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Abstract

A famous result of Horn and Fitzgerald is that the β-th Hadamard power of any n× n
positive semi-definite (p.s.d.) matrix with non-negative entries is p.s.d. for all β ≥ n−2

and is not necessarily p.s.d. for β < n− 2, with β /∈ N. In this article, we study this
question for random Wishart matrix An := XnX

T
n , where Xn is n× n matrix with i.i.d.

Gaussian entries. It is shown that applying x → |x|α entrywise to An, the resulting
matrix is p.s.d., with high probability, for α > 1 and is not p.s.d., with high probability,
for α < 1. It is also shown that if Xn are bnsc × n matrices, for any s < 1, then the
transition of positivity occurs at the exponent α = s.
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1 Introduction

Entrywise exponents of matrices preserving positive semi-definiteness has been a
topic of active research (see [4, 8, 10, 7]). They appear naturally in many fields of
pure and applied mathematics. For example, in high-dimensional probability, entrywise
exponents are applied to covariance matrices to obtain regularized estimators (see [9]).
The resulting matrices are further subjected to statistical procedures that require
positive semi-definiteness. Therefore it is important to know if Hadamard powers
preserve positive semi-definiteness.

An important theorem in this field is the result of Horn and Fitzgerald [3]. Let P+
n

denote the set of n × n p.s.d. matrices with non-negative entries. The Schur product
theorem gives us that the k-th Hadamard power A◦k := [akij ] of any p.s.d. matrix
A = [aij ] ∈ P+

n is again p.s.d. for every positive integer k. Horn and Fitzgerald proved
that n− 2 is the ‘critical exponent’ for such matrices, i.e., n− 2 is the least number for
which A◦α ∈ P+

n for every A ∈ P+
n and for every real number α ≥ n− 2. They considered

the matrix A ∈ P+
n with (i, j)-th entry 1 + εij and showed that if α is not an integer and

0 < α < n− 2, then A◦α is not p.s.d. for a sufficiently small positive number ε (also see
[8, 7]).

We consider a random matrix version of this problem. Let X := [Xij ] be an n × n
matrix, where Xij are i.i.d. standard normal random variables. Define An := XXT

n

and |An|◦α as the matrix obtained by applying x → |x|α function entrywise to An. Let
Bn,α := |An|◦α. We are interested in the values of real α > 0 for which the matrix Bn,α is
p.s.d., with high probability.

*Indian Institute of Science, Bengaluru. E-mail: jnaneshwarb@iisc.ac.in

https://doi.org/10.1214/23-ECP561
https://imstat.org/journals-and-publications/electronic-communications-in-probability/
https://ams.org/mathscinet/msc/msc2020.html
mailto:jnaneshwarb@iisc.ac.in


On Hadamard powers of random Wishart matrices

Table 1: Table of smallest eigenvalues for varying α and s with n = 5000.
s 1 1 1 1 0.8 0.8 0.8 0.8

α 0.98 0.99 1.06 1.07 0.78 0.79 0.81 0.82

λmin −0.288 −0.246 0.016 0.046 −0.076 −0.049 0.017 0.041

In probability and statistical mechanics, phase transitions refer to the phenomenon
of abrupt changes in the properties of a system as a parameter approaches a ‘critical
point’. The phase transition results that we prove are novel and simulations suggest
that our results are true even when Gaussians in X are replaced by other i.i.d. random
variables.

Simulations show that for large values of n, if α > 1 then with high probability, Bn,α
is p.s.d. and if α < 1 then with high probability, Bn,α is not p.s.d. (as shown in Table 1).

We prove the theorem that these observations from simulations are indeed true. In
fact, we prove a stronger result. Fix any s ≤ 1 and let m = bnsc. Let Xm,n := [Xij ]

be an m × n matrix, where Xij are i.i.d. standard normal random variables. Define

An,s :=
Xm,nX

T
m,n

n and Bn,α,s := |An,s|◦α. Let λmin(A), λmax(A) denote the smallest and
largest eigenvalue of a symmetric m×m matrix A. We prove the following main result.

Theorem 1.1. Let s ≤ 1. Then there exists εs = ε(s) > 0 such that as n→∞,

P
(
λmin(Bn,α,s) ≥ εs

)
→ 1 if α > s,

P
(
λmin(Bn,α,s) < 0

)
→ 1 if α < s

Remark 1.2. Simulations show that Theorem 1.1 holds if i.i.d. Gaussians are replaced
by other i.i.d. random variables with finite second moment like Uniform(0, 1), Exp(1)
and even heavy tailed distributions like Cauchy distribution, distributions with densities
f(x) = bx−1−b,∀x ≥ 1, all with transition of positivity at exponent α = s. This suggests
that the transition of matrix positivity happens for a large family of distributions. In this
direction we prove the below proposition where we show that Bn,α,s is p.s.d. for the
range of α > 2s, when Xm,n has sub-Gaussian entries.

