In our protocol, we attempt to create a state such that the probability of the particle to be found ismaximized
between two pre-selected nodes of a quantumnetwork, and negligible everywhere else. The network is
represented as a graphΓ= (V,E), whereV,E represent the sets of its vertices and edges, respectively.Wemake
use of a quantum ratchet operator [72] in conjunctionwith a directed discrete-time quantumwalk protocol to
model the dynamics of the quantumparticle on such a graph.We shall first describe the directed discrete-time
quantumwalk in section 2.1, and then use it to describe the protocol in section 2.2. A qualitative explanation of
the results section 2.3.

2.1.Directed discrete-time quantumwalk on a graph
The discrete-time evolution of a quantumwalker on an infinite one-dimensional lattice is described on aHilbert
spacewhich is isomorphic to that of a composite systemof a qubit and a qudit.Mathematically, theHilbert space
is defined as  w c p= Ä , wherec is the coinHilbert space, andp is the positionHilbert space of the
walker. The evolution of the particle proceeds with the repeated application of quantum coin operationC(θ)
acting only on the coinHilbert space followed by the conditional shift operator S acting on the complete, coin
and positionHilbert spacew. These operators are of the form,
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where the set {∣ ∣ },ñ ñ is chosen to represent the orthonormal basis ofc and the elements of {∣ }x x,ñ " Î 
label the eigenstates ofp. This formulation is easilymodified to adjust for lattices offinite dimension. In full
generality, the operator ( )C q is a 3-parameter SU(2) rotationmatrix, however, we choose the convention of
using a 1-parameter form,fixing the other two parameters to be 0 and 3

2

p to obtain the form shown in
equation (1).

The evolution of the quantumwalker without loss of generalitymay be considered to begin froma localized
position eigenstate and a randomly oriented vector in the coinHilbert space. The dynamical equation of
evolution is then given by,
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Here ,a b Î  are chosen such that the coin state is normalized, i.e. |α|2+ |β|2= 1, and 1p represents the
identity operation on the positionHilbert space. The discrete-time quantumwalk is subject tomany variations
[73–75], and in this case, we consider the directed discrete-time quantumwalk on a graph, as described in [38].
The (directed) shift operation is then defined as,
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where deg(vp) is the degree of vpä V. The Laplacian of a graph is also given as L= γ(D− A), where g Î ,D is
known as the degreematrix, andA is the adjacencymatrix of the graph. This formof the shift operator ensures
that thewalkermay onlywalk along an edge that exists andmay not jump to an unconnected node. This helps to
restrict the evolution of thewalker in the position space to that allowed by the network structure. The quantum
coin is implemented using a ratchet formalism [72], where the sourcemay choose a destination node for state
transportation, and the targetmay switch between two different values of the coin operator. Let { }W s t,= be a
set containing the source and target nodes, labelled by the basis vectors |s〉 and |t〉, respectively, ofp. Assuming
the scenario of only one-to-one communication, the node-dependent coin operatormay be defined as,

⎛
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2.2.Description of the protocol
The protocol for achieving state transport across the quantumnetwork requires a preexisting networking
infrastructure so that the source is able to identify the target without error. Additionally, we consider aweaker
requirement for a secure classical communication system to communicate with the target node. This can later be
extended into a fully quantumprotocol using higher-dimensional quantum switches, which does not require
the classical channel.

In our protocol, each node is able to choose the coin operator that it will implement locally, as per

equation (5). By default, all nodes use the coin ( )C
2

p , asW = Æ, i.e, the source and target nodes are not yet

defined. The source node is then identified and switches its coin operation to ( )C 0 , signals the target node to do
the same, and additionally, changes the value of the parameter k. In our simulations, we have set k= 400, but any

( )k 102 is acceptable for the protocol towork. Lower values result in higher losses. Thewalker then executes
a directed discrete-time quantumwalk, with the initial state being given by,

∣ ( ) ∣ ∣ ( )s0 6h ñ = ñ Ä ñ

following the evolution shown in equations (2a) and (2b), where the shift and coin operators are replaced by
their directed and ratcheted counterparts described on networks, shown in equations (3) and (5), respectively. A
summary of the protocol is shown in Prot. 1.
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Protocol 1.Quantumwalk protocol for transport on network.

Require: AdjacencymatrixA for graph ( )V E,G = .

Ensure: The source ( )s and target ( )t nodes exist.

Let set of vertices isV, and { }W s t,= .

A kAst st¬ , where ( )k 102 .

