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Abstract LUX-ZEPLIN (LZ) collaboration has achieved
the strongest constraint on weak-scale dark matter (DM)-
nucleon spin-independent (SI) scattering cross section in a
large region of parameter space. In this paper, we take a
complementary approach and study the prospect of detecting
cosmic-ray boosted sub-GeV DM in LZ. In the absence of a
signal for DM, we improve upon the previous constraints by
a factor of ∼ 2 using the LZ result for some regions of the
parameter space. We also show that upcoming XENONnT
and future Darwin experiments will be sensitive to cross sec-
tions smaller by factors of ∼ 3 and ∼ 10 compared to the
current LZ limit, respectively.

1 Introduction

A multitude of cosmological and astrophysical observations
indicate that the biggest slice (∼ 85%) of the matter density
of the Universe is made up of DM [1–3]. While the presence
of DM is revealed through gravitational observations, its true
nature is yet to be known. Typically it is assumed that DM
might be a particle in nature, and depending on the nature
of the particle, the allowed DM mass range varies. Addition-
ally, it is phenomenologically interesting to have an interac-
tion between different Standard Model (SM) states and DM.
This relation is also common in a myriad of well-motivated
particle physics models [4–7]. Many ongoing and upcoming
searches are specifically looking for this connection [8–14].

Direct detection (DD) experiments look for the recoil of
SM states through its scattering with ambient DM particles,
and is mostly relevant for weakly interacting massive parti-
cles (WIMPs) searches. One type of DD experiments hunt for
recoil of the target nucleus, kept in underground laboratories
[15–22]. Among various target materials, xenon stands out
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to be quite beneficial due to its properties like shelf shielding,
higher mass number, inert chemical nature, and others. Inter-
estingly, Xe target experiments continue to set the leading
limits in large regions of DM parameter space [20–22]. The
main target material in a two-phase time projection chamber
(TPC) is liquid xenon (LXe). The possible DM interaction
with LXe is detected through light yields (S1) and charge
yields (S2). Combining the S1 and S2 signal topologies,
it is possible to reconstruct the event’s three-dimensional
position and efficiently discriminates between nuclear recoil
(NR) and electron recoil (ER) signatures, etc. The NR back-
grounds arise from neutrons, neutrino-nucleus interactions,
etc., whereas the ER background arise and from β-decays,
γ produced by radioactivity, neutrino-electron interactions,
etc. Experiments like Xenon, LZ, and PandaX are exploring
possible DM events in the presence of these backgrounds.

Recently, LZ collaboration has published its first result
[23]. The experiment is situated at 4850 ft underground in the
Davis Cavern at the Sanford Underground Research Facility
(SURF) in Lead, South Dakota, USA. The total mass of LXe
is 10 t, out of which only the inner fiducial 5.5 t is used
for DM searches to reduce the backgrounds. With 60 live
days of data, LZ has reached the current strongest constraint
6×10−48cm2 at DM mass 30 GeV. Compared to the previous
strongest bound, this is 6.7 and 1.7 times better at DM mass
∼ 30 GeV and ∼ 1000 GeV, respectively.

While the LZ result focuses on the searches for WIMP-
like DM, in this paper, we take a complementary approach to
investigate scenarios of sub-GeV DM interacting with nucle-
ons via spin-independent (SI) interactions. Non-relativistic
sub-GeV DM, typically moving with velocity ∼ 10−3, will
not be able to impart enough energy to produce an observ-
able NR in the LZ experiment. However, an energetic sub-
GeV DM may produce sufficiently large NR. One of the
simplest ways to produce such boosted DM is to consider the
interaction between high-energy cosmic-rays (CRs) and DM,
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known as CR boosted DM (CRDM), proposed for the first
time in Ref. [24] for nuclear scattering and Ref. [25] for elec-
tron scattering. Further this technique has received consider-
able attention [26–66]. These boosted DM particles reach the
underground detector with much higher energy which helps
to overcome the energy threshold although with much lower
flux. Even with this lowered flux, it is possible to probe new
regions of DM-nucleon scattering cross-section, since the
bounds for sub-GeV DM using other techniques are weak.
The paradigm of CRDM premises only on the assumption
of DM-nuclear interactions, which is also true for many DD
experiments. A large class of particle physics models predicts
such interaction for sub-GeV DM [67–72].