Proposition 1.3. Let m = bnsc for s ≤ 1 and let the entries of Xm,n be i.i.d. sub-
Gaussian random variables with mean 0 and unit variance. Fix α > 2s and ε > 0. Define
Bn,α,s as before. Then as n→∞

P
(
λmin(Bn,α,s) ≤ 1− ε

)
→ 0, (1.1)

P
(
λmax(Bn,α,s) ≥ 1 + ε

)
→ 0. (1.2)

Remark 1.4. Although Theorem 1.1 and Proposition 1.3 hold for m = Θ(ns), for defi-
niteness we have considered m = bnsc. For fixed a > 0 and m = a× n, the transition of
positivity is at exponent 1. For the critical exponent to be less than 1, we need m = Θ(ns)

with s < 1, which is much smaller than n, unlike in the study of spectrum of Wishart
matrices.

A standard way to study the distribution of eigenvalues of a random matrix is to look
at the limit of empirical spectral distributions using method of moments. For example,
Wigner’s proof of semi-circle law for Gaussian ensemble uses this method (for more
see [1]). In our case, the entries of the matrix Bn,α,s are sums of products of random
variables and the entries on the same row or column are correlated. The entrywise
absolute fractional power makes this problem intractable, if we try to use method of
moments or Stieltjes transforms.

ECP 28 (2023), paper 54.
Page 2/13

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP561
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


On Hadamard powers of random Wishart matrices

1.1 Outline of the paper

First we prove Proposition 1.3 in Section 2. This is done using Gershgorin’s circle
theorem and the sub-exponential Bernstein’s inequality. Note that this proposition is not
needed to prove Theorem 1.1.

The proof of Theorem 1.1 is divided into two parts. In the first part of the proof, we
consider the range α < s. We use Lemma 3.3 to conclude that the expected empirical
spectral distribution (EESD) of Bn,α,s has positive weight on negative reals. Using a
concentration of measure result, we then show that with high probability, Bn,α,s has
negative eigenvalues. This is done in Subsection 3.1.

In the second part of the proof, we consider the range s < α. We further divide
this range by looking at (k+1

k )s < α, where k is an integer greater than 1 and let
k →∞. For (k+1

k )s < α, we consider Cm, a different modification of Bn,α,s, whose EESD
has 2k-th moment converging to 0 to conclude that the probability of Bn,α,s having a
negative eigenvalue converges to 0. We then let k be arbitrarily large. This is done in
Subsection 3.2.

1.2 Notation

We use the following notations in this paper.

1) m = bnsc.
2) λmin(A) and λmax(A) denote the smallest and largest eigenvalues of symmetric

matrix A respectively.

3) Ri denotes the i-th row of Xm,n (RTi ∼ N(0, In) in Section 3 but not necessarily in
Section 2).

4) ρij =
〈Ri,Rj〉
‖Ri‖‖Rj‖ .

5) `α = E[|Z|α], where Z is a standard normal random variable.

6) Jn = All ones matrix of size n× n and In = n× n identity matrix.

7) Fi,j = The sigma algebra generated from the i-th row and j-th row of Xm,n.

8) σi = ‖Ri‖/
√
n.

9) Yij = E[(| 〈Ri,Rk〉√
n
|α −mα)(| 〈Rk,Rj〉√

n
|α −mα) | Fi,j ].

2 Proof of Proposition 1.3

For the rest of this section we fix s ≤ 1 and α > 2s. Also we recall that the entries
of Ri in Xm,n for this section are i.i.d. sub-Gaussian random variables. For ease of
notation, we write Bn,α,s as Bn. We will use concentration inequalities to show that
Bn(i, i) ∈ [1 − ε, 1 + ε] and

∑
i6=j |Bn(i, j)| ≤ ε with high probability. We then apply

Gershgorin circle theorem to prove that all eigenvalues of Bn are in [1− 2ε, 1 + 2ε] with
high probability.

Proof of Proposition 1.3. The diagonal entries of Bn are of the form ( 〈Ri,Ri〉n )α and off-

diagonal entries are of the form | 〈Ri,Rj〉n |α. Note that all the off-diagonal entries are
identically distributed and all the diagonal entries are identically distributed. First we
give an upper bound for the probability that

∑m
i=2(Bn)1i > ε.

P

(
m∑
i=2

(Bn)1i > ε

)
≤ mP

(
(Bn)12 >

ε

m

)
.

