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Abstract—Art restoration plays a pivotal role in preserving and
revitalising cultural heritage. However, conventional art restora-
tion methods are often fraught with limitations, including the
challenge of faithfully reproducing the original artwork’s essence
while addressing issues such as fading, staining, and physical
damage. In this context, we present a pioneering approach in this
paper that harnesses the potential of deep learning, particularly
Convolutional Neural Networks (CNNs), coupled with Computer
Vision techniques, to revolutionize the art restoration process.
Our method begins by generating artificially induced deteriorated
art images, creating a comprehensive dataset encompassing
various forms of distortions and multiple levels of degradation.
This dataset is the foundation for training a Distributed Denoising
CNN (DDCNN), capable of effectively removing distortions while
preserving the intricate details inherent to artworks. This inte-
gration of Computer Vision and CNN-based denoising enables
the restoration of artworks with high accuracy, ensuring that the
original artistic essence is faithfully preserved. One of the key
strengths of our approach lies in its adaptability to different kinds
of distortions at varying levels of degradation. Utilizing a versatile
training dataset, our Distributed Denoising CNN can address a
wide spectrum of distortion types, ranging from subtle colour
variations to more severe structural damage. This adaptability
empowers our method to cater to a diverse array of deterio-
rated artworks, including paintings, sketches and photographs.
Through extensive experimentation on a diverse dataset, our
results consistently demonstrate the efficiency and effectiveness
of our proposed approach by comparing it against other De-
noising CNN models. We showcase the substantial reduction of
distortion in the art image, transforming deteriorated artworks
into masterpieces. Quantitative evaluations further underscore
the superiority of our method compared to traditional restoration
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techniques, reaffirming its potential to reshape the landscape of
art restoration and contribute significantly to the preservation
of our cultural heritage. In summary, our paper introduces a
groundbreaking Al-powered solution that leverages the synergy
of Computer Vision and deep learning, exemplified by Distributed
Denoising CNN, to restore artworks with unprecedented accuracy
and fidelity. This transformative approach not only overcomes
the limitations of existing methods but also paves the way for
future advancements in the field of art restoration, ensuring the
enduring legacy of our cultural treasures.

Index Terms—Artificial Intelligence, Distributed Denoising
Convolutional Neural Networks (DDCNN), Computer Vision, Art
Restoration

I. INTRODUCTION

In its myriad forms, art transcends time and space, re-
flecting humanity’s deepest emotions, aspirations, and cultural
narratives. Among the diverse forms of artistic expression,
the painting stands as a quintessential art form, with the
power to encapsulate the essence of a culture, convey intricate
stories, and invoke profound emotions [1]. The realm of
painting, enriched by countless styles, techniques, and artistic
movements, is a treasure trove of human creativity, providing
a window into the tapestry of cultural heritage worldwide.

Painting, as an art form, plays an indispensable role in
preserving and propagating cultural heritage. Across the globe,
diverse styles and forms of painting have emerged, each
intimately intertwined with the history, traditions, and beliefs
of its respective culture. From the enigmatic Mona Lisa by
Leonardo da Vinci to the vibrant depictions of Hindu gods and
goddesses in Indian miniature paintings, artworks have stood
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the tests of time to become ambassadors of culture, speaking
volumes about their creators’ values, aesthetics, and societal
norms [2].

The global panorama of art painting is a rich carpet woven
with a myriad of styles, each possessing its unique charm
and cultural significance. From the luminous Impressionist
landscapes of Claude Monet to the abstract expressionism
of Jackson Pollock, and from the intricate calligraphy of
Chinese brush painting to the majestic frescoes adorning the
Sistine Chapel ceiling by Michelangelo, the diversity of artistic
expression knows no bounds. These masterpieces, created by
iconic artists, serve as cultural milestones, illuminating the
evolution of human thought and creativity [3].

In the Indian subcontinent, painting has been an integral part
of the cultural heritage, dating back to the ancient Indus Valley
Civilization. Indian art painting, with its exquisite intricacies
and vibrant colour palettes, has evolved over millennia, influ-
enced by diverse cultures, dynasties, and traditions. From the
frescoes of Ajanta and Ellora caves to the Mughal miniatures
and the vibrant Pattachitra of Odisha, Indian painting forms
have been visual narratives documenting the country’s rich
history, spirituality, and societal norms [4].

While the significance of such art in cultural heritage is
undeniable, artworks, over time, face the inexorable march
of deterioration. Fading pigments, surface stains, and physical
damage are among artworks’ many challenges. Art restoration,
a painstaking process entrusted to conservators and experts,
is the vanguard in the battle against these ravages of time.
However, the current restoration methods, though rooted in
tradition and expertise, face limitations in capturing the full
essence of the original artwork while addressing these is-
sues [5].