Knowledge of the CR spectrum is an important ingredient
in computing CRDM flux. The direct CR flux measurements
(PAMELA [73], AMS-02 [74,75], CREAM-I [76], etc.) are
done with balloons and satellite detectors near the top or out-
side the atmosphere. This has been used as input CR flux in
Ref. [24]. However above 100 TeV CR fluxes are small hence
direct measurements are not a feasible choice. In this case,
CR is measured indirectly through the air shower induced
by it. We utilize the parametric fit of CR flux measurement
(obtained by combining direct and indirect CR flux mea-
surements) given in Ref. [77] as the input CR flux. Then
we explore the signature of the CR-induced DM in the LZ
experiment. We find a factor ∼ 2 improvement compared
to previous limit of XENON1T near DM mass ∼ 1 MeV.
We also present the projections of the upcoming XENONnT,
LZ, and Darwin in probing the DM-nucleon cross-section
for sub-GeV DM. We find that there can be a factor ∼ 10
improvement for Darwin compared to the current LZ limits.

The paper is organized as follows. In Sect. 2, we briefly
sketch the CRDM framework. In Sect. 3, we present limits
from LZ and future xenon-based experiments. We conclude
in Sect. 4.

2 Overview of CRDM

Let us consider a DM particle (χ ) of massmχ , scattering with
a CR particle of mass mi . After scattering, the CR induced
DM flux is [24]

dφχ

dTχ

= Deff
ρlocal

χ

mχ

∑

i

σχ i G
2
i (2mχTχ )

×
∫ ∞

Tmin
i

dTi
1

Tmax
χ (Ti )

dφCR
i

dTi
, (1)

where Tχ and Ti are the DM and CR kinetic energies respec-
tively. The effective distance, Deff , depends on the distance to
which DM flux is integrated. The local DM density is denoted
by ρlocal

χ , fixed to 0.3GeV/cm3. In the sum, we have included
the contributions of p, He, C, O, and Fe. DM-nucleus scatter-

ing cross section is represented by σχ i and G2
i (2mχTχ ) is the

nuclear form factor. The differential CR flux is represented
by dφCR

i /dTi . The minimum CR energy required to produce
a DM of kinetic energy Tχ is
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2
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) (
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)
, (2)

with + and − sign applicable to Tχ > 2mi and Tχ < 2mi

respectively. The maximum kinetic energy transferred to DM
by the CR DM collision is given by

Tmax
χ = 2mχ

(
T 2
i + 2miTi

)

2mχTi + (mi + mχ )2 (3)

The effective distance is

Deff = 1

ρlocal
χ

∫
d�

4π

∫

los
ρχd
, (4)

where ρχ is the Milky-Way (MW) DM density profile under
consideration. The angular region of the integration is rep-
resented by d�. For traditional Navarro–Frenk–White DM
density profile [78] (with parameters taken from Ref. [79]),
the effective distance (given in Eq. (4)) turns out to be ∼ 1 kpc
and ∼ 10 kpc for integrating up to 1 kpc and 10 kpc around
the Sun respectively [24]. In our numerical calculation we fix
Deff to 10 kpc. We have used the Global fit model presented
in Ref. [77] inspired by various CR measurement. This CR
spectra retain the various spectral features which arise due to
the contribution from different possible CR sources. We do
not consider spatial-dependent CR flux; including them, will
strengthen our limits and sensitivities by factor of ∼ 3 [56],
hence our results are conservative.

The CRDM particles will also interact with the nuclei
while traversing from the top of the atmosphere to the under-
ground detector. CRDM will lose its energy for a reasonably
large cross-section due to scattering with these nuclei. The
subsequent attenuation of CRDM flux has been studied in
Refs. [24,56,80].1 We calculate the DM kinetic energy at a
depth z, T z

χ , utilizing [64]

dT z
χ

dz
= −

∑

j

ρ

m j

∫ ωmax
χ

0
dωχ

dσχ j

dωχ

ωχ, (5)

where ρ is the average mass density of the medium, m j is
the mass of the target nucleus and ωχ is the energy loss of
DM particles due to collision. For elastic scattering, the max-
imum energy loss, ωmax

χ , can be read off from Eq. (3). The

1 See Refs. [81–85] for attenuation of non-boosted DM with large DM-
SM scattering cross sections.
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average mass density of the Earth’s crust is assumed to be
2.7g/cm3. The corresponding weightage for each nuclei is
adapted from [86]. Following DarkSUSY [64,86], we have
also included inelastic DM-nucleus scattering by doing a cor-
respondence with neutrino-nucleus scattering. The neutrino-
nucleus inelastic scattering (i.e., quasi elastic, deep inelastic
scattering, � and other hadronic resonances) cross section is
calculated using GiBUU [87,88]. The effect of form factor
in the differential cross section, has also been included. The
form factor for different element are obtained from [89]. We
have not included DM-nucleus scattering in the atmosphere,
owing to the low atmospheric density (� 1.2 × 10−3g/cm3)
[84], as it will have a negligible impact, for the considered
cross section.

