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Detecting prethermal Floquet phases of Rydberg atom arrays
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We study the prethermal Floquet phases of a two-dimensional Rydberg atom array on a rectangular lattice in
the presence of a periodic drive with large drive amplitude. We derive an analytic, albeit perturbative, Floquet
Hamiltonian using Floquet perturbation theory (FPT) which charts out these phases and shows that the transition
between them can be accessed by tuning the drive frequency. Using both numerical exact diagonalization on
finite-size arrays and an analytical first-order Floquet Hamiltonian derived using FPT, we show that these
prethermal Floquet phases and the transitions between them can be detected by studying the dynamics of
equal-time density-density correlation functions of the Rydberg atoms. Our analysis thus provides a simple way
of detecting these phases and associated transitions in this system; such a detection can be achieved in standard
experiments, which we discuss.
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I. INTRODUCTION

Quantum systems involving ultracold atoms in optical
lattices have been the subject of intense theoretical and ex-
perimental studies in recent years [1–8]. The reason for such
interest in these systems stems from their ability to act as
emulators of strongly correlated models. Moreover, they allow
us to explore parameter regimes and quantum dynamics of
the emulated models, which is usually impossible to access in
standard laboratory setups. A typical example is the emulation
of the Bose-Hubbard model using 87Rb atoms; this has led
to detailed theoretical and experimental studies on both the
superfluid-insulators transition and nonequilibrium quantum
dynamics of this model [1,2,9–14]. Another such example
is the emulation of the tilted Bose-Hubbard model, which
has led to realization of translation symmetry-broken ground
states in these systems [6,7,15–17].

More recently, experimental systems involving ultracold
Rydberg atoms have been experimentally realized [18–21].
These atoms experience strong interatomic van der Waals
interaction in their excited state leading to a Rydberg block-
ade with a tunable blockade radius [22,23]. An array of
such atoms in a one-dimensional (1D) optical lattice, namely
a Rydberg chain, is known to host both Ising and non-
Ising quantum critical points [24,25]; the signature of the
associated phase transition has been experimentally veri-
fied [20]. The nonequilibrium dynamics of such atoms has
also been theoretically studied [26–33]. Interestingly, the vi-
olation of the eigenstate thermalization hypothesis (ETH)
[34,35] for dynamics starting from a class of initial states
has been experimentally observed in these systems [21];
this phenomenon has been explained by invoking the exis-
tence of an atypical set of athermal midspectrum quantum
states, namely quantum scars [28–31]. The presence of
such scars in the eigenspectrum of the Floquet Hamilto-
nian of a periodically driven Rydberg chain has also been
predicted [32,33].

A natural extension of the above-mentioned studies on
Rydberg chains is to investigate higher-dimensional Rydberg
atom arrays. Such arrays are expected to host a rich variety
of quantum ground states that have no 1D analogs. For the 2D
square arrays, such studies have predicted the presence of sev-
eral translational symmetry-broken ground states with definite
density-wave orders; these ordered states are separated from
the featureless disordered ground state via a second-order
phase transition [36,37]. In more complicated nonbipartite
lattices such as the kagome lattice, where the atoms are de-
signed to occupy the links of the lattice (or equivalently sites
of a ruby lattice), such atom arrays are predicted to host
a spin-liquid quantum ground state over a wide parameter
regime [38]. More recently, phases of Rydberg atoms on a 3D
pyrochlore lattice have also been studied [39]. However, the
nonequilibrium dynamics of such atom arrays has not been
studied so far.

In this work, we shall study the prethermal Floquet phases
of a periodically driven Rydberg atom array arranged as a rect-
angular lattice. The effective Hamiltonian of such an array can
be described in terms of two states on a site with coordinate
�r = ( jx, jy). The first of these is the ground state of the atoms;
we shall denote this by |g�r〉. The other state is the Rydberg
excited state and is denoted by |e�r〉. Using these as the basis
states at each site, we can write the effective Hamiltonian of
these atoms as [18–21]

H =
∑

�r

(
�σ x

�r − �

2
σ z

�r

)
+ 1

2

∑
�r,�r′

V (|�r − �r′|)n̂�r n̂�r′ , (1)

where �σ�r are Pauli matrices in the space of states described
above, σ x

�r = |g�r〉〈e�r | + |e�r〉〈g�r |, and n̂�r = (1 + σ z
�r )/2 is the

Rydberg excitation density at the site �r of the lattice. Here
� > 0 denotes the coupling strength between the ground
state and the Rydberg excited state, � denotes the detuning,
which we shall assume to be uniform throughout the ar-
ray, and V (|�r − �r′|) = V0/|�r − �r′|6 denotes the van der Waals
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interaction between two Rydberg excitations with strength V0.
In what follows, we shall drive the detuning parameter, �, of
the model periodically with drive amplitude �0 and frequency
ωD = 2π/T , where T is the time period. For the square-pulse
protocol, the drive term is given by

�(t ) = δ − �0 for 0 � t < T/2

= δ + �0 for T/2 � t < T, (2)

and �(t + T ) = �(t ), while for the cosine drive protocol, we
have

�(t ) = δ + �0 cos(ωDt ). (3)

In this work, we shall restrict ourselves to the regime where
the drive amplitude is large: �0 � δ,�,V0.

