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1 Introduction

Given a quantum field theory, it is usually important to understand its behaviour at finite
temperature. That is when one of the directions of the Euclidean theory is taken to be a
circle of radius β, the inverse temperature. This question is particularly relevant when the
quantum field theory is a conformal field theory. Usually critical points of quantum field
theories occur at finite temperature. Furthermore, studying conformal field theories which
arise in AdS/CFT context implies that one is studying properties of AdS black holes.

It is possible to use the symmetries of the conformal field theory to constraint conformal
field theories on S1 ×Rd−1 where the circle S1 is of length β. Such a program was initiated
in [1] and pursued in [2–7]. Under some reasonable assumptions of analyticity of the finite
temperature 2-point functions of primary scalar operators, a thermal inversion formula was
derived [1]. This inversion formula allowed one to obtain the thermal one-point functions
for all operators which appear in the OPE of the given 2 point function. The inversion
formula was applied to fermionic 2-point functions in [2], however the OPE channel studied
was the scalar channel, that is the spinor indices of the fermionic operators in the 2-point
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function were contracted. This channel for instance does not contain the stress tensor of
the theory.

In this paper we apply the OPE inversion formula on fermionic 2-point functions and
focus on the OPE channel which contains the stress tensor. We will see that there are 2
classes of operators that exist in this channel, these operators are schematically of the form

O+[n, l] = ψ̄γµ1∂µ2 · · · ∂µl∂
2nψ, (1.1)

O−[n, l] = ψ̄γµ∂µ∂µ1∂µ2 · · · ∂µl∂
2nψ,

ψ is a Dirac spinor and these operators are rank l symmetric traceless tensors, γµ are the
Dirac matrices. To isolate the one-point functions of operators belonging to each of these
classes we need to apply the OPE inversion formula to 2 related thermal 2-point functions.
There is a third class of symmetric traceless tensors schematically of the form

O0[n, l] = ψ̄∂µ1∂µ2 · · · ∂µl∂
2nψ. (1.2)

These occur in the scalar channel of the OPE expansion of 2 fermionic operators, to isolate
the one-point function of these operators we apply the OPE inversion formula to thermal
2-point functions in which the spinor indices are contracted [2].

After presenting the general formalism for evaluating thermal one-point functions
belonging to the classes in (1.1) we apply it to the mean field theory of fermions (MFT). We
show that the expectation values of operators obtained by expanding the MFT correlator
in the short distance limit agrees precisely with that using the OPE inversion formula. For
d = 2 this check is done for all the operators in the class (1.1), for d > 2 we perform this
check for n = 0, 1. In MFT, operators in the class (1.2) do not appear in the OPE.

We then examine the large N critical Gross-Neveu model in d = 2k+1 dimensions. We
show that the gap equation of the model can be obtained by either demanding operators
ψ̄ψ or ψ̄γµ∂µψ do not occur in the spectrum. The gap equation has a real solution for the
thermal mass for k even. We show that the one-point function of the operator O+[0, 2]
precisely agrees with the stress tensor obtained from the partition function of the theory.
The form of expectation value of O+[0, 2] appears manifestly different from that of stress
tensor from the partition function. But on substituting the value of thermal mass from the
gap equation they precisely agree. Finally we show that for the large N critical Gross-Neveu
model, the expectation values of the three classes of operators in (1.1), (1.2) all are related
by numerical factors, spin and the thermal mass. One such relation we prove using the
OPE inversion formula is

aO0 [0, l] = mthaO+ [0, l]. (1.3)

Here mth is the thermal mass and aO0 and aO+ refer to the thermal expectation values.
Our analysis shows it is sufficient to work with the operators O+[0, l] in this model. Finally,
we quote here the result for the thermal expectation values of the operators in the class
O+[0, l] for the critical large N Gross-Neveu model.

aO+ [n = 0, l] = l

2πk
(
k − 1

2

)
l

(
mth
2

)l+k−1 l+k−1∑
n=0

(l + k − n)2n
(2mth)nn!

Lik+n(−e−mth). (1.4)
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As we have seen the inversion formula applied to the critical Gross-Neveu as well as
the O(N) model [1, 2] yields reasonably compact expressions for the one-point function
of higher spin currents. Since the method can be easily applied to these classes of CFT
in any dimensions we can study the behaviour of these one-point functions for arbitrary
dimensions d = 2k+1, and arbitrary spin. Motivations to study this include the results from
earlier works related to large d conformal field theories in [8–13], and the recent conjectures
in [14, 15], that conformal field theories with a stress tensor in higher dimensions are trivial,
or non-unitary. The large spin exploration is natural due to the observation in [1], that
thermal one-point functions with large spin are universal. Here we see that these one-point
functions asymptote to their Stefan-Boltzmann values at large spin.

To study the dependence of the one-point functions on spin l and dimension d, we
chose the ratio of a given one-point function of spin l operator at the non-trivial fixed point
of say the O(N) model or the Gross-Neveu model to Gaussian fixed point in d = 2k + 1
dimensions. We denote this ratio by

r(l, d) = aO[l]mth ̸=0
aO[l]mth=0

, l = 2, 4, · · · . (1.5)

Note that setting mth = 0 takes the one-point function to the free theory or the Stefan-
Boltzmann result, while we define the non-trivial fixed point by choosing the value of mth
which satisfies the gap equation. This ratio is analogous to the famous ratio between the
stress tensor of N = 4 super-Yang-Mills at strong coupling and the Stefan-Boltzmann result
which is 3/4 or the ratio between the stress tensor of the critical O(N) model at strong
coupling to the Stefan-Boltzmann result with is 4/5 for d = 3. Here we examine the ratio
at arbitrary spins not just l = 2.

For the critical O(N) model at large N , a real solution to the gap equation exists
in 2k + 1 dimensions with k odd. The ratio (1.5) is always less than unity, and as k is
increased with the spin l held fixed, the ratio vanishes. The same behaviour is seen for
the critical Gross-Neveu model at large N which has a real solution to the gap equation
in 2k + 1 dimensions with k even. The fact that on increasing the dimensions the ratio
vanishes seems to indicate that the number of degrees of freedom at the non-trivial fixed
point decreases. It will be interesting to see if such behaviour is true in general not just for
the models studied in this paper. When the dimension is fixed and the spin l is increased,
we see that for both models the ratio (1.5) tends to unity. This is consistent with the
perturbative analysis of [1], for one-point functions at large spin. Their analysis isolated a
universal contribution to the one-point functions at large spin.

The organization of the paper is as follows. In the section 2 we discuss the OPE
expansion of the two-point function of spinor operators and briefly review the OPE inversion
formula. In section 3 we apply our formalism to the MFT of fermions and then in section 4
to the Gross-Neveu model to obtain thermal one-point functions using the OPE inversion
formula. In section 5 we study the behaviour of the one-point functions of both the critical
O(N) model and the Gross-Neveu model both at large d and at large l. Section 6 contains
the conclusions. The appendix A provides the derivation of the gap equation for the
Gross-Neveu model and its stress tensor from the partition function.
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2 Inversion formula for fermionic operators

In this section we wish to obtain the Euclidean inversion formulae for CFT’s at finite
temperature with only fermionic operators generalising the discussion of [1]. Consider the
following fermion bi-linears

O0 = ψ̄∂µ1 · · · ∂µJ∂2nψ − Traces, l = J, (2.1)

O+ = 1
J + 1

(
ψ̄γµ∂

µ1 · · · ∂µJ∂2nψ + cyclic
)
− Traces, l = J + 1,

O− = ψ̄γµ∂µ∂
µ1 · · · ∂µJ−1∂2nψ − Trace, l = J − 1,

where n = 0, 1, . . ., l is the spin and J the number of derivatives and ψ̄ = ψ†. These are the
possible symmetric traceless tensors formed out of bi-linears of fermions which can have
non-trivial expectation value in the thermal vacuum. In this section we obtain the Euclidean
inversion formula which relates one-point functions of the above fermion bi-linears to the
two-point function of the fermions. We test the inversion formula by considering the mean
field theory of fermions. We then apply it the Gross-Neveu model at large N to derive the
one-point functions at finite temperature for the operators listed in (2.1).

2.1 OPE expansion of fermionic correlators

Consider the following two-point functions in a CFT at finite temperature

g1(x) = ⟨ψ̄(x)ψ(0)⟩S1
β
×Rd−1 , (2.2)

g2(x) = ⟨ψ̄(x)γ
µxµ
|x|

ψ(0)⟩S1
β
×Rd−1 ,

g3(x) = ⟨∂µψ̄(x)γµψ(0)⟩S1
β
×Rd−1 ,

where x = (τ, x1 · · ·xd−1) and |x|2 = τ2 + (x1)2 + · · · (x(d−1))2. We will derive inversion
formulae relating these two-point functions to the one-point functions in (2.1). To this we
would need the OPE expansions of these correlators. Let the OPE of the fermion bi-linear
be given by

ψ†
α(x)ψβ(0) =

∑
O∈ψ†×ψ

fψ†ψO
cO

|x|∆O−2∆ψ−Jxµ1 · · ·xµJO
µ1···µJ
βα (0) + · · · . (2.3)

Here Oβαµ1···µJ (0) are all the operators that occur in the OPE of the fermions. The tensor
indices are symmetric and traceless. The · · · refers to other representations which are
anti-symmetric in any pair of the tensor indices. These vanish in the thermal vacuum
and therefore not relevant for our purpose. The representations of SO(d) which acquire
non-trivial expectation values in the vacuum S1

β ×Rd−1 are those which contain the trivial
representation under O(d − 1). The fermion bi-linear indices in (2.3) together with the
tensor indices can be combined into irreducible representations of SO(d), we will do this
subsequently for each of the correlators. The coefficients fψ†ψO, are the structure constants
and cO is the normalization of the two-point function of the operator O.
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Let us substitute the OPE (2.3) into the correlators given in (2.2). For the first
correlator we obtain

g1(x) =
∑

O∈ψ†×ψ

fψ†ψO
cO

|x|∆O−2∆ψ−Jxµ1 · · ·xµJ ⟨O
α; µ1···µJ
α ⟩. (2.4)

The thermal expectation values on the right hand side of (2.4) are the one-point functions
which we are interested in computing. In a theory of only fermions, this class of operators
can be written as the fermion bi-linears1

Oµ1···µJ
0 ≡ Oα;µ1···µJ

α = ψ†∂µ1 · · · ∂µJψ − traces. (2.5)

Using translational invariance and spatial rotational invariance of the thermal vacuum, we
have the following result for thermal one-point functions of symmetric traceless tensors.

⟨Oµ1···µJ (x)⟩ = bOT
∆O(eµ1eµ2 · · · eµJ − Traces). (2.6)

Here eµ is the unit vector in the thermal direction τ . Now we also have the identity

|x|−J(xµ1 · · ·xµJ )(eµ1eµ2 · · · eµJ − Traces) = J !
2J(ν)J

C
(ν)
J (η), (2.7)

where
ν = d− 2

2 , (a)n = Γ(a+ n)
Γ(a) , η = τ

|x|
, (2.8)

and C
(ν)
J (η) is the Gegenbauer polynomial of degree J . Using the property (2.6) and (2.7)

in the expression (2.4), we obtain

g1(x) =
∑

O∈ψ†×ψ
|x|∆O−2∆ψaO0C

(ν)
J (η), (2.9)

aO0 = bO0T
∆O

J !
2J(ν)J

fψ†ψO
cO

.

The above equation is the OPE expansion of the finite temperature two-point function
g1(x), in terms of thermal one-point functions of fermion bi-linears aO0 .

Let us now repeat the analysis for the two-point function g2(x). Substituting the
OPE (2.3), we obtain

g2(x) =
∑

O∈ψ†×ψ
|x|∆O−2∆ψ−J−1xµ1 · · ·xµJxν⟨γ

ν αβOµ1···µJ
βα ⟩. (2.10)

Now the operator on the r.h.s. can be decomposed into various irreducible representations,

γν αβOµ1···µJ
βα =

[ 1
J + 1

(
γν αβOµ1···µJ

βα + γν1 αβOµ2···µJµ
βα + cyclic

)
− Traces

]
+Traces

+ 1
J + 1

(
γν αβOµ1···µJ

βα − γν1 αβOµµ2···µJ
βα

)
+ · · · (J − 1)terms), (2.11)

1In general these operators are just bosonic traceless symmetric tensors. For instance if there are Yukawa
couplings in the theory they could be also be made of bosonic bi-linears. In this work we will restrict our
attention to theories without such couplings.
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where ‘Traces’ are the terms subtracted to ensure that the term in the square bracket on
the first line is a rank J + 1 traceless symmetric tensor. The ‘Traces’ are given by

Traces= 2
(J+1)(d+J−1)

(
δµµ1γραβOρµ2 ···µJ

βα +δµ1µ2γραβOρµ3 ···µJµ1
βα +cyclic

)
. (2.12)

The equation (2.11) essentially writes the tensor product of a vector with a symmetric
traceless tensor of rank J as a sum of symmetric traceless tensors of rank J + 1 and rank
J − 1 together with tensors which are anti-symmetric in two of the indices. Now since
thermal expectation values are non-zero only for symmetric tensors, the tensors which are
anti-symmetric in any two of the indices can be ignored. Using the property (2.6) and the
identity (2.7) in the expression the correlator g2(x) given in (2.10) we obtain

g2(x)=
∑

O∈ψ†×ψ
|x|∆O−2∆ψ

(
aO+C

(ν)
J+1(η)+

2J
(J+1)(d+J−1)aO−C

(ν)
J−1(η)

)
, (2.13)

where

aO+ = bO+T
∆O+

(J + 1)!
2J+1(ν)J+1

fψ†ψO
cO

, (2.14)

aO− = bO−T
∆O−

(J − 1)!
2J−1(ν)J−1

fψ†ψO
cO

.

