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Abstract

The utilization of quantum entanglement as a cryptographic resource has superseded conventional
approaches to secure communication. Security and fidelity of intranetwork communication between
quantum devices is the backbone of a quantum network. This work presents an protocol that
generates entanglement between any two directly connected nodes of a quantum network to be used
as aresource to enable quantum communication across that pair in the network. The protocol is based
on adirected discrete-time quantum walk and paves the way for private inter-node quantum
communication channels in the network. We also present the simulation results of this protocol on
random networks generated from various models. We show that after implementation, the probability
of the walker being at all nodes other than the source and target is negligible and this holds
independent of the random graph generation model. This constitutes a viable method for the practical
realisation of secure communication over any random network topology.

1. Introduction

A quantum network consists of a set of distributed quantum processors connected by quantum channels [1].
The quantum processors (nodes) are used for information processing tasks and the communication channels
enable the transfer of quantum information between nodes. This enables the network to be a scalable solution
for both quantum computation with a high number of qubits, and quantum communication networks over a
large area [2]. This is a generalization of the classical models of distributed computing and communication
[3-5]. Quantum clusters for distributed computing have the potential of providing a method to significantly
improve the data processing capabilities of existing systems with only a linear increase in the resources (i.e.,
devices) required to realise the network [6, 7]. Protocols intended for implementation of distributed quantum
computing are an active area of research [8—11], and the simulation of quantum networks and distributed
protocols [12—14] have also attracted significant interest from the research community in recent times.
Quantum networks to enhance communication have also been proposed and demonstrated. One of the most
accessible technologies in this regard are the quantum key distribution (QKD) protocols to ensure secure
communication [15-17]. The QKD networks have been deployed in large metropolitan settings [18—22], and
have also been operationally demonstrated in networks connecting ground stations using satellites as trusted
nodes [23-27], highlighting the utility of this approach.

One of the methods to implement various network-based protocols is to use the toolkit of the quantum walk
formalism. Quantum walks on networks have been used for various applications such as search problems
[28-31], state transfer and quantum routing [32—-35], evaluation of information flow through networks [36-39],
training of neural networks [40, 41], properties of percolation graphs [42—44], and universal quantum
computation [45-48].

©2023 IOP Publishing Ltd
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Quantum walks are a quantum generalization of a classical random walk. A major distinguishing feature
between the two processes is that the quantum walk does not have any randomness associated with the
dynamics, unlike a classical random walk. The randomness in the output of a quantum walk stems from the
measurement-induced collapse of the walker’s wavefunction [49]. Two of the well-studied variants of a
quantum walk are the discrete-time and continuous-time quantum walks. The continuous-time variant is
described using only the position Hilbert space of the walker, whereas, the discrete-time variant requires an
additional internal Hilbert space, dubbed the coin space of the walker. Continuous-time formalism, for
example, has been effectively used in spatial search protocols [50], in defining graph kernels [51],encryption
algorithms [52], and in modelling of energy transfer in photosynthesis [53]. The discrete-time quantum walk
(DTQW) formalism offers the possibility of engineering the dynamics of the walker with more control, due to an
additional degree of freedom provided by the coin Hilbert space. Along with its use in search protocols [30,
54-56], it has been used to model topological phenomena [57-61], dynamics of Dirac cellular automata [62-67],
neutrino oscillations [68], among others.

Consider a quantum particle in a Hilbert space H, definedas H = 'H,, ® H,;, where H,, is the Hilbert space
in which the quantum walk takes place, and the state in H; encodes the information to be transported. Since both
the state undergoing the quantum walk and the information-carrying state belong to different Hilbert spaces,
they are encoded in two different degrees of freedom of the particle. The information-carrying state is only
accessible via measurement if the particle is detected at the specific node where the measurement is made. In this
manuscript, we focus on the quantum walk protocol, as the transport of information will be trivially successful
after its implementation.

We propose a protocol that makes use of a directed variant of the discrete-time quantum walk on a network
to create an entangled state between any two connected nodes of the network. We show that this protocol results
in the walker being found with a high probability at either the source or the target nodes, and with a negligibly
small chance of being found at any other node. This result is demonstrated over random networks generated by a
few different models used to generate networks that share characteristics with some real-world large-scale
networks. This highlights the versatility of our protocol and prompts its utility on quantum networks at various
scales.

Since quantum walks have also been experimentally realized in several systems, [69—71] and the operations
which we have used are all unitaries, it is indicative that the protocol proposed in this study is experimentally
realizable.

This paper is organized as follows. In section 2.1, we outline the form of directed DTQW on a network, and
we show the construction of the protocol in section 2.2. Further, section 2.3 describes a qualitative use of von
Neumann entropy as a secondary confirmation of the working of the protocol. Section 3 showcases the results of
applying our protocol for several different network topologies. We summarize our findings and conclude in
section 4.

