ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

The monopole-dimer model on Cartesian products of plane graphs

Arora, A and Ayyer, A (2023) The monopole-dimer model on Cartesian products of plane graphs. In: Combinatorial Theory, 3 (3).

com_the_3_3_2023.pdf - Published Version

Download (1MB) | Preview
Official URL: https://doi.org/10.5070/C63362786


The monopole-dimer model is a signed variant of the monomer-dimer model which has determinantal structure. We extend the monopole-dimer model for planar graphs (Math. Phys. Anal. Geom., 2015) to Cartesian products thereof and show that the partition function of this model can be expressed as a determinant of a generalised signed adjacency matrix. We then show that the partition function is independent of the orientations of the planar graphs so long as the orientations are Pfaffian. When these planar graphs are bipartite, we show that the computation of the partition function becomes especially simple. We then give an explicit product formula for the partition function of three-dimensional grid graphs a la Kasteleyn and Temperley�Fischer, which turns out to be fourth power of a polynomial when all grid lengths are even. Finally, we generalise this product formula to d dimensions, again obtaining an explicit product formula. We conclude with a discussion on asymptotic formulas for the free energy and monopole densities. © The authors.

Item Type: Journal Article
Publication: Combinatorial Theory
Publisher: eScholarship Publishing
Additional Information: The copyright for this article belongs to author.
Department/Centre: Division of Physical & Mathematical Sciences > Mathematics
Date Deposited: 04 Mar 2024 04:59
Last Modified: 04 Mar 2024 04:59
URI: https://eprints.iisc.ac.in/id/eprint/84095

Actions (login required)

View Item View Item