Here again we restrict our attention to the case where the operators on the R.H.S of (2.13)
are fermion bi-linears given by

O+ = 1
J + 1

(
ψ†γµ∂µ1 · · · ∂µJψ + cyclic

)
− (Traces), (2.15)

O− = ψ†γµ∂µ∂
µ1 · · · ∂µJ−1ψ.

Finally let us examine the correlator g3(x). From (2.3), we obtain the OPE

∂µψ
†(x)γµψ =

∑
O∈ψ†×ψ

fψ†ψO
cO

(
|x|∆O−2∆ψ−J−2(∆O − 2∆ψ − J)xµxµ1 · · ·xµJO

µµ1···xµJ
+

+
(
J + 2J(∆O − 2∆ψ − J)

(J + 1)(J + d− 1)

)
|x|∆O−2∆ψ−Jxµ1 · · ·xµJ−1O

µ1···xµJ−1
− + · · ·

)
.

(2.16)

We can now take thermal expectation values and obtain

g3(x) =
∑

O∈ψ†×ψ
|x|∆O−2∆ψ−1

[
(∆O − 2∆ψ − J)aO+C

(ν)
J+1(η) (2.17)

+
(
J + 2J(∆O − 2∆ψ − J)

(J + 1)(J + d− 1)

)
aO−C

(ν)
J−1(η)

]
.

It is important to realise that due to the presence of operators belonging to the class
O+ as well as O− in the OPE expansions of g2(x) and g3(x) given in (2.13) and (2.17), the
OPE inversion formulas for the one-point functions will involve both these correlators.
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2.2 Euclidean inversion formulas

In this section we briefly review the Euclidean inversion formula introduced in [1] and
obtain the expressions relating the one-point functions listed in (2.1) to the thermal 2-point
functions. One difference we need to keep track is the fact that the 2 point functions g2(x)
and g3(x) involve a linear combination of one-point functions of operators belonging to
class O+ and O− and therefore the inversion formula for these operators will involve linear
combinations of g2(x) and g3(x).

Consider the OPE expansion of a correlator given in the form

g(x) =
∑
O

|x|∆O−2∆ψaOC
(ν)
l (η). (2.18)

The expansions in (2.9), (2.13) and (2.17) are of this form. By introducing the spectral
function â(∆, l) we can write the OPE expansion in terms of an integral

g(x) =
∞∑
l=0

∮ −ϵ+i∞

−ϵ−i∞

d∆
2πi â(∆, l)C

(ν)
l (η)|x|∆−2∆ψ . (2.19)

Here the spectral function should have poles of the form

â(∆, l) ∼ − aO
∆−∆O

. (2.20)

The contour in (2.19) is chosen to encircle the right-half of the ∆ plane when |x| < 1 and
demanding the spectral function does not grow exponentially in this region. Deforming the
contour to encircle the poles results in the sum given in (2.18). The contour in (2.19) has
been chosen so that all the physical poles along with the unit operator are included.

We can invert the equation (2.19) using the orthogonality of the Gegenbauer
polynomials.

â(∆, l) = 1
Nl

∫
|x|<1

ddxC
(ν)
l (η)|x|2∆ψ−∆−dg(x). (2.21)

Here we first use the property∫
Sd−1

dΩC(ν)
l (η)C(ν)

l′ (η) = Nlδll′ , (2.22)

Nl =
41−νπν+ 3

2Γ(l + 2ν)
l!(l + ν)Γ(ν)2Γ

(
ν + 1

2

) ,
to fix on to a particular l. Then the integral over x functions as the Laplace transform
which picks out the relevant pole. It can be seen that (2.21) is consistent, by substituting
for g(x) from (2.19).

Now the Euclidean inversion formula (2.21) is cast as an integral over the 2 dimensional
plane using rotational invariance. Let us first discuss the case d > 2. Using the spatial
SO(d − 1) rotational invariance we can choose to write the d component vector x as
x = (τ, xE , 0, · · · ). So the relevant kinematics can be parametrized by introducing the
following complex variables, as well as polar coordinates.

z = τ + ixE , z̄ = τ − ixE , (2.23)
z = rw, z̄ = rw−1.
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Note that in these variables

η = τ

|x|
= cos θ = 1

2(w + w−1). (2.24)

Therefore the Gegenbauer polynomials are functions of the polar angle θ. It can be written
in terms of the hypergeometric function

C
(ν)
l

(1
2(w+w−1)

)
= Γ(l+2ν)

Γ(ν)Γ(l+ν+1)
(
Fl(w−1)eiπν+Fl(w)e−iπν

)
, Imw> 0

(2.25)
where

Fl(w) = wl+2ν
2F1(l + 2ν, ν, l + ν + 1, w2). (2.26)

The representation in terms of hypergeometric function allows to continue w to the entire
complex plane. For Imw < 0, the phases of the two terms in (2.25) are exchanged. We
see using (2.23), that g(x) is a function of g(z, z̄) = g(r, θ). These observations allow us
to perform all the remaining d− 2 angular integrals in (2.21) leaving the integral over the
complex plane (z, z̄).

Consider g(z, z̄) = g(rw, rw−1) as a function in the complex w plane. We assume
the following analytic properties in the w plane [1]: the 2 point function is analytic in
the w plane except at the branch cuts (−∞,−1/r), (−r, 0), (r, 0), (1/r,∞). The second
assumption is that at large w the growth of g(rw, rw−1) is bounded by the polynomial wl0
for a fixed l0. At small w the growth of g(rw, rw−1) is bounded by w−l0 . These 2 properties
allow one to deform the integral contour over w along the branches (−∞,−1

r ) ∪ (1
r ,∞),

together with the circle at ∞ from that of the unit circle.2 Using these methods and a
change of variables the inversion formula can be written as

â(∆, l) = âdisc(∆, l) + θ(l0 − l)âarcs(∆, l), (2.27)

âdisc(∆, l) = (1 + (−1)l)Kl

∫ 1

0

dz̄

z̄

∫ 1
z̄

1

dz

z
(zz̄)∆ψ−∆

2 −ν(z − z̄)2νFl

(√
z̄

z

)
Disc[g(z, z̄)],

Kl =
Γ(l + 1)Γ(ν)
4πΓ(l + ν) .

Here the discontinuity across the branch cuts is given by

Disc[g(z, z̄)] = 1
i

(
g(z + iϵ, z̄)− g(z − iϵ, z̄)

)
. (2.28)

For l < l0 the contribution from the arcs, which essentially becomes an integral over the
circle at infinity is given by the term âarcs(∆, l) which needs to be evaluated by performing
the following integral in (2.27) over the circle at infinity in the w-plane explicitly.

âarcs(∆, l) = 2Kl

∫ 1

0

dr

r∆+1−2∆ψ
× (2.29)

∮
dw

iw
lim

|w|→∞

(w − w−1

i

)2ν

Fl(w−1)eiπνg(r, w)

 .
2The integration contour can also be deformed towards the origin and this again can be related to the

integral along the contour deformation mentioned above as it is illustrated in detail in [1].
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The expression in (2.27) is the form of the inversion formula we will use for d > 3. Note
that it can be applied to the three correlators in (2.2) as their OPE expansions (2.9), (2.13)
and (2.17) are of the form (2.18).

For d = 2, we need to treat the normalization of the Gegenbauer polynomials carefully.
but in the end the inversion formula is very similar. It is best to first re-examine the OPE
representation of the thermal two-point function which can be written explicitly as

g(x) =
∑
O

|x|∆O−2∆ψbOT
∆O

l!
2l(ν)l

fψ†ψO
cO

C
(ν)
l (η). (2.30)

In the limit d→ 2 or ν → 0, the Gegenbauer polynomials take the limiting form

lim
ν→0

C
(ν)
l (η) = 2ν

l

(
wl + w−l

2

)
= 2ν

l
cos(lθ), l > 0, (2.31)

lim
ν→0

C
(ν)
0 (η) = 1.

From (2.26) we also obtain the following limit

lim
ν→0

Fl(w) = wl. (2.32)

Taking the limit ν → 0 in (2.30), we obtain

g(x) =
∑
O

|x|∆O−2∆ψaO|d=2, aO|d=2 = bO
2l−1T

∆O
fψ†ψO
cO

, (2.33)

aO|d=2 = lim
ν→0

2ν
l
aO|ν , for l > 0, aO|d=2 = lim

ν→0
aO|ν , for l = 0.

Going through a similar analysis we obtain

â(∆, l)disc|d=2 = (1 + (−1)l) 1
2π

∫ 1

0

dz̄

z̄

∫ 1
z̄

1

dz

z
z∆ψ−h̄z̄∆ψ−hDisc[g(z, z̄)], (2.34)

with
h = ∆ − l

2 , and h̄ = ∆ + l

2 . (2.35)

The contribution from the arcs is given by

âarcs(∆, l)|d=2 = 1
2π

∫ 1

0

1
r∆+1−2∆ψ

∮
dw

iw
lim

|w|→∞
w−l. (2.36)

3 Mean field theory of fermions

In mean field theory, a 2n point function is given by pairwise contraction of the n two-point
functions. Therefore, the 2 point function at finite temperature can be obtained by using
the method of images. Consider a fermionic operator ψ of dimension ∆ψ in MFT, then the
thermal two-point function is given by

⟨ψα(x)ψ†
β(0)⟩β =

1
2[
d
2 ]
∑
m∈Z

(−1)m
γµαβx

(m)
µ

|x(m)|2∆ψ+1 , where x(m)
µ ≡{(τ+m), x⃗}. (3.1)
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We have set the inverse temperature β = 1. This correlator obeys anti-periodic boundary
conditions along the thermal circle. We have normalized the correlator, by 2[ d2 ], the
dimension of the Dirac spinor. This is for convenience so that this factor cancels on taking
the trace over the γ-matrices. We will account for this while comparing with our results
from the partition function. Note that scalar correlator g1(x) vanishes, this implies in MFT
the class of operators O0 has zero expectation value in the thermal vacuum.

g2(τ, x⃗). Let us evaluate the correlator g2(x) for MFT3

g2(τ, x⃗) =
1

|x|2∆ψ
+

∞∑
m=−∞
m ̸=0

(−1)m mτ + |x|2

[(τ +m)2 + x⃗2]∆ψ+ 1
2 |x|

. (3.2)

We can systematically expand this correlator in small x so as to compare with the OPE
expansion in (2.13). This expansion is facilitated by the identity

1
(1− 2xy + y2)α =

∞∑
j=0

C
(α)
j yj , (3.3)

where C(α)
j are Gegenbauer polynomials of order j with index α. Once the OPE expansion

and the thermal expectation value of the operators in the class O+, O− are obtained, they
can be compared against the same obtained from the inversion formula. This will provide
an important check on the inversion formula. Indeed, when the formula is applied to g2(τ, x)
given in (3.2), this case would be a distinct check from that done in [1]. Proceeding with
the expansion we obtain

g2(τ, x⃗) =
1

|x|2∆ψ
+

∞∑
m=−∞
m ̸=0

(−1)m (mη + |x|)×
∞∑
j=0

(−1)jC(∆ψ+ 1
2)

j (η) sgn(m)j |x|j

|m|2∆ψ+1+j ,

= 1
|x|2∆ψ

−
∑

j=1,3,...
2η C(∆ψ+ 1

2)
j (η)|x|j(21−2∆ψ−j − 1)ζ(2∆ψ + j)

+
∑

j=0,2,4,...
2C(∆ψ+ 1

2)
j (η)|x|j+1(2−2∆ψ−j − 1)ζ(2∆ψ + 1 + j). (3.4)

In the second line we have cancelled off terms which occur with equal and opposite signs
and then performed the sum over m. The recurrence relation

2(n+ λ)ηC(λ)(η) = (n+ 1)C(λ)
n+1(η) + (n− 1 + 2η)C(λ)

n−1(η), (3.5)

can be used to remove the explicit factor of η in the second line of (3.4). This results in

g2(τ, x⃗)=
1

|x|2∆ψ
+

∑
j=0,2,4,...