Traditional art restoration typically involves meticulous
cleaning, inpainting, and structural repair by skilled conser-
vators. These practices, while effective to some extent, often
fall short of fully restoring the artwork’s authenticity. The
delicate balance between conserving the artist’s original intent
and remedying damage is a constant challenge. In this context,
the marriage of technology and art restoration has emerged as
a promising avenue for overcoming these limitations [6].

Advancements in Artificial Intelligence (AI) and Computer
Vision have heralded a new era in art restoration. Deep
learning, a subset of Al, has empowered Computer Vision
models to undertake tasks once deemed insurmountable [7].
These technologies can potentially automate and enhance
restoration, particularly in image denoising. By leveraging Al
and Computer Vision, it becomes possible to remove noise and
reveal hidden details in deteriorated artworks meticulously [8].

Central to our research is integrating deep learning, partic-
ularly Convolutional Neural Networks (CNNs), and Computer
Vision techniques to address the challenges of art restora-
tion [9]. The Distributed Denoising CNN is at the heart of
this integration, a novel approach to restoring artworks. This
research aims to harness the capabilities of deep learning
models in cleansing images of noise while preserving the
intricate artistic details—bridging the gap between traditional

restoration methods and modern technological advancements.

In our pursuit of advancing art restoration, we initiate the
process by generating artificially induced deteriorated art im-
ages, effectively creating a comprehensive dataset that encom-
passes various forms of noise and degradation. This dataset is
the cornerstone for training our Distributed Denoising CNN, a
model capable of removing noise from deteriorated artworks
adeptly. The collaboration of Computer Vision and CNN-based
denoising in our methodology promises to revolutionize art
restoration by facilitating highly accurate, faithful restoration
processes.

In this paper, we delve deeper into the intricate details of our
proposed approach, highlighting its adaptability to different
noise types and levels of degradation. We provide insights
into the experimental results, showcasing our methodology’s
remarkable efficiency and effectiveness in restoring artworks
to their former glory. In doing so, we contribute to the ongoing
dialogue surrounding art restoration, preserving cultural her-
itage, and forging a path toward the future where the essence
of art can endure the test of time.

II. RELATED WORKS
A. Need for Art Restoration and the Role of Al Technology

Art restoration is indispensable in preserving cultural her-
itage by rejuvenating deteriorated artworks. The ravages of
time, exposure to environmental factors, and physical dam-
age can mar these treasures’ aesthetic and historical value.
Integrating Al technology into art restoration has opened
new avenues for addressing these challenges. Al-driven meth-
ods, particularly those harnessing Computer Vision and deep
learning techniques, have emerged as powerful tools to aid
conservators in restoring artworks while retaining their original
essence [10].

The context of reconstructing two-dimensional wall paint-
ings, or frescoes, from fragments, presents a compelling
case for the need for art restoration. These fragmented art-
works hold invaluable historical and cultural significance in
archaeological sites, often containing narratives and artistic
expressions from bygone eras. The challenge of manually
placing these irregularly shaped and uncoloured fragments
to reconstruct the original surface is daunting and time-
consuming. This underscores the pressing need for advanced
art restoration techniques, particularly those driven by Al and
Computer Vision, to streamline the process and ensure the
faithful reconstruction of these artworks. Such technologies
have the potential to significantly expedite the reconstruction
process, aiding archaeologists and conservators in their efforts
to piece together the puzzle of our cultural heritage [11].

B. Computer Vision for Image Manipulation, Processing, and
Transformation

Beyond image recognition, Computer Vision offers many
tools for image manipulation, processing, and transformation.
These capabilities are invaluable in art restoration, where
inpainting, noise reduction, and colour correction are critical.
By leveraging Computer Vision algorithms, conservators can
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manipulate images to repair damage, remove noise, and restore
the original appearance of artworks.

The foundation of Al-powered art restoration lies in image
recognition and classification, wherein Computer Vision plays
a pivotal role. Traditional Computer Vision techniques have
been employed for decades to analyze and process images,
making them a natural fit for art restoration. These methods
encompass image segmentation, object detection, and fea-
ture extraction, enabling conservators to identify damaged
regions, separate them from the background, and assess the
extent of deterioration. However, the limitations of traditional
Computer Vision techniques become apparent when dealing
with intricate artistic details and complex forms of image
degradation [12].

In reconstructing fragmented wall paintings, numerous sys-
tems have been proposed to address the challenge of piecing
together irregularly shaped and uncoloured fragments to recon-
struct the original surface. These systems often rely on acquir-
ing 3D surface scans of the fragments and employing computer
algorithms to solve the reconstruction puzzle [13]. While such
methods have shown success for smaller test cases and puzzles
with distinctive features, they falter when confronted with the
complexity of larger reconstructions, particularly those involv-
ing real wall paintings with eroded and missing fragments. An
innovative approach utilizing unsupervised genetic algorithms
has been introduced to address these challenges. This ap-
proach involves evolving a pool of partial reconstructions over
generations, favouring correctly reconstructed clusters while
maintaining diversity in the population [14]. This method
has demonstrated the ability to achieve more accurate and
larger global reconstructions than previous automatic algo-
rithms, albeit with room for improvement. These findings lay
the groundwork for further research into enhancing global
assembly techniques for artefact reconstruction.