The main results that we obtain in this work are as follows.
First, using Floquet perturbation theory (FPT), which uses the
inverse drive amplitude as the small parameter [40–43], we
obtain an analytic, albeit perturbative, Floquet Hamiltonian
for the driven system for both the square-pulse [Eq. (2)] and
the cosine [Eq. (3)] protocols. Our analysis reveals several
ordered Floquet phases with distinct density-wave orders,
which are separated from the disordered state by second-
order critical points. We also show that tuning the drive
frequency allows us to tune the system between these phases
and through the critical points. Second, we complement our
results obtained from the analytical Floquet Hamiltonian with
that from numerical exact diagonalization (ED) starting from
H [Eq. (1)] with �(t ) given by Eq. (2). Our study reveals
the existence of an exponentially long prethermal timescale
in the large and intermediate drive amplitude regime; the
properties of the driven system up to this timescale are well
described by the analytic Floquet Hamiltonian. Third, using
the exact evolution operator obtained from ED, we compute
the density-density correlation function of Rydberg excita-
tions of the driven atom array after n cycles of the drive.
We show that such a correlator exhibits qualitatively distinct
behavior in the density-wave ordered and disordered Floquet
phases; thus it serves as an experimentally relevant marker
for the Floquet phases and the transitions between them. We
demonstrate this explicitly for the disordered to the star and
the checkerboard ordered Floquet phases (see Fig. 1); we
find that the above-mentioned correlation function displays
distinct long-time behaviors in the ordered and disordered
phases as well as at the transition point between them. Thus it
can be used to distinguish between these Floquet phases and
also locate the transition between them. Finally, we discuss
experiments that can test our theory, and possible extensions
of our study in these systems.

The plan of the rest of the paper is as follows. In Sec. II,
we derive the analytic Floquet Hamiltonian using FPT. This
is followed by Sec. III, where we compare its prediction
to numerical results obtained using ED, and we obtain the
phase diagram of the driven system. Next, in Sec. IV, we
compute the correlation function C, study its behavior in dif-
ferent Floquet phases, and also discuss the stability of these
phases. Finally, we chart out experiments that can verify our
theory, discuss possible extensions of it in these systems, and
conclude in Sec. V.

FIG. 1. Schematic representations of the (a) star, (b) striated, and
(c) checkerboard phases. The red circles indicate sites with Rydberg
excitations, while the white ones represent atoms in their ground
state. (d) Plot of Os obtained using exact eigenstates of U (T, 0) as
a function λ = �0T/(4h̄), where T is the time period of a square
pulse [Eq. (2)] for V0 = 25�. The other parameters are δ = 2�,
�0 = 100�, Lx = 6, and Ly = 4.

II. ANALYTIC FLOQUET HAMILTONIAN

In this section, we shall derive the analytic Floquet Hamil-
tonian for both the cosine and the square-pulse protocols
using FPT. The details of the FPT method can be found in
Refs. [40–43].

To obtain the Floquet Hamiltonian, we first rewrite H (t ) =
H0(t ) + H1, where

H0(t ) = − �(t ) − δ

2

∑
�r

σ z
�r ,

H1 =H1a + H1b, H1a =
∑

�r
�σ x

�r ,

H1b = −
∑

�r

δ

2
σ z

�r + 1

2

∑
�r,�r′

V (|�r − �r′|)n̂�r n̂�r′ . (4)

This decomposition of H (t ) is made such that the term with
the largest amplitude, �0, is included in H0. We have also
separated the terms in H1 into those that commute (H1b) with
H0 and those that do not (H1a).