The CRDM particles reach the underground detector and
collide with the nucleus of the target material to produce an
observable recoil. The differential recoil rate per unit target
nucleus is [24]

dR

dEN
= σχNG

2
N (2mN EN)

∫ ∞

Tχ (T z,min
χ )

dTχ

Emax
N (Tχ (z))

dφχ

dTχ

,

(6)

where EN is the nuclear recoil energy. The maximum nuclear
recoil (Emax

N ) and the required minimum DM kinetic energy
at detector location (T z,min

χ ) can be obtained by treating
nucleus and DM as target and incident particle, respectively,
in Eqs. (2) and (3). In Eq. (6), the lower limit of the inte-
gration, Tχ (T z,min

χ ) which is the required DM kinetic energy
at the surface of the earth so that DM partcles reaches the
underground detector with T z,min

χ , can be obtained utilizing
the solution of Eq. (5). We concentrate on isotropic, elastic,
spin-independent (SI) DM-nuclear scattering throughout the
paper. In this case, the nuclear level cross-section is related
to the nucleon level through

σχN = σ SI
χ A2

(
mN (mχ + mp)

mp(mχ + mN )

)2

. (7)

Here A, mN , andmp are the mass number, nuclear mass, and
proton mass respectively. The SI DM-nucleon cross section
is denoted by σ SI

χ .

3 CRDM at LZ and future xenon based experiments

The search for CRDM in liquid xenon detectors have been
previously studied in the literature [24,56,64,95]. This sec-
tion focuses on probing CRDM using the latest LZ results.
We also present the projected sensitivities of XENONnT, LZ
(future data set), and Darwin experiments.

3.1 CRDM at LZ

Here we explore prospect of detecting CRDM in light of
the recent LZ result.2 In absence of any excess events over
the background within the observed energy region we can
constrain SI and velocity independent DM-nucleon scatter-
ing for CRDM. In the higher recoil energy region, where LZ
has not presented their experimental data, the CRDM flux
would be further suppressed (for the DM-nuclear interaction
that we have assumed in this work), hence there is a lesser
possibility of observing the signal. The LZ collaboration has
presented the differential recoil rate with respect to electron
recoil equivalent energy. The nuclear recoil energy is related
to equivalent electron recoil energy by [93]

Eee = Y (EN )EN , (8)

where Y (EN ) is the quenching factor. We use the theoretical
model of Lindhard to estimate the quenching factor [94]

Y (EN ) = k(3 ε0.15 + 0.7ε0.6 + ε)

1 + k (3 ε0.15 + 0.7ε0.6 + ε)
. (9)

Here ε = 11.5 Z−7/3(EN/keV) and Z is the atomic number.
In our calculation, we fix k to 0.145, nearly reproducing LZ
electron recoil energy given a nuclear recoil energy (e.g., with
EN = 15 keV the difference is approximately 1%). Using
Eqs. (6) and (8), the differential recoil rate with respect to
Eee can be expressed as [93]

dR

dEee
= dR

dEN

1

Y (EN ) + EN
dY (EN )
dEN

. (10)

With Xe as the target material, 5.5 ton fiducial mass, and
60 live-days, the corresponding CRDM differential recoil
rate for LZ is shown in Fig. 1 by the solid red line. The
CRDM recoil rate is shown for mχ = 10−2 GeV and
σ SI

χ = 2 × 10−31 cm2. Following Ref. [23], we include the
signal efficiency, which leads to the fall in the event rate in the
lowest energy bins. We have also displayed the expected total
background by the solid blue line. We show the associated
statistical and systematic uncertainties by the light blue shad-
ing. The black points represent the data. Clearly, mχ = 10−2

GeV and σ SI
χ = 2 × 10−31 cm2 is ruled out by the recent LZ

result.
In our statistical analysis of LZ data, we use the χ2 for

Poisson distributed data [97,98]

