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Abstract—Multiple input multiple output (MIMO) scheme
which employs Alamouti code with index coded PSK modulation
over Rayleigh fading channel has been studied. In this work,
for the noisy index coding problem we generalize the MIMO
scheme for any space time block codes (STBCs) obtained from
orthogonal designs in which the central server transmits symbols
over Nt × Nr MIMO Rician fading channel. We show that,
for a chosen index code and 2N -PSK signal set at very high
SNR, error performance of a receiver is decided by minimum
inter-set distance seen by the receiver and for achieving its best
ML decoding performance, we must choose the mappings that
maximizes minimum inter-set distance. Further for improving the
performance of high priority receivers for a chosen index code
of length N we are transmitting N bits using a rotated M -PSK
(M = 2N ) constellation.

Index Terms—Noisy index coding, MIMO, Space time block
codes (STBCs).

I. INTRODUCTION

A. Background

The index coding problem (ICP) [1], [2], was studied as the
noiseless form of broadcasting with side information. ICP was
initially implemented to reduce the number of transmissions
for satellite communication. Several significant engineering
problems, such as topological interference management [3],
content delivery [4], and device-to-device (D2D) communica-
tion [5], have utilized the ICP concept. It includes a central
server that intends to send a set of messages over a broadcast
channel to a set of receivers that are already familiar with a
subset of the messages as side information and request another
subset of messages. Consider the case of a central server with
set of m messages denoted by X = {x1, x2, . . . , xm} where
xi ∈ F2 which it broadcasts as coded messages to a set of
n receivers denoted by R = {R1, R2, . . . , Rn}. Each receiver
Ri ∈ R knows a priori a proper subset Ki of the messages,
wants a subset Wi of the messages, where Wi ∩Ki = ∅ and
is identified by the pair (Wi,Ki).
Definition 1. An index code for ICP (X ,R) over binary field
F2 = {0, 1} consists of
1) An encoding function for the sender, E : {0, 1}m →
{0, 1}N , and
2) Set of decoding function corresponding to each receiver Ri,

Di : {0, 1}N+|Ki| → {0, 1}|Wi| such that Di(E(X ),Ki) = Wi,
for each i ∈ {1,2,. . .,n}.

The purpose of a noiseless ICP, as defined in [6], is to
identify an index code that minimizes the length N , which
is equal to the number of binary transmissions made by the
server to satisfy the demands of all the receivers. The index
code with the shortest length is known as an optimal index
code. In [6], the classification of noiseless ICPs is discussed.

The ICP over a noisy broadcast channel is the most realiz-
able. In [7], ICP over noisy channels with a central server sup-
porting binary transmissions was studied. M-ary modulation
schemes have been considered for the transmission of coded
messages because, as demonstrated in [8], M-ary modulation
can accomplish a significant reduction in bandwidth compared
to binary transmissions.

In [9], the case of noisy index coding over Additive White
Gaussian Noise (AWGN) broadcast channels, with priori-
tized receivers, was investigated for a given index code and
predefined receiver priority order. The notion of prioritized
receivers was introduced to make noisy ICP more practical.
For example, a content delivery network such as (Hotstar
or YouTube) might decide to provide superior performance
to premium receivers who pay more than other receivers. A
decision rule for the Maximum Likelihood (ML) decoder was
derived for transmission of symbols over the AWGN broadcast
channel, which provides the optimal error performance for any
receiver Ri. In [9], an algorithm for determining the optimal
set of mappings for a given ICP with prioritized receivers
was proposed. It was demonstrated that mapping based on
maximizing minimum inter-set distance (Definition 3) was
more pertinent than mapping based on maximizing minimum
Euclidean distance. To further enhance the error performance
of receivers with the highest priority, coded messages were
broadcasted using a rotated PSK constellation, as in [10], in
which half of the signal points were rotated while the other
half remained fixed.

