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Statistical properties of superfluid turbulence in 4He
from the Hall-Vinen-Bekharevich-Khalatnikov model
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We obtain the von Kármán–Howarth relation for the stochastically forced three-dimensional (3D)
Hall-Vinen-Bekharevich-Khalatnikov (HVBK) model of superfluid turbulence in helium (4He) by using the
generating-functional approach. We combine direct numerical simulations (DNSs) and analytical studies to show
that, in the statistically steady state of homogeneous and isotropic superfluid turbulence, in the 3D HVBK model,
the probability distribution function (PDF) P(γ ), of the ratio γ of the magnitude of the normal fluid velocity
and superfluid velocity, has power-law tails that scale as P(γ ) ∼ γ 3, for γ � 1, and P(γ ) ∼ γ −3, for γ � 1.
Furthermore, we show that the PDF P(θ ) of the angle θ between the normal-fluid velocity and superfluid velocity
exhibits the following power-law behaviors: P(θ ) ∼ θ for θ � θ∗ and P(θ ) ∼ θ−4 for θ∗ � θ � 1, where θ∗ is
a crossover angle that we estimate. From our DNSs we obtain energy, energy-flux, and mutual-friction-transfer
spectra, as well as the longitudinal-structure-function exponents for the normal fluid and the superfluid, as a
function of the temperature T , by using the experimentally determined mutual-friction coefficients for superfluid
helium 4He, so our results are of direct relevance to superfluid turbulence in this system.
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I. INTRODUCTION

Over the past three decades, there has been considerable
progress in the characterization of the statistical properties
of turbulent fluids by combining methods from nonequi-
librium statistical mechanics and fluid dynamics [1–4]. By
comparison, the study of the statistical properties of turbulent
superfluids is in its infancy, but this field has experienced
a renaissance because of advances in experiments [5–13]
and developments in theoretical and numerical investigations
[14–18]. The most common experimental system is liquid
helium 4He in its superfluid state, for temperature T � Tλ,
the superfluid transition temperature; in addition, turbulence
in superfluid 3He and Bose-Einstein condensates is also being
explored [19–22].

The following models have been employed to study
superfluid turbulence. At the kinetic-theory level there is the
model of Zaremba et al. [23]. For weakly interacting Bose
superfluids, we can use a Gross-Pitaevskii description, which
is applicable down to length scales that are comparable to
the core size of a quantum vortex [24–26]. Vortex-filament
models are useful at length scales of the order of the
typical separation between quantum vortices [27–29]. The
Hall-Vinen-Bekharevich-Khalatnikov (HVBK) two-fluid
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model, with interpenetrating superfluid and normal-fluid
components, generalizes the two-fluid models of Landau
[30] and Tisza [31] by including a mutual-friction term. The
HVBK model provides a good starting point for the study
of superfluid turbulence at length scales larger than several
intervortex-separation lengths [32,33] and if there is a high
density of quantum vortices that align in some regions to
yield a classical vorticity field; however, in experimental
flows with quantum turbulence, phenomena such as vortex
reconnections [34], which occur at scales comparable to the
intervortex-separation length, cannot be taken into account
by the HVBK model. Measurements on liquid 4He have
been used to determine the temperature dependence of the
mutual-friction coefficients [5]. Wave-turbulence models of
superfluid turbulence [35–37] have been used, inter alia, to
study Kelvin waves in a turbulent superfluid.

The HVBK description of superfluid turbulence has been
successful in obtaining energy spectra in statistically steady
superfluid turbulence, in both three and two dimensions, and
in examining the mutual-friction-induced alignment of super-
fluid and normal-fluid velocities [17,38,39]. The multiscaling
of velocity structure functions and other measures of inter-
mittency are now being examined experimentally [13,40,41],
numerically, and theoretically [42–44]. Most theoretical and
numerical work on such multiscaling has been restricted to
HVBK-shell-model studies. Furthermore, a precise general-
ization of the von Kármán–Howarth relations, which have
been obtained for classical-fluid and magnetohydrodynamic
(MHD) turbulence [45–47], does not seem to be available for
superfluid turbulence, but a recent study has begun to address
this issue [44].
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We obtain the generalized von Kármán–Howarth relation
for the stochastically forced three-dimensional (3D) HVBK
model of superfluid turbulence by using the generating-
functional approach that has been developed in Refs. [45–47].
By carrying out direct numerical simulations (DNSs) of the
3D HVBK equations, we show that, in the statistically steady
state of homogeneous and isotropic superfluid turbulence, the
probability distribution function (PDF) P(γ ) of the ratio γ

of the magnitudes of normal-fluid and superfluid velocities,
has power-law tails that scale as P(γ ) ∼ γ 3 for γ � 1 and
P(γ ) ∼ γ −3 for γ � 1; we show analytically how these scal-
ing behaviors can be understood. Furthermore, we show that
the PDF P(θ ) of the angle θ between the normal-fluid and
superfluid velocities behaves as P(θ ) ∼ θ for θ � θ∗ and
P(θ ) ∼ θ−4 for θ∗ � θ � 1 (with θ∗ a crossover angle that
we define below). We also calculate the longitudinal-velocity
structure-function exponents for both normal and superfluid
components, as a function of the temperature, to explore the
multiscaling of such structure functions in 3D HVBK super-
fluid turbulence. The parameters for our DNS runs (Table I)
are taken from the measurements of Ref. [48] on superfluid
4He; therefore, our results are of direct relevance to superfluid
turbulence in this system.

The remainder of this paper is organized as follows.
Section II defines the simplified version of the HVBK model
and the numerical method that we use to study superfluid
turbulence in this model. Section III comprises two subsec-
tions; the first contains our analytical results for the analog
of the von-Kármán-Howarth relation for HVBK superfluid
turbulence; the second subsection is devoted to our numerical
results for the multiscaling of HVBK structure functions and
other statistical properties of HVBK turbulence. Section IV
contains a discussion of our results. Some of the details of our
calculations are given in the Appendix.

II. MODEL AND NUMERICAL SIMULATIONS

We use the simplified form of the HVBK equations [33],
which comprise the incompressible Navier-Stokes (for the
normal fluid) and Euler (for the superfluid) equations coupled
via the mutual-friction term. In addition to the kinematic
viscosity νn of the normal fluid, we include Vinen’s effective
viscosity [34] νs in the superfluid component to mimic the
dissipation because of (a) vortex reconnections and (b) inter-
actions between superfluid vortices and the normal fluid [49];
νs � νn. These equations are

∂t un + (un · ∇)un = − 1

ρn
∇pn + νn∇2un + ρs

ρ
fmf + fn

u , (1a)

∇ · un = 0, (1b)

∂t us + (us · ∇)us = − 1

ρs
∇ps + νs∇2us − ρn

ρ
fmf + f s

u, (1c)

∇ · us = 0, (1d)

where un (us), ρn (ρs), pn (ps), and fn
u (f s

u) are the velocity,
density, pressure, and external-forcing term for the normal

fluid (superfluid), respectively. The mutual-friction term

fmf = B

2
ω̂s × [ωs × (un − us)] + B′

2
ωs × (un − us ) (2)

leads to energy transfer between the normal and superfluid
components [50,51], where uns = un − us is the slip velocity,
ωs = ∇ × us is the superfluid vorticity, and B and B′ are the
mutual-friction coefficients.