Next, we construct the evolution operator U0(t, 0) =
Tt exp[−i

∫ t
0 H0(t ′)dt ′/h̄] (where Tt is the time-ordering op-

erator) corresponding to H0(t ). For the square-pulse protocol,
this yields

U (0)
s (t, 0) = e−i�0t

∑
�r σ z

�r /2h̄ for 0 � t < T/2,

= e−i�0(T −t )
∑

�r σ z
�r /2h̄ for T/2 � t < T, (5)

while for the cosine protocol we obtain

U (0)
c (t, 0) = ei�0 sin(ωDt )

∑
�r σ z

�r /(2h̄ωD ). (6)

Note that for both protocols, U0(T, 0) = I , where I denotes
the identity matrix; hence the zeroth-order Floquet Hamilto-
nian is H (0)

F = 0.
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To find the first-order terms, we use standard perturbation
theory, which yields [43]

U (1)
c(s)(T, 0) = − i

h̄

∫ T

0
dtU (0)†

c(s) (t, 0)H1U
(0)
c(s)(t, 0). (7)

To evaluate U (1)
c(s), we first note that the terms in H1b [Eq. (4)]

that commute with U (0)
c/s can be evaluated simply. This yields

U (1b)
c(s) (T, 0) = − iT

h̄
H1b,

H (1b)
Fc(s) = ih̄

T
U (1b)

c(s) (T, 0) = H1b. (8)

To evaluate the contribution of H1a to U (1)
c(s), we first note

that U (0)
c(s) is diagonal in the Fock basis and can be written as

U (0)
s (t, 0) = e−i�0tEm/(2h̄)|m〉〈m| t � T/2

= e−i�0(T −t )Em/(2h̄)|m〉〈m| t > T/2,

U (0)
c (t, 0) = ei�0Em sin ωDt/(2h̄ωD )|m〉〈m|, (9)

where |m〉 denotes a Fock state with m Rydberg excitations
(or equivalently m spin-up sites) and L2 − m atoms in their
ground state, and Em is the eigenvalue of

∑
�r σ z

�r in the state
|m〉. We note that these states are degenerate since their
energies do not depend on the positions of the Rydberg ex-
citations. In this picture, it is easy to see that H1a changes
the number of such Rydberg excitations in any state by ±1;
thus H1a|m〉 ∼ |m + 1〉 + |m − 1〉. Furthermore, the energy
differences between the states |m〉 and |m ± 1〉 are given by
�E±

m = Em − Em±1 = ∓2. Using this, and after some stan-
dard algebra detailed in Ref. [33], we find

H (1a)
Fc = �J0

(
2λ

π

) ∑
�r

σ x
�r ,

H (1a)
Fs = �

sin λ

λ

∑
�r

(
cos λσ x

�r − sin λσ
y
�r
)
, (10)

where λ = �0T/(4h̄), and J0 denotes the zeroth-order Bessel
function. The final first-order Floquet Hamiltonian is given by

H (1)
Fc(s) = H (1a)

Fc(s) + H (1b)
Fc(s). (11)

The expressions of H (1)
F for both protocols suggest the ex-

istence of special drive frequencies at which, for a given drive
amplitude �0, H (1a)

F vanishes. The frequencies correspond to
λ = mπ , where m is a nonzero integer, for the square-pulse
protocol and λ = πηm/2 for the cosine protocol, where ηm

denotes the value of the mth zero of J0. They are given by

ω∗
m = �0

2mh̄
for the square-pulse protocol

= �0

ηmh̄
for the cosine protocol. (12)

At these frequencies, [H (1)
F , n̂�r] = 0 leading to an approximate

emergent conservation of n̂r. This conservation is approxi-
mate since it is not respected by higher-order terms in the
Floquet Hamiltonian.

To qualitatively understand the phases of H (1)
F , we now

consider the regime where V0, δ 
 �0. In this regime for

ωD � ω∗
1, the ground state of H (1)

F is expected to be similar
to the disordered paramagnetic phase found in Ref. [36]. In
contrast, at ωD = ω∗

1, the ground state of H (1)
F constitutes

a density-wave ordered state whose precise nature depends
on the relative strength of δ/� and V0/� [36]. Thus as we
tune the drive frequency towards ω∗

1, we expect to find a
second-order phase transition between these phases. Also, in
the regime of large �0, the higher-order corrections to H (1)

F
are expected to be small; thus such phases should persist as
long-lived prethermal phases of the driven system. We shall
explore these phases in detail in Sec. III and their detection in
Sec. IV A.

Before ending this section, we note that the effect of having
V0 � δ,� is to preclude Rydberg excitations on the neighbor-
ing sites of the lattice. In this regime, it is possible to obtain a
slightly modified form of the Floquet Hamiltonian which sup-
ports similar phases. Such a prohibition can be implemented
by using a local projection operator

P�r = (
1 − σ z

�r
)/

2 (13)

as shown in Ref. [18]. In this regime, the projected Hamilto-
nian is given by [18,24,25]

Hp(t ) =
∑

�r

(
�σ̃ x

�r − �(t )

2
σ z

�r

)
+ 1

2

′∑
�r,�r′

V (|�r − �r′|)n̂�r n̂�r′

σ̃ x
�r = Pjx−1, jy Pjx, jy−1σ

x
jx, jy Pjx+1, jy Pjx, jy+1, (14)

where
∑′ denotes a sum over sites where �r is not a nearest

neighbor of �r′. Note that σ̃ x
�r can create a Rydberg excitation at

site �r only if all its neighbors are in their ground states.
We can carry out an exactly similar perturbative analysis,

charted out earlier in this section, starting from Hp(t ). The
computation involved is almost identical to that used to obtain
H (1)