Note that (Bn)12 is a function of sum of n independent sub-exponential random
variables (product of independent Gaussians is sub-exponential (Lemma 2.7.7 of [11]).
We now recall the Bernstein inequality for sub-exponential random variables from [11].
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Theorem 2.1 (Theorem 2.8.1 of [11]). Let X1, X2, . . . , XN be independent, mean zero,
sub-exponential random variables. Then, for every t ≥ 0, we have

P

(∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

[
−cmin

(
t2∑N

i=1‖Xi‖2ψ1

,
t

maxi ‖Xi‖ψ1

)]
where c > 0 is an absolute constant and ‖X‖ψ1

is the sub-exponential norm of X.

Bernstein’s inequality and the fact that m = bnsc gives us that

P

(
(Bn)12 >

ε

m

)
= P

(∣∣〈R1, R2〉
∣∣ ≥ n( ε

m

)1/α)
≤ 2 exp

(
−c1n1− 2s

α

)
for some constant c1 = c1(ε). This implies that

P

(
m∑
i=2

(Bn)1i > ε

)
≤ 2m exp

(
−c1n1− 2s

α

)
.

Using the identical distribution of off-diagonal entries, we get that

P

(
m⋃
i=1

(
m∑

j=1,j 6=i

(Bn)ij > ε

))
≤ 2m2 exp

(
−c1n1− 2s

α

)
. (2.1)

For the diagonal entry (Bn)11, we have

P
(
(Bn)11 ≤ 1− ε

)
≤ P

(
〈R1, R1〉 − n ≤ n

(
(1− ε)1/α − 1

))
≤ 2 exp(−c2n),

for a constant c2 = c2(ε, α). Here we have used Theorem 2.1 in the last inequality,
as 〈R1, R1〉 −n is a sum of n mean 0, i.i.d. sub-exponential random variables and
t = n((1− ε)1/α − 1).

This implies that

P

(
m⋃
i=1

(
(Bn)ii ≤ 1− ε

))
≤ 2m exp(−c2n). (2.2)

Similarly

P

(
m⋃
i=1

(
(Bn)ii ≥ 1 + ε

))
≤ 2m exp(−c2n). (2.3)

Applying Gershgorin circle theorem (Theorem 6.1.1 of [6]) to Bn, using (2.1), (2.2), (2.3),
gives us that, with probability at least 1− 4m2 exp(−c3n1− 2s

α ), λmin ≥ 1− 2ε and λmax ≤
1 + 2ε. Here c3 > 0 depends on ε and α. As α > 2s, this completes the proof of
Proposition 1.3.

3 Proof of Theorem 1.1

3.1 Proof of Theorem 1.1 for the range α < s

For the proof we define the following matrices. Let Cn,α,s :=
Bn,α,s

n
s−α
2

. For ease of

notation, we write Cn,α,s as Cm. Cm is a m × m matrix where m = bnsc. Define the
diagonal matrix Dm, with Dm(i, i) := Cm(i, i)− `α

ns/2
and Em := Cm−Dm− `α

ns/2
Jm, where

`α, Jm are as defined in Subsection 1.2. We define a few terms here which will be used
in the rest of the article. Empirical spectral distribution of a symmetric random matrix
An is the random probability measure µAn := 1

n

∑n
i=1 δλi , where λis are the eigenvalues
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of An. Expected empirical spectral distribution(EESD) of An is the probability measure
µ̄An such that

∫
R
fdµ̄An = E[

∫
R
f dµAn ], for all bounded continuous functions f (for more

see [1]).
We use Lemma 3.3 which shows that the limiting distribution of EESDs of Em has

positive weight on the negative reals. We then use a concentration of measure result to
prove Lemma 3.1 which immediately implies Theorem 1.1 for the range α < s. We then
give the proof of Lemma 3.3.

Lemma 3.1. Fix α < s. Then P(λmin(Cn,α,s) < 0)→ 1, as n→∞.

Proof of Lemma 3.1. We complete the proof of Lemma 3.1 assuming Lemma 3.3 and then
provide the proof of Lemma 3.3. For the sake of contradiction assume that P(λmin(Cm) <

0) does not converge to 1, then by going to a subsequence we may assume that ∃ ε > 0

such that P(λmin(Cm) ≥ 0) > ε.
Let µ̄Em converge weakly to some probability distribution µ (using (ii) of Lemma 3.3

we get the tightness of µ̄Em). Using Lemma 3.3 and uniform integrability one can see that
µ must have mean 0, positive variance (see Remark 3.4). As µ has zero mean and positive
variance, µ(−∞,−ω) ≥ η for some η, ω > 0. This gives us that µ̄Em(−∞,−ω) > η

2

for large enough n. We would like to say with high probability, empirical spectral
distributions of Em also have positive weight on the negative reals. This would imply
the existence of negative eigenvalues, with high probability. Here we make use of
the following McDiarmid-type concentration result due to Guntuboyina and Leeb [5].
Let FµA denote the cumulative distribution function of µA and FµA(f) =

∫
R
fdµA. The

Kolmogorov-Smirnov distance between two probability measures µ, µ′ is defined as
dKS(µ, µ′) := ‖Fµ − Fµ′‖∞. Let Vg([a, b]) denote the total variation of the function g on
an interval [a, b] and Vg(R) := sup[a,b] Vg([a, b]).