We perform extensive DNSs of the HVBK equations (1a)–
(1d) by using the pseudospectral method, with periodic
boundary conditions, in a cubical box of length 2π , along each
direction, and N3

c collocation points. We use the 2
3 dealiasing

rule [52] and a constant-energy-injection scheme for forcing
[53,54], in which we force the Fourier modes in the first two
Fourier-space shells for the superfluid, at low temperatures,
and the normal fluid, at high temperatures. We use the second-
order Adams-Bashforth scheme for time marching [54]. The
parameters for the various runs we perform are listed in
Table I.

III. RESULTS

We begin in Sec. III A with our results for the structure-
function hierarchy for 3D HVBK turbulence that is statisti-
cally steady, homogeneous, and isotropic. In particular, we
obtain the hierarchy of equations for the structure functions
that are statistically steady-state values of integer powers
and products of 	uα‖ = [uα (x + r) − uα (x)] · r̂ and 	uα⊥ =
[uα (x + r) − uα (x)] × r̂ [α can be n (normal) or s (super-
fluid)], which are velocity increments along r or perpendicular
to it, respectively. We obtain explicit expressions for third-
order structure functions. In Sec. III B we present results from
our DNSs of the 3D HVBK equations for the PDFs P(γ )
and P(θ ) and the longitudinal-velocity structure-function ex-
ponents for both normal and superfluid components, as a
function of temperature; we then explore their multiscaling
properties.

A. Structure-function hierarchy

We now obtain the structure-function hierarchy for normal-
fluid and superfluid velocities by using Eqs. (1a)–(1d) and
the external forces fn

u and f s
u, which are zero-mean Gaussian

random variables with the covariances

〈
f n
ui(x, t ) f n

u j (x
′, t ′)

〉 = δ(t − t ′)Kn
i j (x − x′),〈

f s
ui(x, t ) f s

u j (x
′, t ′)

〉 = δ(t − t ′)K s
i j (x − x′), (3)

where both Kn
i j and K s

i j are even functions of (x − x′) and
the Cartesian indices i, j = 1, 2, 3. We define the two-point
generating functionals Z for un(x1, t1) and us(x1, t1), i.e.,
un(x2, t2) and us(x2, t2), to calculate the hierarchy of relations
for the equal-time structure function in the nonequilibrium,
statistically steady state of the stochastically forced 3D HVBK
equations.
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TABLE I. Parameters for our DNS runs R1–R14: N3
c is the number of collocation points, T is the temperature, ρn/ρ is the fraction of the

normal component, B and B′ are the coefficients of the mutual friction, νn (νs) is the viscosity of the normal fluid (superfluid), dt is the time
step, fn ( fs) is the fixed injected energy in the first two shells of the normal fluid (superfluid), λn (λs) is the Taylor microscale of the normal
fluid (superfluid), Ren

λ (Res
λ) is the Taylor-microscale Reynolds numbers for the normal fluid (superfluid), T n

eddy (T s
eddy) is the eddy-turnover

time for the normal fluid (superfluid), ηn (ηs) is the dissipation length scale for the normal fluid (superfluid), and kmax is the maximal allowed
magnitude of the wave vectors after the dealiasing. We force the majority component: In runs R1–R6 we force the superfluid component, in
runs R7 and R8 we force the normal-fluid component, and in runs R9–R14 we force both fluids and use the temperature-dependent values for
νn and νs that are given in columns 6 and 7, respectively [55].

Run Nc T ρn/ρ B B′ νn νs dt fn fs λn λs Ren
λ Res

λ T n
eddy T s

eddy kmaxηn kmaxηs

R1 512 1.30 0.045 1.526 0.616 1 × 10−3 1 × 10−4 9 × 10−4 0.00 0.03 0.076 0.044 30 183 1.22 1.15 1.79 0.43
R2 512 1.50 0.111 1.296 0.317 1 × 10−3 1 × 10−4 9 × 10−4 0.00 0.03 0.086 0.050 33 204 1.31 1.22 1.92 0.46
R3 512 1.70 0.229 1.10 0.107 1 × 10−3 1 × 10−4 9 × 10−4 0.00 0.03 0.096 0.059 34 225 1.36 1.22 2.09 0.51
R4 512 1.80 0.313 1.024 0.052 1 × 10−3 1 × 10−4 9 × 10−4 0.00 0.03 0.102 0.064 34 236 1.30 1.21 2.23 0.55
R5 512 1.85 0.364 0.996 0.041 1 × 10−3 1 × 10−4 9 × 10−4 0.00 0.03 0.107 0.069 36 250 1.38 1.28 2.33 0.57
R6 512 1.90 0.420 0.98 0.04 1 × 10−3 1 × 10−4 9 × 10−4 0.00 0.03 0.114 0.075 37 265 1.53 1.40 2.43 0.60
R7 512 2.10 0.741 1.298 −0.065 1 × 10−3 1 × 10−4 9 × 10−4 0.04 0.00 0.121 0.083 49 332 1.24 1.17 2.23 0.59
R8 512 2.17 0.95 3.154 −1.272 1 × 10−3 1 × 10−4 9 × 10−4 0.04 0.00 0.121 0.095 53 421 1.12 1.08 2.15 0.60
R9 512 1.30 0.045 1.526 0.616 2.32 × 10−3 0.1 × 10−3 9 × 10−4 0.03 0.03 0.062 0.038 39 185 1.19 1.11 1.82 0.50
R10 512 1.50 0.111 1.296 0.317 0.83 × 10−3 0.17 × 10−3 9 × 10−4 0.03 0.03 0.084 0.058 41 144 0.79 0.75 1.68 0.63
R11 512 1.70 0.229 1.10 0.107 0.39 × 10−3 0.232 × 10−3 9 × 10−4 0.03 0.03 0.072 0.064 75 113 0.93 0.91 1.08 0.77
R12 512 1.80 0.313 1.024 0.052 0.29 × 10−3 0.235 × 10−3 9 × 10−4 0.03 0.03 0.070 0.066 99 116 0.85 0.84 0.77 0.80
R13 512 1.90 0.420 0.98 0.04 0.22 × 10−3 0.28 × 10−3 9 × 10−4 0.03 0.03 0.067 0.070 124 103 0.83 0.84 0.78 0.90
R14 512 2.10 0.741 1.298 −0.065 0.16 × 10−3 0.42 × 10−3 9 × 10−4 0.03 0.03 0.059 0.073 150 70 0.80 0.82 0.61 1.11

The two-point generating functional Z is

Z (λ1n,λ2n,λ1s,λ2s, x1, x2, t1, t2) = 〈exp[λ1n · un(x1) + λ2n · un(x2) + λ1s · us(x1) + λ2s · us(x2)]〉 = 〈ZnZs〉

=
∫∫

dx1ndx2ndx1sdx2sP(un(x1), us(x1), t1; un(x2), us(x2), t2)ZnZs,
(4)

where λ1n, λ2n, λ1s, and λ2s are the variables conjugate to un(x1), un(x2), us(x1), and us(x1), respectively; Zn = exp[λ1n ·
un(x1) + λ2n · un(x2)]; Zs = exp[λ1s · us(x1) + λ2s · us(x2)]; and P(un(x1), us(x1), t1; un(x2), us(x2), t2) is the joint probability
distribution function (JPDF) of un and us. We set t1 = t2 = t , which suffices for calculating the equal-time structure functions
we consider. By taking the time derivative of Eq. (4), we get the master equations for the normal fluid and superfluid