F , and we do not repeat it here. Such an analysis yields the
Floquet Hamiltonians for the continuous and the square-pulse
protocols for the projected case,

H p(1)
Fc = �J0

(
2λ

π

) ∑
�r

σ̃ x
�r + 1

2

′∑
�r,�r′

V (|�r − �r′|)n̂�r n̂�r′

− δ

2

∑
�r

σ z
�r ,

H p(1)
Fs = �

sin λ

λ

∑
�r

(
cos λσ̃ x

r − sin λσ̃
y
�r
)

+1

2

′∑
�r,�r′

V (|�r − �r′|)n̂�r n̂�r′ − δ

2

∑
�r

σ z
�r . (15)

We note that the phases of H p(1)
F are qualitatively similar

to those of H (1)
F ; in particular, we can still tune the drive

frequency towards ω∗
1 to obtain density-wave phases. The

numerical advantage provided by H p(1)
F comes from the fact

that the dimension of its Hilbert space, Dp ∼ 1.503L2
[44],

grows slowly with system size L2 compared to its counterpart
D for H (1)

F , D ∼ 2L2
. We shall use this fact while dealing

with numerical analysis of the Floquet phases in subsequent
sections.
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III. PRETHERMAL FLOQUET PHASES

In this section, we study the Floquet phases using both the
analytically obtained Floquet Hamiltonian [Eq. (15)] and the
Floquet eigenstates obtained from exact numerical diagonal-
ization of U (T, 0). The numerical results presented in this
section will be obtained for the square-pulse protocol with
large V0. We shall also use the constraint that two neigh-
boring sites cannot be simultaneously occupied by Rydberg
excitations: n̂rn̂r′ = 0 if r and r′ are nearest neighbors. This
approximation, which becomes accurate at large V0, allows us
to access larger system size; the validity of this approximation
will be discussed in detail in Sec. V.

For the square-pulse protocol and within the constrained
subspace mentioned above, we can write the evolution opera-
tor as U (T, 0) = U+(T, T/2)U−(T/2, 0), where

U−(t, 0) = exp[−iHp(�−)t/h̄],

U+(t, T/2) = exp[−iHp[�+](t − T/2)/h̄], (16)

where �± = δ ± �0 [Eq. (2)].
To obtain the exact Floquet eigenstates, we first numeri-

cally diagonalize Hp± ≡ Hp(�±). This allows us to obtain
its eigenvalues and corresponding eigenvectors: Hp±|q±〉 =
Eq± |q±〉. Using these, we can write the evolution operator as

U (T, 0) =
∑

q+,q′+

Uq′+q+|q′
+〉〈q+|,

Uq′+q+ =
∑
p−

e
i(Eq′+ +Ep− )T/(2h̄)

c∗
q′+ p−cq+ p− , (17)

where cαβ = 〈β|α〉 are the overlap coefficients between eigen-
states of H+ and H−. Using the matrix elements Uq′+q+
[Eq. (17)], we can numerically diagonalize U (T, 0) to obtain
its eigenvalues and eigenfunctions,

U (T, 0)|m〉 = �m(T )|m〉, �m(T ) = eiθm (T ), (18)

where the form of the eigenvalues �m follows from the unitary
nature of the evolution operator. We note that the |m〉’s are
also eigenstates of the exact Floquet Hamiltonian HF within
the constrained subspace; their eigenvalues which correspond
to the Floquet quasienergies are given by

εm = arccos[Re�m(T )]h̄/T . (19)

In the limit of high drive frequency where T is sufficiently
small, all the eigenvalues fall within the first Floquet Brillouin
zone: −π h̄/T � εm � π h̄/T . In this case, one can meaning-
fully order the quasienergies εm; the lowest εm corresponds
to the Floquet ground state and characterizes the Floquet
phase. For lower drive frequencies, the quasienergies are no
longer restricted within the first Floquet Brillouin zone; in this
regime, they can be folded back using the standard reduced
zone scheme [43]. However, this makes it impossible to order
them by their magnitude. In this section, we shall work in
the high drive frequency regime where the eigenvalues can
be ordered.