Set constant g Î 
Set evolution time t Î +
Set ( )L D Ag¬ -
procedureD-DTQWNetwork L V W, , , t
Set initial state ∣ ( ) ∣ ∣s0 .y ñ = ñ Ä ñ
Set time counter n = 0

while n t< do

Applywalk operation ∣ ( ) [ ]∣ ( )n SC n1 raty y+ ñ ¬ ñ
n n 1¬ +

endwhile

return ∣ ( )y t ñ
endprocedure

Interestingly, it is known that quantumwalks localize thewalker in case of temporal and/or spatial disorder
in the dynamics [61, 76–79]. Thus in case of an eavesdropper in the system, the effect of their presence directly
translates to noise in quantumwalk dynamics, which localizes thewalker at the source. This ensures the security
of this protocol, as in case of noise (i.e., eavesdroppers) in the network, thewalkerwill localize at the source and
nevermove at all.

2.3. Entanglementwithin the network
In order to create a scenario where the particle has a high probability of being found between only two position
points, we consider the entanglement (measured via vonNeumann entropy) between its position and coin
Hilbert spaces, described in section 2.1 asp andc , respectively. Physically, this joint statemay be viewed as
representing a qubit local to each vector in the position eigenbasis. As the particle traverses this network (i.e.,
upon applications of the shift operation of equation (3)), the action of the coin operator (see equation (5))may
be seen asmanipulating these qubits ‘local’ to each basis vector [80]. Thus the evolution of the ‘local’ coin state
may be seen as,

( ) [( ∣ ∣) ( )] ( )N i i NTr , 7c
ii

p c pr r= Ä ñ á

where |i〉 is an element of an orthonormal basis set ofp, ρ(N) is the densitymatrix corresponding to the

evolved state returned by the Prot. 1 afterN steps of evolution. The ( )Nc
iir is then the (unnormalized) reduced

densitymatrix corresponding to the qubit corresponding to the basis vector |i〉 of the position space. The
normalization is achieved by post selecting on the events when the particle wavefunction collapses to |i〉pupon
themeasurement in the position space. This interpretationmay be extended further to include coherences
between any two vectors of the orthonormal basis set, and onemay construct a reduced joint densitymatrix of
two such qubits local to the basis vectors |i〉 and |j〉. This is consistent with the tensor product interpretation, as
upon extending this formulation to include the entire eigenbasis ofp (by considering the joint densitymatrices
of states local tomultiple basis vectors), one obtains the full densitymatrix ρ(N) of the system. The construction
of the reduced densitymatrix (following equation (7))will then look like,

⎡

⎣
⎢

⎤

⎦
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( ) ( )
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N N
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c
jj

r
r r
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=

where ( )Nc
iir is used in a generalized form given as,

( ) {( ∣ ∣) ( )} ( )N m n N m n VTr , , , 9c
mn

p c pr r= Ä ñ á Î

whereV is the set of nodes of the graph and ˜ ( )Nc
ijr is a reduced densitymatrix of a 2-qubit system. This enables

one to evaluatemeasures of entanglement on this system, which is an indication of the existence of a local
quantum channel between these qubits. This can be used as a qualitative indication for the existence of a local
quantum channel within the network. In thismanuscript, we use the vonNeumann entropy as ameasure of
entanglement.
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3. Results of simulation

3.1. Evolution of probability distributionwith time
In this section, we present the results of the simulation on random graphs created by severalmethodologies.We
first demonstrate thismethod on a sparse Erdős-Rényi random graph (also known as theG(n, p)model), as
shown infigure 1. In this case, we consider the probability of the particle to be detected at any node v ä VW as a
‘loss’. It is seen that the probability of thewalker oscillates between the source and target nodes over time,
without losses into the rest of the network. A similar behavior is seenwhen the number of connections in the
randomgraph is increased, as infigure 2.

The protocol also shows similar behavior on randomgraphs created by other strategies, such as the
NewmanWattsStrogatz (NWS) protocol [81]. Thismethod generates a randomgraph by first constructing a ring
withNnodes, then connecting the ring to its knearest neighbours. For each nodew in theN-ring, an edge (w,m)
is addedwith probability p, for a randomly selected nodem. Thismethod has the advantage of creating
clustering in the graph structure while retaining a short average path length. A simulation of our protocol on the
NWS graphwithN= 34, k= 3, and p= 0.3 is shown infigure 3.