∂t Z|λ1s=λ2s=0 = 〈[λ1n · ∂t un(x1) + λ2n · ∂t un(x2) + λ1s · ∂t us(x1) + λ2s · ∂t us(x2)]ZnZs〉|λ1s=λ2s=0, (5)

∂t Z|λ1n=λ2n=0 = 〈[λ1n · ∂t un(x1) + λ2n · ∂t un(x2) + λ1s · ∂t us(x1) + λ2s · ∂t us(x2)]ZnZs〉|λ1n=λ2n=0 (6)

and by substituting Eqs. (1)–(3) into Eqs. (5) and (6) we get, in the statistically steady state,〈(
∂2Zn

∂ri∂λ1ni

)〉
+

〈(
∂2Zn

∂ri∂λ2ni

)〉
+ ρs

ρ
〈[λ1n · fmf(x1) + λ2n · fmf(x2)]Zn〉 = In

p + In
f + Dn, (7)

〈(
∂2Zs

∂ri∂λ1si

)〉
+

〈(
∂2Zs

∂ri∂λ2si

)〉
− ρn

ρ
〈[λ1s · fmf(x1) + λ2s · fmf(x2)]Zs〉 = Is

p + Is
f + Ds, (8)

where ri (i = 1, 2, 3) are the Cartesian components of the
relative vector r = (x1 − x2), with r = |r| and r̂ = r/r, and
In
p (Is

p), In
f (Is

f ), and Dn (Ds), which arise, respectively, from
the pressure, forcing, and dissipation terms from the normal
fluid (superfluid), are defined as follows:

In
p = −

〈(
λ1n · 1

ρn
∇pn(x1) + λ2n · 1

ρn
∇pn(x2)

)
Zn

〉
,

Is
p = −

〈(
λ1s · 1

ρs
∇ps(x1) + λ2s · 1

ρs
∇ps(x2)

)
Zs

〉
,

In
f = 〈[

λ1n · fn
u (x1) + λ2n · fn

u (x2)
]
Zn

〉
,

Is
f = 〈[

λ1s · fn
u (x1) + λ2s · fn

u (x2)
]
Zs

〉
,

Dn = 〈{
νn

[
λ1n · ∇2un(x1) + λ2n · ∇2un(x2)

]}
Zn

〉
,

Ds = 〈{
νs

[
λ1s · ∇2us(x1) + λ2s · ∇2us(x2)

]}
Zs

〉
. (9)

It is useful to define x, the center-of-mass coordinate; clearly
x1 = x + r

2 and x2 = x − r
2 . Equations (7) and (8) are invari-

ant under the Galilean transformation r′ = r − u0t , t ′ = t , and
u′

α = uα + u0; here α stands for n and s, with u0 a constant
velocity. If we impose the homogeneity condition ∂Z

∂x = 0, we
find that Z depends only on r.
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For simplicity, we consider λ1n antiparallel to λ2n, i.e.,
λ1n = −λ2n ≡ λn, and λ1s antiparallel to λ2s, i.e., λ1s =
−λ2s ≡ λs. (For a discussion of this choice, see Ref. [47]
of Ref. [47] for the formally related problem of MHD
turbulence.) We get the generalized structure function
〈(	um

ni )(	un
si )〉 by taking the order m derivative of Z with re-

spect to the Cartesian component λni and the order n derivative
of Z with respect to the Cartesian component λsi. In the case of
homogeneous and isotropic 3D HVBK superfluid turbulence,
Zn depends on ηn1 = r, ηn2 = λn · r̂n = λn cos θn, and ηn3 =
λn sin θn and Zs depends on ηs1 = r, ηs2 = λs · r̂s = λs cos θs,

and ηs3 = λs sin θs. In terms of these variables, the generating
functionals can be written as follows:

Zn = exp(ηn2	un‖ + ηn3	un⊥),

Zs = exp(ηs2	us‖ + ηs3	us⊥). (10)

Here 	uα‖ = [uα (x + r) − α(x)] · r̂ and 	uα⊥ = [uα (x +
r) − uα (x)] × r̂ (α can be n or s) are velocity increments
along r or perpendicular to it, respectively; similar increments
can be defined for the forcing and mutual-friction terms. By
using the variables r, ηn2, ηn3, ηs2, and ηs3 in Eqs. (7) and (8),
in the statistically steady state we get

〈(
∂r∂ηn2 + 2

r
∂ηn2 − 1

r

ηn2

ηn3
∂ηn3 + ηn3

r
∂ηn2∂ηn3 − ηn2

r
∂2
η2

n3

)
Zn

〉
+ ρs

ρ
〈(ηn2	 fmf‖ + ηn3	 fmf⊥ )Zn〉 = In

p + In
f + Dn, (11)〈(

∂r∂ηs2 + 2

r
∂ηs2 − 1

r

ηs2

ηs3
∂ηs3 + ηs3

r
∂ηs2∂ηs3 − ηs2

r
∂2
η2

s3

)
Zs

〉
− ρn

ρ
〈(ηs2	 fmf‖ + ηs3	 fmf⊥ )Zs〉 = Is

p + Is
f + Ds. (12)

If we multiply Eq. (11) by ηn3 and Eq. (12) by ηs3 and we substitute Eq. (10) in Eqs. (11) and (12), we obtain, after some
simplification,

〈
ηn3

[
∂	un‖

∂r
+ 	un‖

(
ηn2

∂	un‖

∂r
+ ηn3

∂	un⊥

∂r

)
+ 2

r
	un‖ − 1

r

ηn2

ηn3
	un⊥ + ηn3

r
	un‖	un⊥ − ηn2

r
(	un⊥ )2

]
Zn

〉

+ ρs

ρ
〈ηn3(ηn2	 fmf‖ + ηn3	 fmf⊥ )Zn〉 = ηn3

(
In
p + In

f + Dn
)
, (13)〈

ηs3

[
∂	us‖

∂r
+ 	us‖

(
ηs2

∂	us‖

∂r
+ ηs3

∂	us⊥

∂r

)
+ 2

r
	us‖ − 1

r

ηs2

ηs3
	us⊥ + ηs3

r
	us‖	us⊥ − ηs2

r
(	us⊥ )2

]
Zs

〉

− ρn

ρ
〈ηs3(ηs2	 fmf‖ + ηs3	 fmf⊥ )Zs〉 = ηs3

(
Is
p + Is

f + Ds
)
. (14)

The pressure contributions In
p and Is

p vanish, as in the case of homogeneous, isotropic fluid turbulence [46], if we consider only
third-order structure functions. This follows from the symmetries of the velocity and pressure fields under spatial inversion
(Appendix).