To characterize the properties of these eigenvalues, we now
define the order parameters corresponding to various ordered
phases of this model [36,37]. These ordered states, namely the
star, the striated, and the checkerboard states, are schemati-
cally sketched in Figs. 1(a), 1(b) and 1(c), respectively. To

(a)a)

0

0.25

0.5

0.75

1

(b)b)

0

0.25

0.5

0.75

1

FIG. 2. (a) Plot of O0 obtained using eigenstates of H p(1)
Fs as a

function of V0 and λ = �0T/(4h̄), where T is the time period of
a square pulse [Eq. (2)]. The dark red region corresponds to the
star order for which O0 � 1, the white region corresponds to the
checkerboard order for which O0 � 1/2, and the light blue region
denotes the striated order for which O0 � 1/4. The dark blue region
represents a disordered phase for which O0 = 0. For these plots,
δ = 0.75�, �0 = 100�, Lx = 6, and Ly = 4. (b) Same as (a) but
obtained using exact numerical diagonalization of U (T, 0) within the
projected Hilbert space.

characterize such orders, we label the sites of an Lx × Ly

lattice by an integer

j = ( jx − 1) + ( jy − 1)Lx, (20)

where 1 � jy � Ly is the row index of the array, and 1 � jx �
Lx is the x coordinate of the site. We then define an operator

Ôc = 1

L

∑
j

(−1) j+[ j/Lx](n̂ j − 1/2), (21)

where [x] denotes the largest integer smaller than or equal to
x and L = LxLy. It is straightforward to see that |〈Ôc〉| = 1/2
for the checkerboard phase, 1/4 for the striated phase, and 0
for the star phase. In contrast, the operator Ôs defined as

Ôs = 1

L

∑
j

(−1) j+[ j/(2Lx )](n̂ j − 1/2) (22)

vanishes for the checkerboard and striated phase; for the star
phase, |〈Ôs〉| = 1/4. A representative plot showing behavior
of Os across the transition from the paramagnetic to the star
phase is shown in Fig. 1(d); we find that such a plot indicates a
transition around λ � 3π/4 for V0 = 25�, δ = 2�, and �0 =
100�. The behavior of Oc for the transition from disordered
to checkerboard or disordered to striated phases is similar.

To study the Floquet phases, we define a quantity

O0 = |〈m0|Ôc|m0〉| + 4|〈m0|Ôs|m0〉|, (23)

where |m0〉 is the eigenstate corresponding to the lowest
εm. This quantity allows us to distinguish between all three
phases: O0 = 1/2 (1/4) for the checkerboard (striated) phase
and 1 for the star phase. In addition, both Ôc and Ôs vanish
in the paramagnetic phase leading to O0 = 0. We note here
that O0 cannot distinguish between partially ordered phases;
however, such phases do not occur in the parameter regime of
our study.

The left panel of Fig. 2 shows the plot of O0 obtained using
H p(1)

Fs [Eq. (15)] as a function of V0/� and λ = �0T/(4h̄)
in the large drive amplitude regime (�0 = 100�). The right
panel of Fig. 2 shows a similar plot obtained using exact
diagonalization of U (T, 0) as discussed earlier in this section;
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we find the two plots to be qualitatively similar for all V0/δ

when V0, δ 
 �0. This demonstrates the validity of the FPT
in this regime.

In the high drive frequency regime where λ 
 1, the plot
reflects the presence of the paramagnetic phase (dark blue
region) for which O0 = 0 for V0 � δ = 0.75�. In contrast,
for V0 ∼ δ, we find a smooth interpolation between the dis-
ordered and the checkerboard phase (light blue region). Such
an interpolation is an artifact of using the constrained Hilbert
space in our numerics; understandably, this approximation
holds only for V0 � δ. The presence of the disordered phase
at V0 � δ and λ 
 1 is consistent with the result of the first-
order Magnus expansion for which the Floquet Hamiltonian
is just the time-averaged value of H (t ) and is given by Eq. (1)
with � → δ. This model is known to have a paramagnetic
phase for V0 � δ in this regime [36].

For V0 � δ, we also find clear second-order transitions
from the paramagnetic to the star phase as the drive time
period T is varied. This transition occurs around λ � π, 2π ,
where �eff = � sin λ/λ 
 δ,V0 [Eq. (12)]. For drive fre-
quencies corresponding to λ � π, 2π and V0 ∼ δ, we find
the checkerboard phase (white region). By increasing V0

and keeping λ � nπ where n is an integer, we find a
transition from the checkerboard to the star phase. This
transition is expected to be first order since it is a transi-
tion between two phases with distinct classical orders. The
disordered phase is absent since �eff � 0 for these drive
frequencies.

For lower drive frequencies, where the Floquet quasiener-
gies are no longer restricted within the lowest Floquet
Brillouin zone, we cannot order the eigenvalues. We note,
however, that such ordered states still exist at the special
drive frequencies given by λ = nπ as eigenstates of the Flo-
quet Hamiltonian up to a prethermal timescale. Furthermore,
their presence leaves a detectable signature in the correla-
tion function of the systems, as we shall discuss in the next
section.