Theorem 3.2 (Theorem 6 of [5]). Let M be a random symmetric n× n matrix that is a
function of m independent random quantities Y1, Y2, . . . , Ym, i.e., M = M(Y1, Y2, . . . , Ym).
Write M(i) for the matrix obtained from M after replacing Yi by an independent copy, i.e.,
M(i) = M(Y1, . . . , Yi−1, Y

∗
i , Yi+1, . . . , Ym) where Y ∗i is distributed as Yi and independent

of Y1, Y2 . . . , Ym. For S = M/
√
m and S(i) = M(i)/

√
m, assume that

‖FS − FS(i)
‖∞ ≤

r

n

holds (almost surely) for each i = 1, 2, . . . ,m and for some (fixed) integer r. Finally,
assume that g : R→ R is of bounded variation on R. For each ε > 0, we then have

P
(∣∣FS(g)− E

[
FS(g)

]∣∣ ≥ ε) ≤ 2 exp

[
− n22ε2

mr2V 2
g (R)

]
.

We apply Theorem 3.2 where Em is the matrix M which is a function of the bnsc rows
(independent) of Xm,n. In order to apply Theorem 3.2, we need to show

‖FEm − FEm(i)
‖∞ ≤

r

bnsc
(3.1)

almost surely. Here Em(i) is the matrix obtained when i-th row of Xm,n is replaced by
an independent and identical copy. Using the fact that rank(Em − Em(i)) ≤ 2 and the
standard rank inequality (Lemma 2.5 of [2]) we see that (3.1) holds for r = 2.

We can now apply Theorem 3.2 to the matrices Em, using the function f = 1(−∞,−ω).
Note that f is of bounded variation and Vf (R) is finite and independent of n. Applying
Theorem 3.2, we get

P
(∣∣FEm(f)− E

[
FEm(f)

]∣∣ ≥ η/4) ≤ 2 exp
(
−c
⌊
ns
⌋
η2
)

(3.2)
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for some c > 0. As µ̄Em(−∞,−ω) > η
2 and using (3.2), we get that, for large enough n

P
(
µEm(−∞,−ω) ≥ η/4

)
≥ 1− ε

2
.

Em is almost Cm, with diagonals made 0 and then off-diagonals are subtracted by `α/bnsc.
Using (2.3), it can be seen that

P

(
m⋃
i=1

(
(Cm)ii ≥ n

α−s
2 (1 + ε)

))
≤ 2m exp(−c2n) (3.3)

P

(
m⋃
i=1

(
(Dm)ii ≥ n

α−s
2

(
1 + ε− `α

nα/2

)))
≤ 2m exp(−c2n). (3.4)

Weyl’s inequality (Theorem 4.3.1 of [6]) bounds the amount of perturbation of eigen-
values due to perturbation of a matrix. Using Weyl’s inequality, along with (3.4) gives
that,

P(µEm+Dm

(
−∞,−ω + n

α−s
2

(
1 + ε− `α

nα/2

)
≥ η/4

)
≥ 1− ε

2
− 2m exp(−c2n).

As rank(Em + Dm − Cm) = 1 and α < s, using rank inequality (Lemma 2.5 of [2])
again, we get that

P(all the eigenvalues of Cm are non-negative) <
ε

2
+

1

n
+ 2m exp(−c2n),

which contradicts the earlier assumption. This completes the proof of Lemma 3.1.

Lemma 3.3. Let µ̄Em be the EESD of Em. Then

i) Limit of first moment of µ̄Em is 0

ii) Limit of second moment of µ̄Em is a positive constant

iii) The fourth moments of µ̄Em are uniformly bounded.

Remark 3.4. As µ̄Em is a tight sequence of measures, any subsequential limit must have
mean zero and finite variance.

Proof of Lemma 3.3. Computation of moments of µ̄Em : Before we start the computa-
tions, we make a note of the form of entries of Em.

Diagonal entries: (Em)ii = 0

Off diagonal entries: (Em)ij = 1
ns/2

(| 〈Ri,Rj〉√
n
|α − `α)

We prove limits of first and second moments of µ̄Em are 0 and a positive value.

Limit of first moments: One can see that the limit is 0 as∫
R

x dµ̄Em(x) =
1

m

m∑
i=1

E
[
(Em)ii

]
= 0.