In [11] noisy index coding over SISO Rayleigh fading
broadcast channel has been studied. In this paper we extend
the MIMO scheme based on Alamouti code in [9] to any
STBCs obtained from orthogonal designs [12] in order to attain
diversity gain in addition to coding gain.
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B. Our Contributions

We consider a noisy ICP (X ,R) with m messages and n
receivers over MIMO Rician fading channel. Even though
Rayleigh fading is an outstanding approximation in a large
number of practical situations. It can be demonstrated that
the Rician model has the Line-of-Sight (LOS) component. In
terms of probability of error, it is demonstrated that the Rician
fading exhibits less error probability for a Receiver Ri than
the Rayleigh fading due to the presence of a LOS component.
The main contributions of this work are listed below:

• We extend the proposed MIMO scheme based on Alam-
outi code [9] to any STBCs obtained from orthogonal
designs, for the noisy ICP, to achieve maximum diversity
gain.

• We derive the ML decision rule that provides the optimal
performance for any receiver Ri in a MIMO scheme,
given a particular index code and mapping.

• We show that, for a chosen index code and 2N -PSK signal
set, with transmission of symbols over MIMO Rician
fading channel, to achieve best ML decoding performance
of a receiver at high SNR, the mappings must maximize
the minimum inter-set distance.

• Like in [10] we map the broadcast vectors (Definition 2)
to a rotated 2N -PSK constellation to enhance the prob-
ability of error performance over MIMO Rician fading
channel for high priority receivers.

C. Organisation and Notation

The paper is organized as follows. In section II we have
discussed the preliminaries of noisy index coding [9]. In sec-
tion III we consider MIMO scheme which employs orthogonal
STBCs with index coded PSK modulation. In section IV, we
discuss the simulation results to encapsulate our work. Finally,
section V concludes the paper.

The mathematical notation defined in paper are as follows:
The set {1, 2, . . . ,m} is denoted by [m]. A vector is denoted
as x =

(
x1 x2 . . . xm

)
∈ Fm

2 and a matrix is denoted by
an upper-case bold letter, as in L.

II. PRELIMINARIES

The summary of noisy index coded PSK modulation is
described in this section. The notions of Effective broadcast
vector sets and Inter-set distance [9] will be briefly defined.

A. Review of [9]

In a noisy ICP, a central server with m messages transmit
messages to n receivers across a SISO AWGN broadcast chan-
nel. Considering each receiver wants a single unique message.
The pair (Wi,Ki), want set and known set, uniquely identify
each receiver Ri. Let the set of indices bi = {j : xj ∈ Ki} be
the set corresponding to the known set. Each receiver requests
the message xz(i), where z: [n] → [m] is a map from the set
of receivers to the set of messages.

Definition 2. Effective broadcast vector set: Let ai ∈
F

|Ki|
2 be the side of information realization of receiver Ri. The

effective broadcast vector set is the subset of FN
2 that must be

taken into account by each receiver Ri for decoding because
each receiver Ri knows certain messages from its known set.
It is denoted as CL(ai) for encoding matrix L,

CL(ai) = {y ∈ FN
2 : y = xL, xbi = ai, xl ∈ F2, l ∈ [m] \ bi}.

The effective broadcast vector set CL(ai) can further be
separated into two subsets, namely zero effective broadcast
vector set CL0(ai) and one effective broadcast vector set
CL1(ai), based on the ith receiver desired message bit.

CL0(ai) = {y ∈ FN
2 : y = xL, xbi = ai, xz(i) = 0,

xl ∈ F2, l ∈ [m] \ (bi ∪ z(i))}.

CL1(ai) = CL(ai) \ CL0(ai).

The complex signal points in 2N -PSK constellation corre-
sponding to CL(ai), for receiver Ri is termed as Effective
broadcast signal set (SL(ai)).

Definition 3. Inter-set Distance: The minimum euclidean
distance between the signal points corresponding to CL0(ai)
and signal points corresponding to CL1(ai) is termed as inter-
set distance seen by receiver Ri corresponding to the side
information realization ai, denoted as,

dIS(SL(ai)) ≜ min{|sa − sb| : sa ∈ SL0(ai), sb ∈ SL1(ai)}

and Minimum inter-set distance for receiver Ri is minimum
of inter-set distance among all the SL(ai),

d
(i)
IS,min ≜ min

ai∈F
|Ki|
2

dIS(SL(ai)).

III. MIMO INDEX CODED PSK MODULATION

In this section, we look into MIMO index-coded PSK mod-
ulation incorporating orthogonal STBCs [12] across a Rician
fading channel and develop a decision rule for ML decoding
that provides the optimal probability of error performance for
any receiver Ri. Subsequently, we determine an upper bound
on pairwise error probability.