2 |x|j+1(2−2∆ψ−j−1)ζ(2∆ψ+1+j)C(∆ψ+ 1
2)

j (η)

−
∑

j=1,3,...
2|x|j (2

1−2∆ψ−j−1)
2
(
j+∆ψ+ 1

2
) ζ(2∆ψ+j)

(
(j+1)C(∆ψ+ 1

2)
j+1 (η)+(j+2∆ψ)C

(∆ψ+ 1
2)

j−1 (η)
)
.

(3.6)
3We have kept track of the ordering of the ψ and ψ̄, which is different in the definition of g2(x) in (2.2).
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To compare with the OPE expansion of the correlator, we would need the index of the
Gegenbauer polynomials to be ν instead of ∆ψ+ 1

2 . For this we can use the following identity

C
(∆)
j (η) =

∑
l=j,j−2,...,jmod 2

(l + ν)(∆) j+l
2
(∆− ν) j−l

2(
j−l
2

)
!(ν) j+l+2

2

C
(ν)
l (η). (3.7)

Then expressing j = 2n+ l and grouping terms with same summation ranges we obtain

g2(τ, x⃗)=
1

|x|2∆ψ
+

∞∑
n=0

l=0,2,...

2|x|2n+l+1(2−2∆ψ−2n−l−1)ζ(2∆ψ+1+2n+l)
(
1− 2n+l+1+2∆ψ

2
(
2n+l+∆ψ+ 3

2

))

×
(l+ν)

(
∆ψ+ 1

2−ν
)
n

(
∆ψ+ 1

2

)
n+l

n!(ν)n+l+1
C

(ν)
l (η)

−
∞∑
n=0

l=0,2,...
n+l ̸=0

2|x|2n+l−1 (22−2∆ψ−2n−l−1)
2
(
2n+l+∆ψ− 1

2

)ζ(2∆ψ+2n+l−1)(2n+l)

×
(l+ν)

(
∆ψ+ 1

2

)
n+l

(
∆ψ+ 1

2−ν
)
n

n!(ν)n+l+1
C

(ν)
l (η). (3.8)

To compare with the OPE expansion, it is useful to separate the n = 0, l = 2, 4, · · · terms
from the last line of the above equation. Then combine the rest with the terms in the first
summation. We can group these terms by shifting n→ n− 1 in the first summation. These
manipulations lead to

g2(τ, x⃗)=
1

|x|2∆ψ
+

∞∑
n=1

l=0,2,...

2(l+ν)(l+2n)
(
1−2−2∆ψ−l−2n+2

)
ζ(l+2n+2∆ψ−1)|x|l+2n−1C

(ν)
l (η)

Γ(n+1)(2∆+2l+4n−1)(ν)l+n+1

×
(
∆ψ+

1
2

)
l+n

(
∆ψ−ν+

1
2

)
n

(
1− 4n(l+ν+n)

(2∆ψ+2l+2n−1)(2∆ψ−2ν+2n−1)

)

+
∑

l=2,4,...

2l
(
2−2∆ψ−l+2−1

)
(l+ν)

(
∆ψ+ 1

2

)
l
ζ(l+2∆ψ−1)|x|l−1C

(ν)
l (η)

(−2∆ψ−2l+1)(ν)l+1
. (3.9)

We re-write the OPE expansion in (2.13) as

g2(τ, x⃗) =
∞∑
n=0

|x|2n+1

d
aO− [n, l = 0]Cν0 (η) +

∞∑
l=1

|x|l−1aO+ [n = 0, l]Cνl (η)

+
∞∑
n=1
l=1

|x|2n+l−1
(
aO+ [n, l] +

2(l + 1)
(l + 2)(d+ l)aO− [n− 1, l]

)
Cνl (η). (3.10)
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Here we have re-labelled the sum over J as l and separated out the l = 0 term as well as
the n = 0 term. We have also used

∆O+[n,l] = 2∆ψ + l − 1 + 2n, ∆O−[n,l] = 2∆ψ + l + 1 + 2n, (3.11)

where l refers to the spin of the operators, J refers to the number of derivatives in the
operators. Now comparing (3.9) and (3.10) we see that only operators with even spins have
non-trivial expectation values in MFT. We also obtain

aO− [n, l = 0] =
2ν(ν + 1)(2ν + 1− 2∆ψ)

(
2−2(∆ψ+n) − 1

) (
∆ψ + 1

2

)
n

(
∆ψ − ν + 1

2

)
n

n!(ν + n+ 1)(ν)n+1

× ζ(2n+ 2∆ψ + 1), (3.12)

and

aO+ [n = 0, l] =
2l
(
2−2∆ψ−l+2 − 1

)
(l + ν)

(
∆ψ + 1

2

)
l
ζ(l + 2∆ψ − 1)

(−2∆ψ − 2l + 1)(ν)l+1
, l = 2, 4, 6 · · · .

(3.13)

Finally for operators with n ≥ 1 and l = 2, 4, 6, · · · we get a single linear equation

aO+ [n, l]+
2(l+1)

(l+2)(d+l)aO− [n−1, l]

=
(l+ν)(l+2n)Γ(ν)2−l−2(∆ψ+n)

(
2l+2(∆ψ+n)−4

)
Γ
(
l+n+∆ψ− 1

2

)
Γ
(
n+∆ψ−ν− 1

2

)
Γ
(
∆ψ+ 1

2

)
Γ(n+1)Γ

(
∆ψ−ν− 1

2

)
Γ(l+n+ν+1)

×ζ(l+2n+2∆ψ−1). (3.14)

At this point there are some observations we can make: note that for ∆ψ = ν + 1
2 , the MFT

reduces to the theory of free fermions in d dimensions. Therefore by equations of motion
we must have

aO−[n,l] = 0, for ∆ψ = ν + 1
2 and n = 0, 1, · · ·, (3.15)

aO+[n,l] = 0, for ∆ψ = ν + 1
2 and n = 1, 2, · · ·.

It can be easily seen that (3.12) satisfies this requirement and (3.14) is consistent with (3.15).
Next, notice that the class of operators aO+[n=0,l] has the stress tensor, let us examine the
one-point function for the free field case

aO+[n=0,l] = −2l(23−(d+l) − 1)
(d− 2) ζ(l − 2 + d) for ∆ψ = ν + 1

2 . (3.16)

We see that the result is proportional to ζ(d) for l = 2, which is the result expected for the
stress tensor of free fermions. The reason the above expression has a divergence at d = 2 is
due to the behaviour of the Gegenbauer polynomials in the limit ν → 0 as shown in (2.31).
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Using the relation given in (2.33) which relates the one-point function in d = 2 to that in
arbitrary d, we obtain

aO+[n=0,l]|d=2 = −2(21−l − 1)ζ(l) for ∆ψ = 1
2 . (3.17)

To solve for aO−[n,l] and aO+[n,l] for n ≥ 1 we need the correlator g3(τ, x⃗).

g3(τ, x). From the MFT correlator, we see that

g3(τ, x⃗) = ⟨∂µψα(x)ψ†
β(0)⟩γ

µ
βα, (3.18)

=
∑
m∈Z

(−1)m d− 2∆ψ − 1
[(τ +m)2 + x⃗2]∆ψ+ 1

2
.

We can again perform the expansion in small x in terms of Gegenbauer polynomials as done
for the correlator g2(τ, x⃗). This results in

g3(τ, x⃗)= (d−2∆ψ−1)
( 1
|x|2∆ψ+1

+
∞∑
n=0

∑
l=0,2,···

2ζ(2∆ψ+1+2n+l)(l+ν)
(
∆ψ+ 1

2

)
l+n

(
∆ψ+ 1

2−ν
)
n

n!(ν)l+n+1

×(2−2∆ψ−2n−l−1)Cνl (η)|x|2n+l
)
. (3.19)

We can rewrite the OPE expansion of the correlator g3(τ, x⃗) given in (2.17) as

g3(τ, x⃗) =
∞∑
n=0

|x|2n
(
1 + 2n

d

)
aO− [n, l = 0]C(ν)

0 (η)

+
∞∑
n=0
l=1

|x|2n+l
[
2(n+ 1)aO+ [n+ 1, l] +

(
l + 1 + 4n(l + 1)

(l + 2)(l + d)

)
aO− [n, l]

]
C

(ν)
l (η).

(3.20)

To obtain this expansion from (2.17) we replace the number of derivatives J by the
appropriate spin l of the operators O+, O− and write their conformal dimensions as
in (3.11). We have also separated out the l = 0 contribution. Now comparing (3.20)
and (3.19), we see that only even spin operators have non-trivial expectation values. For
l = 0 we obtain

aO− [n, l = 0] =
2ν(ν + 1)

(
2−2(∆+n) − 1

) (
∆+ 1

2

)
n

(
∆− ν + 1

2

)
n
(d− 2∆ψ − 1)

n!(ν + n+ 1)(ν)n+1

× ζ(2n+ 2∆+ 1). (3.21)

From g2(τ, x⃗), we had already obtained the expectation value of aO− [n, l = 0] in (3.12).
Note that the above equation is identical to that in (3.12) which serves as an important
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consistency check of our methods. Now for l = 2, 4, . . . and n = 0, 1, · · · we have

2(n+ 1)aO+ [n+ 1, l] +
(
l + 1 + 4n(l + 1)

(l + 2)(l + d)

)
aO− [n, l]

=
2(−2∆ψ + 2ν + 1)(l + ν)

(
2−l−2(∆ψ+n) − 1

) (
∆ψ + 1

2

)
l+n

(
∆ψ − ν + 1

2

)
n

n!(ν)l+n+1

× ζ(l + 2n+ 2∆+ 1). (3.22)

From the OPE expansion of g2(τ, x⃗) we obtained the linear relation between the expectation
values given in (3.14). By replacing n→ n+ 1 we arrive at the equation

aO+ [n+ 1, l] + 2(l + 1)
(l + 2)(d+ l)aO− [n, l]

=
(l + ν)(l + 2n+ 2)Γ(ν)(1− 2−l−2(∆+n))Γ

(
l + n+∆+ 1

2

)
Γ
(
n+∆− ν + 1

2

)
Γ
(
∆+ 1

2

)
Γ(n+ 2)Γ

(
∆− ν − 1

2

)
Γ(l + n+ ν + 2)

× ζ(l + 2n+ 2∆+ 1), (3.23)

for l = 2, 4, . . . and n = 0, 1, · · · .
The equations (3.22) and (3.23) are linear independent equations from which we can

solve for the expectation values aO+ [n+ 1, l], aO− [n, l] for n = 0, 1, · · · and l = 2, 4, · · · . We
can write the explicit values of these expectation values but they are not very illustrative.
For aO+ [n = 0, l], l = 2, 4, · · · , the expression is given in (3.13), while for aO− [n, 0], n =
0, 1, 2 · · · the expectation value can be read out form (3.12). This completes the analysis of
obtaining the one-point functions by directly expanding the two-point functions in small |x|.

3.1 OPE inversion in d = 2

Consider the correlator g2(x) given in (3.2), its OPE expansion is of the form (2.18).
Therefore we can apply the inversion formula to obtain the coefficient â(∆, l) which contains
the information of the one-point functions as residues of the poles in the complex ∆-plane.
Using the co-ordinates z, z̄ defined in (2.23), the MFT thermal two-point function can be
written as

g2(z, z̄)=
1

|x|2∆ψ
+

∞∑
m=−∞
m ̸=0

(−1)m

[(m−z)(m−z̄)]∆ψ+ 1
2

(
−m

2

√
z

z̄
−m

2

√
z̄

z
+
√
zz̄

)
. (3.24)

Now on substituting z = rw and z̄ = rw−1, we see that the correlator vanishes in w plane at
large |w| as well as small |w| whenever ∆ψ ≥ 1/2. In this domain, there is no contribution
from the circle or arcs at infinity in the w-plane and the entire contribution to â(∆, l) arises
from the discontinuity across the branch cuts.4 Therefore we have

â(∆O, l) =
(1 + (−1)l)

2π

∫ 1

0

dz̄

z̄

∫ 1/z̄

1

dz

z
z∆ψ−h̄z̄∆ψ−hDisc[g2(z, z̄)]. (3.25)

4In the domain 0 < ∆ψ < 1/2 we need to evaluate the contributions from the arcs at infinity for
only l = 0.
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In this expression, the branch cut of (3.24) in the w-plane from −m to −∞ has already
been taken care by symmetry with the branch cut from +m to ∞ by the inclusion of (−1)l.
Therefore we need to restrict ourselves to the branch cut on the positive real axis of the
w-plane. It is easy to see that this arises solely due to the following discontinuity

Disc
[ 1
((m− z)(m− z̄))∆ψ+ 1

2

]
=

2 sin
(
π
(
∆ψ + 1

2

))
[(z −m)(m− z̄)]∆ψ+ 1

2
θ(z −m). (3.26)

We are therefore led to perform the integral

â(∆O, l)=
(1+(−1)l)

2π × (3.27)
∞∑
m=1

∫ 1

0

dz̄

z̄

∫ 1/z̄

m

dz

z
z∆ψ−h̄z̄∆ψ−h(−1)m

(
−m

2

√
z̄

z
−m

2

√
z

z̄
+
√
zz̄

) 2sin
(
π
(
∆ψ+ 1

2
))

[(z−m)(m−z̄)]∆ψ+ 1
2
,

≡ I1+I2+I3.