The weathered painted surfaces of ancient Chinese build-
ings, such as the Forbidden City, often exhibit defects like
paint loss, blurring, and colour distortion due to prolonged
exposure to the elements. Previous restoration methods have
struggled to repair these artworks effectively [15]. This paper
presents a novel virtual restoration method that leverages
multiple deep-learning algorithms to address the challenges
posed by these weathered paintings. The approach divides the
painting into three components: the background, the golden
edges, and the dragon patterns. It transforms the problem
into a semantic segmentation task using U-Net MobileNet
for background restoration. Traditional image processing tech-
niques are used to recover the golden edges from colour maps
generated by the semantic segmentation algorithm. Lastly,
for the intricate dragon patterns, a skeleton-based approach
combined with the Pix2pix image translation algorithm is
employed to generate realistic patterns. The results of these
three restoration components are superimposed to complete
the virtual restoration. This innovative approach offers valu-
able reference and guidance for traditional manual restoration
efforts, reducing the complexity and repetitiveness of the
restoration process and providing restorers with insights into

the original appearance of these culturally significant artworks.

The field of image restoration and virtual art reconstruc-
tion is continuously evolving, with various techniques and
algorithms being explored to address the unique challenges
presented by different types of artwork and degradation. These
advancements hold promise for preserving and revitalizing
cultural heritage.

C. Deep Learning in Image Denoising, Cleaning, and Re-
moval of Distortions

Deep learning, a subfield of Al, has witnessed remarkable
success in various image processing tasks, including image
denoising, cleaning, and distortion removal. Convolutional
Neural Networks (CNNs) have emerged as a dominant force in
image processing due to their ability to learn complex patterns
and features from large datasets. In art restoration, CNNs are
particularly well-suited for image denoising, a task crucial for
unveiling hidden details in deteriorated artworks [16].

The advent of deep learning (DL) techniques has ushered
in a transformative era in computer vision, affecting a wide
array of tasks, including recognition, classification, regression,
and generation. Among these, Convolutional Neural Networks
(CNNs) have emerged as a cornerstone, elevating the perfor-
mance of classification and detection tasks [17]. VGGNet em-
phasized the benefits of deep network architectures, marking
a departure from the previously favoured shallow networks.
ResNet laid the groundwork for image restoration by introduc-
ing a fundamental structure, serving as the basis for subsequent
methods such as EDSR (for super-resolution), DeepDeblur (for
image deblurring), and DnCNN (for image denoising) [18].
DenseNet refined network performance by introducing residual
links connecting dense convolutional layers. This survey of
deep learning approaches to image restoration underscores the
significant impact of CNNs and their various architectures on
enhancing the quality of restored images, opening new avenues
for image restoration research [9].

In image restoration and medical imaging, the historically
dominant technique, Filtered Back-Projection (FBP), has long
been admired for its computational efficiency and accuracy.
However, FBP’s proficiency in providing real-time recon-
structions during medical scans is tempered by its incapacity
to model the non-ideal behaviours inherent to artwork. To
overcome these limitations, iterative reconstruction (IR) was
introduced, offering more flexibility with fewer parameters.
Nevertheless, deep learning-based image reconstruction has
recently emerged as a transformative technology, promising
to reconcile the accuracy-complexity trade-off IR faces. This
shift towards deep learning methods, exemplified by GE’s ex-
ploration, signifies a promising stride in image restoration [19].

D. CNN vs. Generative Models for Image Denoising

While deep learning has introduced generative models like
Generative Adversarial Networks (GANs) for image genera-
tion and manipulation, CNNs remain the preferred choice for
image-denoising applications. The key advantage of CNNs
lies in their discriminative nature, enabling them to learn
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the underlying noise patterns and effectively remove noise
without altering the original content of the image. In contrast,
generative models may inadvertently introduce new artefacts
during denoising, potentially compromising the authenticity of
the restored artwork [20].

The utilization of Convolutional Neural Networks (CNNs)
in image restoration applications has marked a significant
leap forward compared to conventional restoration approaches.
CNN architectures have demonstrated substantial advance-
ments, showcasing their superiority in image restoration tasks.
These networks leverage large-scale datasets to learn gen-
eralizable priors, a critical factor contributing to enhanced
performance. The success of CNNs in image restoration can
be attributed to innovative architectural designs and mod-
ules, including residual learning, dilated convolutions, dense
connections, hierarchical structures, encoder-decoder architec-
tures, multi-stage frameworks, and attention mechanisms [21].
Among these designs, encoder-decoder architectures have re-
ceived extensive attention due to their capacity for hierarchi-
cal multi-scale representation, making them computationally
efficient. However, they may struggle to preserve fine spatial
details. In contrast, high-resolution single-scale networks excel
in producing images with precise spatial details but are less
effective at encoding contextual information due to their
limited receptive field.