A. STBCs from Orthogonal design

A Generalized Linear Complex Orthogonal Design
(GLCOD) in l complex variables c1,c2,. . .,cl is a P × Q
matrix C(c1, c2, . . . , cl) such that the following:

• the entries of C are complex linear combinations of 0, ±
ci, ∀ i ∈ [l] and their conjugates;

• CHC = D, where D is diagnol matrix whose entries are
linear combination of | ci |2, ∀ i ∈ [l] [12].

The symbol transmission rate of C(c1, c2, ..., cl) is defined
as l/P . When the only entries of C are {0,±c1,±c2, . . . ,±cl}
and their conjugates, C is referred to as a Complex Orthogonal
design (COD) [12].

In [13] Alamouti proposed the first STBC from 2 × 2 or-
thogonal design with rate 1 for 2 transmit antennas. Orthogonal
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codes with rate 3/4 were introduced for three and four transmit
antennas [14], [15].

C2(c1, c2) =

[
c1 c2
−c∗2 c∗1

]
(1)

C3(c1, c2, c3) =


c1 c2 c3
−c∗2 c∗1 0
−c∗3 0 c∗1
0 −c∗3 c∗2

 (2)

C4(c1, c2, c3) =


c1 c2 c3 0
−c∗2 c∗1 0 c3
−c∗3 0 c∗1 −c2
0 −c∗3 c∗2 c1

 (3)

In [16] an obvious and straightforward realizations of or-
thogonal designs of square size with rate (l + 1)/2l, where
Q = 2l is the number of transmit antennas, was given as
follows. Let C1 = c1I1 (In is n × n Identity matrix) then
C2l(c1, c2, ..., cl+1) can be constructed for l = 1,2,3,... as
follows

C2l(c1, c2, ..., cl+1) =[
C2l−1(c1, c2, ..., cl) cl+1I2l−1

−c∗l+1I2l−1 CH
2l−1(c1, c2, ..., cl)

]
(4)

By omitting some columns from (4), orthogonal designs for
a certain number of transmit antennas that are not powers of
2 can be derived.

B. Proposed MIMO Scheme

We propose a MIMO scheme for any STBCs obtained
from orthogonal designs. Consider the scenario in which the
central server has Nt transmit antennas and each receiver has
Nr receive antennas. At each symbol time, m messages are
present with the server, x =

(
x1 x2 . . . xm

)
∈ Fm

2 which
it broadcast as coded messages to n receivers, where each
receiver knows a priori a proper subset of messages and wants
single message.
We consider a orthogonal STBC C(c1, c2, ..., cl) of size P ×
Nt. For square orthogonal STBC P = Nt. Let xi be the mes-
sage vector at symbol time i, corresponding broadcast vector
be yi and corresponding 2N -PSK signal point is ci = M(xiL)
∀i ∈ [l] (M be the map from broadcast vectors to 2N -
PSK constellation points). After mapping of broadcast vectors
to 2N -PSK signal points, the central server incorporates a
orthogonal STBC C(c1, c2, ..., cl) of size P ×Nt.
Consider a receiver Ri, we can write the received signal matrix
as

Y = C(c1, c2, ..., cl)H + W (5)

where Y ∈ CP×Nr (C denotes the complex field) is the
received signal matrix, C(c1, c2, ..., cl) ∈ CP×Nt is the STBC
matrix, H ∈ CNt×Nr denotes the channel matrix which
contains independent and identically distributed (i.i.d) complex
valued gaussian channel gains huv having non zero mean and

variance unity between the uth, 1 ≤ u ≤ Nt transmit antenna
and vth, 1 ≤ v ≤ Nr receive antenna.

Using phasor notation, the complex channel gain huv is
represented as huv = auv · ejϕuv , where auv is the amplitude
of fading process and auv , ∀u ∈ [Nt],∀v ∈ [Nr] is Rician
distributed with PDF,

p(auv) = 2auv(1 +K) exp(−(K + a2uv(1 +K)))I0(2auv
√

K(1 +K))
(6)

where K is the Rician parameter defined as the ratio of line-of-
sight path to remaining multipaths and I0(.) is the zero-order
modified Bessel function of the first kind.