χ2 = 2
51∑

i=1

N sig
i + Bi − Di + Di ln

(
Di

N sig
i + Bi

)
, (11)

2 See Refs. [90–92] for other beyond SM searches using LZ data.
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Table 1 Required details to obtain the future limit on σ SI
χ given in Eq. (12)

Experiment EN1 (keV) EN2 (keV) κ σ SI
NRDM/mNRDM (cm2/GeV)

XENONnT [114] 4 50 0.29 1.66 × 10−50

LZ (future) [115] 6 30 0.16 1.98 × 10−50

Darwin [116,117] 5 35 0.20 3.04 × 10−51

Fig. 1 Differential event rate against the electron equivalent recon-
structed energy with 5.5 t Xe and 60 days exposure. The solid blue line
(light blue shaded band) shows the central value of the background (the
systematic and statistical uncertainties) as reported in Ref. [23]. The
black points represent the data. The solid red line represents expected
signal events (including signal efficiency) from CRDM assuming the
DM parameters as mentioned in the figure

where N sig
i , Bi , and Di are the CRDM signal, background

events, and data points in the i th bin. In our numerical cal-
culations, we include the central value of the expected back-
ground events and Di reported by LZ. Inclusion of systematic
and statistical uncertainties lead to factor ∼ 2 change in our
LZ lower limit. The expected CRDM events can be obtained
from Eq. (10). The signal events N sig

i is mainly regulated by
mχ and σ SI

χ , can be evaluated by integrating Eq. (10) over
the corresponding electron recoil energy bin. The 90% confi-
dence level (CL) limit is obtained when �χ2 (= χ2 − χ2

min)
becomes 2.71. The χ2

min can be obtained by effectively set-

ting N sig
i to zero in Eq. (11), since there is no statistically

significant excess over the background models. We show our
exclusion bound in Fig. 2. We vary SI DM-nucleon cross
section for a fixed DM mass until the required value of �χ2

is achieved. We have followed this procedure to estimate the
lower bound on the DM-nucleon cross-section. The upper
limit represents the cross section for which CRDM would
not be able to produce an observable recoil at DD experi-
ments due to the attenuation of DM through its scattering
with Earth’s nuclei. The difference in shape of our limit,
PandaX-II limit and JUNO sensitivity (mentioned later) is
mainly due to the treatment of attenuation. The treatment

of form factor during attenuation extend our limit to higher
DM mass [64]. Like PandaX-II limit, our limit also closes
but at around DM mass 10 GeV. We have omitted showing
these regions since they are robustly ruled out by typical DD
experiments.

In Fig. 2, our obtained limit using the recent LZ result
is shown by the red contour, and it rules out the light red
shaded regions of the parameter space. Our lower bound on
SI DM-nucleon cross-section is a factor of ∼ 2 stronger
than XENON1T bound reported in Ref. [24] (denoted as
Bringmann et al. in Fig. 2 by the light black solid line) near
the DM mass ∼ 1 MeV. Unlike our case, Ref. [24] uti-
lized direct CR flux as the input flux. We note that if we
consider direct CR flux (like Ref. [24]) and analyze the
LZ data; there will be a further factor ∼ 2 improvement

Fig. 2 Bounds on SI DM-nucleon scattering cross-section. The light
red shaded region displays the current LZ bound on CRDM derived
in his work. The constraints reported in Refs. [24,95] are denoted by
Bringmann et al. and PandaX-II and are shown by light black solid and
light blue dashed lines, respectively. Our current LZ limit is comple-
mentary to these due to the differences in the input CR fluxes, see the
text for details. Using the same cosmic ray flux as in Ref. [24] our cal-
culated limit and sensitivities will further improve by factor ∼ 2. We
display the recently reported Super-Kamionkande result limit by olive
dot-dashed line [96]. We also show the future LZ, XENONnT, and Dar-
win sensitivities on CRDM by the dashed orange, purple, and blue lines,
respectively; the future LZ and XENONnT sensitivities overlap. Other
DD, cosmological and XQC limits are also shown by light green, blue,
and orange shading, respectively. The future JUNO limit is shown by
dot dashed violet line [30]. The BBN limit on complex scalar and Dirac
fermion DM are shown by dark cyan dashed and dot-dashed vertical
lines. We do not show our constraints for DM masses ≥ 1 GeV since
the parameter space is robustly ruled out by other experiments
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[80] over XENON1T bound presented in Ref. [24]. The
olive dot-dashed line displays recent directional search result
of CRDM near the Galatic center by Super-Kamiokande
(Super-K) [96]. The said Super-K result is an order of magni-
tude stronger than current LZ limit. We also display the other
DD [16,18,19,99–106], cosmological [107–112], and XQC
[113] constraints by the light green, light orange, and light
blue shaded regions, respectively. Following Ref. [32], the
Big Bang Nucleosythensis (BBN) limits on complex scalar
and Dirac fermion DM are displayed by the dashed and dot-
dashed dark cyan lines, respectively. Note that for real scalar
DM, BBN observations allow the DM mass to be ≥ 1 MeV
[32]. Near future data of LZ with larger exposure will cer-
tainly be able to probe lower cross-sections in sub-GeV DM
mass regime. We discuss this issue in the next section.