Limit of second moments:
∫
R
x2 dµ̄Em(x) = E[

∫
R
x2 dµEm(x)] = 1

m

∑
i,j E[((Em)ij)

2].
As the off-diagonal entries are identically distributed, it is enough to look at the limit of∑m

i=1E[((Em)1i)
2].

lim
n→∞

m∑
i=1

E
[(

(Em)1i

)2]
= lim
n→∞

(m− 1)E
[(

(Em)12

)2]
.
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Using central limit theorem, uniform bound on E[( 〈R1,R2〉√
n

)4] and m = bnsc, one can see

that the limit is E[(|Z|α − `α)2]. We now prove that the fourth moments of µ̄Em are
uniformly bounded.

Uniform bound of fourth moments:∫
R

x4 dµ̄Em(x) =
1

m

∑
i1i2i3i4

E
[
(Em)i1i2(Em)i2i3(Em)i3i4(Em)i4i1

]
.

This is a sum of expectations with each term corresponding to a closed walk of length 4

on the complete graph Km. It is enough to look at closed walks starting and ending at
vertex 1. Such walks can visit 2, 3 or 4 different vertices, including the vertex 1.∫

R

x4 dµ̄Em(x) =
∑
i 6=1

E
[
(Em)4

1i

]
+
∑
j,k 6=1

E
[
(Em)2

1j(Em)2
1k

]
+
∑
i,j 6=1

E
[
(Em)2

1i(Em)2
ij

]
+
∑

i,j,k 6=1

E
[
(Em)1i(Em)ij(Em)jk(Em)k1

]
The four terms in the above equation correspond to four different types of walks as

shown in above figures.

e1

e2

e3

e4

1 i

Figure 1: The walk corresponding to E[(Em)4
1i].

e1

e2 e3

e4

j 1 k

Figure 2: The walk corresponding to E[(Em)2
1j(Em)2

1k].

e1 e2

e3e4

1 i j

Figure 3: The walk corresponding to E[(Em)2
1i(Em)2

ij ].

e1 e2

e3e4

1

i

j

k

Figure 4: The walk corresponding to E[(Em)1i(Em)ij(Em)jk(Em)k1].

ECP 28 (2023), paper 54.
Page 7/13

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP561
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


On Hadamard powers of random Wishart matrices

Using the fact that off-diagonal entries of Em are identically distributed, uniform
bound on E[( 〈R1,R2〉√

n
)4], one can see that limn→∞

∑
i 6=1E[(Em)4

1i] = 0. Using a similar
argument as above it can be seen that

lim
n→∞

∑
i,j 6=1

E
[
(Em)2

1i(Em)2
1j

]
= lim
n→∞

∑
i,j 6=1

E
[
(Em)2

1i(Em)2
ij

]
=E

[(
|Z1|α − `α

)2(|Z2|α − `α
)2]

,

(3.5)

where Z1, Z2 are i.i.d. standard Gaussians. If we prove that

lim
n→∞

∑
i,j,k 6=1

E
[
(Em)1i(Em)ij(Em)jk(Em)k1

]
= 0, (3.6)

then using (3.5), (3.6), we would have proved that fourth moments of µ̄Em are uniformly
bounded and we would be done with the proof of Lemma 3.1. Note that

lim
n→∞

∑
i,j,k 6=1

E
[
(Em)1i(Em)ij(Em)jk(Em)k1

]
=

lim
n→∞

mE

[(∣∣∣∣ 〈R1, R2〉√
n

∣∣∣∣α−`α)(∣∣∣∣ 〈R2, R3〉√
n

∣∣∣∣α−`α)(∣∣∣∣ 〈R3, R4〉√
n

∣∣∣∣α−`α)(∣∣∣∣ 〈R4, R1〉√
n

∣∣∣∣α−`α)]
(3.7)

Let F1,3 denote the sigma algebra generated from the 1st row and 3rd row of Xm,n

and

Y1,3 := E

[(∣∣∣∣ 〈R1, R2〉√
n

∣∣∣∣α − `α)(∣∣∣∣ 〈R2, R3〉√
n

∣∣∣∣α − `α) ∣∣∣∣ F1,3

]
.

Note that using independence of 2nd row and 4th row of Xm,n, RHS of (3.7) can be
written as, limn→∞mE[Y 2

1,3].
Using Lemma 3.5 it follows that limn→∞mE[Y 2

1,3] = 0 and hence the fourth moments
of µ̄Em are uniformly bounded.

This proves that the fourth moments are uniformly bounded. This completes the
proof of Lemma 3.3.

Lemma 3.5. E[(nY1,3)k] is uniformly bounded by Mk,∀n, k ∈ N, where Mk > 0 are some
constants dependent on k.

Proof of Lemma 3.5.