W ∈ CP×Nr denotes the noise matrix which contains
complex-valued AWGN with zero mean and variance N0. The
channel is assumed to be quasi static and perfect channel state
information is available at the receiver.

C. Maximum-Likelihood Decoder

We establish a decision rule corresponding to the ML
decoder for a receiver Ri. To arrive at the ML decision rule,
we adopt a methodology akin to that of [9].

Take into account the decoding of the message vector xl,
(cl = M(xlL)). Since STBCs from orthogonal designs can be
decoded symbol by symbol, the equation for decoding each
symbol can be expressed as d =

∑Nt

u=1

∑Nr

v=1 a
2
uvcl + w′,

where d is the decision variable and w′ is distributed as
CN (0,N0

∑Nt

u=1

∑Nr

v=1 a
2
uv).

Consider receiver Ri wants xz(i). The conditional probabil-
ity density of d given that M(xlL) is transmitted and fading
amplitudes auv,∀u ∈ [Nt],∀v ∈ [Nr] are perfectly known at
the receiver is

p(d|M(xlL), auv, u, v) =
exp

(
− |d−

∑Nt
u=1

∑Nr
v=1 a2

uvM(xlL)|2

N0
∑Nt

u=1

∑Nr
v=1 a2

uv

)
(πN0

∑Nt

u=1

∑Nr

v=1 a
2
uv)

.

(7)
Following an approach akin to one used in [9] we can write

decision rule (ignoring ties) as,

P(xz(i) = 0|xbi = ai, d, auv, u, v) ≶
1
0

P(xz(i) = 1|xbi = ai, d, auv, u, v) (8)

Using Bayes rule in (8), we obtain decision rule in terms of
likelihood functions as

p(d|xz(i) = 0, xbi = ai, auv, u, v)P(xz(i) = 0) ≶1
0

p(d|xz(i) = 1, xbi = ai, auv, u, v)P(xz(i) = 1) (9)

SL0(ai) and SL1(ai) is the set of all signal points correspond-
ing to broadcast vector with xz(i) = 0 and xz(i) = 1 with
xbi = ai. Therefore,

p(d|xz(i) = 0, xbi = ai, auv, u, v) = p(d|SL0(ai), auv, u, v)
(10)

p(d|xz(i) = 1, xbi = ai, auv, u, v) = p(d|SL1(ai), auv, u, v)
(11)

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on February 07,2024 at 11:13:01 UTC from IEEE Xplore.  Restrictions apply. 



Assuming that all messages take values 0 and 1 with equal
probability, from (9), (10) and (11) we obtain decision rule as∑
k:sk∈SL0(ai)

p(d|sk, auv, u, v) ≶1
0

∑
k:sk∈SL1(ai)

p(d|sk, auv, u, v)

(12)
From (7) and (12), we obtain ML decision rule as,

∑
k:sk∈SL0(ai)

(
exp

(
−
| d−

∑Nt

u=1

∑Nr

v=1 a
2
uvsk) |2

N0

∑Nt

u=1

∑Nr

v=1 a
2
uv

))
≶1

0

∑
k:sk∈SL1(ai)

(
exp

(
−
| d−

∑Nt

u=1

∑Nr

v=1 a
2
uvsk) |2

N0

∑Nt

u=1

∑Nr

v=1 a
2
uv

))
(13)

From (13), we can infer that euclidean distance of scaled signal
points (by

∑Nt

u=1

∑Nr

v=1 a
2
uv) in SL0(ai) to d, with respect to

scaled signal points in SL1(ai) is the basis for ML decision
rule.

D. Upper Bound on Pairwise Error Probability

In this subsection, for symbol transmission over Nt × Nr

MIMO Rician fading channel, we derive an upper bound on
the pairwise error probability.

Let’s consider receiver Ri, demanding a message xz(i) = 1.
After scaling by (

∑Nt

u=1

∑Nr

v=1 a
2
uv), the decoder will locate a

signal point that is close to d. If signal point lies in SL1(ai)
then it is error free. If signal point lies in SL0(ai) then decoder
makes an error.