Each of the integrals that occur can be carried out term by term. Let us examine the first
integral which is given by

I1 = −(1 + (−1)l)
2π sin

(
π

(
∆ψ + 1

2

))
× (3.28)

∞∑
m=1

∫ 1

0

dz̄

z̄

∫ 1/z̄

m

dz

z
z∆ψ−h̄− 1

2 z̄∆ψ−h+ 1
2

(−1)mm
[(z −m)(m− z̄)]∆ψ+ 1

2
.

From the integrand it is easy to see that the poles in the ∆O plane arise due to the small z̄
regime. Since we are only interested in the residues at these poles, we can take the upper
limit of the integral over z to infinity. Considering the 2nd term in (3.28), we have

∫ ∞

m

z∆ψ−h̄− 3
2

(z −m)∆ψ+ 1
2
dz =

Γ
(

1
2 −∆ψ

)
Γ(h̄+ 1)

Γ
(
h̄−∆ψ + 3

2

) m−h̄−1. (3.29)

To perform the integral over z̄, we first expand in small z̄ and integrate term by term, this
leads to

(−1)m+1m

∫ 1

0
dz̄

z̄∆ψ−h− 1
2

(m− z̄)∆ψ+ 1
2
=

∞∑
n=0

(
∆ψ + 1

2

)
n

Γ(n+ 1)
(
∆ψ − h+ 1

2 + n
)(−1)(m+1)m−∆ψ−n+ 1

2 .

(3.30)
We can use (3.29), (3.30) to obtain the integral

I1 =
∞∑
n=0

(
∆ψ + 1

2

)
n
Γ(h̄+ 1)

(
1− 2−∆ψ−h̄+ 1

2−n
)
ζ
(
∆ψ + 1

2 + h̄+ n
)

Γ
(
∆ψ + 1

2

)
Γ
(
h̄−∆ψ + 3

2

)
Γ(n+ 1)

(
∆ψ − h+ 1

2 + n
) , (3.31)

for l = 0, 2, 4, · · · ,
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where we have summed over m. We can use the same methods to obtain the remaining two
integrals in (3.27). The second integral is given by

I2 =
∞∑
n=0

(
∆ψ + 1

2

)
n
Γ(h̄)

(
1− 2−∆ψ−h̄+ 3

2−n
)
ζ
(
∆ψ − 1

2 + h̄+ n
)

Γ
(
∆ψ + 1

2

)
Γ
(
h̄−∆ψ + 1

2

)
Γ(n+ 1)

(
∆ψ − h− 1

2 + n
) , (3.32)

for l = 0, 2, 4, · · · ,

while the 3rd integral is given by

I3 =
∞∑
n=0

−2
(
∆ψ + 1

2

)
n
Γ(h̄)

(
1− 2−∆ψ−h̄+ 1

2−n
)
ζ
(
∆ψ + 1

2 + h̄+ n
)

Γ
(
∆ψ + 1

2

)
Γ
(
h̄−∆ψ + 1

2

)
Γ(n+ 1)

(
∆ψ − h+ 1

2 + n
) , (3.33)

for l = 0, 2, 4, · · · .

We examine the residues at the poles in ∆O plane to obtain the one-point functions.
Consider the residue for the operator with dimension ∆O = 2∆ψ + l − 1, these poles occur
only in I2 with n = 0. We obtain the residue

aO+ [n = 0, l] =
2
(
∆ψ + 1

2

)
l
(1− 2−2∆ψ−l+2)ζ(2∆ψ + l − 1)

Γ(l)
(
∆ψ + l − 1

2

) , l = 2, 4, · · · . (3.34)

Comparing this equation with (3.13), we see that it agrees precisely with the one-point
function obtained by the brute force expansion of the thermal two-point function. To do
this, we relate the residue to the one-point function using (2.20) and the one-point function
in arbitrary d to d = 2 using (2.33). Let us now look at the residue at ∆O = 2∆ψ + 2n+ 1,
these poles arise in all the terms I1, I2 and I3. Adding up the contribution from these terms
and using the OPE expansion in (3.10) and (2.20) to identify the residues we get

aO− [n, l=0]=−
2
[(
∆ψ+ 1

2

)
n

]2
(1−2∆ψ)(1−2−2(∆ψ+n))ζ(2∆ψ+2n+1)

n!(n+1)! . (3.35)

Again this agrees with the one-point function obtained by the small x expansion in (3.12) after
using the relation to d = 2 in (2.33). Finally let us examine the residues at ∆O = 2∆ψ+2n+l
with l = 2, 4, · · · and n = 0, 1, 2, · · · . Again these poles arise from all terms I1, I2, I3, the
contribution from I2 can be isolated easily once one makes a shift n→ n+1 in I2. Summing
these residues and again using (3.10) and (2.20), we obtain the relation,

aO+ [n+ 1, l] + 2(l + 1)
(l + 2)2 aO− [n, l]

=
(2∆ψ − 1)(l + 2n+ 2)(1− 2−l−2(∆ψ+n))

(
∆ψ + 1

2

)
n

(
∆ψ + 1

2

)
l+n

ζ(l + 2n+ 2∆ψ + 1)

Γ(n+ 2)Γ(l + n+ 2) .

(3.36)

We see that this equation coincides precisely with (3.23) once the d = 2 limit is taken and
we use the relation (2.33).
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Let us now consider the correlator g3(x), we can write its OPE expansion given
in (3.20) as,

g3(x) =
∞∑

n,l=0
c[n, l] |x|2n+lC

(ν)
l (η), (3.37)

with

c[n, l = 0] =
(
1 + 2n

d

)
aO− [n, l = 0],

c[n, l ≥ 1] =
(
2(n+ 1)aO+ [n+ 1, l] +

(
l + 1 + 4n(l + 1)

(l + 2)(l + d)

)
aO− [n, l]

)
. (3.38)

Now let us examine the MFT thermal correlator g3(x) which is given by,

g3(τ, x⃗) =
∑
m∈Z

(−1)m 1− 2∆ψ

[(τ +m)2 + x⃗2]∆ψ+ 1
2
. (3.39)

This correlator is very similar to the one studied in [1] in MFT for bosonic operators of
dimensions ∆ψ To obtain the two-point function (3.39) from a bosonic MFT correlator,
we need to shift ∆ψ → ∆ψ + 1

2 , there is also an insertion of (−1)m with an overall factor
1− 2∆ψ. Taking these changes into account and applying the inversion formula we obtain

c[n, l] = 4(d− 2∆ψ − 1)ζ(2∆ψ + 1 + l + 2n)

(
∆ψ + 1

2

)
n+l

(
∆ψ + 1

2

)
n

n!Γ(n+ l + 1) (2−2∆ψ−l−2n − 1),

l = 0, 2, 4, · · · (3.40)

We can now use (3.38), to identify the one point functions of interest, for l = 0, we obtain

aO− [n, l=0]=
4(1−2∆ψ)

(
2−2(∆ψ+n)−1

)((
∆ψ+ 1

2

)
n

)
2ζ(2n+2∆ψ+1)

(n+1)Γ(n+1)2 . (3.41)

We see that it agrees with the small |x| expansion of the correlator in (3.12) after using the
relation to d = 2 in (2.33). For l ≥ 2 we obtain the relation

2(n+1)aO+ [n+1, l]+
(
l+1+4n(l+1)

(l+2)2

)
aO− [n, l]

= 4(1−2∆ψ)ζ(2∆ψ+1+l+2n)

(
∆ψ+ 1

2

)
n+l

(
∆ψ+ 1

2

)
n

n!Γ(n+l+1) (2−2∆ψ−l−2n−1). (3.42)

Again this equation precisely agrees with the second linear equation (3.23) between one
point functions of O−, O+ obtained using the brute force expansion in small |x|, when
d = 2 and after using the relation (2.33).
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3.2 OPE inversion in d > 2

The inversion formula for d > 2 dimensions is given in (2.27).

â(∆, l) = âdisc(∆, l) + θ(l0 − l)âarcs(∆ − l). (3.43)

The correlator of interest is the mean field theory correlator g2(x) given in (3.24), the form
of the MFT correlator is invariant across dimensions once we choose the kinematics as
discussed around (2.23). The contribution from the âarcs at infinity is given by (2.29)

âarcs(∆, l) = 2Kl

∫ 1

0

dr

r∆+1−2∆ψ
× (3.44)∮

dw

iw
lim

|w|→∞

[
(w − w−1)2νFl(w−1)eiπνg(r, w)

]
.

Using the definition of Fl(w) given in (2.26), we see that the contribution reduces to

âarcs(∆, l) = 2Kl

∫ 1

0

dr

r∆+1−2∆ψ
×
∮
dw

iw
lim

|w|→∞
w−lg2(r, w). (3.45)

From the expression of the 2-point function for g2 given in (3.24), it vanishes as |w|−∆+ 1
2

for large |w|. Therefore again as in the case of d = 2, if ∆ψ ≥ 1
2 , we see that there is no

contribution from the arcs at infinity and for 0 < ∆ψ <
1
2 , we just need to include the arc

contribution for the l = 0 case. As in d = 2 dimensions, we will take ∆ψ ≥ 1
2 . We are thus

led to evaluating only the contribution from the discontinuity across the branch cuts, which
is given by

âdisc(∆, l) = (1 + (−1)l)Kl

∫ 1

0

dz̄

z̄

∫ 1
z̄

1

dz

z
(zz̄)∆ψ−∆

2 −νFl

(√
z̄

z

)
Disc[g(z, z̄)], (3.46)

Kl =
Γ(l + 1)Γ(ν)
4πΓ(l + ν) .

The discontinuity across the branch cuts is given in (3.26). Substituting this, we obtain the
following expression for the one point function

â(∆, l) = (1 + (−1)l)Kl

∞∑
m=1

∫ 1

0

dz̄

z̄

∫ max(m,1/z̄)

1

dz

z
(zz̄)∆ψ−∆

2 −ν(z − z̄)2νFJ

(√
z̄

z

)

×
(−1)m2 sin

(
π
(
∆ψ + 1

2

))
[(z −m)(m− z̄)]∆ψ+ 1

2

(
− m

2

√
z

z̄
− m

2

√
z̄

z
+

√
zz̄

)
,

≡ I1 + I2 + I3. (3.47)

The last line defines the three integrals which must be done to obtain â(∆, l). Let us
examine the first integral

I1 = 2Kl sin
(
π

(
∆ψ + 1

2

))
(3.48)

×
∫ 1

0

dz̄

z̄

∫ max(m, 1
z̄ )

m

dz

z

(−1)m(−m)FJ
(√

z̄
z

)
(z − z̄)2ν(zz̄)−

∆
2 +∆ψ−ν

(z −m)∆ψ+ 1
2 (m− z̄)∆ψ+ 1

2

√
z

z̄
,

l = 0, 2, · · · .
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It is convenient to define new variables

z̄ = mz′z̄′, z = mz′. (3.49)

Using the (z′, z̄′) variables we obtain the integral

I1(m) = 2m−∆(−1)m+1Kl sin
(
π

(
∆ψ + 1

2

))∫ 1

0

dz̄

z̄

∫ max
(

1
m

√
z̄
,1
)

1

dz

z

[
(3.50)

(z − 1)−∆ψ− 1
2 (1− zz̄)−∆ψ− 1

2 (z − zz̄)2ν
(
z2z̄

)−∆
2 +∆ψ−ν

z̄−
1
2FJ

(√
z̄
) ]
.

Here we have re-named the primed variables and isolated the m-th term in the sum. As
in the case of d = 2 and in [1], we expect the poles to arise at z̄ → 0 in the integrand.
Therefore, we can take the upper limit of the z integration to ∞ and the integrals over z
and z̄ factorize. Performing the integral over z from 1 to ∞ we obtain

I1(m) = 2πKlm
−∆(−1)m+1Γ(∆ + 1)

Γ
(

1
2 +∆ψ

)
Γ
(
∆−∆ψ + 3

2

) ∫ 1

0
dz̄

√
1
z̄
(−z̄)−∆ψ− 1

2 (1− z̄)2ν z̄−
∆
2 +∆ψ−ν−1

× 2F1

(
∆+ 1,∆ψ + 1

2;∆−∆ψ + 3
2;

1
z̄

)
FJ
(√

z̄
)
. (3.51)

We can now expand in small z̄ and perform the integrals term by term. The leading and
the sub-leading terms are given by

I1(m) =
2πKlm

−∆(−1)m+1Γ
(
∆−∆ψ + 1

2

)
Γ
(

1
2 +∆ψ

)
Γ(1 + ∆− 2∆ψ)

∫ 1

0
dz̄z̄(−

∆
2 + l

2 +∆ψ− 3
2) (3.52)

×
[
1 + z̄

(
ν(l + 2ν)
l + ν + 1 + (∆− 2∆ψ)(1 + 2∆ψ)

2∆− 2∆ψ − 1

)
+O(z̄2)

]
.