IV. DETECTION AND STABILITY OF THE FLOQUET
PHASES

In this section, we shall first discuss the properties of the
correlation functions with which we can detect the Floquet
phases. This will be followed by a study of the stability of
these Floquet phases and the extent of the prethermal regime
as a function of the drive amplitude. Throughout this section,
we shall work within the projected Hilbert space as discussed
earlier.

A. Correlation functions

In this subsection, we show that the Floquet phases and
the transitions from the disordered paramagnetic to the star
Floquet phases can be detected via a study of correlation
functions. A similar detection scheme, as we shall discuss, is
expected to hold for transitions from the disordered to other
ordered states. This is of primary importance since, unlike
equilibrium ground states, these phases do not correspond to
standard energy eigenstates states of a many-body system,

(a)

0 6000 12000
0.0

0.1

0.2

(b)

0 5000 10000
0.2498

0.2499

0.2500

(c)

0 10000 20000
0.0

0.1

0.2

(d)

0
0
5
10
15
20
25

FIG. 3. Plot of C3(nT ) across the transition from the disordered
to the star phase. The plot shows C3(nT ) as a function of the number
of drive cycles n for (a) λ = 0.05, (b) π , and (c) 2.35. The inset
in panel (c) reflects the long-time oscillations near the transition.
The inset shows the details of this oscillating behavior on a shorter
timescale. Panel (d) shows the fluctuation of the value of C3 about its
mean value as a function of λ. For all plots, V0 = 25�, δ = 2�, and
�0 = 100�. See the text for details.

and they cannot be accessed via standard thermodynamic
measurements in experiments.

To this end, we compute the equal-time density-density
correlation function of the driven system given by

C3(nT ) = 1

L

∑
�r�a

〈ψ (nT )|n̂�r n̂�r+�a|ψ (nT )〉, (24)

where �a is chosen so that �r and �r + �a form third-nearest-
neighboring sites of a 2D rectangular lattice. Note that
the nearest-neighbor density-density correlation is identically
zero within the projected Hilbert space, and the next-nearest-
neighbor correlation is zero in the star phase and close to
zero in the disordered phase; thus C3(nT ) represents the
most local correlation function with appreciable dynamical
fluctuation.

The plot of C3(nT ) is shown for three representative values
of λ in Figs. 3(a), 3(b) and 3(c). In Fig. 3(a), C3(nT )is plotted
as a function of n, the number of drive cycles, for λ = 0.05
and V0 = 25� and starting from an initial Fock state |ψ0〉 with
star order (sketched in Fig. 1) so that C3(0) = 1/4. The plot
shows a rapid decay of the correlator towards its diagonal en-
semble value ∼0.1, which is in accordance with the prediction
of ETH. The oscillations around this value are a consequence
of the finite system size. In contrast, for λ = π , as shown in
Fig. 3(b), C3(nT ) remains almost a constant showing very
small oscillations around the initial value. This is a conse-
quence of the fact that |ψ0〉 is almost exactly an eigenstate of
the exact Floquet Hamiltonian. We note that this will happen
as long as |ψ0〉 is a near-exact eigenstate of U or, equivalently,
of HF ; it need not necessarily be its lowest-lying eigenstate. In
between, near the transition at λ = 2.35, we find that C3(nT )
shows long-time oscillatory behavior which is distinct from
its counterparts shown in Figs. 3(a) and 3(b). In particular,
the oscillation amplitudes are larger than their counterparts
in the ordered phase; also they are much longer-lived than
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FIG. 4. Plot of C3(nT ) across the transition from the disordered
to the checkerboard phase. The plot shows C3(nT ) as a function of
the number of drive cycles n for (a) λ = 0.025, (b) π , and (c) 2.75.
Panel (d) shows the fluctuation of C3(nT ) about its mean value as a
function of λ. For all plots, V0 = 1.5�, δ = �, and �0 = 100�. See
the text for details.

what is found in the disordered phase. This shows that C3(nT )
can distinguish between the Floquet phases and provides a
straightforward tool for their detection. The fluctuation of
C3(nT ) around its mean value at long-time is computed as

σ =
√√√√ 1

n f − ni

n f∑
n=ni

C2
3 (nT ) − μ2,

μ = 1

n f − ni

n f∑
n=ni

C3(nT ) (25)

with ni = 3001 and n f = 10 000.
A plot of σ as a function of λ is shown in Fig. 3(d).

We find that σ indicates a clear peak at the transition point
λ = λc � 2.3 indicating a sharp increase in fluctuation of
C3(nT ) at the transition. It therefore serves as a distinguishing
feature of the transition from a disordered to the star ordered
phase.