Assuming that fading amplitudes auv,∀u ∈ [Nt],∀v ∈ [Nr]
are perfectly known at the receiver Ri , ML detection requires
minimization of the metric,

m(sk|d, auv, u, v) =
∣∣∣d− Nt∑

u=1

Nr∑
v=1

a2uvsk

∣∣∣2 (14)

where sk ∈ SL1(ai) is transmitted. The decoder makes an
error if and only if it decodes to sk′ ∈ SL0(ai),

P {sk → sk′ |auv, u, v}

= P
(∣∣∣d− Nt∑

u=1

Nr∑
v=1

a2uvsk′

∣∣∣2 ≤
∣∣∣d− Nt∑

u=1

Nr∑
v=1

a2uvsk

∣∣∣2) (15)

= P
(∣∣∣ Nt∑

u=1

Nr∑
v=1

a2uv(sk − sk′)
∣∣∣2+

2Re
( Nt∑
u=1

Nr∑
v=1

a2uv(sk − sk′)w′∗) ≤ 0
)

Now, Let

X = Re
( Nt∑

u=1

Nr∑
v=1

a2uv(sk − sk′)w′∗
)

where X is distributed as Gaussian with zero mean and
variance

σ2
X =

N0 ·
∑Nt

u=1

∑Nr

v=1 a
2
uv

2

(∣∣∣ Nt∑
u=1

Nr∑
v=1

a2uv(sk − sk′)
∣∣∣2).

Let A = 1
2

(∣∣∣∑Nt

u=1

∑Nr

v=1 a
2
uv(sk − sk′)

∣∣∣2), we have

P {sk → sk′ |auv, u, v} = P (A+X ≤ 0) = Q

(
A

σX

)
(16)

Q(x) is a Gaussian tail function. The Gaussian tail function
can be upper bounded by an exponential function as,

Q(x) ≤ 1

2
exp

(
−x2

2

)
The conditional pairwise error probability becomes,

P {sk → sk′ |auv, u, v} ≤

1

2
exp

(
−
∑Nt

u=1

∑Nr

v=1 a
2
uv|(sk − sk′)|2

4N0

)
(17)

In order to find an upper bound on pairwise error probability,
we average (17) with respect to identical and independent
Rician distributions of auv with parameter K to arrive at

P {sk → sk′} ≤

Eauv,u,v

[
1

2
exp

(
−
∑Nt

u=1

∑Nr

v=1 a
2
uv|(sk − sk′)|2

4N0

)]
Now, Let

|(sk − sk′)|2

4N0
= m2

P {sk → sk′} ≤ 1

2

Nt∏
u=1

Nr∏
v=1

Eauv

[
exp

(
−a2uvm

2
)]

(18)

=
1

2

[(
1 +K

m2 + 1 +K

)
exp

(
− m2K

m2 + 1 +K

)]NtNr

=
1

2

[(
1 +K

|(sk−sk′ )|2
4N0

+ 1 +K

)
exp

(
−

K
(

|(sk−sk′ )|2
4N0

)
|(sk−sk′ )|2

4N0
+ 1 +K

)]NtNr

Assuming normalized signal power, we have SNR = 1
N0

.
So, at high SNR we obtain the upper bound on pairwise error
probability as,

P {sk → sk′} ≤ 1

2

[
4(1 +K)

SNR|(sk − sk′)|2
exp(−K)

]NtNr

.

(19)
As a result, we may deduce from (19) that the suggested

MIMO scheme provides the maximum diversity gain of NtNr.
It is significant to remember that, in contrast to traditional
MIMO schemes, the inter-set distance and Rician parameter
K dictate the coding gain of the noisy ICP with MIMO
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schemes for any orthogonal STBCs, with transmission of
symbols across Rician fading channel. Therefore, we must
select mappings that maximizes the minimum inter-set distance
if we want a receiver to achieve its highest coding gain, at high
SNR. Further, we use rotated PSK constellations to enhance
the ML decoding performance of high priority receivers. Let
s0, s1, ..., s2N−1 be the 2N signal points. Only the alternate
signal points s0, s2, ..., s2N−1−1 are rotated by an angle θ,
where θ varies from 0 < θ < 2π/M (M = 2N ), keeping the
other half of the points stationary, in order to increase mini-
mum inter-set distance for highest priority receivers. Moreover,
among the mappings with same minimum inter-set distance we
select the one with less multiplicity of signal pairs.