Y1,3 = E

[(∣∣∣∣ 〈R1, R2〉√
n

∣∣∣∣α − `α)(∣∣∣∣ 〈R2, R3〉√
n

∣∣∣∣α − `α) ∣∣∣∣ F1,3

]
=

E

[
σα1

((∣∣∣∣ 〈R1, R2〉
σ1
√
n

∣∣∣∣α−`α)+

(
`α −

`α
σα1

))
σα3

((∣∣∣∣ 〈R2, R3〉
σ3
√
n

∣∣∣∣α − `α)+

(
`α −

`α
σα3

)) ∣∣∣∣ F1,3

]
= σα1 σ

α
3E
[(
|Z1|α − `α

)(
|Z3|α − `α

)]
+ `2α

(
σα1 − 1

)(
σα3 − 1

)
.

Here Z1, Z3 are standard normal random variables (after conditioning on F1,3) with
correlation coefficient ρ13. Note that almost surely 0 < |ρ13| < 1 and hence (Z1, Z3) have
joint density.

Define a function of correlation coefficient as below,

I(ρ) : =
1

2π
√

1− ρ2

∫
R

∫
R

(
|x|α − `α

)(
|y|α − `α

)
exp

(
− 1

2(1− ρ2)

(
x2 + y2 − 2xyρ

))
dxdy.

Note that I(0) = 0, I(ρ) = I(−ρ) and I(ρ) is a smooth function. Above given expansion
of Y1,3 can be written as

Y1,3 = σα1 σ
α
3 ρ

2
13

I(ρ13)

ρ2
13

+ `2α
(
σα1 − 1

)(
σα3 − 1

)
.

ECP 28 (2023), paper 54.
Page 8/13

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP561
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


On Hadamard powers of random Wishart matrices

We now show I(ρ)/ρ2 is a bounded function. Fix t > 0. For |ρ| > t, note that I(ρ) is
Gaussian expectation and therefore I(ρ)/ρ2 is bounded. We use L’Hospital’s rule to
get a bound on I(ρ)

ρ2 when |ρ| < t. Using differentiation under integral sign, and using

L’Hospital’s rule twice, it can be seen that I(ρ)/ρ2 is a bounded function. Hence we can
write, |Y | ≤Mσα1 σ

α
3 |ρ2

13|+m2
α|σα1 − 1||σα3 − 1|. As ∀α < 2,

|σα1 − 1| ≤
∣∣∣∣ 〈R1, R1〉

n
− 1

∣∣∣∣ ≤ 1√
n

∣∣∣∣ 〈R1, R1〉 − n√
n

∣∣∣∣. (3.8)

As a result we can write,

|nY | ≤Mσα1 σ
α
3 nρ

2
13 +

∣∣∣∣ 〈R1, R1〉 − n√
n

∣∣∣∣∣∣∣∣ 〈R3, R3〉 − n√
n

∣∣∣∣.
One can see that, the k-th moments of σα1 , σ

α
3 , nρ

2
13, |

〈R1,R1〉−n√
n

| are uniformly bounded by
some constant, ∀n ∈ N and hence k-th moments of nY are also uniformly bounded. This
completes the proof of Lemma 3.5.

3.2 Proof of Theorem 1.1 for the range α > s

In this subsection we consider the range α > s. We prove Lemma 3.6 which im-
mediately implies Theorem 1.1 for the range α > s. For this we define the follow-
ing matrices. For ease of notation, we write Bn,α,s as Bm. Define a diagonal matrix
Dm such that Dm(i, i) = Bm(i, i) − `α

nα/2
. Let Cm := Bm − ( `α

nα/2
)Jm − Dm. Note that

Cm(i, j) = 1
nα/2

(| 〈Ri,Rj〉√
n
|α − `α) and the diagonal entries of Cm are zero. We show that

E[Tr(C2k
m )]→ 0. By Markov inequality and Weyl’s inequality this implies Lemma 3.6.

Lemma 3.6. Fix s < α and 0 < ε < 1/2. Then P(λmin(Bn,α,s) > ε)→ 1, as n→∞.

Proof of Lemma 3.6. We first show that P(λmin(Cm) ≤ −1 + 2ε)→ 0 implies Lemma 3.6.
Note that, using Lemma 2.1, we have

P

(
m⋃
i=1

(
(Dm)ii ≤ 1− ε

))
≤ 2m exp(−c3n), (3.9)

for some constant c3 > 0 depending on α. To get the matrix Bm, we add Cm with
Dm + (`α/n

α/2)Jm. Using Weyl’s inequality (Theorem 4.3.1 of [6]), we get

P
(
λmin(Bm)− λmin(Cm) < 1− ε

)
≤ 2m exp(−c3n). (3.10)

The above inequality shows that the eigenvalues of Bm are at least 1− ε more than
that of Cm, with high probability. Hence P(λmin(Cm) ≤ −1 + 2ε)→ 0 implies Lemma 3.6.
This completes the proof if we prove P(λmin(Cm) ≤ −1 + 2ε) → 0. Choose k such that
α > (k+1

k )s.