2. Quantum walk protocol

In our protocol, we attempt to create a state such that the probability of the particle to be found is maximized
between two pre-selected nodes of a quantum network, and negligible everywhere else. The network is
represented as a graph I = (V, E), where V, E represent the sets of its vertices and edges, respectively. We make
use of a quantum ratchet operator [72] in conjunction with a directed discrete-time quantum walk protocol to
model the dynamics of the quantum particle on such a graph. We shall first describe the directed discrete-time
quantum walk in section 2.1, and then use it to describe the protocol in section 2.2. A qualitative explanation of
the results section 2.3.

2.1. Directed discrete-time quantum walk on a graph

The discrete-time evolution of a quantum walker on an infinite one-dimensional lattice is described on a Hilbert
space which is isomorphic to that of a composite system of a qubit and a qudit. Mathematically, the Hilbert space
isdefined as H,, = H, ® H,, where H, is the coin Hilbert space, and 'H,, is the position Hilbert space of the
walker. The evolution of the particle proceeds with the repeated application of quantum coin operation C(6)
acting only on the coin Hilbert space followed by the conditional shift operator S acting on the complete, coin
and position Hilbert space H,,. These operators are of the form,
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where theset {|1), ||)}is chosen to represent the orthonormal basis of H, and the elements of {|x), V x € Z}
label the eigenstates of 7. This formulation is easily modified to adjust for lattices of finite dimension. In full
generality, the operator C(6) is a 3-parameter SU(2) rotation matrix, however, we choose the convention of
using a 1-parameter form, fixing the other two parameters to be 0 and 37” to obtain the form shown in
equation (1).

The evolution of the quantum walker without loss of generality may be considered to begin from a localized
position eigenstate and a randomly oriented vector in the coin Hilbert space. The dynamical equation of
evolution is then given by,

[V (1)) = [S(CO) @ 1,)] [¥(0)), (2a)
where,
[9(0)) = (alT) + Bl1) @ |x = 0). (2b)

Here o, 3 € C are chosen such that the coin state is normalized, i.e. |o|* + [3|> = 1,and 1, represents the
identity operation on the position Hilbert space. The discrete-time quantum walk is subject to many variations
[73-75], and in this case, we consider the directed discrete-time quantum walk on a graph, as described in [38].
The (directed) shift operation is then defined as,

S=>[IMTT@ ) (xl + > A0 (LT ® Ualj) (xD) |- 3
x j
Here, U = e'*, where Lis Laplacian of the graph, defined by its matrix elements L,,, given by
deg(v,) p=g¢q
Lpg=1-1 (p,q €E 4
0 (prq) ¢ E

where deg(v,) is the degree of v, € V. The Laplacian of a graph is also given as L = y(D — A), where v € R, Dis
known as the degree matrix, and A is the adjacency matrix of the graph. This form of the shift operator ensures
that the walker may only walk along an edge that exists and may not jump to an unconnected node. This helps to
restrict the evolution of the walker in the position space to that allowed by the network structure. The quantum
coin is implemented using a ratchet formalism [72], where the source may choose a destination node for state
transportation, and the target may switch between two different values of the coin operator. Let W = {s, t} bea
set containing the source and target nodes, labelled by the basis vectors |s) and |t), respectively, of H,,. Assuming
the scenario of only one-to-one communication, the node-dependent coin operator may be defined as,

Car(V, W)= > C(g) @ v)(vl + > C0) @ |w) (wl. (5)

veV\W weW

2.2. Description of the protocol
The protocol for achieving state transport across the quantum network requires a preexisting networking
infrastructure so that the source is able to identify the target without error. Additionally, we consider a weaker
requirement for a secure classical communication system to communicate with the target node. This can later be
extended into a fully quantum protocol using higher-dimensional quantum switches, which does not require
the classical channel.

In our protocol, each node is able to choose the coin operator that it will implement locally, as per
equation (5). By default, all nodes use the coin C (g), as W = &, 1i.e, the source and target nodes are not yet
defined. The source node is then identified and switches its coin operation to C(0), signals the target node to do
the same, and additionally, changes the value of the parameter k. In our simulations, we have set k = 400, but any
k = O(10?) is acceptable for the protocol to work. Lower values result in higher losses. The walker then executes
adirected discrete-time quantum walk, with the initial state being given by,

In(0) =11) @ Is) (6)

following the evolution shown in equations (2a) and (2b), where the shift and coin operators are replaced by
their directed and ratcheted counterparts described on networks, shown in equations (3) and (5), respectively. A
summary of the protocol is shown in Prot. 1.
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Protocol 1. Quantum walk protocol for transport on network.