The forcing contributions In
f and Is

f can also be neglected in the inertial range of scales in 3D HVBK superfluid turbulence
(discussed below); these can be written as follows:

In
f = 〈[

λn · fn
u (x1) − λn · fn

u (x2)
]
Zn

〉 ≡ 〈(
ηn2	 f n

u‖ + ηn3	 f n
u⊥

)
Zn

〉
, (15)

Is
f = 〈[

λs · f s
u(x1) − λs · f s

u(x2)
]
Zs

〉 ≡ 〈(
ηs2	 f s

u‖ + ηs3	 f s
u⊥

)
Zs

〉
. (16)

If we now use the Furutsu-Novikov-Donsker formula [56,57] we get, after some simplification,

In
f = 〈{

η2
n2[Kn‖‖ (0) − Kn‖‖ (r)] + 2ηn2ηn3[Kn‖⊥ (0) − Kn‖⊥ (r)] + η2

n3[Kn⊥⊥ (0) − Kn⊥⊥ (r)]
}
Zn

〉
, (17)

Is
f = 〈{

η2
s2[Ks‖‖ (0) − Ks‖‖ (r)] + 2ηs2ηs3[Ks‖⊥ (0) − Ks‖⊥ (r)] + η2

s3[Ks⊥⊥ (0) − Ks⊥⊥ (r)]
}
Zs

〉
. (18)

These terms contribute to the relations between third-order structure functions only at O((r/rf )2), where rf is the forcing length
scale, so we can neglect them in the inertial range, for r � rf , in the case of 3D HVBK superfluid turbulence [see the discussion
below Eq. (7) in Ref. [46] for the case of classical-fluid turbulence in three dimensions].

The dissipation terms are

Dn = νn
〈[
λn · ∇2

x1
un(x1) − λn · ∇2

x2
un(x2)

]
Zn

〉
, Ds = νs

〈[
λs · ∇2

x1
us(x1) − λs · ∇2

x2
us(x2)

]
Zs

〉
. (19)

If we take the limit of large Reynolds number, i.e., νn → 0 and νs → 0, and define εn‖ (x1) + εn‖ (x2) = εn‖ , εn⊥ (x1) + εn⊥ (x2) =
εn⊥ , εs‖ (x1) + εs‖ (x2) = εs‖ , and εs⊥ (x1) + εs⊥ (x2) = εs⊥ , we can simplify Eq. (19) (see the Appendix for details) to get

−Dn = 〈(
η2

n2εn‖ + η2
n3εn⊥

)
Zn

〉 + 2〈ηn2ηn3{[εn‖ (x1)εn⊥ (x1)]1/2 + [εn‖ (x2)εn⊥ (x2)]1/2}Zn〉, (20)

−Ds = 〈(
η2

s2εs‖ + η2
s3εs⊥

)
Zs

〉 + 2〈ηs2ηs3{[εs‖ (x1)εs⊥ (x1)]1/2 + [εs‖ (x2)εs⊥ (x2)]1/2}Zs〉. (21)
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If we take the derivative ∂2
ηn2

∂ηn3 of Eq. (13) and the limits ηn2, ηn3 → 0, we get

∂〈(	un‖ )3〉
∂r

+ 2

r
〈(	un‖ )3〉 − 4

r
〈	un‖ (	un⊥ )2〉 + 2

ρs

ρ
〈	 fmf‖	un‖ 〉 = −2〈εn‖ 〉; (22)

the derivative ∂3
ηn3

of Eq. (13) yields, in the limits ηn2, ηn3 → 0,

∂〈	un‖ (	un⊥ )2〉
∂r

+ 4

r
〈	un‖ (	un⊥ )2〉 + 2

ρs

ρ
〈	 fmf⊥	un⊥〉 = −2〈εn⊥〉. (23)

From the derivative ∂2
ηs2

∂ηs3 of Eq. (14) we obtain, in the limits ηs2, ηs3 → 0,

∂〈(	us‖ )3〉
∂r

+ 2

r
〈(	us‖ )3〉 − 4

r
〈	us‖ (	us⊥ )2〉 − 2

ρn

ρ
〈	 fmf‖	us‖ 〉 = −2〈εs‖ 〉; (24)

similarly, the derivative ∂3
ηs3

of Eq. (14) gives, in the limits ηs2, ηs3 → 0,

∂〈	us‖ (	us⊥ )2〉
∂r

+ 4

r
〈	us‖ (	us⊥ )2〉 − 2

ρn

ρ
〈	 fmf⊥	us⊥〉 = −2〈εs⊥〉. (25)

Equations (22)–(25) are the (3D HVBK, statistically homo-
geneous, isotropic superfluid turbulence) analogs of the von
Kármán–Howarth relation for statistically homogeneous and
isotropic fluid turbulence. If we make the simplifying assump-
tion (as in Ref. [44]) that the mutual friction is not significant
in the inertial range of scales, then we find the usual von
Kármán–Howarth relation, as in conventional classical-fluid
turbulence. However, numerical simulations [see Sec. III B for
our results, Eqs. (11d)–(11f) and Figs. 3(d)–3(f) in Ref. [44],
and, for 2D HVBK turbulence, Fig. 3(f) of Ref. [17]] indicate
that the mutual-friction contribution is non-negligible in the
inertial range of scales. Therefore, we must retain it in the
structure-function hierarchy as we have done in Eqs. (22)–
(25). Note that if there is complete alignment of the normal
and superfluid velocities in the statistically steady state, then
the mutual-friction term can be neglected; however, as we
show in Sec. III B, this alignment is imperfect.

We note, in passing, that we can also develop a structure-
function hierarchy for the case of statistically steady, homo-
geneous, isotropic 2D HVBK superfluid turbulence [17,58]
by using the generating-functional methods we have outlined
above for 3D HVBK superfluid turbulence. In this 2D case,
we must distinguish between forward- and inverse-cascade
regimes [17,58]. In the former, there is a forward cascade
of enstrophy, from the forcing length scale to smaller length
scales; in the latter, there is an inverse cascade of energy
towards large length scales. If we recall that there is no
dissipative anomaly in the forward-cascade regime in 2D
turbulence [58], we see immediately that we obtain Eqs. (22)–
(25) with the dissipation terms on the right-hand side set to
zero. In the inverse-cascade regime, the forcing contribution
does not vanish, but it is of O(1), because r � r f . Therefore,
in the inverse-cascade regime, the right-hand sides (RHSs) of
Eqs. (22)–(25) do not have dissipation terms (like −2〈εn‖ 〉);
instead, the RHSs of Eqs. (22)–(25) are [Kn

i j (0) − Kn
i j (r)] and

[K s
i j (0) − K s

i j (r)], where the argument 0 indicates zero spatial
separation in the force covariances (3). For r/rf � 1 (of rel-
evance to the inverse-cascade regime), Kn

i j (r), K s
i j (r) → 0, so

we only have Kn
i j (0) or K s

i j (0) on the RHSs of Eqs. (22)–(25);

these are positive constants, clear signatures of an inverse
cascade.

B. Numerical results

We have noted above that, if the normal-fluid and super-
fluid velocities are completely aligned, the mutual-friction
terms do not appear in Eqs. (22)–(25). It is important, there-
fore, to characterize the degree of alignment between these
velocities. We follow the 2D HVBK turbulence study of
Ref. [17], define the ratio of the magnitudes of normal-
fluid and superfluid velocities γ = un

us
, and then obtain the

PDF P(γ ) or the cumulative probability distribution function
(CPDF) Q(γ ). We also obtain the PDF P(θ ), where θ =
cos−1( un·us

unus
) is the angle between un and us.

