ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Massive neutron stars as mass gap candidates: Exploring equation of state and magnetic field

Zuraiq, Z and Mukhopadhyay, B and Weber, F (2024) Massive neutron stars as mass gap candidates: Exploring equation of state and magnetic field. In: Physical Review D, 109 (2).

[img] PDF
Phy_rev_109_2_2024.pdf - Published Version
Restricted to Registered users only

Download (7MB) | Request a copy
Official URL: https://doi.org/10.1103/PhysRevD.109.023027

Abstract

The densities in the cores of the neutron stars (NSs) can reach several times that of the nuclear saturation density. The exact nature of matter at these densities is still virtually unknown. We consider a number of proposed phenomenological, relativistic mean field equations of state to construct theoretical models of NSs. We find that, based on our selected set of models, the emergence of exotic matter at these high densities restricts the mass of NSs to �2.2MâŠ. However, the presence of magnetic fields and a model anisotropy significantly increases the star's mass, placing it within the observational mass gap that separates the heaviest NSs from the lightest black holes. Therefore, we propose that gravitational wave observations, like GW190814 and other potential candidates within this mass gap, may actually represent massive, magnetized NSs. © 2024 American Physical Society.

Item Type: Journal Article
Publication: Physical Review D
Publisher: American Physical Society
Additional Information: The copyright for this article belongs to American Physical Society.
Department/Centre: Division of Physical & Mathematical Sciences > Physics
Date Deposited: 03 Mar 2024 09:03
Last Modified: 03 Mar 2024 09:03
URI: https://eprints.iisc.ac.in/id/eprint/84170

Actions (login required)

View Item View Item