Performing the sum over m and the integral over z̄, we obtain

I1 =
Γ(ν)Γ(l+1)Γ

(
∆−∆ψ+ 1

2

)
(1−21−∆)ζ(∆)

Γ(l+ν)Γ
(

1
2+∆ψ

)
Γ(1+∆−2∆ψ)

(3.53)

×
[

1
(−∆+l+2∆ψ−1)+

(
ν(l+2ν)
l+ν+1 + (∆−2∆ψ)(1+2∆ψ)

2∆−2∆ψ−1 −2ν
)

1
(−∆+l+2∆ψ+1)

]

+· · · .

Let us evaluate the residue at the pole ∆ = 2∆ψ + l − 1, from the general OPE expansion
in (3.10) we see residue results in following one point function

aO+ [n = 0, l] = −
l
(
∆ψ + 1

2

)
l
(1− 2−∆ψ−l+2)ζ(2∆ψ + l − 1)

(ν)l
(
∆ψ + l − 1

2

) . (3.54)

This result precisely coincides with the one point function obtained in (3.13) by the directly
expanding the correlator g2(x) in the small x expansion.
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We can proceed on similar lines and evaluate the leading contribution of I2 in the small
z̄ expansion of the integrand. This allows us to obtain the residues at ∆ = 2∆ψ + l + 1.
These are given by

I2 =
Γ(ν)Γ(l + 1)Γ

(
∆−∆ψ + 1

2

)
(1− 21−∆)ζ(∆)

Γ(l + ν)Γ
(

1
2 +∆ψ

)
Γ(1 + ∆− 2∆ψ)(−∆+ l + 2∆ψ + 1)

+ · · · , (3.55)

and

I3 = −2
Γ(ν)Γ(l + 1)Γ

(
∆−∆ψ − 1

2

)
(1− 21−∆)ζ(∆)

Γ(l + ν)Γ
(

1
2 +∆ψ

)
Γ(∆− 2∆ψ)(−∆+ l + 2∆ψ + 1)

+ · · · . (3.56)

From the expression of I1 in (3.53) we see that too contains a pole at ∆ = 2∆ψ + l + 1.
Adding up the residue at ∆ = 2∆ψ + 1, l = 0 allows us to obtain the one point function

aO− [n = 0, l = 0] = 2(1− 2−2∆ψ)(2∆ψ − 2ν − 1)ζ(2∆ψ + 1). (3.57)

Here we have related the residue to the one point function using (3.10). We see that the
result is in precise agreement with (3.12) which is obtained by the brute force expansion of
the correlator g2(x). Finally for l > 0 we can combine the all the residues at ∆ = 2∆ψ+ l+1
from I1, I2, I3 from (3.53), (3.55), (3.56) to obtain the equation

aO+ [1, l] +
2(l + 1)

(l + 2)(d+ l)aO− [0, l] = (3.58)

(l + 2)
(
∆ψ + 1

2

)
l

(
∆ψ − ν − 1

2

)
(1− 2−∆ψ−l)ζ(2∆ψ + l + 1)

(ν)l(l + ν + 1) .

Again we have used the OPE expansion (3.10) to identify the linear combination of the
one-point functions with the residue. The result precisely coincides with the equation (3.23)
obtained by the brute force expansion of g(x) in small |x|.

Let us finally examine the correlator g3(x) given in (3.18). As we have discussed for
the case of d = 2, this two-point function is similar to the two-point function of scalars
in MFT studied in [1] but with a (−1)m inserted in the sum over images. We also need
to replace ∆ψ → ∆ψ + 1

2 and multiply by the overall factor 2ν + 1− 2∆ψ. Consider the
expansion of g3(x) given in (3.37), using the inversion formula given in [1] together with
the modifications mentioned above, we obtain the residue at ∆ = 2∆ψ + 1 + l,5

c(0, l) = 2

(
∆ψ + 1

2

)
l

(ν)l
(2∆ψ − 2ν − 1)(1− 2−(2∆ψ+l))ζ(2∆ψ + 1 + l). (3.59)

We can now use the equations (3.38) to identify the one point functions. We obtain for l = 0,

c(0, 0) = aO− [n = 0, l = 0] = 2(1− 2−2∆ψ)(2∆ψ − 2ν − 1)ζ(2∆ψ + 1). (3.60)

5This is equation (4.19) of [1].
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For l = 2, 4, · · · . we get

c(0, l ≥ 2) = 2aO+ [1, l] + (l + 1)aO− [0, l] (3.61)

= 2

(
∆ψ + 1

2

)
l

(ν)l
(2∆ψ − 2ν − 1)(1− 2−(2∆ψ+l))ζ(2∆ψ + 1 + l).

Note that this equation precisely coincides with the linear equation relating these one point
functions given in (3.22) obtained by the small x expansion of the correlator g3(x).

This concludes the discussion of using the inversion formula for the MFT of fermions.
It is important to mention that the application of the inversion formula on the correlator
g2(x) is not related to the one studied for the scalars in [1]. The MFT correlator g2(x)
in (3.24) has factors which involve

√
z,
√
z̄, inspite of this, the location of branch cuts in

the complex w-plane falls into the general discussion of [1]. Therefore we could apply the
inversion formula leading to results which agree with the brute force small x expansion of
the correlator g2(x).

4 The critical Gross-Neveu model at large N

In this section we study thermal one-point functions in the critical U(N) Gross-Neveu model
at large N in arbitrary odd d = 2k + 1 dimensions. The theory is defined using the action

S =
∫
ddx

[
iψ̄aγ

µ∂µψa +
λ

N
(ψ̄aψa)2

]
, (4.1)

where N is the number of fermions and a = 1, 2, · · · , N . For d > 3, the interaction is
non-renormalizable, nevertheless in [2, 16, 17], it has been argued that on choosing a
definite prescription to evaluate the partition function one is led to a gap equation which is
independent of the cutoff at large N .6 The derivation of the gap equation is given in the
appendix A, the equation is given by

2(2mth)k
k−1∑
n=0

(k − n)2n
(2mth)nn!

Lik+n(−e−mth) + (mth)2k√π
Γ
(

1
2 + k

)
cosπk

= 0. (4.2)

The gap equation has a real solution for the thermal mass mth in dimensions d = 2k + 1,
with k = 2, 4, 6, · · · . While for k = 1, 3, 5, · · · , the gap equation has complex solutions for
mth. The table 1 lists the thermal masses of the Gross-Neveu model in various dimensions.

In [1], it was observed that for the bosonic O(N) model in d = 3 the corresponding
gap equation can be obtained by demanding the scalar bilinear ϕaϕa with dimension ∆ = 1
does not exist in the spectrum at the critical point. This observation was also seen to
hold true for the O(N) model in arbitrary odd dimensions in [2]. This paper also studied
the application of the inversion formula for the correlator g1(x) in Gross-Neveu model in
arbitrary odd dimensions. Similar to the bosonic case, it was observed that the gap equation
of the Gross-Neveu model in (4.2) can be obtained by demanding that the operator O0[0, 0]
or schematically the bilinear ψ̄ψ with dimensions ∆ = 2k does not exist in the spectrum at
the critical point.

6A similar procedure has been followed to obtain the gap equation and the thermal mass for the bosonic
O(N) model in arbitrary d dimensions [2, 18].
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In this section, we study the correlator g2(x) in detail and also examine the correlator
g1(x) and g3(x). We see that the absence of the operator O−[0, 0] which is schematically
of the form ψ̄γµ∂µψ in the spectrum also leads to the identical gap equation in (4.2). We
then evaluate the one-point functions of operators O+[0, l] or operators of the form

O+[0, l] : ψ̄γµ1∂µ2 · · · ∂µlψ, ∆ = 2k + l − 1. (4.3)

We show that the one-point functions of these operators are given by

aO+ [0, l] =
l (mth)l+k−1

πk2l+k
(
k − 1

2

)
l

l+k−1∑
n=0

(k + l − n)2n
2nn!(mth)n

Lik+n(−e−mth), (4.4)

l = 2, 4, · · · .

The one-point function aO+ [0, l = 2] corresponds to the stress tensor. In the appendix A,
we have evaluated the stress tensor directly from the partition function. This is given by

T00 = (mth)2k+1

2k+2πk−
1
2Γ
(
k + 3

2

)
cosπk

(4.5)

+ (mth)k+1

πk

k+1∑
n=0

[(k + n)2 + (k − n)](k − n+ 2)2n−2
2nn!(mth)n

Lik+n(−e−mth).

Manifestly the one-point function aO+ [0, l = 2] does not seem to agree with the stress tensor
in (4.5), however on substituting the value of mth from the gap equation (4.2) and scaling
by the overall dimension dependent constant they precisely coincide. The overall scaling is
because the one-point function aO+ [0, l = 2] also contains the structure constant fψ†ψT and
the normalisation of the two point function cT . The table 1 also compares the values of
aO+ [0, l = 2] with the stress tensor.

Our analysis also shows that the one-point functions in (4.4) are related to that of
one-point functions of O0[0, l] or operators of the form

O0[0, l] : ψ̄∂µ1∂µ2 · · · ∂µlψ ∆O = 2k + l. (4.6)

The relation is given by
aO0 [0, l] = mthaO+ [0, l]. (4.7)

Similarly evaluating the one-point functions aO+ [1, l] and aO− [0, l], we see that they are
related to the one-point functions aO0 [0, l] by factors which depend on l and mth. Thus by
explicit calculation, we see that the one-point functions of all fermion bi-linears are related
to aO0 [0, l] which occurs in the OPE expansion of g1(x). It is interesting to contrast this
with MFT, in which g1(x) trivially vanished and did not contain any one-point functions.

4.1 OPE inversion on g2(x)

The two-point function of fermions with a thermal mass mth and at finite temperature is
given by

⟨ψα(x)ψ†
β(0)⟩ =

i

2
d−1

2

∑
n, k0=2π(n+ 1

2)

∫
dd−1k

(2π)d−1
γµαβkµ − imthδαβ

k2 +m2
th

eikx. (4.8)
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d mth(∈ R) aO+ [0, l] T00 aT = 2kk(2k − 1)aO+ [0, l]
5 1.48051 −0.04048 −0.971519 −0.971519
9 2.86003 −0.0125136 −5.6061 −5.6061
13 4.24178 −0.0159513 −67.3783 −67.3783
17 5.6273 −0.0460522 −1414.72 −1414.72
21 7.01451 −0.23691 −46093.1 −46093.1
25 8.40257 −1.90627 −2.15503× 106 −2.15503× 106

29 9.7911 −22.0996 −1.36866× 108 −1.36866× 108

33 11.1799 −348.833 −1.13391× 1010 −1.13391× 1010

37 12.569 −7193.26 −1.18797× 1012 −1.18797× 1012

41 13.9581 −187758.14 −1.53565× 1014 −1.53565× 1014

45 15.3474 −6.05104× 106 −2.40094× 1016 −2.40094× 1016

49 16.7368 −2.35981× 108 −4.46587× 1018 −4.46587× 1018

53 18.1262 −1.09528× 1010 −9.74651× 1020 −9.74651× 1020

57 19.5156 −5.96646× 1011 −2.46648× 1023 −2.46648× 1023

61 20.9051 −3.76957× 1013 −7.16416× 1025 −7.16416× 1025

65 22.2946 −2.73404× 1015 −2.36731× 1028 −2.36731× 1028

69 23.6842 −2.25624× 1017 −8.82995× 1030 −8.82995× 1030

73 25.0737 −2.10199× 1019 −3.69208× 1033 −3.69208× 1033

77 26.4633 −2.19548× 1021 −1.71994× 1036 −1.71994× 1036

81 27.8529 −2.55503× 1023 −8.87735× 1038 −8.87735× 1038

Table 1. The table shows the agreement in the value of stress tensor evaluated from the partition
function given in (4.5) with the one-point function from OPE inversion formula given in (4.4) at
l = 2. We need the 2k, the dimension of the Dirac spinor in the last column, since we had factored
this out in the two point function (4.8), the rest of the factors in the last column are because of the
presence of the structure constant fψ†ψO and the normalization of the 2-pt functions cO in aO+ [0, 2].

Note that this correlator is anti-periodic under the shift τ → τ + 1, again we have divided
by the dimension of the Dirac spinor so that traces over γ matrices gives unity. It is useful
for us to write down the correlator with ψ̄ and ψ inter-changed for the constructions of
g2(x) and g3(x). From (4.8) we obtain

⟨ψ†
β(x)ψα(0)⟩ =

i

2
d−1

2

∑
n, k0=2π(n+ 1

2)

∫
dd−1k

(2π)d−1
γµαβkµ + imthδαβ

k2 +m2
th

eikx. (4.9)

To derive (4.9) from (4.8), we inter-change the fermions, change the dummy variables of
integrations and summations and also use translation invariance. Using this we can write
down the correlator g2(x) using the definition in (2.2)

g2(τ, x⃗) =
i

|x|
∑

n, k0=2π(n+ 1
2 )

∫
dd−1k

(2π)d−1
kµx

µ

k2 +m2
th

eikx,

= xµ∂µ
|x|

∑
n, k0=2π(n+ 1

2 )

∫
dd−1k

(2π)d−1
eikx

k2 +m2
th

. (4.10)
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To perform the integral, we first use the Poisson re-summation formula to convert the sum
over Matsubara frequencies to sum over images in τ .