The Erdős-Rényimodel to generate randomgraphs can be seen as a snapshot of a stochastic process, which
addsmore nodes and edges to the network over time. This is useful for applications such asmodelling bond
percolation, but it creates a degree distributionwhich does notmodel real-world networks verywell.
Specifically, they do not feature a high clustering coefficient, and the degree distribution of their nodes does not
approach a power law. This is somewhat accounted for by the use of theNWSprotocol, which is able to account
for the clustering behaviour. In order to achieve a power law degree distribution, othermodels have to be used.

Figure 1.The sparse Erdős-Rényi randomgraph used for testing our protocol. The graph (shown in (a)) is generated by theG(n, p)
model, with n = 12 and p = 0.1. The source node (node 3) ismarked in green, and target node (node 8) ismarked in blue. (b) shows
the simulation results of applying our protocol on this graph. It is seen that even after 100 time steps, the probability of the particle to
be found outside the source and target nodes is nearly zero.
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In this case, we demonstrate the protocol on graphs generated by the Barabási-Albertmodel [82]. Thismodel
supports features like growth, as well as preferential attachment, which is useful to emulate features observed in
some real-world networks. Figure 4 shows a randomgraph generated by thismodel, as well as the results
obtained by implementation of our protocol on this graph. Itmay be shown via simulation that the protocol is
able to localize thewalker between the source and target nodes for any such graph, independent of the generative
parameters.

Thus, we see that irrespective of the number of connections in the random graph, or themethod of
graph generation, the probability of the particle oscillates between the position spaces of the source and target
nodes with negligible losses to other nodes. This also underscores the security aspect of this protocol, as it
localizes the particle between the source and target nodes, i.e. any interference by a third party can be detected as
a loss offidelity of themeasured state of the particle.

3.2. Evolution of vonNeumann entropywith time
We show the variation of the vonNeumann entropy between the source and target nodes, as well as the target
and a node randomly selected from the rest of the network infigure 5.

Thus this protocol is able to selectively create an entangled state between the local qubits of two selected
(source and target) position basis vectors. In case the coinHilbert space is traced out and only the probability of
the particle to exist at a certain position ismeasured, then that curve (see figures 2, 3, and 4) shows oscillations
between the source and target nodes.

Figure 2.Results of applying our protocol on randomgraphswithmore connections. Each randomgraphwasmadewith theG(n, p)
method, and a comparison of the probability of the particle to be found is presented for the source-target set of nodes, and the rest of
the network. (a) illustrates the variation of this probability for 4 < n � 100, averaged over 20 instances of a randomly generated
graph for each n, and p isfixed as 0.3. (b) shows a plot of this probability value for each 0 � p < 1, averaging over 20 instances of a
randomly generatedG(n, p) graph for n = 25. A slightfluctuation in loss is seenwhen the value of p is close to 1 , which is due to
truncation errors in simulation.
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4. Conclusions

In this work, we have demonstrated an protocol that is capable of enabling secure communication between two
specific nodes on a quantumnetwork. The dynamics of a particle on the quantumnetwork aremodelled as a
directed discrete-time quantumwalk on a graph, where the structure of the network is captured by the adjacency
matrix of the graph.

The dynamical behaviour of the particle is directed by the protocol such that it has a high probability of being
found at either the source or the target nodes, with a negligibly small probability of being found at any other
node.We test our protocol on Erdős-Rényi, Newman-Watts-Strogatz, and Barabási-Albert graphs, and show
that it is able to produce the desired output independent of themethod of graph generation. This indicates the
potential utility of this protocol on real-world realizations of quantumnetworks at various scales.

This can contribute to the security of communication and transport operations across quantumnetworks.
The requirement of a secure classical channel can be obviated if the source is able to access the state of a quantum
switch, which can then be used to identify the target and change its coin operator.With suitablemodifications,
this protocol can be used for communication systems over any network topology and presents a promising
model for the establishment of private, local quantum communication channels on existing networks. This
model can be extended in the future, to also address cases where the source and target are connectedwith a path
of length greater than 1 .

Figure 3.The results of our protocol applied to anNWS graph. (a) shows theNWS small-world graph used in our simulationwith the
source and target nodesmarked in bright green and blue, respectively. The probability of the particle to be found at various nodes of
the network is shown in (b). It is seen that the probability of the particle is seen to oscillate between the source and target nodes, while
losses into the rest of the network are negligibly small.
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marked in blue. Each node begins initially with 2 edges, and the probability of an edge pointing to a preexisting node is the degree of
the node. The process was initializedwith a 4-node star graph. Results observed by using our protocol on the randomgraph are shown
in (b). In this network, the particle has a negligible chance of being found outside the source and target nodes.
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