Special Case: For Rayleigh fading, parameter K is zero as
channel only has multipath components. Then the inequality
(19) can be expressed as,

P {sk → sk′} ≤ 1

2

[
4

SNR|(sk − sk′)|2

]NtNr

. (20)

Example 1 - Let n = m = 7, Wi = xi,∀i ∈ [7]
and Ki,∀i ∈ [7] are the side information available at the
receivers Ri,∀i ∈ [7] where K1 = {x2, x3, x4, x5, x6},K2 =
{x1, x3, x4, x7},K3 = {x1, x2, x4},K4 = {x1, x2, x3},K5 =
{x4, x6},K6 = {x5} and K7 = {ϕ}. The decreasing order of
priority among the receivers is {R1, R2, R3, R4, R5, R6, R7}.
The index code considered for the problem is of length N = 3
and given by:

L =

1 1 1 1 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1

T

where L is the encoding matrix. The index coded bits are
given by y =

(
y1 y2 y3

)
where y1 = x1 + x2 + x3 + x4,

y2 = x5 + x6, y3 = x7.
After maximizing the minimum inter-set distance for this

ICP, 64 optimal 8-PSK mappings were found. After rotating
four alternate constellation points, the number of optimal
mappings decreased to 32. In addition, when contemplating
mappings with a smaller multiplicity of pairs, the number
of optimal mappings is reduced to 16. One such mapping is
shown in Fig. 1(a).

Table I lists the effective broadcast vector set (CL(ai)),
0-effective broadcast vector set (CL0) and 1-effective broad-
cast vector set (CL1) as seen by receiver R1. We consider
the highest priority receiver R1 with side information as
(00101). The effective broadcast vector set of R1 is CL =
{(110), (111), (010), (011)}. The 0-effective broadcast vector
set is CL0 = {(110), (111)} and the 1-effective broadcast
vector set is CL1 = {(010), (011)}.

For the optimal 8-PSK mapping depicted in Fig. 1(a), the
minimum inter-set distance for highest priority receiver R1 is
1.8477, and by rotating four alternate constellation points with
30°, the minimum inter-set distance increased to 1.982. The
minimum inter-set distance for receiver R1 keeps on increasing

TABLE I: Effective broadcast vector sets and its partitions seen
by R1 for ICP in Example 1.

a1 CL CL0 CL1

(00000) (000),(001),(100),(101) (000),(001) (100),(101)

(00001) (010),(011),(110),(111) (010),(011) (110),(111)

(00010) (010),(011),(110),(111) (010),(011) (110),(111)

(00011) (000),(001),(100),(101) (000),(001) (100),(101)

(00100) (100),(101),(000),(001) (100),(101) (000),(001)

(00101) (110),(111),(010),(011) (110),(111) (010),(011)

(00110) (110),(111),(010),(011) (110),(111) (010),(011)

(00111) (100),(101),(000),(001) (100),(101) (000),(001)

111

100

110
101

010

011

001

000

1.8477

(a) Optimal 8-PSK mapping us-
ing algorithm in [9] (M1)

111

110

100

101

010

011

001

000

1.9319

15
0

(b) 8 - PSK constellation with
4 signal points rotated at 15°
(M2)

110

100

101

011
001

1.
98

2

010

000

111

30
0

(c) 8 - PSK constellation with
4 signal points rotated at 30°
(M3)

45
0

2

{000,001}

{111,110}{100,101}

{010,011}

(d) 8 - PSK constellation with
4 signal points rotated at 45°
(M4)

Fig. 1: 8-PSK mappings with different angles of rotation for
ICP in Example 1.

as the angle of rotation is increased from 0° to 45° as shown in
Fig. 1(b), Fig. 1(c) and Fig. 1(d). At 45° rotation, the minimum
inter-set distance for receiver R1 is 2 which is the maximum
possible inter-set distance for PSK constellation, whereas for
receiver R7 the minimum inter-set distance is 0.