∑
n∈Z

f
[
(2n+ 1)π

]
=
∑
n∈Z

(−1)n
∫ ∞

−∞

dω

2π f(ω)e
inω. (4.11)

Applying the re-summation on the integral in (4.10) and performing the resultant integral,
we obtain

∑
n, k0=2π(n+ 1

2)

∫
dd−1k

(2π)d−1
eik⃗.x⃗eik0τ

k2
0 + k⃗2 +m2

th
=
∑
n∈Z

(−1)n
∫
dd−1kdω

(2π)d
eik⃗·x⃗eiω(τ+n)

ω2 + k⃗2 +m2
th
,

=
∑
n∈Z

(−1)n(2π)−
d
2

( |x(n)|
mth

)1− d
2
K d

2−1(mth|x(n)|).

(4.12)

Here x(n) = (τ +n, x⃗), choose the configuration given in (2.23) we can express the correlator
as a function of (z, z̄)

g2(z, z̄) =
∑
m∈Z

(−1)m+1
(
mth
2π

) d
2
[
− m

2

√
z

z̄
− m

2

√
z̄

z
+
√
zz̄

]K d
2

(
mth

√
(m− z)(m− z̄)

)
(√

(m− z)(m− z̄)
)d/2 .

(4.13)
One consistency check of this correlator is the following, on taking the mth → 0 limit it is
proportional to the MFT correlator in (3.2) or (3.24) with ∆ψ = k

g2(z, z̄)|Gross−Neveu, mth→0 = −
Γ
(
k + 1

2

)
2πk+ 1

2
g2(z, z̄)|MFT, ∆ψ=k. (4.14)

On comparing the two-point function in (4.13), with the corresponding one for the bosonic
O(N) model studied in [1], we have an insertion of (−1)m since we are dealing with fermions.
We also have the factor in the square brackets in addition to the Bessel function. Examining
this factor in the w-plane where w is defined as (2.23), we see that this factor does not
affect the branch cut structure present in the Bessel function together with the factor(√

(m− z)(m− z̄)
)−d/2. Therefore, the branch cuts in the w-plane are as assumed in

section 2.2 and we can proceed to apply the inversion formula. Let us first write down the
contribution from the discontinuities

âdisc(∆, l) = 2Kl

∫ 1

0

dz̄

z̄

∫ 1
z̄

1

dz

z
(z − z̄)2ν(zz̄)

1
2−

∆
2 Fl

(√
z̄

z

)
Disc[g2(z, z̄)]. (4.15)

Here we have substituted ∆ψ = d−1
2 and l ∈ 2Z. At this point we note that we have taken

some input from the perturbative results of [8, 19], that the fundamental field does not
acquire anomalous dimensions at large N for the Gross-Neveu model. It should also be
noted that the branch cut for each term in (4.13) depends on m and the integration range
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in z depends on m for each term. As we have mentioned earlier, the branch cut in the
w-plane can be obtained from the relation

Disc

Kk+ 1
2

(√
−x
)

(−x)
k
2 + 1

4

 = π
J− 1

2−k
(
√
x)

x
k
2 + 1

4
θ(x). (4.16)

Substituting this relation in (4.15) we obtain

âdisc(∆, l)= 2πKl

(
mth
2π

) d
2 ∞∑
m=1

∫ 1

0

dz̄

z̄

∫ max(m, 1
z̄ )

1

dz

z
(z−z̄)2ν(zz̄)

1
2−

∆
2 Fl

(√
z̄

z

)
(4.17)

×
(−1)m+1J− 1

2−k

(
mth

√
(z−m)(m−z̄)

)
[
(z−m)(m−z̄)

] k
2 + 1

4

[
−m

2

√
z

z̄
−m

2

√
z̄

z
+
√
zz̄

]
.

≡ I1+I2+I3.

Just as before the last line defines the 3 integrals required to obtain â(∆, l). Consider the
m-th term of the first integral,

I1(m) = πm(−1)mKl

(
mth
2π

) d
2
∫ 1

0

dz̄

z̄

∫ max(m, 1
z̄ )

1

dz

z

[
(z − z̄)2ν(zz̄)

1
2−

∆
2 Fl

(√
z̄

z

)√
z

z̄

×
J− 1

2−k

(
mth

√
(z −m)(m− z̄)

)
[
(z −m)(m− z̄)

] k
2 + 1

4

]
.

(4.18)

We follow the same procedure as in the application of the inversion formula for the MFT to
find the leading poles. We first change variables as in (3.49), this leads to

I1(m) = πmk+ 1
2−∆(−1)m

(
mth
2π

) d
2
Kl

∫ 1

0
dz̄

∫ max
(

1
m

√
z̄
,1
)

1
dz

[
z̄−1−∆

2 z2k−1−∆(z − 1)−
k
2−

1
4

× (1− z̄)2k−1(1− zz̄)−
k
2−

1
4Fl

(√
z̄
)
J− 1

2−k

(
mthm

√
(z − 1)(1− zz̄)

)]
. (4.19)

Now we can expand in small z̄, this decouples the integrals and then we perform the integral
term by term in z̄. The leading pole is given by

I1(m)(0) = 4πmk+ 1
2−∆(−1)m

(
mth
2π

)k+ 1
2
Kl

1
−∆+ l + 2k − 1 (4.20)

×
∫ ∞

0
y−k+ 1

2 (1 + y2)2k−1−∆J− 1
2−k

(
mthm y

)
.

To obtain the above equation, we have also made a change of variables to y =
√
z − 1.

The superscript denotes the fact that we are focussing on the leading term in the small z̄
expansion. The integral over y is known and we obtain

I
(0)
1 =

∞∑
m=1

2(−1)mπ
1
2−k2−∆+k+ 1

2m
1
2−km

∆−k+ 1
2

th Kl

Γ(1 + ∆− 2k)(−∆+ l + 2k − 1) K∆−k+ 1
2
(mthm). (4.21)
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We also need the first sub-leading term in the small z̄ expansion. After performing the z̄
integral, the first sub-leading contribution is given by

I
(1)
1 (m)= 4πmk+ 1

2−∆(−1)m
(
mth
2π

)k+ 1
2
Kl

1
−∆+l+2k+1×I, (4.22)

I =
∫ ∞

0
dyy−k+ 1

2 (1+y2)2k−1−∆
[(

−(2k−1)(2+l)
1+2k+2l +

(
k+1

2

)
(1+y2)

)
J− 1

2−k
(y)

+mmth
2 y(1+y2)J 1

2−k
(y)
]
.

Integrating over z we obtain

I
(1)
1 (m) = 2(−1)mπ

1
2−k2−∆+k+ 1

2m
1
2−km

∆−k+ 1
2

th Kl

(−∆+ l + 2k + 1)

[
−(2k − 1)(2 + l)

1 + 2k + 2l
K 1

2 +∆−k(mmth)
Γ(1 + ∆− 2k)

+(2k + 1)(mmth)−1
K− 1

2 +∆−k(mmth)
Γ(∆− 2k) +

K− 3
2 +∆−k(mmth)
Γ(∆− 2k)

]
. (4.23)

Let us evaluate the residue at the pole ∆ = 2k + l − 1, using the OPE expansion
in (3.10) we can identify the one-point functions for the following operators

aO+ [n = 0, l]
∣∣
disc =

∞∑
m=1

2(−1)mm
1
2−kπ

1
2−kKlm

l+k− 1
2

th

2l+k−
3
2Γ(l)

Kl+k− 1
2
(mmth). (4.24)

To perform the sum over m, we use the following property of the Bessel function with half
integer orders.

Kl+ 1
2
(x) = e−x

l∑
n=0

√
π(l + 1− n)2n

(2x)n+ 1
2n!

, l ∈ Z. (4.25)

Substituting this identity in (4.24) and performing the sum over m, we obtain

aO+ [n=0, l] = l

2πk
(
k− 1

2

)
l

(
mth
2

)l+k−1 l+k−1∑
n=0

(l+k−n)2n
(2mth)nn!

Lik+n(−e−mth), (4.26)

where l = 2, 4, , · · · . We will show subsequently that the contribution from the arcs at
infinity vanishes for l > 0, Therefore we have identified these residues to be the complete
contribution to the one-point function of the operators O+[0, l]. A simple check is to observe
that the one-point functions in (4.26) coincides with the MFT expression in (3.54) on taking
mth → 0 and taking ∆ψ = k together with using the relation (4.14).

Similarly we can evaluate the contribution of the leading expansion in z̄ in the integrands
of I2 and I3. This results in poles at ∆ = 2k + l + 1, the contributions are

I2(m) = 2(−1)mπ
1
2−k2−∆+k+ 1

2m
1
2−km

∆−k+ 1
2

th Kl

(−∆+ l + 2k + 1)Γ(1 + ∆− 2k) K 1
2 +∆−k(mmth), (4.27)

and

I3(m) = 8(−1)m+1π
1
2−k2−∆+k+ 1

2m− 1
2−km

∆−k− 1
2

th Kl

(−∆+ l + 2k + 1)Γ(∆− 2k) K− 1
2 +∆−k(mmth). (4.28)
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The sum of the residues of the poles from I
(1)
1 (m), I2(m) and I3(m) is given by

−I(m)| Res at ∆=2k+l+1

= (−1)mKlπ
1
2−k2−k−l+

1
2m− 1

2−k(mth)l+k+ 1
2

Γ(l+1) (4.29)

×
[ 3−2k
1+2k+2l (mmth)Kl+k+ 3

2
(mmth)+(2k−3)Kl+k+ 1

2
(mmth)+(mmth)Kl+k− 1

2
(mmth)

]
.

Then using the recurrence relation of the Bessel functions,

2ν
x
Kν(x) = −Kν−1 +Kν+1, (4.30)

we can simply this to

−I(m)| Res at ∆=2k+l+1 = (−1)mKlπ
1
2−k2−k−l+

3
2m

1
2−kmth

l+k+ 3
2 (l + 2)

Γ(l + 1)(1 + 2k + 2l)
×Kl+k− 1

2
(mmth). (4.31)

We can sum over m using the identity (4.25) which results in the complete contribution
from the discontinuity across the cuts to the residues at ∆ = 2k + l + 1.

−â(∆, l)disc| Res at ∆=2k+l+1 = (l + 2)
πk(1 + 2k + 2l)

(
k − 1

2

)
l

(
mth
2

)l+k+1
(4.32)

×
l+k−1∑
n=0

(l + k − n)2n
(2mth)nn!

Lik+n(−e−mth).

Finally for l > 0, from the residues at ∆ = 2k+ l+1 given in (4.32) and the OPE expansion
in (3.10), we obtain

aO+ [1, l] +
2(l + 1)

(l + 2)(2k + 1 + l)aO− [0, l] = (4.33)

(l + 2)
πk(1 + 2k + 2l)

(
k − 1

2

)
l

(
mth
2

)l+k+1 l+k−1∑
n=0

(l + k − n)2n
(2mth)nn!

Lik+n(−e−mth),

where again l = 0, 2, · · · .

Contribution from the arcs. To complete the evaluation of the one-point function we
need to evaluate the contribution from the arc at infinity. This is given by the expression
in (3.45). Taking the limit w → ∞ in g2(x), it can be seen only the mode m = 0 contributes,
this is due to fact the argument of the Bessel function has a square root, which ensures that
it vanishes on the arc exponentially for m > 0. Furthermore due to the integration over the
full circle in the w plane only l = 0 contributes. Due to these reasons the contribution from
the arcs is given by

âarc(∆, 0) = −4πK0

(
mth
2π

) d
2
∫ 1

0
dr
Kk+ 1

2
(mthr)

r∆−k+ 1
2

. (4.34)
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To obtain the location of the pole in the ∆ plane we can push the upper limit of the integral
to ∞. This does not change either the location of the poles nor their residues. This results
in the following

âarc(∆, 0) = − 1
4πk+ 1

2

(
mth
2

)∆
Γ
(
−∆

2

)
Γ
(1
2 − ∆

2 + k

)
. (4.35)

We therefore obtain the residue at ∆ = 2k + 1

â(∆, 0)arc| Res at ∆=2k+1 = − 1
2πk+ 1

2

(
mth
2

)2k+1
Γ
(
−k − 1

2

)
. (4.36)

Gap equation from OPE inversion. Similar to the analysis [1] for the bosonic critical
O(N) model, let us demand that the low lying operator O−[l = 0, n = 0] with ∆ = 2k + 1
does not occur in the spectrum. These are the operators which are schematically of the
form ψ̄γµ∂µψ. This implies that contribution to the residues from the discontinuity of the
branch cuts in (4.32) together with the arcs at infinity in (4.36) at the pole ∆ = 2k + 1
must vanish.