A similar signature in the behavior of C3(nT ) is also no-
ticed when there is a transition between the checkerboard
phase and the disordered phase at a lower value of the interac-
tion potential V0. This is shown in Fig. 4 for δ = � and V0 =
1.5�, where we choose a checkerboard ordered state as our
initial state |ψ0〉, so that C3(0) = 1. Away from the transition
[Figs. 4(a) and 4(b)], the fluctuation of C3(nT ) is compara-
tively small, whereas close to the point of transition [Fig. 4(c)]
it peaks considerably. In particular, when λ = π in Fig. 4(c),
the checkerboard state is almost an eigenstate of the exact
evolution operator, which is why the quantum fluctuations dip
to zero. In Fig. 4(d), we plot the average fluctuation of C3(nT ),
σ as a function of λ. The average is computed after the initial
transient dynamics have settled down. It shows a peak around
λ = 2.75. We later show in Fig. 6 that there is a phase tran-
sition from the disordered phase to the checkerboard phase
precisely at this point even when the full Hilbert space is used
instead of the projected subspace.

We note that such correlators are expected to show quali-
tatively similar behaviors across transitions from a disordered
to any other ordered Floquet phase provided that we start from
an initial Fock state which characterizes the order. However, it
is not expected to provide a signature of a transition between
two ordered phases; in this case, typically both of the ordered
phases exist as eigenstates of the Floquet Hamiltonian across
the transition, and the correlators do not evolve dynamically
in either of the phases provided that the initial state is one of
the ordered states.

Before ending this section, we would like to point out that
the oscillations of C3(nT ) found here are distinct from those
expected due to the presence of quantum scars [27,32,45].
We have checked that such scars are absent in the spec-
trum of the Floquet Hamiltonian for δ ∼ �; they are present,
however, in the PXP limit (δ = 0). A detailed study of the
properties of such Floquet scars is left as the subject of future
study.

B. Stability of the Floquet phases

In this section, we discuss the stability of such Floquet
phases and provide an estimate of the prethermal timescale
over which such phases are expected to exist. To this end,
we first note that the behavior of a driven ergodic system is
expected to be described by a local Floquet Hamiltonian only
up to a finite, prethermal timescale tp, where τ = tp/T . For
n > τ , the system is expected to heat up to infinite temperature
and can no longer be described by a local Floquet Hamilto-
nian [46]. However, it is known, in the context of Magnus
expansion, that tp ∼ exp[cωD] (where c is a constant of order
1, which depends on the system details) in the high drive
frequency limit [47]. It can thus be large leading to a long
prethermal time over which the Floquet phases are expected
to be stable.

To estimate the prethermal timescale τ for the driven Ry-
dberg system, we plot C3(nT ) as a function of the number
of drive cycles n at λ = π for several representative val-
ues of �0/�. The value of C3(nT ) obtained from H p(1)

Fs is
a constant and equals 0.25 for λ = π ; at large �0, such a
constant value is also found for C3(nT ) obtained using ED,
as can be seen from Fig. 3(b). To characterize the difference
between the results obtained using ED and that from H p(1)

Fs ,
we therefore study the deviation of C3(nT ) from its constant
value.

The result of such a study is shown in Fig. 5. In Figs. 5(a),
5(b), and 5(c), we plot C3(nT ), obtained using ED, as a
function of n for λ = π . Figure 5(a) shows such a plot for a
low drive amplitude �0 = 0.9�; we find that C3(nT ) deviates
from its initial value within the first few drive cycles. The
time taken to achieve this deviation increases with increasing
�0 [Fig. 5(b), where �0 = 1.25�] and around �0 = 1.45�,
C3(nT ) remains fixed at its constant value predicted by H p(1)

Fs
for n � 1500 drive cycles.

From these plots, we can obtain a qualitative estimate of τ .
Here we choose τ to be the smallest number of drive cycles
at which C3(nT ) � 0.2. The choice of C3(nT ) � 0.2 as the
cutoff is motivated by the fact that the infinite-temperature
ensemble average of this correlator is close to 0.17. A plot
of τ as a function of �0 with λ = π is shown in Fig. 5(d).
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FIG. 5. Plot of C3(nT ) as a function of n at λ = π for
(a) �0/� = 0.9, (b) 1.25, and (c) 1.45. (d) Plot of τ , measured as
the minimal number of cycles after which C3 � 0.2, as a function of
�0 showing an exponential growth of τ at large �0. For all plots,
V0 = 25� and δ = 2�. The red dotted lines in panels (a), (b), and
(c) indicate the line C3 = 0.2. See the text for details.

We find that τ shows a steep rise around �0 � �, δ. This
allows us to conclude that the Floquet phases are stable
for a very long timescale as long as we are in the regime
�0 � �, δ.