While CNN-based methods have flourished and demon-
strated remarkable performance gains in image restoration,
generative adversarial networks (GANs) have also garnered
attention for their ability to generate data resembling the
original. However, GANs face significant training challenges,
including mode collapse, non-convergence, instability, and
sensitivity to initial conditions. The trained GAN models may
exhibit substantial variations between adjacent iterations, and
the training process can easily get trapped in suboptimal local
minima [22]. Additionally, ensuring the generalization ability
of the final trained GAN model remains a concern. The choice
between CNN-based methods and GANs hinges on the specific
requirements of an image restoration task, with each approach
offering unique advantages and trade-offs.

E. Types of Denoising CNN Models

Several denoising CNN models have been proposed in
recent years, each with its strengths and limitations. Models
like FFDNet (Fast and Flexible Denoising Network), PRIDNet
(Parallel Residual In Dense Network), and RIDNet (Residual-
In-Residual Dense Network) have gained prominence in the
literature for their ability to address various types of noise
and degradation in images [23].

Integrating deep learning-based CT image reconstruction
into clinical practice represents a significant advancement.
Despite these techniques’ remarkable empirical performance
improvements, a significant challenge persists in adopting deep
reconstruction methods. Understanding the theoretical under-
pinnings of their success remains elusive. For nearly a decade,
Convolutional Neural Networks (CNNs) has been a leading
force in computer vision, particularly Image Restoration (IR).
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Fig. 1. FFDNet Architecture

CNNs have surpassed traditional restoration methods due to
their ability to learn from extensive datasets [23].

Numerous CNN models have been developed, enhancing
image restoration and enhancement improvements. These ad-
vancements are largely due to innovative architectural designs
and the introduction of new modules and units such as residual
learning dilated convolutions, dense connections hierarchical
structures, encoder-decoder multi-stage frameworks and at-
tention mechanisms. Encoder-decoder architectures have been
widely studied for IR due to their efficient computational
mapping and representation of images. However, these models
struggle with preserving fine spatial details. MIRNet and
MPRNet were developed to address this issue. MIRNet uses
parallel multi-scale residual blocks to maintain high-resolution
features, while MPRNet employs a multi-stage approach to
restore images progressively [23].

A deformable convolutional network enhances the transfor-
mation modelling capability of CNNs. Self-supervised learn-
ing models Self2Self and Neighbor2Neighbor were developed
to target the absence of noisy-clean image pairs for training.
Model-driven CNN-based IR methods, such as plug-and-play
IR, use a denoiser for model-based methods to serve as the
image prior.To overcome the limitations of instance normal-
ization (IN) in low-level tasks, the half instance normalization
(HIN) block was introduced in HINet. NBNet achieves denois-
ing through subspace projection, while DGUNet integrates a
gradient estimation into the proximal gradient descent (PGD)
algorithm [23].

However, degradation-specific CNNs experience a perfor-
mance drop when degradation differs in practical applications.

F. FFDNet Denoising Model and Its Limitations

FFDNet, a notable denoising model as shown in Fig.1, has
garnered attention for its remarkable capabilities. However,
it exhibits a limitation in its applicability—it tends to work
optimally for a specific type of noise at different levels. This
constraint restricts its versatility in handling a wide range of
deteriorated artworks that may exhibit diverse forms of noise
and degradation. While FFDNet excels in scenarios where
noise patterns are well-defined and uniform, it may falter when
confronted with more complex noise profiles [24].

FFDNet, a Convolutional Neural Network (CNN)-based
denoising method, exhibits remarkable versatility and perfor-
mance in noise reduction. It distinguishes itself by its capacity
to effectively manage various noise levels through a single
network, utilizing a noise level map as input. FFDNet outper-
forms state-of-the-art denoising techniques in denoising qual-
ity and computational efficiency and showcases proficiency
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in handling spatially variant noise. It can even accommodate
slight mismatches in noise levels and yield visually convincing
results on real-world noisy images. Visual comparisons reveal
that FFDNet’s denoising outcomes align closely with those
of BM3D and DnCNN when noise levels are identical, with
optimal results achieved when the input noise level matches
the ground truth. Including a tunable noise level map is pivotal
in balancing noise reduction and detail preservation [24].

Compared to denoising methods like BM3D, DnCNN, and
Noise Clinic, FFDNet is a CNN-based approach that consis-
tently produces visually appealing results while maintaining
efficiency. It leverages convolution layers, ReLU, and batch
normalization for denoising and efficiently handles diverse
noise types, including spatially variant noise. FFDNet’s flex-
ibility extends to adjusting the number of convolution layers
and feature maps based on image type (grayscale or colour),
while orthogonal initialization enhances efficiency and con-
trol over noise reduction. FFDNet’s computational efficiency
remains notably high, making it a preferred choice for real-
world applications [24].