Require: Adjacency matrix A for graph I' = (V, E).
Ensure: The source (s) and target (¢) nodes exist.
Let set of verticesis V,and W = {s, t}.
Ay — kA, where k > O(10?).
Setconstant vy € R
Setevolution time 7 € Z
Set L — (D — A)
procedure D-DTQWNetwork L, V, W, 7
Set initial state [¢)(0)) = |]) ® [s).
Set time counter n = 0
while n < 7do
Applywalk operation [¢)(n + 1)) < [SCrar]|?0(n))
n<n-+1
end while
return [¢) (7))
end procedure

Interestingly, it is known that quantum walks localize the walker in case of temporal and/or spatial disorder
in the dynamics [61, 76-79]. Thus in case of an eavesdropper in the system, the effect of their presence directly
translates to noise in quantum walk dynamics, which localizes the walker at the source. This ensures the security
of this protocol, as in case of noise (i.e., eavesdroppers) in the network, the walker will localize at the source and
never move atall.

2.3. Entanglement within the network

In order to create a scenario where the particle has a high probability of being found between only two position
points, we consider the entanglement (measured via von Neumann entropy) between its position and coin
Hilbert spaces, described in section 2.1 as H,, and H,, respectively. Physically, this joint state may be viewed as
representing a qubitlocal to each vector in the position eigenbasis. As the particle traverses this network (i.e.,
upon applications of the shift operation of equation (3)), the action of the coin operator (see equation (5)) may
be seen as manipulating these qubits ‘local’ to each basis vector [80]. Thus the evolution of the local’ coin state
may be seen as,

PIIN) = Tryl(e @ i), (i p (N1, v

where i) is an element of an orthonormal basis set of 7, p(N) is the density matrix corresponding to the
evolved state returned by the Prot. 1 after N steps of evolution. The pii (N) is then the (unnormalized) reduced
density matrix corresponding to the qubit corresponding to the basis vector |i) of the position space. The
normalization is achieved by post selecting on the events when the particle wavefunction collapses to |i), upon
the measurement in the position space. This interpretation may be extended further to include coherences
between any two vectors of the orthonormal basis set, and one may construct a reduced joint density matrix of
two such qubits local to the basis vectors |i) and |j). This is consistent with the tensor product interpretation, as
upon extending this formulation to include the entire eigenbasis of H,, (by considering the joint density matrices
of states local to multiple basis vectors), one obtains the full density matrix p(IN) of the system. The construction
of the reduced density matrix (following equation (7)) will then look like,

pHN)  pI(N)

pIN) = "¢ o) ®)
pF(N) pI(N)
where pii (N) is used in a generalized form given as,
PZ""(N) :Trp{(ﬂc@) |m>p<”|)P(N)}’ m,n eV, 9

where Vis the set of nodes of the graph and ﬁc’j (N)isareduced density matrix of a 2-qubit system. This enables
one to evaluate measures of entanglement on this system, which is an indication of the existence of a local
quantum channel between these qubits. This can be used as a qualitative indication for the existence of a local
quantum channel within the network. In this manuscript, we use the von Neumann entropy as a measure of
entanglement.
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Figure 1. The sparse Erd6s-Rényi random graph used for testing our protocol. The graph (shown in (a)) is generated by the G(n, p)
model, withn = 12and p = 0.1. The source node (node 3) is marked in green, and target node (node 8) is marked in blue. (b) shows
the simulation results of applying our protocol on this graph. It is seen that even after 100 time steps, the probability of the particle to
be found outside the source and target nodes is nearly zero.

3. Results of simulation

3.1. Evolution of probability distribution with time

In this section, we present the results of the simulation on random graphs created by several methodologies. We
first demonstrate this method on a sparse Erdgs-Rényi random graph (also known as the G(#, p) model), as
shown in figure 1. In this case, we consider the probability of the particle to be detected atanynodev € V Wasa
‘loss’. It is seen that the probability of the walker oscillates between the source and target nodes over time,
without losses into the rest of the network. A similar behavior is seen when the number of connections in the
random graph is increased, as in figure 2.

The protocol also shows similar behavior on random graphs created by other strategies, such as the
NewmanWattsStrogatz (NWS) protocol [81]. This method generates a random graph by first constructing a ring
with N nodes, then connecting the ring to its k nearest neighbours. For each node w in the N-ring, an edge (w, m)
is added with probability p, for a randomly selected node 1. This method has the advantage of creating
clustering in the graph structure while retaining a short average path length. A simulation of our protocol on the
NWS graph with N = 34, k = 3, and p = 0.3 is shown in figure 3.