P
(
λmin(Cm) ≤ −1 + 2ε

)
≤ P

((
λmin(Cm)

)2k ≥ (1− 2ε)2k
)
≤ E[Tr(C2k

m )]

(1− 2ε)2k
.

We prove that E[Tr(C2k
m )] → 0, where α > (k+1

k )s. This completes the proof of the
lemma.

Computation of E[Tr(C2k
m )] Consider a closed walk of length 2k on complete graphKm.

Let i1i2 . . . i2k−1i1 be the closed walk. This corresponds to the term E[Ci1i2 . . . Ci2k−1i1 ]

in expansion of E[Tr(C2k
m )]. Thus terms in expansion of E[Tr(C2k

m )] correspond to closed
walks of length 2k (starting point can be any of the m vertices). As the diagonal entries
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are zero, the paths cannot have loops at any vertices. We first look at walks without
“leaf vertices”. By “leaf vertices” we mean the vertices, like “3” and “1”, which are of
degree 2 and have only one neighbour, as shown in Figure 5 (In the graph generated
due to closed walk, such vertices are leafs).

Figure 5: The vertices 1, 3 are leaf vertices.

So we look at closed walks of length 2k without loops and leaf vertices. As the off-
diagonal entries of Cm are of the order 1/nα/2 and α > (k+1

k )s, the sums of expectations
corresponding to paths visiting k + l vertices with l ≤ 1 (each vertex can be chosen in at
most bnsc ways), goes to 0. So it is enough to look at paths visiting at least k+ 2 vertices.

Closed walks of length 2k, visiting k + l, l ≥ 2 vertices, must have at least 2l vertices
of degree 2 (none of which are leaf vertices) as shown below. This is due to the fact that
since it is a closed walk, degree of every vertex is even and sum of degrees of vertices
must equal twice the total number of edges.

There would be Ci,jCj,k term when expanding Tr(C2k
m ) as sum of product of entries

of Cm. This factor shows up due to the vertex j having degree 2. We would like to
condition on the rows i, k of Xm,n and use Lemma 3.5. It could happen that more than 1,
say t, degree-2 vertices come together in series as shown in Figure 6. In such a case we
condition as shown below.

Figure 6: The rows corresponding to a, c, e are conditioned on.

Suppose there is a path traversing vertices a through e, as shown above, where
degrees of both a, e are at least 4 and b, c, d are all degree-2 vertices. Here degrees are
calculated in the graph generated by the closed walk of length 2k. In such a case we will
have the factor Ca,bCb,cCc,dCd,e in the expansion of Tr(C2k

m ) corresponding to that path.
In the expectation term corresponding to such a path, we condition on rows a, c, e and
use independence to get 2 conditional expectations Ya,c, Yc,e mentioned in Section 3.1.
The “x” mark denotes the rows which we are going to condition on. If there are even
number of degree-2 vertices coming together, we condition as in Figure 7.

Figure 7: The rows corresponding to a, c, d are conditioned on.

In the case shown above, vertices a, d have degree at least 4 and b, c are degree-2
vertices. We condition of rows a, c, d. All other rows corresponding to vertices with
degrees greater than 2 will also be conditioned.

Now we look at E[Tr(C2k
m )] and the walks of length 2k, without loops and leaf vertices,

visiting k + l vertices. The k + l vertices can be chosen in bnsck+l ways and taking the
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order of Ci,j into account we can write,

bnsck+l

nkα
E

[(∣∣∣∣ 〈R1, R2〉√
n

∣∣∣∣α − `α) . . . ]
corresponding to the walks we are interested in. Using Independence and conditioning
on the rows corresponding to the vertices with degree at least 4 and those appropriate
vertices when more than 1 degree-2 vertices come together, we get product of at least l
number of conditional expectations like Yi,j . Using Lemma 3.5, nlE[(| 〈R1,R2〉√

n
|α−`α) . . . ] is

uniformly bounded. As l was arbitrary and as α > (k+1
k )s, we can see that the expectation

corresponding to the walks without loops and leaf vertices goes to 0 with n.

Now we look at paths without loops but have leaf vertices. If initially we had a closed
walk of length 2g without leaf vertices and visited l different vertices. Note that each
leaf vertex attached increases length of walk by 2 and number of vertices visited by 1.
Adding t leaf vertices such that g + t = k gives corresponding expectation terms like

bnscg+l+t

n(g+t)α
E

[(∣∣∣∣ 〈R1, R2〉√
n

∣∣∣∣α − `α) . . . ]. (3.11)

If such a leaf vertex or multiple leaf vertices can be attached to a vertex which is degree-2
originally, then we condition on the rows corresponding to all the leaf vertices and the
vertices whose rows we were conditioning on originally, as shown in Figure 8.