IV. SIMULATION RESULTS

Consider the noisy ICP in Example 1. We investigate the
performance of the receivers with 2× 2 MIMO Rician fading
channel using Alamouti code (1) and compared it with the
SISO scheme for mapping M1 displayed in Fig. 1(a). It is
significant to note that the observed diversity gain for the
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2 × 2 MIMO scheme with Alamouti code is 4, compared
SISO scheme’s diversity gain of 1. Fig. 2 shows the simulation
results.

Now, using a 4× 1 MIMO Rician fading channel and 4× 4
orthogonal STBC in (3), we investigate the performance of
receivers for ICP in Example 1 at various degree of rotation.
We compare the optimal mapping M1 with mappings that
were obtained by rotating half of the signal points at 15° (M2),
30° (M3). According to Fig. 3(a), the probability of error
performance for the highest priority receiver R1 improves. The
probability of error performance for receiver R2 in this case
stays the same because the minimum inter-set distance seen by
receiver R2 is same for mappings M1, M2 and M3. As the
angle of rotation increases, the minimum inter-set distance seen
by receivers R3, R4, R5, and R6 increases, improving their
performance, however for receiver R7, performance declines as
the minimum inter-set distance seen by this receiver decreases.
Fig. 3(b) displays the performance of receivers at an angle of
rotation of 45° (M4). Highest priority receiver R1 performs
best with an angle of rotation of 45°, whereas for receiver
R7, the minimum inter-set distance is 0 because the signal
points in both the SL0(ai) and SL1(ai) are mapped to the
same constellation point. So, it is not possible to decode for
receiver R7. As a result, we only take into account scenarios
in which 0 ≤ θ < 45.

When we emphasis on the performance of all the receivers
for cases 0 ≤ θ < 45, it is evident that the 4×1 MIMO scheme
with 4× 4 orthogonal STBC achieves a diversity gain of 4.

From Table II we see that for the highest priority receiver
R1, when the probability of error is 10−3, energy per bit to
noise power spectral density ratio (Eb/No, dB) required for
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Fig. 2: Simulation results comparing the performance of re-
ceivers between 2 × 2 MIMO scheme and SISO scheme for
ICP in Example 1.

receiver R1 decreases with increase in angle of rotation.
Simulation results comparing the performance of receivers

for ICP in Example 1 using 4 × 1 MIMO scheme and 4 ×
4 orthogonal STBC in (3) over Rayleigh and Rician fading
channel with mapping M1 has been shown in Fig. 4. As can be
seen, the presence of the LOS component makes all receivers
perform better over the Rician fading channel than Rayleigh
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Fig. 3: Simulation results comparing the performance of re-
ceivers over 4 × 1 MIMO Rician fading channel for ICP in
Example 1 with different angles of rotation (a) Mapping M1,
M2 and M3. (b) Mapping M1 and M4.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on February 07,2024 at 11:13:01 UTC from IEEE Xplore.  Restrictions apply. 



-10 -5 0 5 10 15

Eb/N0, dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r 
R

a
te

Fig. 4: Simulation results comparing the performance of re-
ceivers for 4 × 1 MIMO scheme over Rayleigh and Rician
fading channel for ICP in Example 1.

fading channel.
The simulation results supports our assertion that for noisy

ICP over Nt×Nr MIMO Rician fading channel incorporating
orthogonal STBCs provides diversity gain of NtNr and metric
minimum inter-set distance dictates the coding gain.

TABLE II: (Eb/No, dB) for all receivers in Example 1 for
different angles of rotation.

Angle of Rotation R1 R2 R3 R4 R5 R6 R7

0° 0.97 3.30 7.68 7.68 8.65 8.65 9.16
15° 0.58 3.30 5.39 5.39 6.32 6.32 12.05
30° 0.35 3.30 3.85 3.85 4.83 4.83 17.98

V. CONCLUSION

Noisy ICP over Nt × Nr MIMO Rician fading channel is
considered. We suggest a MIMO scheme for any orthogonal
STBCs in order to acquire diversity gain of NtNr in addition to
coding gain. We have demonstrated that mapping the broadcast
vectors to the constellation points is crucial, and that the metric
minimum inter-set distance dictates the receivers ML decoding
performance. Moreover, we can increase the minimum inter-set
distance between the 0-effective broadcast signal sets and 1-
effective broadcast signal sets by employing rotated 2N -PSK
constellation for high priority receivers, although performance
for some low priority receivers might deteriorate.
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