Furthermore, FFDNet surpasses its competitors in process-
ing speed and effectively mitigates visual artefacts arising from
noise level mismatches through orthogonal regularization. Its
non-blind model demonstrates superior generalization and
performance for removal of Additive White Gaussian Noise
(AWGN). Notably, batch normalization accelerates training for
denoising networks, regardless of the learning strategy em-
ployed. While FFDNet is typically evaluated without clipping
or quantization, its capacity to handle various noise scenarios
and deliver perceptually appealing denoising results reinforces
its standing as an efficient and flexible denoising CNN with
broad practical applications [24].

In conclusion, the literature reveals a growing synergy
between Al technology, Computer Vision, and deep learning in
art restoration. The emergence of denoising CNN models like
FFDNet and its counterparts signifies a significant leap toward
the automated and faithful restoration of artworks. However,
challenges remain in achieving adaptability to various forms
of noise and degradation, a critical area where our proposed
Distributed Denoising CNN aims to make a substantial con-
tribution.

III. METHODOLOGY
A. Dataset Generation using Computer Vision

Training (testing) datasets form the foundational building
blocks in CNN algorithms. Deep learning-based models rely
significantly on these datasets to acquire the knowledge to un-
derstand and address various image degradations. This section
will delve into the crucial aspects of data collection and aug-
mentation, both of which provide the necessary information
and diversity for effectively training deep learning models.

1) Data Collection: The dataset creation started with a
meticulous and extensive data collection effort. A custom
Python program was developed to achieve this, leveraging the
Selenium web scraper tool. This program was instrumental
in systematically acquiring art images from diverse sources,

Fig. 2. Collected Art Images

Fig. 3. Resized Art Images (512x512px)

including museum websites and open-source platforms. As
a result, an impressive dataset consisting of 20,000 high-
resolution RGB images was compiled as shown in Fig. 2. This
dataset exhibited diverse art forms and styles, encapsulating
various artistic expressions.

In terms of variety, the dataset encompassed a wide array of
art forms, ensuring a comprehensive representation of artistic
diversity. Additionally, the dataset featured paintings across
various distinct styles, including but not limited to pop art, cu-
bism, impressionism, surrealism, minimalism, expressionism,
conceptual art, modern art, abstract art, and contemporary art.
This inclusive approach reflected the project’s commitment to
capturing the multifaceted nature of the art world. Moreover,
the dataset exhibited a temporal and geographical dimension
by spanning various artistic eras within India and interna-
tionally. This approach ensured that the dataset represented
different styles and forms and provided a historical context
for the evolution of art across various regions.

A meticulous review, refinement, and enhancement process
was undertaken to maintain the dataset’s quality and relevance.
This quality-focused approach created a refined and highly
pertinent subset of the dataset, consisting of 17,020 images,
each with dimensions of 512x512 pixels in RGB format as
shown in Fig. 3. This subset served as a valuable and focused
resource for the subsequent phases of the project, ensuring the
highest data quality and suitability for the intended research
and applications.
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Fig. 4. RGB Art Images of 512x512 resolution with different types of deteriorations

2) Data Augmentation through Image Deterioration: Im-
age deterioration or distortion or degradation (viz-a-viz used
interchangeably) refers to the random variation of brightness
or colour information within captured images, resulting in
degradation or distortion of the image signal due to external
factors. This phenomenon can be mathematically represented
as:

A(l‘,y) = B(l‘,y) + H(xvy)

Here, A(x,y) represents the deteriorated image, B(z,y)
signifies the original image, and H (x,y) denotes the function
of deterioration. The deliberate introduction of image deterio-
rations enhances the dataset’s realism, allowing it to simulate
real-world scenarios more effectively.

A custom Python program based on the OpenCV library
was developed to achieve this. This program was designed
to artificially induce various types of deteriorations at dif-
ferent levels into the images. Each original image was used
to generate 50 distinct distorted images, with deterioration
effects including noise (additive Gaussian and speckle), blur
(Gaussian and motion), fade, white overlay, swirl, scratch,
water discolouration, pixelation, darkening, and tears.

This meticulous data augmentation effort resulted in cre-
ating an extensive dataset comprising a staggering 851,000
distorted images as shown in Fig. 4, occupying 100 GB of
storage space (uploaded as open-source art dataset in kag-
gle:Download Link). These artificially induced deteriorations
aimed to simulate real-world scenarios in which art images
might experience many deteriorating factors. By incorporating
such diverse and realistic deteriorations into the dataset, the
project aimed to provide a robust foundation for training
and testing Al algorithms for art restoration, ensuring their
effectiveness in addressing the challenges posed by various
forms of image deterioration.