The Erd6s-Rényi model to generate random graphs can be seen as a snapshot of a stochastic process, which
adds more nodes and edges to the network over time. This is useful for applications such as modellingbond
percolation, but it creates a degree distribution which does not model real-world networks very well.
Specifically, they do not feature a high clustering coefficient, and the degree distribution of their nodes does not
approach a power law. This is somewhat accounted for by the use of the NWS protocol, which is able to account
for the clustering behaviour. In order to achieve a power law degree distribution, other models have to be used.
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Figure 2. Results of applying our protocol on random graphs with more connections. Each random graph was made with the G(, p)
method, and a comparison of the probability of the particle to be found is presented for the source-target set of nodes, and the rest of
the network. (a) illustrates the variation of this probability for 4 < n < 100, averaged over 20 instances of a randomly generated
graph for each 1, and p is fixed as 0.3. (b) shows a plot of this probability value for each 0 < p < 1, averaging over 20 instances of a
randomly generated G(#, p) graph for n = 25. A slight fluctuation in loss is seen when the value of p is close to 1, which is due to
truncation errors in simulation.

In this case, we demonstrate the protocol on graphs generated by the Barabési-Albert model [82]. This model
supports features like growth, as well as preferential attachment, which is useful to emulate features observed in
some real-world networks. Figure 4 shows a random graph generated by this model, as well as the results
obtained by implementation of our protocol on this graph. It may be shown via simulation that the protocol is
able to localize the walker between the source and target nodes for any such graph, independent of the generative
parameters.

Thus, we see that irrespective of the number of connections in the random graph, or the method of
graph generation, the probability of the particle oscillates between the position spaces of the source and target
nodes with negligible losses to other nodes. This also underscores the security aspect of this protocol, as it
localizes the particle between the source and target nodes, i.e. any interference by a third party can be detected as
aloss of fidelity of the measured state of the particle.

3.2. Evolution of von Neumann entropy with time
We show the variation of the von Neumann entropy between the source and target nodes, as well as the target
and a node randomly selected from the rest of the network in figure 5.

Thus this protocol is able to selectively create an entangled state between the local qubits of two selected
(source and target) position basis vectors. In case the coin Hilbert space is traced out and only the probability of
the particle to exist at a certain position is measured, then that curve (see figures 2, 3, and 4) shows oscillations
between the source and target nodes.
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Figure 3. The results of our protocol applied to an NWS graph. (a) shows the NWS small-world graph used in our simulation with the
source and target nodes marked in bright green and blue, respectively. The probability of the particle to be found at various nodes of
the network is shown in (b). It is seen that the probability of the particle is seen to oscillate between the source and target nodes, while
losses into the rest of the network are negligibly small.

4. Conclusions

In this work, we have demonstrated an protocol that is capable of enabling secure communication between two
specific nodes on a quantum network. The dynamics of a particle on the quantum network are modelled as a
directed discrete-time quantum walk on a graph, where the structure of the network is captured by the adjacency
matrix of the graph.

The dynamical behaviour of the particle is directed by the protocol such that it has a high probability of being
found at either the source or the target nodes, with a negligibly small probability of being found at any other
node. We test our protocol on Erdds-Rényi, Newman-Watts-Strogatz, and Barabdsi-Albert graphs, and show
thatitis able to produce the desired output independent of the method of graph generation. This indicates the
potential utility of this protocol on real-world realizations of quantum networks at various scales.

This can contribute to the security of communication and transport operations across quantum networks.
The requirement of a secure classical channel can be obviated if the source is able to access the state of a quantum
switch, which can then be used to identify the target and change its coin operator. With suitable modifications,
this protocol can be used for communication systems over any network topology and presents a promising
model for the establishment of private, local quantum communication channels on existing networks. This
model can be extended in the future, to also address cases where the source and target are connected with a path

oflength greater than 1.
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Figure 4. An illustration of our protocol applied to a random graph generated by the Barabasi-Albert preferential attachment model.
(a) shows the random graph used for testing our protocol. This is a 25-node graph, and the source and target nodes are randomly
selected to be nodes numbered 22 and 10, respectively. As with the earlier graphs, the source is marked in bright green and the target is
marked in blue. Each node begins initially with 2 edges, and the probability of an edge pointing to a preexisting node is the degree of
the node. The process was initialized with a 4-node star graph. Results observed by using our protocol on the random graph are shown
in (b). In this network, the particle has a negligible chance of being found outside the source and target nodes.
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Figure 5. An illustration showing the variation of entanglement entropy with time for source and target nodes, and for the target and
another non-target node. The non-target node is selected randomly from the set of nodes of the graph, with the source and targets
removed. The data has been plotted up to 100 time steps, and averaged over 50 graphs with (a) 6, (b) 10, (c) 15, and (d) 20 nodes, over
uniformly sampled values of p between 0 and 1 in the G(, p) random graph model. In each case, it is seen that the entanglement
entropy between the source and target nodes (blue dotted line) is created and remains stable. The target node is largely unentangled
from the other nodes of the network, with small fluctuations in some time steps. This is an artefact of the quantum ratchet formalism
used for the coin operator.
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