3.2 CRDM at future direct detection experiments

In this section, we discuss the projections of ongoing liquid
xenon detectors and future DD experiments in scrutinizing
CRDM. We focus on the sensitivity of XENONnT, future
data set of LZ, and Darwin experiments. The sensitivities of
these experiments are obtained following the prescription of
Ref. [24]. The future limit on SI DM-nucleon scattering of
CRDM is evaluated using

σ SI
χ = 2κv0√

π
ρlocal

χ

(
mχ + mN

mχ + mp

)2
(

σ SI
NRDM

mNRDM

)

×
(∫ EN2

EN1

dEN

∫ ∞

Tχ (T z,min
χ )

dTχ

Emax
N (Tχ (z))

dφχ

dTχ

)−1

,

(12)

where the numerical factor κ is obtained from [24]. The cir-
cular velocity of the Sun (v0) is assumed to be 220 km/s. The
projected limit on the ratio of non-relativistic DM (NRDM)
nuclear cross section and mass (σ SI

NRDM/mNRDM) is calcu-
lated at NRDM mass ∼ 1 TeV. The experiment’s recoil
energy regime of operation is denote by EN1 and EN2 .

The recoil nuclear energy region of operation for each
of the considered experiments is given in Table 1. For
NRDM, from the projected limits of XENONnT [114], LZ
[115], and Darwin [116,117], we estimate the numerical val-
ues of σ SI

NRDM/mNRDM at higher NRDM mass. Note that
σ SI

NRDM/mNRDM remains constant beyond mNRDM � 100
GeV, we quote the corresponding values in Table 1.

In Fig. 2, we show the future projections of XENONnT,
LZ, and Darwin, derived in this work, by the dashed orange,
purple, and blue contours, respectively. The projected JUNO
limit is shown by the dot-dashed violet line, adapted from
Ref. [30]. The lower limits are obtained using Eq. (12) with
the Global fit model given in Ref. [77] as the input flux

(mentioned in Sect. 2).3 Expectedly, compared to the current
LZ result, currently running XENONnT or LZ experiments
would be able to probe factor ∼ 3 smaller cross-section even
for sub-GeV DM. Note that recent Super-K result rules out
most of the region of the parameter space that can be probed
by future xenon-based experiments [96]. Further, upcoming
Darwin experiment will be able to probes a factor ∼ 10
smaller DM-nucleon scattering cross section.

4 Conclusions

The quest for particle DM through DD experiments has
achieved unprecedented background suppression which allows
us to probe various well motivated DM models. This mainly
revolves around the search for weak-scale DM-nuclear scat-
tering. However, the growing interest in the light–dark sector
has triggered the search for light DM (mχ � 1 GeV) particles
in DD experiments. This can be done broadly by lowering
the threshold of the detector, changing the target, or boost-
ing the ambient DM particles. We focus on the CR boosted
DM scenario. Particularly we explore the prospect of detect-
ing cosmic ray boosted sub-GeV DM in light of recent LZ
results and future xenon experiments.

With the current LZ result, in the absence of any DM
signal, we set the leading constraint on SI DM-nucleon scat-
tering cross-section for sub-GeV DM. Using the parametric
form of CR flux as the input, we show that the latest LZ result
sets a factor ∼ 2 stringent constraint compared to the same
XENON1T limit for DM mass near 1 MeV. We also find that
for XENONnT/LZ(future) and Darwin, there would be fac-
tors of ∼ 3 and ∼ 10 improvements, respectively. This would
allow for complementary probe of SI DM-nucleon scattering
cross-section.
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