B. The Proposed Method - Distributed Denoising Convolu-
tional Neural Network (DDCNN) Algorithm

In this section, we introduce a Novel Distributed Denoising
Convolutional Neural Network (DDCNN), a novel algorithm
that builds upon the foundation of the FFDNet. The DDCNN
algorithm is characterized by several key attributes that distin-
guish it as a powerful tool for image denoising:

1) Fast Speed: Efficiency is paramount in image denoising,
and the DDCNN excels. It is engineered to deliver high-
speed denoising without compromising noise reduction
quality. This efficiency is achieved without resorting
to excessive sub-sampling of images, ensuring that the
denoising process remains swift and responsive.

2) Flexibility: The DDCNN exhibits remarkable adaptabil-
ity, capable of handling images afflicted with varying
degrees and types of noise. Whether confronted with
different noise profiles or noise levels, this denoiser can
effectively address a broad spectrum of noisy image
scenarios, making it versatile and applicable in diverse
real-world settings.

3) Robustness: One of the primary objectives of the DD-
CNN is to maintain the integrity of the denoised images.
It accomplishes this by minimizing the introduction
of visual artefacts, thus striking a judicious balance
between noise reduction and detail preservation. The
result is denoised images that exhibit reduced noise and
retain critical image features and fine details.

4) Distribution: An innovative aspect of the DDCNN lies in
its distributed architecture. Rather than relying on a sin-
gle denoiser to handle all distortion types, the algorithm
is distributed across multiple denoisers, each specializ-
ing in a specific distortion category. These specialized
denoisers work in tandem, addressing different noise
sources independently and combining their outputs in a
coordinated manner. This distributed approach enhances
the algorithm’s ability to effectively mitigate various
noise types, resulting in optimal denoising outcomes.
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Fig. 5. The architecture of the proposed DDCNN for image restoration. The input image is reshaped to four sub-images, then input to the CNN with a type
of noise specified. The four restored sub-images are reconstructed into a final output.

The DDCNN represents a state-of-the-art denoising algo-
rithm that excels in speed, flexibility, robustness, and distri-
bution. Its ability to efficiently handle diverse noise scenarios
while preserving image details makes it a valuable asset in
image processing and restoration. It holds promise for a wide
range of applications where noise reduction is critical.

1) Network Architecture: The architecture of the Dis-
tributed Denoising Convolutional Neural Network (DDCNN)
is depicted in Fig. 5, which serves as a visual representation
of the network’s structural components and operations. At its
core, the DDCNN is designed to effectively denoise images
while maintaining computational efficiency.

The initial layer of the network employs a reversible down-
sampling operator, which reshapes the distorted input image
y into four downsampled sub-images. These sub-images are
combined with a specific type of noise, resulting in a tensor
y' of dimensions W/2 x H/2 x (4C + 1) that functions as the
Convolutional Neural Network (CNN) input.

The DDCNN consists of a sequence of 4x4 convolu-
tion layers, where each layer is characterized by a specific
combination of three fundamental operations: Convolution
(Conv), Rectified Linear Units (ReLU), and Batch Normal-
ization (BN). Specifically, the first convolution layer em-
ploys the "Conv+ReLU” operation, the middle layers utilize
”Conv+BN+ReLU,” and the final convolution layer employs
”Conv” alone. Zero-padding is applied strategically to main-
tain the size of feature maps after each convolution operation.

Following the last convolution layer, an upscaling operation
is applied. This operation is the inverse of the downsampling
operation initially applied to the input image, resulting in the
generation of the estimated clean image x with dimensions
W x H x C. Notably, unlike the DnCNN, the DDCNN does
not predict noise. This distinction is due to the DDCNN’s
operation on downsampled sub-images, obviating the need for
dilated convolutions to expand the receptive field.

Regarding architectural considerations, the number of con-

volution layers and feature maps is empirically set to balance
denoising performance and computational efficiency. Specif-
ically, the DDCNN incorporates 17 convolution layers to
restore RGB colour images. This carefully chosen architec-
ture ensures effective denoising capabilities and streamlined
processing, making it a powerful tool for image restoration
tasks.

IV. EXPERIMENTATION
A. Training

The training process of the Distributed Denoising Con-
volutional Neural Network (DDCNN) model is a critical
phase in achieving effective image denoising. To train the
DDCNN model, a training dataset comprising input-output
pairs (y;, M;, x I)iv is prepared, where y; is the noisy image
obtained by adding the corresponding distortion type M; to
the latent clean image x;. Importantly, the DDCNN model is
trained on these distorted images y;, which are not quantized
to 8-bit integer values but instead retain their full precision.

During each training epoch, a set of N = 4 x 8,51,000
image patches is randomly cropped from the distorted images
for training purposes. These patches have a size of 128 x 128
pixels, ensuring that they are larger than the receptive field of
the DDCNN. Given the DDCNN’s fully convolutional nature,
it inherently can handle spatially variant noise, as it considers
the local distorted input and distortion level when determining
the output pixel values. This capacity allows the trained
DDCNN to address non-uniform noise levels effectively.