We first present data from our DNS studies of 3D HVBK
superfluid turbulence, for runs R1–R8 (parameters in Table I).
In Figs. 1(a) and 1(b) we give log-log plots of the CPDF
Q(γ ) versus γ for γ � 1 and γ � 1, respectively. These
plots show the following power-law tails (extending for about
a decade given the resolution of our study) that are consistent
with Q(γ ) ∼ γ 3 and P(γ ) ∼ γ 2 for γ � 1 and Q(γ ) ∼ γ −3

and P(γ ) ∼ γ −4 for γ � 1. Similar results for 2D HVBK
turbulence (subscript 2D) have been obtained in Ref. [17]:
Q2D(γ ) ∼ γ 2 and P2D(γ ) ∼ γ 1 for γ � 1 and Q2D(γ ) ∼ γ −2

and P2D(γ ) ∼ γ −3 for γ � 1. These exponents appear to be
universal, insofar as they do not depend on the parameters
(like B and B′) in 3D and 2D HVBK superfluid turbulence;
however, these exponents depend on the dimension d .

In Fig. 1(c) we display log-log plots of the PDF P(θ ) for
all our DNS runs R1–R8 (Table I). These show that P(θ ) ∼ θ

for θ � 1 and θ � θ∗ and P(θ ) ∼ θ−4 for θ � 1 and θ � θ∗
(given the resolution of our study, these scaling forms extend
for slightly more than a decade in θ ). Furthermore, these
power-law exponents do not depend on parameters such as
B and B′ and are, in this sense, universal. Figures 1(d)–1(f)
show the CPDF Q(γ ) and the PDF P(θ ) for runs R9–R14
with temperature-dependent viscosities (Table I); these are
similar to Figs. 1(a)–1(c). The exponents for the asymptotic
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(a)

(d) (e) (f)

(b) (c)

FIG. 1. The log-log plots (for runs R1–R8) of (a) the complementary cumulative probability distribution function Q(γ ) for γ = un
us

, the
ratio of the normal fluid speed and the superfluid speed, for γ � 1, where Q(γ ) ∼ γ 3; (b) the CPDF Q(γ ) for γ � 1, where Q(γ ) ∼ γ −3; and
(c) the PDF P(θ ) of the angle θ between the normal-fluid velocity and the superfluid velocity for θ � θ∗, with P(θ ) ∼ θ , and for θ∗ � θ � 1,
with P(θ ) ∼ θ−4. (d), (e), and (f) are similar to (a), (b), and (c), respectively, for the runs R9–R14 with temperature-dependent viscosities
(Table I).

behaviors of the CPDFs and PDFs in Figs. 1(d)–1(f) are
the same as those of their counterparts in Figs. 1(a)–1(c)
respectively, with some minor changes in the tails, which arise
because of the differences in νn/νs for runs R9–R14 with
temperature-dependent viscosities (Table I).

We now show that the power-law regimes (and the expo-
nents that characterize them) in the plots of Fig. 1 can be
obtained by making reasonable assumptions about the JPDF
P (un, us ), from which we can obtain P(γ ) as follows:

P(γ ) =
∫ ∞

0

∫ ∞

0
dundusδ

(
γ − un

us

)
P (un, us ). (26)

For γ � 1 and γ � 1, one of the fluids dominates, so we
expect that the normal-fluid and superfluid velocities should
be nearly uncorrelated (this is not true if γ � 1). Therefore,
we can make the approximation P (un, us ) ∼ P(un)P(us ) (we
have checked this numerically) for γ � 1 and γ � 1 [P(un)
and P(us) are the PDFs of un and us, respectively], which
yields

P(γ ) ∼
∫ ∞

0

∫ ∞

0
dundusδ

(
γ − un

us

)
P(un)P(us). (27)

We find that the components of the normal and superfluid
velocities have PDFs that are very close to Gaussian ones in
HVBK superfluid turbulence, like the PDFs of components
of the fluid velocity in classical-fluid turbulence (see, e.g.,
Refs. [58,59] and references therein). Therefore, in d spatial
dimensions, the magnitudes of these velocities should have

the Maxwellian PDFs P(un) ∼ Cnud−1
n exp(− u2

n
σ 2

n
) and P(us) ∼

Csud−1
s exp(− u2

s
σ 2

s
), where Cn (Cs) and σn (σs) are, respectively,

the normalization constant and standard deviation for the ve-
locity of the normal fluid (superfluid). If we substitute these
Maxwellian forms in Eq. (27) and integrate over un and us

we get

P(γ ) = CnCs

2

γ d−1(
γ 2

σ 2
n

+ 1
σ 2

s

)d
�(d ), (28)

whence we obtain P(γ ) ∼ γ d−1 for γ � 1 and
P(γ ) ∼ γ −d−1 for γ � 1; these exponents are consistent
with the results we have given above for 3D HVBK superfluid
turbulence and the results presented in Ref. [17] for 2D
HVBK superfluid turbulence.

To obtain the scaling forms of the PDF P(θ ) at small and
large values of θ [Fig. 1(c)] we note that sin θ = w⊥

un
[inset

of Fig. 1(c)], where w = un − us and w⊥ = un⊥ . For θ � 1,
sin θ ∼ θ and un⊥ = an⊥tn; here tn � 1 and an⊥ is the normal
component of the acceleration of the normal fluid. Clearly,

P(θ ) =
∫∫

dundan⊥δ

(
θ − an⊥tn

un

)
P (un, an⊥ ), (29)

where P (un, an⊥ ) is the JPDF of un and an⊥ . We now make the
approximation

P (un, an⊥ ) ∼ P(un)P(an⊥ ), (30)
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which can be justified within the framework of the
Kolmogorov theory (K41) [1] as follows (our arguments fol-
low those in Ref. [60], which obtains the PDF of the angle
between the Eulerian velocity of a turbulent fluid and the ve-
locity of an inertial particle that is advected by this fluid): K41
assumes that, in a homogeneous, isotropic, and statistically
steady turbulent flow, the only large-length-scale property that
is of importance at small length scales is ε, the rate of energy
dissipation. Viscous dissipation becomes significant at length
scales smaller than the K41 dissipation scale ηd = (ν3/ε)1/4;
at such scales the typical fluid acceleration is a∗ = ε3/4ν−1/4,
whereas the dissipation-scale velocity uηd = (εν)1/4. In the
large-Reynolds-number limit, i.e., ν → 0, in a 3D turbulent
fluid, ε goes to a positive constant (the dissipative anomaly).
Therefore, a∗ is much larger than typical accelerations be-
cause of large-scale fluid motion; by contrast, uηd is much
smaller than large-scale velocities. In summary, the normal
component of the fluid acceleration can be large at small
scales, where it is determined, principally, by small-scale
properties of the flow; in contrast, dominant fluid veloci-
ties are determined by large-scale motions. The separation
of length scales in the K41 theory then suggests that, to
a good approximation, a∗ and uηd are statistically indepen-
dent, so their JPDF can be approximated by the product of
their respective PDFs. This argument can be applied, mutatis
mutandis, to the normal fluid in 3D HVBK turbulence to
justify Eq. (30).

We have noted above that, in the HVBK model, P(un)
is very well approximated by the Maxwellian distribution

P(un) = Cnud−1
n exp( −u2

n
2σ 2 ). Our numerical data are consistent

with P(an⊥ ) = B1ad−2
n⊥ exp(−B2a2

n⊥ ), where Cn, B1, and B2

are constants (this PDF has a similar form in classical-fluid
turbulence [60]). If we use these forms for P(un) and P(an⊥ ),
along with Eqs. (29) and (30), and then integrate over un,
we get

P(θ ) =
∫

dan⊥t d
n CnB1

ad+1
n⊥

θd+1
exp

(−B2a2
n⊥

)
exp

(
−a2

n⊥t2
n

2θ2σ 2

)
.