V. DISCUSSION

In this work, we have identified the Floquet phases of a
periodically driven Rydberg atom array. Such phases can be
tuned as a function of the drive frequency; our analysis iden-
tifies special drive frequencies that satisfy �0T/h̄ = 4mπ ,
where m is a positive integer, for a square-pulse protocol
and �0T/h̄ = 2πηm for a cosine protocol. At these drive
frequencies, one finds density-wave ordered Floquet phases.
In the high drive amplitude regime, we find a large prethermal
timescale for which these Floquet phases are stable and are
accurately derived by the analytical first-order Floquet Hamil-
tonian H (1)

F derived in Sec. II. We note here that although
we have carried out all the numerics using the square-pulse
protocol, the results of Sec. II strongly suggest that an anal-
ogous phenomenon exists for continuous drive protocols; the
expression for the special frequencies for the cosine protocol
is given by Eq. (12). We have also presented a method to
detect these Floquet phases and the transitions between them
via measurement of the equal-time density-density correlation
function C3(nT ). We note that the Floquet phases, unlike
their thermodynamic counterparts, are not readily accessible
in experiments; our results, therefore, provide a useful exper-
imental tool for detection of these phases.

In the previous sections, we have used the approximation
of large V0 for obtaining these phases. This is not an essential
feature of our analysis, as can be seen by comparing Eqs. (11)
and (15). The first of these [Eq. (11)] obtains the Floquet
Hamiltonian without any additional approximation for V0,
while the second is derived in the large-V0 regime. Both of
these Floquet Hamiltonians provided identical expressions for
the special frequencies ω∗

m [Eq. (12)]. The reason for choosing

(a)a)

0

0.25

0.5

0.75

1

(b)b)

0

0.25

0.5

0.75

1

FIG. 6. Plot of O0 as a function of V0 and λ showing the Floquet
phases obtained using ED starting from (a) H (1)

Fs [Eq. (11)] and
keeping the full Hilbert space where neighboring Rydberg excita-
tions are allowed, and (b) Hp(t ) [Eq. (14)] with the same square
pulse protocol but working with the projected Hilbert space with
no nearest-neighbor Rydberg excitations. For both plots, δ = 0.75�,
�0 = 100�, and Lx = Ly = 4.

the latter when it comes to exact numerics is that it has a
smaller Hilbert space, which allows access to larger system
sizes for carrying out ED. To ascertain this fact, we show a
comparison in Fig. 6 between the Floquet phases obtained by
applying ED on H (1)

Fs keeping the full Hilbert space and that
obtained by diagonalizing U within the constrained Hilbert
space. The result of the phase diagram obtained from H (1)

Fs
is given in Fig. 6(a). Figure 6(b) shows the Floquet phases
obtained using the projected subspace for N = 16 sites; the
phase diagram is similar to the one obtained for N = 24 sites
[Fig. 2(b)]. A comparison of this phase diagram with the
one shown in Fig. 6(a) shows that they differ qualitatively
only for V0 � δ,� and �0T/h̄ 
 π ; the spurious interpolat-
ing behavior obtained using the projected Hilbert space does
not appear in this regime and is replaced by the disordered
phase in the exact phase diagram. However, in other regimes,
there is excellent agreement between the two phase diagrams
including around V0 � δ when λ � π . The last feature owes
its existence to the reduction of �eff ∼ sin λ/λ in this regime,
which is equivalent to an effective increase in V0.

Finally, we discuss experiments that can test our theory.
We propose a standard experimental setup involving Rydberg
atoms in a rectangular array where the detuning of these atoms
is changed periodically with time according to either a square
pulse or a cosine protocol. We predict the existence of special
frequencies where the system should exhibit a star ordered
Floquet phase at large V0. Such a phase would leave its im-
print on the time evolution of the correlation function C3(nT )
starting from an initial Fock state with star order; in the
ordered phase, C3(nT ) will be very nearly time-independent.
The transition between the star and the disordered phase can
be achieved by tuning the drive frequency; such a transition
will be reflected in the behavior of C3(nT ) as discussed in
Sec. IV A. The preparation of the initial state for the study
of the dynamics of C3(nT ) can be achieved by standard tech-
niques, which involves realization of such a state as the ground
state of an undriven Rydberg Hamiltonian at a fixed large
δ and V0 followed by a sudden ramp of the optical lattice
depth to freeze the desired Rydberg excitation configuration
[18–20].

In conclusion, we have discussed the Floquet phases of
Rydberg atoms arranged in a rectangular array. We have pro-
vided a way of experimentally detecting these phases and
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the transitions between them via measurements of equal-time
correlation functions; moreover, we have identified the high
drive amplitude regime where such phases are stable over a
long prethermal timescale. Within this timescale, their prop-
erties can be described by the first-order Floquet Hamiltonian
obtained using FPT.
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