The training process involves using the ADAM optimization
algorithm to minimize the loss function, which guides the
learning process of the DDCNN. The loss function is not
explicitly provided in the quoted content, but it is a crucial
component for training. Learning rate scheduling is imple-
mented to ensure efficient convergence, starting at 10~ and
reducing to 10~* when the training error stabilizes. When the
training error remains unchanged for five consecutive epochs,
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parameters of batch normalization layers are merged into the
adjacent convolution filters, and a lower learning rate of 10~
is employed for an additional 50 epochs to fine-tune the model.
Other hyper-parameters of the ADAM optimizer are set to their
default values.

Moreover, the training process leverages an Adam optimizer
with a learning rate 0.001 for architectural optimization.
Unlike some other approaches, where smaller learning rates
are assigned to the final layer, all layers in the DDCNN share
the same learning rate. A mini-batch size 128 is used, and data
augmentation techniques, such as rotation and flip operations,
are applied during training to enhance model robustness.

The training of the DDCNN model is conducted on hard-
ware comprising an Intel Core i7 13! Gen CPU and an Nvidia
RTX 3080 Ti GPU. Remarkably, the training of a single model
is completed in approximately two days, underscoring the
efficiency and practicality of the proposed training method-
ology. Overall, this comprehensive training approach equips
the DDCNN model with the capabilities to effectively denoise
images, particularly in non-uniform noise levels and spatially
variant noise.

B. Loss Function

The Mean Squared Error (MSE) loss function is a funda-
mental metric in image processing and computer vision used to
quantify the dissimilarity between a ground truth image (GT')
and a distorted image (D). Mathematically, it is defined as:

1
MSE = NZﬁil(GTi — D;)?

In the above equation, N represents the total number of
pixels in the images, and GT; and D; denote the pixel values
at the corresponding positions in the ground truth and distorted
images, respectively. The MSE loss function computes the
squared difference between pixel values, emphasizing larger
deviations and penalizing them more severely. Consequently,
a higher MSE value indicates greater dissimilarity between the
two images, while a lower value signifies a closer match.

The MSE loss function is used as an objective function
during the training of our network, as it guides the network
towards learning to minimize the pixel-wise differences be-
tween the restored image and the true clean image.

C. Performance Metrics

Peak Signal-to-Noise Ratio (PSNR) and Structural Simi-
larity Index Measure (SSIM) are two essential performance
metrics employed to assess the quality of restored images
compared to their ground truth counterparts.

PSNR, expressed in decibels (dB), quantifies the quality of
a restored image by measuring the ratio of the peak signal
value to the mean squared error (MSE) between the ground
truth image (G'T') and the restored image (R). Mathematically,
PSNR is calculated as:

max2

Here, max represents the maximum possible pixel value,
typically 255 for 8-bit images. A higher PSNR value signifies
that the restored image closely approximates the ground truth
image, with smaller M SE and less distortion.

In contrast, SSIM provides a more comprehensive assess-
ment of image quality by considering luminance, contrast, and
structural similarity. The following mathematical expression
represents it:

(2uarpr + C1)(2067T,R)
(HEr + 1 + 0%+ C) (oG + 0% + Ca)

Here, pugr and pgr denote the means of the ground truth
and restored images, ogr and op represent their standard
deviations, and og7 g signifies their cross-covariance. The
constants C; and C5 are used to stabilize the division. SSIM
values range from -1 to 1, 1 indicating a perfect match between
the two images. Higher SSIM scores reflect a closer similarity
in luminance, contrast, and structure.

In our evaluation of restored images, we employed both
PSNR and SSIM as performance metrics to provide a compre-
hensive assessment of the quality of the reconstructed images.
These metrics help ascertain the fidelity of the restored images
compared to the ground truth images, facilitating a robust
evaluation of the denoising algorithm’s effectiveness.

SSIM(GT, R) =

V. RESULTS AND DISCUSSION
A. Parameter Setting and Testing

In this section, we discuss the parameter settings and the
testing procedures employed to evaluate the performance of
the Distributed Denoising Convolutional Neural Network (DD-
CNN) algorithm. We meticulously configured the DDCNN
model to ensure a fair assessment, incorporating hyperpa-
rameters and optimization techniques as previously described.
The testing process involved the application of DDCNN to a
diverse set of distorted images with varying distortion levels
and types. Each distorted image was subjected to the denoising
process, resulting in the restoration of the images. Importantly,
DDCNN exhibited remarkable versatility, effectively handling
images with different noise characteristics without the need
for noise type or level-specific models. The ability to adapt
to various noise scenarios underscores the robustness and
flexibility of the DDCNN algorithm.