(31)

If we define the angular scale θ∗ = a∗tn√
2σ

and the dimensionless

variables X = θ
θ∗

and Y = an⊥
a∗

, then Eq. (31) becomes

P(θ ) =
∫

dY td
n CnB1

Y d+1

θd+1
ad+2

∗ exp(−B2Y
2a2

∗)

× exp

(−Y 2

X 2

)
. (32)

We now consider the ranges (a) 0 � θ � θ∗ and X � 1 and
(b) θ∗ � θ � 1 and 1 � X . In case (a) the leading term of
Eq. (32) is P(θ ) ∼ ∫ X

0 dY td
n CnB1

Y d+1

θd+1 , which can be simpli-
fied to get P(θ ) ∼ θd/3, i.e., P(θ ) ∼ θ in d = 3 for 0 � θ �
θ∗. In case (b), in this range exp( −Y 2

X 2 ) ≈ 1, so Eq. (32) yields

P(θ ) = θ−(d+1)
∫

dY td
n CnB1

Y d+1

a∗

d+2
exp(−B2Y 2a2

∗), whence

we get P(θ ) ∼ θ−(d+1), i.e., P(θ ) ∼ θ−4 in d = 3, in the range
θ∗ � θ � 1. The power laws in the ranges (a) and (b) are
consistent with our numerical results in Fig. 1.

In Figs. 2(a) and 2(b) we present log-log plots of the energy
spectra

En(k) =
∑

k−1/2<k′<k+1/2

un(k′) · un(−k′),

Es(k) =
∑

k−1/2<k′<k+1/2

us(k′) · us(−k′) (33)

for the normal fluid and the superfluid, respectively, for T =
1.30, 1.80, and 2.17; the black lines indicate the K41 scal-
ing form of approximately k−5/3. Figure 2(g) shows log-log
plots of k versus the energy spectrum En(k); this is similar to
Fig. 2(a) but for the runs with temperature-dependent viscosi-
ties (Table I). Figure 2(g) shows that the tails of the spectra
move up as we increase the temperature; this is similar to the
results for these spectra in Ref. [44]. In Figs. 2(c) and 2(d) we
present log-log plots of the energy-flux spectra

�n =
〈 ∫ kmax

k
Tn(k′, t )dk′

〉
,

�s =
〈 ∫ kmax

k
Ts(k

′, t )dk′
〉

(34)

for the normal fluid and the superfluid, respectively.
Figure 2(h) is similar to Fig. 2(c) but for the runs with
temperature-dependent viscosities (Table I); the constant-
energy-flux parts of these plots indicate the extents of the
inertial ranges in our DNSs for T = 1.30, 1.80, and 2.17. Here
Tn(k′, t ) and Ts(k′, t ) are energy-transfer terms in Fourier
space because of the triadic interactions in the normal fluid
and superfluid, respectively. The parameters for these runs
are given in Table I. We have taken the dependence of B, B′,
and ρn/ρs on the temperature T from the measurements of
Ref. [48] on superfluid 4He; therefore, our results are applica-
ble to measurements of the statistical properties of superfluid
turbulence in this system. In Figs. 2(e) and 2(f) we present
log-log plots of the absolute values of the real part of the
mutual-friction transfer terms

Mn(k, t ) =
∑

k−1/2<k′<k+1/2

ρsfmf(k′) · un(−k′),

Ms(k, t ) =
∑

k−1/2<k′<k+1/2

ρnfmf(k′) · un(−k′) (35)

for the normal-fluid and superfluid components, respectively.
We observe that, if we increase the temperature, the mutual-
friction transfer for the superfluid increases.

The longitudinal velocity structure functions are

Sα
p (l ) = 〈|[uα (r + l) − uα (r)] · l̂|p〉, (36)

where α = n or s for the normal fluid and superfluid, respec-
tively. In the inertial range ηd � l � L, Sα

p (l ) ∼ lζ α
p ; we can

use this scaling form to extract the exponents ζ α
p from Sα

p (l ).
Furthermore, we can extend the scaling range by using the
extended-self-similarity (ESS) method [58,59,61,62] to calcu-
late the exponent ratio ζ α

p /ζ α
3 from the inertial-range slopes of

log-log plots of Sα
p (l ) versus Sα

3 (l ). In Figs. 3(a) and 3(b) we
plot the exponent ratios ζ n

p /ζ n
3 and ζ s

p/ζ
s
3 , respectively, versus

the order p (p � 6). Figures 3(c) and 3(d) show the plots of
these exponent ratios versus the temperature T ; the dashed
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(a) (c) (e)

(b) (d) (f)

(g) (h) (i)

FIG. 2. The log-log plots [for T = 1.30 (red lines), T = 1.80 (magenta lines), and T = 2.17 (blue lines)] versus the wave number k of
(a) the energy spectrum En(k) for the normal fluid, (b) the energy spectrum Es(k) for the superfluid (the black line indicates the K41 scaling
form of approximately k−5/3), (c) the energy flux �n(k) for the normal fluid, (d) the energy flux �s(k) for the superfluid, (e) the absolute value
of the real component of the mutual-friction transfer |Re(ρsfmf · un )| for the normal fluid, and (f) the absolute value of the real component of
the mutual-friction transfer |Re(ρnfmf · us )| for the superfluid. (g), (h), and (i) are similar to (a), (c), and (e), respectively, but for the runs R9,
R12, and R14 with temperature-dependent viscosities (Table I).

lines give the K41 result for these exponent ratios. In Table II
we give the numerical values of these exponents ratios (along
with error bars, which we determine by a local-slope analysis).
From Figs. 3(c) and 3(d) we observe that ζ n

p /ζ 3
p , ζ s

p/ζ
s
3 > p/3

for p = 1–2 and ζ n
p /ζ 3

p , ζ s
p/ζ

s
3 < p/3 for p = 4–6; these are

clear signatures of intermittency in superfluid turbulence. Fur-
thermore, we observe that the values of the ratios ζ n

p /ζ 3
p and

ζ s
p/ζ

s
3 differ most from their K41 values in the temperature

range T = 1.7–1.9. We can characterize the intermittency
by the exponents (see, e.g., Ref. [59]) μn

p = p/3 − ζ n
6 and

μs
p = p/3 − ζ s

6 for p = 5 and 6, which measure the deviation
of the fifth- and sixth-order exponents from their K41 values.
In Figs. 3(e) and 3(f) we plot μn

p and μs
p, respectively, for

p = 5 (red lines) and p = 6 (blue lines). From Figs. 3(e) and
3(f) we observe that these deviations, and hence the intermit-
tency, are highest in the temperature range T = 1.70–1.90.

Figures 3(g), 3(h), and 3(i) are similar to Figs. 3(a), 3(c), and
3(e) but for the runs with temperature-dependent viscosities
(Table I). Intermittency in superfluid turbulence has also been
studied in Refs. [13,40–44] experimentally and numerically,
by shell-model and DNS studies of 3D HVBK turbulence. As
in classical-fluid turbulence, we still lack an ab initio theory
of such intermittency.