[−â(∆, 0)disc − â(∆, 0)arc] | Res at ∆=2k+1 = 0. (4.37)

Note that this combination is the one-point function aO− [0, 0] as can be seen from the OPE
expansion (3.10). Using (4.32) and (4.36) in (4.2) we obtain the equation

2(2mth)k
k−1∑
n=0

(k − n)2n
(2mth)nn!

Lik+n(−e−mth) + (mth)2k√π
Γ
(

1
2 + k

)
cosπk

= 0, (4.38)

which precisely agrees with that obtained from the partition function in (4.2).
It is important to mention that this gap equation was also obtained [2] for the Gross-

Neveu model by demanding operators O0[0, 0] which are schematically of the form ψ̄ψ.7

We will review this subsequently. Heuristically this fact could have been anticipated, at
the large N saddle point ψ̄γµ∂µψ ∼ ζψ̄ψ = mthψ̄ψ where ζ is the field introduced by the
Hubbard-Stratonovich transformation to linearise the 4-fermi interaction. Therefore the
vanishing of the one-point function O0[0, 0] implies that the one-point function O−[0, 0] also
vanishes. The fact that the explicit computation does indeed bear out this expectation is an
important consistency check of the OPE inversion formula developed for the correlator g2(x).

4.2 OPE inversion on g3(x)

It can be easily seen that using the definition of g3(x) in (2.2) and (4.8), this correlator is
given by

g3(x) =
∑

n,k0=2π(n+ 1
2)
∂2
[∫

dd−1x

(2π)d−1

( 1
k2 +m2

th

)
eikx

]
. (4.39)

7See equation (27) of [2].
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We can use the equation (4.12) which relates the term in the square brackets to the Bessel
function to take the derivatives. This leads to

g3(x) =
∑
m∈Z

(−1)m

(2π)
d
2
m

d
2 +1
th |x(m)|

2−d
2 K d−2

2

(
mth|x(m)|

)
. (4.40)

Thus g3(x) is a simpler correlator and similar to that encountered in the bosonic O(N)
model. We can apply the inversion formula as before

âdisc(∆, l) = 2Kl

∫ 1

0

dz̄

z̄

∫ 1
z̄

1

dz

z
(z − z̄)2ν(zz̄)

1
2−

∆
2 Fl

(√
z̄

z

)
Disc[g3(z, z̄)], (4.41)

where l is even. Since g3(x) is still a sum of BesselK functions, we can use (4.16) to obtain
the discontinuity across the branch cuts. Proceeding along the similar lines, the contribution
to the residue of âdisc(∆, l) at the poles ∆ = 2k + l is given by

−âdisc(∆, l)
∣∣ Res at ∆=2k+l =

2
πk
(
k + 1

2

)
l

(
mth
2

)l+k+1 k+l−1∑
n=0

(l + k − n)2n
(2mth)nn!

Lik+n(−e−mth).

(4.42)
Similar to the discussion for g2(x), the residue at ∆ = 2k, l = 0 receives contribution from
the arcs at infinity which is given by

−âarc(∆, 0)
∣∣ Res at ∆=2k =

(
mth
2

)2k+1 Γ
(
−k + 1

2

)
πk+ 1

2
. (4.43)

Now the expectation value aO− [0, 0] which refers to the operator schematically of the form
ψ̄γµ∂µψ is given by the combination

aO− [0, 0] = −
[
âdisc(∆, 0) + aarc(∆, 0)

]∣∣∣ Res at ∆=2k
, (4.44)

= 2
πk

(
mth
2

)k+1 k−1∑
n=0

(k − n)2n
(2mth)nn!

Lik+n(−e−mth) +
(
mth
2

)2k+1 Γ
(
−k + 1

2

)
πk+ 1

2
,

= 0.

Again, demanding that this operator does not exist in the spectrum results in the same gap
equation (4.38) obtained by considering the correlator g2(x). This agreement is necessary
for the consistency of obtaining the expectation value aO− [0, 0] both from g2(x) and g3(x).
Finally using the OPE expansion of g3(x) in (3.20), (3.37), we see that poles at ∆ = 2k
correspond to the coefficient c[0, 0]. Then from the relations in (3.38), we obtain the linear
relation between the expectation values aO− [0, 0] and aO+ [0, 0]

2aO+ [1, l] + (l + 1)aO− [0, l] =
2

πk
(
k + 1

2

)
l

(
mth
2

)l+k+1 k+l−1∑
n=0

(l + k − n)2n
(2mth)nn!

Lik+n(−e−mth).

(4.45)

We can use the equations (4.33) and (4.45), to obtain values aO+ [1, l]+ and aO− [0, l], but
it is not illustrative. What is important to note is that on comparing the l.h.s. of (4.33)
and (4.45) and the expectation value (4.26), we see that for a given l, aO+ [1, l]+ and
aO− [0, l] are proportional to m2

thaO+ [0, l].
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4.3 OPE inversion on g1(x)

Finally for completeness, let us give the results for g1(x), the correlator studied in [2].
From (2.2) and (4.9), we see that

g1(x) =
∑

n,k0=2π(n+ 1
2)

∫
dd−1x

(2π)d−1

(
mth

k2 +m2
th

)
eikx. (4.46)

Performing the Poisson re-summation and then evaluating the Fourier transform we obtain

g1(x) =
∑
n∈Z

(−1)n

(2π)
d
2
m

d
2
th|x

(n)|
2−d

2 K d−2
2

(
mth|x(n)|

)
. (4.47)

From the OPE expansion in (2.9), we see that this correlator contains the information of the
one-point functions of the operators O0[0, l]. These operators are schematically represented
by the traceless symmetric bi-linears given in (2.1). Again using the OPE inversion formula
on g1(x), the residues at poles ∆ = 2k + l lead to the following one-point function

aO0 [0, l] =
1

πk
(
k + 1

2

)
l

(
mth
2

)l+k l+k−1∑
n=0

(l + k − n)2nLik+n (−e−mth)
(2mth)n

, (4.48)

l = 2, 4, · · · .

For l = 0, as before there is a contribution to the residue both from the arc as well as the
disc. The residue at the ∆ = 2k pole is given by

−âarc(∆, 0)
∣∣ Res at ∆=2k =

m2k

22k+1πk+ 1
2
Γ
(1
2 − k

)
. (4.49)

Combining the contribution of the arc and the disc results in the expectation value of the
operator ψ̄ψ. Demanding that this operator does not exist in the spectrum results in the
gap equation

aO0 [0, 0] = −
[
âdisc(∆, 0) + âarc(∆, 0)

]∣∣∣ Res at ∆=2k
= 0, (4.50)

thus, 1
πk

(
mth
2

)k k−1∑
n=0

(k − n)2nLik+n (−e−mth)
(2mth)n

+ m2k

22k+1πk+ 1
2
Γ
(1
2 − k

)
= 0.

Properties of the one-point functions in the GN model. Comparing the equation
obtained by demanding the operators O−[0, 0] and O0[0, 0] do not exist, equations (4.44)
and (4.50) respectively, we see that the equations are related by just an overall multiplicative
factor of mth. Therefore, the gap equation is same and one obtains no new conditions
which is important for the consistency of starting with the thermal propagator with one
parameter mth. As explained earlier, this might have been expected by the large N saddle
point equations of motion ψ̄γµ∂µψ ∼ mthψ̄ψ. What is perhaps more non-trivial is the
following observation. Comparing the one-point functions of operators O+[0, l] in (4.26)
and operators O0[0, l] in (4.48) we see that

aO0 [0, l] = mthaO+ [0, l], l = 2, 4, · · · . (4.51)
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Here there is no obvious equation of motion relating these expectation values. Such a
relation must be specific to the critical Gross-Neveu model at large N . Observe that for
the MFT of fermions the correlator g0(x) vanishes, so all expectation values aO0 [0, l] vanish.
However the expectation values aO+ [0, l] are non-trivial and are given by (3.54). Of course
for the MFT of free fermions, we have mth = 0, and therefore the fact that aO0 [0, l] vanishes
and aO+ [0, l] does not, is consistent with (4.51).

For the critical Gross-Neveu model it is likely there are more relations of the kind (4.51).
From the observations made after equation (4.45), we know that the expectation values
aO+ [1, l] and aO− [0, l] are also proportional to m2

thaO+ [0, l]. Here the proportionality
constants involve spin and numerical factors. This and the relation (4.51) hint that the
expectation values of bilinears of the form O+[n, l], n > 0, O−[n, l], n ≥ 0 and O0[n, l], n ≥ 0
are all related to the expectation value aO+ [0, l]. It will be interesting to prove this.

5 Large d and large spin behaviour of one-point functions

As we have mentioned in the introduction, since the OPE inversion formula provides compact
expressions for one-point functions, we study their behaviour at large dimensions d and
spin l. As we have discussed in section 2, the one-point function aO is proportional to the
thermal expectation value of the corresponding operator. The proportionality constants
involve the structure constant, fψ̄ψO and the normalization of the two-point function of
O, cO. To eliminate this dependence, we use the following, for the O(N) model or the
Gross-Neveu models OPE coefficients, anomalous dimensions are the same both in the
Gaussian fixed point as well as the critical fixed point at large N [8, 19–23]. Therefore, we
study the ratio of the one-point functions aO at these fixed points.

r(l, k) = aO[l]mth ̸=0,k
aO[l]mth=0,k

. (5.1)

Here mth ̸= 0, k denotes evaluating the one-point function for the real positive solution
of the gap equation at dimension d = 2k + 1. We discuss two cases, first we examine the
behaviour of r(l, k) by increasing k keeping l fixed and in the second case we study r(l, k)
by increasing l at fixed k.

In the rest of the section we study the one-point function of the stress tensor in detail
for the two theories. The energy density for conformal field theories on S1 ×Rd−1 can be
written as

T00 = −E =
(d− 1)Γ

(
d
2

)
π
d
2βd

× c(mth, d). (5.2)

For free bosons c(mth = 0, d) = −ζ(d), which is the Stefan-Boltzmann value.8 Therefore,
we can consider c(mth, d) as a rough measure of the degrees of freedom which is seen on
heating the system. We plot the c(mth, d) as a function of d, we see that c(mth, d) vanishes
as d increases. For fermions we can further write c(mth, d) = 2

d−1
2 c̃(mth, d), where the

factor 2
d−1

2 is due to the dimension of the spinor in odd d dimensions. For free fermions,
the Stefan-Boltzmann value is c̃(mth, d) = −(1 − 2−(d−1))ζ(d). Again we see that the
c̃(mth, d) vanishes as d increases, that is the degrees of freedom seen by heating the system
again decreases.

8We are examining the energy density divided by N .
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Figure 1. The l.h.s. of the gap equation (5.3) for the O(N) model (denoted by f in the figure) has
been plotted as a function of mth, for d = 3 and d = 7 the graph cuts the x-axis only once while
for d = 5, 9, it is always positive. Similar trend follows for higher values of d, which is possible to
check numerically.

5.1 O(N) model

In this section we will numerically study the behaviour of one-point functions for O(N)
model with increasing d at a fixed l and vice versa. For this analysis, one should first look
for the existence of real solutions of the gap equation at various odd dimensions. The gap
equation for the O(N) model at strong coupling in odd dimension can be derived using
the standard field theoretic technique elaborated in appendix A. The same gap equation is
obtained in [2] by demanding the absence of the operator ϕ2 in the ope of the two-point
function for critical O(N) model using the formalism of inversion formula.

(mth)2k + 2
√
π
k−1∑
m=0

(2mth)k−m(k −m)2mLik+m (e−mth)
Γ
(

1
2 − k

)
m!

= 0. (5.3)

For d = 3, 7, 11, 15, . . ., the gap equation is observed to have only one positive real solution
for mth and for d = 5, 9, 13, . . . no real solution for mth exists. We have shown this in
figure 1. This phenomenon was noticed in [2].

The one-point function for double twist operator of kind ϕ∂µ1 · · · ∂µlϕ is given by [2],

al =
(1 + (−1)l)

22l+kl!
(
k − 1

2

)
l

k+l−1∑
n=0

2n+1mn
th(2(k + l − 1)− n)!Li2k−n+l−1 (e−mth)

n!(k − n+ l − 1)! . (5.4)
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Figure 2. The ratio rb(l, k) for the O(N) model is plotted against k(∈ odd integers) for various
fixed values of spin l. The plot shows that the one-point functions at fixed l becomes smaller in
comparison with the same for the free theory with increasing d.

The ratio of one-point functions at the non-trivial solution of the gap equation to the same
at mth = 0, the Stefan-Boltzmann value is given by

rb(l, k) =
al|mth ̸=0,k
al|mth=0,k

. (5.5)

mth ̸= 0, k denotes the real positive solution of the gap equation at dimension d = 2k + 1
can be obtained by solving the gap equation numerically.