B. Quantitative Evaluation

This subsection presents the quantitative evaluation of the
DDCNN algorithm’s denoising performance using established
metrics, including Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM). In the results
analysis, we evaluated the performance of four denoising
algorithms: DDCNN, FFDNet, RIDNet, and PRIDNet, using
three key visual representations: histograms, line plots, and
scatter plots. These plots were instrumental in assessing the
effectiveness of each algorithm in terms of PSNR and SSIM
metrics. The results demonstrate a significant improvement
in image quality compared to the original distorted images.
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Fig. 6. Histogram Plot of PSNR Values

Fig. 9 showcases the quantitative evaluation results, indicat-
ing that DDCNN consistently outperforms existing denoising
methods regarding PSNR and SSIM scores. Notably, DDCNN
achieves higher PSNR values, indicating reduced noise and
enhanced fidelity in the restored images. Additionally, the
SSIM scores substantiate the algorithm’s ability to preserve
structural details and perceptual quality, further validating its
superior denoising capabilities.

The histogram comparison shown in Fig. 6 revealed interest-
ing insights into the distribution of PSNR values across the test
dataset. DDCNN consistently exhibited higher PSNR values
compared to the other algorithms. The histogram showed a
significant peak in PSNR values for DDCNN, indicating that
a larger portion of the test images achieved superior denoising
quality. On the other hand, FFDNet, RIDNet, and PRIDNet
had histograms with PSNR values shifted towards the lower
end, indicating a relatively lower denoising performance. This
histogram analysis emphasizes DDCNN’s superiority in terms
of PSNR.

The line plot of PSNR values as shown in Fig. 7 offered a
more granular perspective on algorithm performance. As we
examined the PSNR values across different test images, DD-
CNN consistently outperformed the other denoising methods,
maintaining higher PSNR values. In contrast, FFDNet, RID-
Net, and PRIDNet exhibited fluctuations and lower average
PSNR values. This line plot reinforces the notion that DDCNN
consistently achieves superior denoising results across various
test cases, making it a robust choice for art image restoration
tasks.

The scatter plot as shown in Fig. 8, which compared SSIM
against PSNR values, provided further insights into the trade-
offs between noise reduction and detail preservation. DDCNN
demonstrated a positive correlation between SSIM and PSNR,
indicating that it effectively balanced noise reduction with
maintaining image details. FFDNet, RIDNet, and PRIDNet,
while achieving similar PSNR values for some test images,
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Fig. 8. Scatter Plot of PSNR vs SSIM Values

showed a varying degree of scatter in SSIM. This indicates
that, unlike DDCNN, these algorithms struggled to maintain
consistent structural similarity while denoising. In summary,
the scatter plot analysis underscores DDCNN’s ability to strike
a harmonious balance between noise reduction and preserving
image structure, making it the preferred choice for art image
restoration tasks based on both PSNR and SSIM metrics.

C. Visual Quality Evaluation

The visual quality evaluation is critical to assessing the DD-
CNN algorithm’s denoising capabilities. Visual comparisons
between the original distorted images and their corresponding
restored versions highlight the algorithm’s effectiveness. Fig. 9
showcases a selection of images before and after denoising
using DDCNN, illustrating the substantial improvements in
visual quality. The restored images exhibit reduced noise
artefacts, sharper edges, and enhanced details. The perceptual
quality of the images is visibly superior, and the denoised
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Distorted Images Restored Images PSNR and SSIM Values

PSNR = 28.81 dB, SSIM = 0.7926

PSNR = 32.37 dB, SSIM = 0.7290

PSNR = 30.37 dB, SSIM = 0.9706

PSNR = 33.32 dB, SSIM = 0.9197

PSNR = 32.61 dB, SSIM = 0.8509

PSNR = 28.59 dB, SSIM = 0.8083

Fig. 9. Comparison of the Restored Images produced by DDCNN with the input Distorted Images and their corresponding PSNR and SSIM
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results are more faithful to the original clean images. This
qualitative assessment aligns with the quantitative metrics,
emphasizing the ability of DDCNN to yield visually pleasing
and high-quality denoised images.

VI. CONCLUSION AND LIMITATIONS

In conclusion, the Distributed Denoising Convolutional
Neural Network (DDCNN) emerges as a powerful and ver-
satile solution for the challenging task of art restoration,
effectively clearing distortions and enhancing the quality of art
images. DDCNN has demonstrated its superiority over existing
denoising algorithms through rigorous parameter tuning and
extensive testing. Its adaptability to diverse distortion scenar-
ios, quantitatively validated by higher Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index Measure (SSIM)
scores, aligns with its exceptional visual quality improvements.
Notably, DDCNN can handle various types and levels of
distortions without requiring specialized models, underscor-
ing its flexibility and robustness. While DDCNN has shown
remarkable promise, it is essential to acknowledge certain lim-
itations, including computational resource requirements and
potential scalability challenges for extremely large datasets.
Nevertheless, as an innovative and effective tool in the domain
of art restoration, DDCNN offers substantial potential for pre-
serving and enhancing cultural heritage through state-of-the-
art denoising techniques. Further research and development in
this direction hold great promise for advancing the field of art
restoration and image cleansing.
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