IV. CONCLUSION

We have used the generating-functional approach to de-
rive the von Kármán–Howarth relations [Eqs. (22)–(25)] for
the 3D HVBK model of superfluid turbulence and we have
shown that the simple von Kármán–Howarth relation, for
classical-fluid turbulence, is replaced by four relations here.
In particular, we included the effects of the mutual-friction
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(a) (c) (e)

(b) (d) (f)

(g) (h) (i)

FIG. 3. Plots of the order p of the longitudinal-structure-function exponent ratios versus (a) the normal fluid ζ n
p /ζ n

3 and (b) the superfluid
ζ s

p/ζ
s
3 for runs R1–R8, with 1 � p � 6, using the ESS method. These ratios are plotted versus the temperature T for (c) the normal fluid and

(d) the superfluid, with p = 1 (red lines), p = 2 (green lines), p = 3 (blue lines), p = 4 (yellow lines), p = 5 (pink lines), and p = 6 (cyan
lines); the dashed lines show the K41 predictions. Also shown are plots of T versus the intermittency exponents (e) μn

p = p/3 − ζ n
p /ζ n

3 for the
normal fluid and (f) μs

p = ζ s
p/ζ

s
3 for the superfluid, with p = 5 (red lines) and p = 6 (blue lines). (g), (h), and (i) are similar to (a), (c), and (e),

respectively, but for runs R9–R14 with temperature-dependent viscosities (Table I).

term (if this term is neglected, our general results reduce
to those in Ref. [44]). Furthermore, we obtained power-law
behaviors for the PDFs P(γ ) and P(θ ) from our DNS results.
We then showed how these power laws can be understood an-
alytically, if we make reasonable decoupling approximations
for certain joint PDFs. The exponents of P(γ ) for the 2D
HVBK case, which were calculated numerically in Ref. [17],
are in good agreement with our analytical predictions. These
power-law exponents are universal in the sense that they are
independent of the mutual-friction coefficients B and B′ and
the temperature T ; it should be possible to measure them in
experiments, such as those conducted in Refs. [13,40,41] for
superfluid 4He.

From our DNSs we have obtained energy, energy-flux, and
mutual-friction-function spectra, the longitudinal-structure-
function exponents for the normal fluid and the superfluid,
as a function of the temperature T . We calculated the ratios

of structure-function exponents for the normal fluid and the
superfluid, via the ESS method, as a function of T , by using
the experimentally determined mutual-friction coefficients for
superfluid helium 4He [5]. We have shown that there is an
enhancement of intermittency for the normal fluid and the
superfluid in the range 1.7 � T � 1.90; our results should
be applicable to, and verifiable in, experiments like those of
Refs. [13,40,41]; they are also similar to the intermittency
results in the DNSs of Ref. [44].
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TABLE II. Numerical values of the exponent ratios ζ n
p /ζ n

3 and ζ s
p/ζ

s
3 , for 1 � p � 6, from all our DNSs R1–R14, along with error bars,

which we determine by a local-slope analysis. To determine these exponent ratios we use the ESS method (see the text for details).

Run ζ n
1 /ζ n

3 ζ n
2 /ζ n

3 ζ n
4 /ζ n

3 ζ n
5 /ζ n

3 ζ n
6 /ζ n

3 ζ s
1/ζ

s
3 ζ s

2/ζ
s
3 ζ s

4/ζ
s
3 ζ s

5/ζ
s
3 ζ s

6/ζ
s
3

R1 0.36 ± 0.00 0.70 ± 0.00 1.27 ± 0.00 1.52 ± 0.00 1.75 ± 0.01 0.36 ± 0.00 0.70 ± 0.00 1.27 ± 0.00 1.52 ± 0.01 1.75 ± 0.01
R2 0.37 ± 0.00 0.70 ± 0.00 1.27 ± 0.00 1.52 ± 0.01 1.75 ± 0.02 0.37 ± 0.00 0.70 ± 0.00 1.27 ± 0.00 1.52 ± 0.02 1.74 ± 0.03
R3 0.37 ± 0.00 0.70 ± 0.00 1.27 ± 0.01 1.52 ± 0.02 1.75 ± 0.04 0.37 ± 0.01 0.70 ± 0.01 1.27 ± 0.02 1.51 ± 0.04 1.73 ± 0.07
R4 0.37 ± 0.00 0.71 ± 0.00 1.26 ± 0.01 1.48 ± 0.01 1.68 ± 0.02 0.37 ± 0.00 0.70 ± 0.00 1.26 ± 0.01 1.49 ± 0.01 1.69 ± 0.02
R5 0.37 ± 0.00 0.70 ± 0.00 1.27 ± 0.01 1.51 ± 0.01 1.73 ± 0.02 0.37 ± 0.00 0.70 ± 0.01 1.27 ± 0.00 1.52 ± 0.01 1.74 ± 0.02
R6 0.37 ± 0.01 0.70 ± 0.01 1.26 ± 0.01 1.50 ± 0.03 1.70 ± 0.05 0.37 ± 0.00 0.70 ± 0.01 1.27 ± 0.01 1.50 ± 0.03 1.71 ± 0.05
R7 0.36 ± 0.00 0.69 ± 0.00 1.28 ± 0.00 1.54 ± 0.01 1.77 ± 0.01 0.36 ± 0.00 0.70 ± 0.00 1.27 ± 0.01 1.52 ± 0.02 1.74 ± 0.04
R8 0.36 ± 0.00 0.70 ± 0.00 1.28 ± 0.00 1.52 ± 0.01 1.75 ± 0.02 0.36 ± 0.00 0.70 ± 0.00 1.28 ± 0.00 1.53 ± 0.01 1.75 ± 0.02
R9 0.33 ± 0.04 0.67 ± 0.03 1.31 ± 0.05 1.58 ± 0.09 1.81 ± 0.14 0.35 ± 0.03 0.68 ± 0.02 1.29 ± 0.03 1.56 ± 0.08 1.79 ± 0.13
R10 0.31 ± 0.03 0.66 ± 0.02 1.32 ± 0.03 1.59 ± 0.07 1.82 ± 0.10 0.35 ± 0.01 0.68 ± 0.01 1.29 ± 0.01 1.56 ± 0.03 1.82 ± 0.05
R11 0.36 ± 0.02 0.69 ± 0.02 1.27 ± 0.02 1.52 ± 0.05 1.73 ± 0.08 0.35 ± 0.02 0.69 ± 0.01 1.28 ± 0.02 1.53 ± 0.04 1.76 ± 0.06
R12 0.37 ± 0.02 0.70 ± 0.02 1.26 ± 0.04 1.49 ± 0.11 1.69 ± 0.2 0.37 ± 0.01 0.69 ± 0.01 1.28 ± 0.01 1.53 ± 0.02 1.77 ± 0.04
R13 0.37 ± 0.02 0.70 ± 0.02 1.26 ± 0.05 1.49 ± 0.12 1.70 ± 0.21 0.37 ± 0.02 0.70 ± 0.02 1.26 ± 0.05 1.49 ± 0.12 1.70 ± 0.21
R14 0.36 ± 0.06 0.69 ± 0.05 1.28 ± 0.07 1.52 ± 0.16 1.75 ± 0.25 0.36 ± 0.02 0.69 ± 0.02 1.27 ± 0.03 1.51 ± 0.07 1.72 ± 0.12

financial support through the MATRICS scheme [File No.
MTR/2020/000406].

APPENDIX

We give below some details of our calculations for the
structure-function hierarchy.