Figure 8: The rows corresponding to a, c, d, e are conditioned on.

The vertices d, c are leaf vertices attached to vertex b. Without the vertices d, c and
edges between them and b, the vertex b would be of degree-2. After addition of vertices
d, c and the edges, the conditioning will be done on rows corresponding to a, c, d, e. This
is where Lemma 3.7 is used. Such conditioning gives conditional expectation factor like
G in Lemma 3.7 for every vertex which get attached at least one leaf vertex to it.

If leaf vertices are attached to a vertex which is of degree 4 or more originally, then
again we condition on rows corresponding to all leaf vertices along with the previous
vertices we were conditioning on (Lemma 3.7 is not needed here). As G is of the order
of 1/n and α > (k+1

k )s, limit of (3.11) is 0. This shows that E[Tr(C2k
n )] → 0, as n → ∞.

Taking k arbitrarily large completes the proof of Lemma 3.6.

Lemma 3.7. Let p ∈ N≥3 and F2,3,...,p denote the sigma algebra generated from the
2, 3, . . . , p-th rows of Xm,n. Define

G := n(2(p−3)+2)α/2E
[
C12C13C

2
14C

2
15 . . . C

2
1p|F2,3,...,p

]
E[(nG)k] is uniformly bounded by constant Mk for all k ∈ N.
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Proof. Let W12 := (| 〈R1,R2〉
σ2
√
n
|α − `α) + `α

σα2
(σα2 − 1). Then

G = σα2 σ
α
3 σ

2α
4 σ2α

5 . . . σ2α
p E

[
W12W13W

2
14W

2
15 . . .W

2
1p|F2,3,...,p

]
.

Due to (3.8), the term (σα2 − 1) is of the order of 1/
√
n. All moments of σα2 are uniformly

bounded. So for E[(nG)k] to be uniformly bounded, it is enough to prove that k-th
moments of

nE

[(∣∣∣∣ 〈R1, R2〉
σ2
√
n

∣∣∣∣α − `α)(∣∣∣∣ 〈R1, R3〉
σ3
√
n

∣∣∣∣α − `α)W 2
14 . . .W

2
1p

∣∣∣∣ F2,3,...,p

]
and

√
nE

[(∣∣∣∣ 〈R1, R2〉
σ2
√
n

∣∣∣∣α − `α)W 2
14 . . .W

2
1p

∣∣∣∣ F2,3,...,p

]
are uniformly bounded, ∀n ∈ N. We will prove that k-th moment of first quantity is
uniformly bounded. For the second quantity, similar argument works.

Note that conditional on F2,3,...,p, the conditional expectation G is a function of
standard Gaussian random variables, say, Z2, Z3, . . . , Zp, with the correlation matrix

being Σ̃ = Ap−1A
T
p−1, where Ap−1 is (p − 1) × n matrix with Ap−1(i, j) =

Xm,n(i+1,j)√
nσi+1

. It

can be seen easily that almost surely rank(Ap−1) = p− 1 and hence Σ̃ is invertible. For
any symmetric invertible matrix Σ with 1s on diagonal, define

h(Σ):=
1√

(2π)p−1|Σ|

∫ (
|x1|α − `α

)(
|x2|α − `α

)
. . .
(
|xp−1|α − `α

)2
exp

(
−xTΣ−1x

2

)
dx1 . . .

Here h is a function of the entries above the diagonal of Σ. Using symmetry and
independence h(Ip−1) = 0. Expanding W12W13W

2
14W

2
15 . . .W

2
1p and using the fact that

(σα2 − 1) is of order 1/
√
n, to prove that k-th moments of

nE

[(∣∣∣∣ 〈R1, R2〉
σ2
√
n

∣∣∣∣α − `α)(∣∣∣∣ 〈R1, R3〉
σ3
√
n

∣∣∣∣α − `α)W 2
14 . . .W

2
1p

∣∣∣∣ F2,3,...,p

]
are uniformly bounded, it is enough to prove that k-th moments of nh(Σ̃) are uniformly
bounded.

It is easy to see that h is a differentiable function. We make use of the multi-variable
mean value theorem |f(y)− f(x)| ≤ |∇f(cx+ (1− c)y)||y − x|, for some 0 ≤ c ≤ 1. Using
the fact that

∑
i<j Σ̃2

i,j is of order of 1/n, it is enough to show h(Σ)/
∑
i<j Σ2

i,j is bounded.
For Σ bounded away from the origin, using Gaussian integrals, it can be seen that
h(Σ)∑
i<j Σ2

i,j
is bounded. As h(Ip−1) = 0 at the origin, mean value theorem and basic

computations gives boundedness of h(Σ)/
∑
i<j Σ2

i,j in a neighbourhood of the origin.
This completes the proof of Lemma 3.7.
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