We examine the behaviour of rb(l, k) with increasing k at fixed l; we restrict k to be
odd, as the real solution for mth exists only for odd k. The result of this analysis is shown in
figure 2. The observation is that the ratio of the one-point function of double twist operator
at fixed value of spin l evaluated at the Gaussian fixed point to that at the free theory limit
keeps on decreasing with increasing k, but this ratio falls slower for higher values of l

lim
k→∞

rb(l = fixed, k) → 0. (5.6)

Now, we keep the k fixed and increase l and observe how rb(l, k) behaves. The result of
our numerical study is described in figure 3. At a fixed k, rb(l, k) saturates at 1 for large
values of l, which indicates that the one-point function of large spin operator evaluated at
the critical point of O(N) model is equal to that in free theory.

lim
l→∞

rb(l, k = fixed) = 1. (5.7)

Let us study the behaviour of the coefficent c(mth, k) which determines energy density
as defined in (5.2). This coefficient can be extracted from the following expression for the
energy density which can be derived from the partition function.

E =
k+1∑
m=0

mk−m+1
th

(
(k +m)2 + k −m

)
Γ(k +m)Lik+m (e−mth)

πk2k+m−1m!Γ(k −m+ 2) −
m2k+1

th Γ
(
−k − 1

2

)
πk+ 1

2 22k+1
. (5.8)
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Figure 3. Plot showing the nature of the ratio rb(l, k) for the O(N) model versus l, keeping k fixed.
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Figure 4. Plot of c(mth, k) for the free theory and the critical theory in the O(N) model.

The energy density at the Gaussian fixed point is obtained by taking mth → 0 in the above
expression, this results in

−c(mth = 0, k) = ζ(2k + 1). (5.9)

At the non-trivial fixed point this coefficient can be evaluated numerically. In figure 4, we
plot this measure of degrees of freedom for the critical fixed point and also the Stefan-
Boltzmann value for reference. Note that the −c(mth = 0, k) tends to zero for the critical
point while the Stefan-Boltzmann value tends to one for large dimension d.
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Figure 5. The l.h.s. of the gap equation (5.10) for the Gross-Neveu model (denoted by f in the
figure) has been plotted as a function of mth, for d = 5 and d = 9 the graph cuts the x-axis only
once while for d = 3, 7, it is always positive.

5.2 Gross-Neveu model

We repeat the same analysis for the Gross-Neveu model. The gap equation for this model
at strong coupling in odd d dimensions is given by,

(mth)2k + 2
√
π
k−1∑
m=0

(k −m)2m(2mth)k−mLik+m (−e−mth)
m!Γ

(
1
2 − k

) = 0. (5.10)

In contrast to the case of O(N) model, the above gap equation has a positive real solution
for mth in d = 5, 9, 13, . . . and no real solution is found for d = 3, 7, 11, . . .. This is seen
in figure 5.

For the Gross-Neveu model we have the general expression for the thermal expectation
value of the operators of the kind O+ for arbitrary l in equation (4.26). The ratio of
one-point functions of the fermionic operators O+ at the non-trivial critical point to the
same at the Gaussian fixed point is given by,

rf (l, k) =
aO+[0, l]mth,k

aO+[0, l]mth=0
. (5.11)
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Figure 6. The ratio rf (l, k) for the Gross-Neveu model is plotted against k for various fixed values
of spin l. The plot shows that the one-point functions at fixed l become smaller in comparison with
the same for the free theory with increasing d.

Just as in the O(N) model, first we examine the behaviour of rf (l, k) with increasing k

keeping l fixed. But here we restrict k to be even, as the real solution for mth exists only
for even k. The result of this analysis is shown in figure 6. The results are identical to that
of O(N) model. The ratio of the one-point function of double twist operators at fixed value
of spin l evaluated at the critical point to that at the Gaussian fixed point decreases with
increasing k, but this ratio falls slower for higher values of l.

lim
k→∞

rf (l = fixed, k) → 0. (5.12)

Next, we keep the k fixed and increase l and observe how r(l, k) behaves. The result of our
numerical study is described in figure 7. At a fixed k, r(l, k) tends to 1 for large values of l,
which indicates that the one-point function of large spin operators evaluated at the critical
point of Gross-Neveu model is equal to that in free theory.

lim
l→∞

rf (l, k = fixed) = 1. (5.13)

For a conformal field theory of fermions we can define the energy density

T00 = −E =
(d− 1)Γ

(
d
2

)
π
d
2βd

× 2k c̃(mth, k). (5.14)

Here we factor out 2k which is the number of components of the Dirac spinor in 2k + 1
dimensions. We can study the behaviour of the degrees of freedom by studying c̃(mth, k).
The free energy density per fermions for the Gross-Neveu model is given by,

E=
k+1∑
m=0

(
(k+m)2+(k−m)

)
Γ(k+m)Lik+m (−e−mth)

mm−k−1
th πk2mm!Γ(k−m+2)

−
m2k+1
th Γ

(
−k− 1

2

)
2k+2πk+ 1

2
. (5.15)
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Figure 7. Plot of the ratio rf (l, k) for the Gross-Neveu model versus l, keeping k fixed.

The Stefan-Boltzmann value at the Gaussian fixed point can be obtained by taking mth = 0
in the above expression, this yields

c̃(mth = 0, k) = −(1− 2−2k)ζ(2k + 1). (5.16)

At the non-trivial fixed point, we solve the gap equation for mth numerically and the
substitute in (5.15) to obtain c̃(mth, k). The result of this analysis is shown in figure 8. We
have also plotted the corresponding behaviour of the Stefan-Boltzmann value for fermions.
Again the effective degrees of freedom measured by the energy density decreases for the
critical point as the dimension d is increased. It will be interesting to understand this
behaviour of one-point functions more deeply and see if this behaviour is seen for all CFT’s
which are not free.

6 Conclusions

In this paper we have used the OPE inversion formula on thermal two-point functions
of fermions in the channel which contains the stress tensor. The OPE inversion formula
was applied to the MFT of fermions and the large N critical Gross-Neveu model. We
studied the properties of the resulting thermal one-point functions. The inversion formula
made it easy to study the behaviour of the one-point functions at large spin as well as
arbitrary dimensions.

There are other theories where the OPE inversion formula could be applied. One such
class of theories are the large N Chern-Simons matter theories [24, 25]. These models are
connected to the Gross-Neveu or the O(N) vector model. It would be interesting to obtain
thermal one-point functions in these models and study their spin dependence and also see
how the boson-fermion duality exhibited by these models are reflected in the one-point
functions. Thermal correlators in these models are known in momentum space [24, 26–30],
so perhaps one way of proceeding in these models is to derive a OPE inversion formula
directly in momentum space.
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Figure 8. Plot of c̃(mth, k) vs k for both the free theory and critical Gross-Neveu model.

One of our motivations to study thermal one-point functions in detail was that one-point
functions of conformal primaries evaluated in AdS black holes can be used to probe the
interior geometry of black holes [31–36]. The time to the singularity in the interior could
be obtained as a phase factor by suitable analytic continuation of the conformal dimension.
However the one-point functions, even that of the fermionic MFT studied here or the
bosonic one in [1], do not exhibit this feature. It will be interesting to see if the application
of the OPE inversion formula to the holographic two-point functions evaluated in [37–39]
can be used to show that holographic one-point functions contain information about the
interior geometry of the black hole.

In this paper we studied one-point functions in the geometry S1×Rd−1, other geometries
which are relevant to holography and evaluation of entanglement entropy are hyperbolic
cylinders or the S1 × AdSd−1 geometry. Black holes with hyperbolic horizons are dual
to conformal field theories on this background. It should be possible to obtain an OPE
inversion formula for field theories on such backgrounds. Recently a proposal to write
two-point functions on such curved backgrounds have been given in [40]. It would be
interesting to use the OPE inversion formula to these two-point functions and study the
properties of the resulting one-points functions in these geometries.

A Gross-Neveu model: partition function, gap equation

In this appendix we evaluate the partition function of the critical Gross-Neveu model at large
N . We obtain the gap equation as the saddle point equation at large N and then evaluate its
stress tensor. We begin with the Lagrangian of N massless Dirac fermions ψa, a = 1, 2, · · ·N
transforming in the fundamental of U(N) along with the 4-fermi interaction.

S =
∫
d2k+1x

[
ψ̄(iγµ∂µ)ψ + λ

N
(ψ̄ψ)2

]
. (A.1)
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Since we are in Euclidean space ψ̄ = ψ† and the γ matrices obey

{γµ, γν} = 2δµν . (A.2)

The partition function of the theory S1 ×R2k is given by

Z̃ =
∫

Dψ̄Dψe−S(ψ,ψ̄). (A.3)

We first linearise the theory using the Hubbard-Stratonovich transformation

Z̃ =
∫

Dψ̄Dψ exp
[
−
∫ β

0
dτd2kx

(
iψ̄γµ∂µψ + λ

N
(ψ̄ψ)2

)]
, (A.4)

=
∫

Dψ̄DψDζ
[
−
∫ β

0
dτd2kx

(
iψ̄γµ∂µψ + ζ2N

λ
+ iζ(ψ̄ψ)

)]
.

In the second line we have absorbed the normalization of the Gaussian integral over ζ into
the measure. We can separate the zero mode of ζ and the non-zero modes and write the
partition function

ζ = ζ̃ + ζ0. (A.5)

Here ζ0 is the zero mode, substituting for ζ we can write the partition function as

Z̃ =
∫
dζ0Dψ̄Dψ

[
exp

(
−ζ

2
0NβV2k
4λ

)
exp(−S0 − SI)

]
, (A.6)

S0 =
∫
dτd2kx

[
iψ̄γµ∂µψ + iζ0ψ̄ψ + ζ̃2N

4λ

]
, SI =

∫
dτd2kx iζ̃ψ̄ψ.

We can neglect SI in the leading large N limit, observe that on canonically normalising
the quadratic term in ζ̃, the interaction SI acquires a factor of 1√

N
. After performing the

Gaussian integration in ζ̃, we are left with

Z̃ =
∫
dζ0 exp

[
−βV2kN

(
ζ2

0
4λ − 1

β
logZ(ζ0)

)]
, (A.7)

where

logZ(ζ0) = 2k−1
∞∑

n=−∞

∫
d2kp

(2π)2k log

4π2
(
n+ 1

2

)2

β2 + p⃗2 + ζ2
0

 . (A.8)

The 2k−1 factor arises from the fact that the Dirac operator is a 2k× 2k dimensional matrix.
After evaluating the Matsubara sum, we obtain

logZ(ζ0) =
2k−1

β2k

∫
d2kp

(2π)2k

[√
p⃗2 + ζ2

0β + 2 log
(
1 + e−

√
p⃗2+ζ2

0β
2
)]

. (A.9)

To integrate the first term in the square bracket we resort to the analytical continuation of
the integral ∫ ∞

0
dx

x2k−1

(x2 + 1)a = Γ(a− k)Γ(k)
2Γ(a) . (A.10)
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The integral involving the second term in the square bracket of (A.9) is convergent and
after some straightforward manipulations can be written in terms of Polylogarithms. This
leads us to

logZ(ζ0) = −m
2k+1β

πk2k+2

 k∑
n=0

(k − n+ 1)2n(ζ0β)−k−n−1Lik+n+1
(
−e−ζ0β

)
2n−k−2n! +

Γ
(
−k − 1

2

)
√
π

 .
(A.11)

We can obtain the partition function Z̃ in (A.7) by using the saddle point approximation
to perform the integral over ζ0. The saddle point ζ∗0 = mth is determined by the equation

mth = 2λ 1
β

∂

∂mth
Z(mth). (A.12)

For the critical Gross-Neveu model we take the large λ limit. To the leading order in the
large λ expansion, the saddle point equation reduces to

∂

∂mth
Z(mth) = 0. (A.13)

This results in the following gap equation for the critical value mth.

2(2mthβ)k
k−1∑
n=0

(k − n)2n
(2mthβ)nn!

Lik+n(−e−mthβ) + (mthβ)2k
√
π

Γ
(1
2 − k

)
= 0. (A.14)

We can evaluate the stress tensor at the critical point from the partition function by

T00 = − ∂

∂β
logZ(mth). (A.15)

The above expression yields the energy density divided by the number of fermions N .
Performing this differentiation on the partition function given in (A.11), we obtain

T00 = −
m2k+1

th Γ
(
−k − 1

2

)
2k+2πk+ 1

2
(A.16)

+ mk+1
th

πkβk

k+1∑
n=0

[
(k + n)2 + (k − n)

]
(k − n+ 2)2n−2

(2mthβ)nn!
Lik+n

(
− e−mthβ

)
.

Note that as expected for the critical theory, this energy density can be written as

T00 = T dH(mthβ), (A.17)

where H is a function of mthβ, the dimensionless number which is the root of the
gap equation (A.14).
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