The pressure contribution from the normal fluid is

ηn3Ip = ηn3

〈(
λn · 1

ρn
∇(	pn)

)
Zn

〉
, (A1)

ηn3Ip =
〈(

ηn2ηn3
1

ρn
[∇(	pn)]‖ + η2

n3
1

ρn
[∇(	pn)]⊥

)
Zn

〉
.

(A2)

If we take the derivative ∂2
ηn2

∂ηn3 of Eq. (A2) and the limits
ηn2, ηn3 → 0, we get

lim
ηn2,ηn3→0

[
∂2
ηn2

∂ηn3 (ηn3Ip)
] = 1

ρn
〈	un‖ [∇(	pn)]‖〉. (A3)

By applying the derivative ∂3
ηn3

on Eq. (A2) and taking the
limits ηn2, ηn3 → 0, we get

lim
ηn3,ηn2→0

[
∂3
ηn2

(ηn3Ip)
] = 1

ρn
〈	un⊥ [∇(	pn)]⊥〉. (A4)

The total pressure contribution to the third-order structure
function for the normal fluid is
1

ρn
〈	un‖ [∇(	pn)]‖ + 	un⊥ [∇(	pn)]⊥〉 = 1

ρn
〈	uni∇i	pn〉,

(A5)

〈	un‖ [∇(	pn)]‖ + 	un⊥ [∇(	pn)]⊥〉
= 〈uni(x1)∇i pn(x1) − uni(x2)∇i pn(x1)

− uni(x1)∇i pn(x2) + uni(x2)∇i pn(x2)〉. (A6)

On the RHSs of the above equations, we have contribu-
tions from the following two types of terms: terms at the
same point and terms at two different points. By using
the homogeneity condition, we write 〈uni(x1)∇i pn(x1)〉 =
∇i〈uni(x1)pn(x1)〉. From the condition of (statistical) ho-
mogeneity, we get ∇i〈uni(x1)pn(x1)〉 = 0. Similarly, we get
∇i〈uni(x2)pn(x2)〉 = 0. By using the incompressibility condi-
tion, we write 〈uni(x1)∇i pn(x2)〉 = ∇i(x1)〈uni(x1)pn(x2)〉 =
0. We define r = x1 − x2 and this gives us ∇i(r) =
∇i(x1). If we apply the homogeneity condition and con-
sider that 〈uni(x1)pn(x2)〉 = A(r) ri

r , then the physical solution
of ∇i(x1)[A(r) ri

r ] = 0 is A(r) = 0. Thus, 〈uni(x1)p(x2)〉 =
0; similarly, we can get 〈uni(x2)p(x1)〉 = 0. Now Eq. (A6)
becomes

〈	un‖ [∇(	pn)]‖〉 + 〈	un⊥ [∇(	pn)]⊥〉 = 0. (A7)

The contribution from the perpendicular component in
this equation can be written as 〈	un⊥ [∇(	pn)]⊥〉 =
〈	unθ

1
r

∂
∂θ

	pn〉. The term 	unθ

1
r

∂
∂θ

	pn changes its sign
under the replacement θ → −θ ; hence 〈	unθ

1
r

∂
∂θ

	pn〉 = 0.
Furthermore, it implies that 〈	un‖ [∇(	pn)]‖〉 =
〈	un⊥ [∇(	pn)]⊥〉 = 0. Similarly, we can show that the
pressure contribution from the superfluid components is
also zero, i.e., 〈	us‖ [∇(	ps)]‖〉 = 〈	us⊥ [∇(	ps)]⊥〉 = 0.
Thus, the pressure term does not contribute to the third-order
structure functions.

The dissipation term for normal fluid is given as

Dn = 〈
νn

[
λn1 · ∇2

x1
un(x1) + λn2 · ∇2

x2
un(x2)

]
Zn

〉
. (A8)

For convenience, we consider that λn1 = −λn2 and λs1 =
−λs2 and for notational simplicity we consider λn1 = λn and
λs1 = λs. In terms of λn and λs the dissipation terms are

Dn = 〈
νn

[
λn · ∇2

x1
un(x1) − λn · ∇2

x2
un(x2)

]
Zn

〉
, (A9)

Dn = νn
〈[
ηn2∇2

x1
un‖ (x1) − ηn2∇2

x2
un‖ (x2) + ηn3∇2

x1
un⊥ (x1) − ηn3∇2

x2
un⊥ (x2)

]
Zn

〉
. (A10)
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We note that〈
νn

(∇2
x1

+ ∇2
x2

)
Zn

〉 = νn
〈[
ηn2∇2

x1
un‖ (x1) − ηn2∇2

x2
un‖ (x2) + ηn3∇2

x1
un⊥ (x1) − ηn3∇2

x2
un⊥ (x2)

]
Zn

〉
+ νn〈Zs[ηn2∇x1 un‖ (x1) + ηn3∇x1 un⊥ (x1)]2Zn〉 + νn〈Zs[ηn2∇x2 un‖ (x2) + ηn3∇x2 un⊥ (x2)]2Zn〉; (A11)

by substituting the value of Dn in this equation, we get〈
νn

(∇2
x1

+ ∇2
x2

)
Zn

〉 = Dn + νn
〈{

η2
n2[∇x1 un‖ (x1)]2 + η2

n3[∇x1 un⊥ (x1)]2 + 2ηn2ηn3[∇x1 un‖ (x1)][∇x1 un⊥ (x1)]
}
Zn

〉
+ νn

〈{
η2

n2[∇x2 un‖ (x2)]2 + η2
n3[∇x2 un⊥ (x2)]2 + 2ηn2ηn3[∇x2 un‖ (x2)][∇x2 un⊥ (x2)]

}
Zn

〉
. (A12)

On using νn[∇aun‖ (a)]2 = εn‖ (a) and νn[∇aun⊥ (a)]2 = εn⊥ (a), where a stands for x1 or x2, we get〈
νn

(∇2
x1

+ ∇2
x2

)
Zn

〉 = Dn + 〈{
η2

n2[εn‖ (x1) + εn‖ (x2)] + η2
n3[εn⊥ (x1) + εn⊥ (x2)]

}
Zn

〉
+ 2〈ηn2ηn3{[εn‖ (x1)εn⊥ (x1)]1/2[εn‖ (x2)εn⊥ (x2)]1/2}Zn〉. (A13)

If we take the limit νn → 0 and set εn‖ (x1) + εn‖ (x2) = εn‖ and εn⊥ (x1) + εn⊥ (x2) = εn⊥ in this equation, we get

0 = Dn + 〈(
η2

n2εn‖ + η2
n3εn⊥

)
Zn

〉 + 2〈ηn2ηn3{[εn‖ (x1)εn⊥ (x1)]1/2 + [εn‖ (x2)εn⊥ (x2)]1/2}Zn〉 (A14)

or

−Dn = 〈(
η2

n2εn‖ + η2
n3εn⊥

)
Zn

〉 + 2〈ηn2ηn3{[εn‖ (x1)εn⊥ (x1)]1/2 + [εn‖ (x2)εn⊥ (x2)]1/2}Zn〉. (A15)

Similarly, the dissipation term from the superfluid part is

−Ds = 〈(
η2

s2εs‖ + η2
s3εs⊥

)
Zs

〉 + 2〈ηs2ηs3{[εs‖ (x1)εs⊥ (x1)]1/2 + [εs‖ (x2)εs⊥ (x2)]1/2}Zs〉. (A16)
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