# On Hadamard powers of random Wishart matrices 

Jnaneshwar Baslingker*


#### Abstract

A famous result of Horn and Fitzgerald is that the $\beta$-th Hadamard power of any $n \times n$ positive semi-definite (p.s.d.) matrix with non-negative entries is p.s.d. for all $\beta \geq n-2$ and is not necessarily p.s.d. for $\beta<n-2$, with $\beta \notin \mathbb{N}$. In this article, we study this question for random Wishart matrix $A_{n}:=X_{n} X_{n}^{T}$, where $X_{n}$ is $n \times n$ matrix with i.i.d. Gaussian entries. It is shown that applying $x \rightarrow|x|^{\alpha}$ entrywise to $A_{n}$, the resulting matrix is p.s.d., with high probability, for $\alpha>1$ and is not p.s.d., with high probability, for $\alpha<1$. It is also shown that if $X_{n}$ are $\left\lfloor n^{s}\right\rfloor \times n$ matrices, for any $s<1$, then the transition of positivity occurs at the exponent $\alpha=s$.


Keywords: Wishart matrices; Hadamard powers.
MSC2020 subject classifications: 60B20; 60B11.
Submitted to ECP on February 17, 2023, final version accepted on October 15, 2023.

## 1 Introduction

Entrywise exponents of matrices preserving positive semi-definiteness has been a topic of active research (see [4, 8, 10, 7]). They appear naturally in many fields of pure and applied mathematics. For example, in high-dimensional probability, entrywise exponents are applied to covariance matrices to obtain regularized estimators (see [9]). The resulting matrices are further subjected to statistical procedures that require positive semi-definiteness. Therefore it is important to know if Hadamard powers preserve positive semi-definiteness.

An important theorem in this field is the result of Horn and Fitzgerald [3]. Let $\mathcal{P}_{n}^{+}$ denote the set of $n \times n$ p.s.d. matrices with non-negative entries. The Schur product theorem gives us that the $k$-th Hadamard power $A^{\circ k}:=\left[a_{i j}^{k}\right]$ of any p.s.d. matrix $A=\left[a_{i j}\right] \in \mathcal{P}_{n}^{+}$is again p.s.d. for every positive integer $k$. Horn and Fitzgerald proved that $n-2$ is the 'critical exponent' for such matrices, i.e., $n-2$ is the least number for which $A^{\circ \alpha} \in \mathcal{P}_{n}^{+}$for every $A \in \mathcal{P}_{n}^{+}$and for every real number $\alpha \geq n-2$. They considered the matrix $A \in \mathcal{P}_{n}^{+}$with $(i, j)$-th entry $1+\varepsilon i j$ and showed that if $\alpha$ is not an integer and $0<\alpha<n-2$, then $A^{\circ \alpha}$ is not p.s.d. for a sufficiently small positive number $\varepsilon$ (also see [8, 7]).

We consider a random matrix version of this problem. Let $X:=\left[X_{i j}\right]$ be an $n \times n$ matrix, where $X_{i j}$ are i.i.d. standard normal random variables. Define $A_{n}:=\frac{X X^{T}}{n}$ and $\left|A_{n}\right|^{\circ \alpha}$ as the matrix obtained by applying $x \rightarrow|x|^{\alpha}$ function entrywise to $A_{n}$. Let $B_{n, \alpha}:=\left|A_{n}\right|^{\circ \alpha}$. We are interested in the values of real $\alpha>0$ for which the matrix $B_{n, \alpha}$ is p.s.d., with high probability.

[^0]Table 1: Table of smallest eigenvalues for varying $\alpha$ and $s$ with $n=5000$.

| $s$ | 1 | 1 | 1 | 1 | 0.8 | 0.8 | 0.8 | 0.8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 0.98 | 0.99 | 1.06 | 1.07 | 0.78 | 0.79 | 0.81 | 0.82 |
| $\lambda_{\min }$ | -0.288 | -0.246 | 0.016 | 0.046 | -0.076 | -0.049 | 0.017 | 0.041 |

In probability and statistical mechanics, phase transitions refer to the phenomenon of abrupt changes in the properties of a system as a parameter approaches a 'critical point'. The phase transition results that we prove are novel and simulations suggest that our results are true even when Gaussians in $X$ are replaced by other i.i.d. random variables.

Simulations show that for large values of $n$, if $\alpha>1$ then with high probability, $B_{n, \alpha}$ is p.s.d. and if $\alpha<1$ then with high probability, $B_{n, \alpha}$ is not p.s.d. (as shown in Table 1).

We prove the theorem that these observations from simulations are indeed true. In fact, we prove a stronger result. Fix any $s \leq 1$ and let $m=\left\lfloor n^{s}\right\rfloor$. Let $X_{m, n}:=\left[X_{i j}\right]$ be an $m \times n$ matrix, where $X_{i j}$ are i.i.d. standard normal random variables. Define $A_{n, s}:=\frac{X_{m, n} X_{m, n}^{T}}{n}$ and $B_{n, \alpha, s}:=\left|A_{n, s}\right|^{\circ}$. Let $\lambda_{\min }(A), \lambda_{\max }(A)$ denote the smallest and largest eigenvalue of a symmetric $m \times m$ matrix $A$. We prove the following main result.
Theorem 1.1. Let $s \leq 1$. Then there exists $\varepsilon_{s}=\varepsilon(s)>0$ such that as $n \rightarrow \infty$,

$$
\begin{aligned}
\mathbb{P}\left(\lambda_{\min }\left(B_{n, \alpha, s}\right) \geq \varepsilon_{s}\right) \rightarrow 1 & \text { if } \alpha>s, \\
\mathbb{P}\left(\lambda_{\min }\left(B_{n, \alpha, s}\right)<0\right) \rightarrow 1 & \text { if } \alpha<s
\end{aligned}
$$

Remark 1.2. Simulations show that Theorem 1.1 holds if i.i.d. Gaussians are replaced by other i.i.d. random variables with finite second moment like Uniform( 0,1 ), $\operatorname{Exp}(1)$ and even heavy tailed distributions like Cauchy distribution, distributions with densities $f(x)=b x^{-1-b}, \forall x \geq 1$, all with transition of positivity at exponent $\alpha=s$. This suggests that the transition of matrix positivity happens for a large family of distributions. In this direction we prove the below proposition where we show that $B_{n, \alpha, s}$ is p.s.d. for the range of $\alpha>2 s$, when $X_{m, n}$ has sub-Gaussian entries.
Proposition 1.3. Let $m=\left\lfloor n^{s}\right\rfloor$ for $s \leq 1$ and let the entries of $X_{m, n}$ be i.i.d. subGaussian random variables with mean 0 and unit variance. Fix $\alpha>2 s$ and $\varepsilon>0$. Define $B_{n, \alpha, s}$ as before. Then as $n \rightarrow \infty$

$$
\begin{align*}
& \mathbb{P}\left(\lambda_{\min }\left(B_{n, \alpha, s}\right) \leq 1-\varepsilon\right) \rightarrow 0  \tag{1.1}\\
& \mathbb{P}\left(\lambda_{\max }\left(B_{n, \alpha, s}\right) \geq 1+\varepsilon\right) \rightarrow 0 \tag{1.2}
\end{align*}
$$

Remark 1.4. Although Theorem 1.1 and Proposition 1.3 hold for $m=\Theta\left(n^{s}\right)$, for definiteness we have considered $m=\left\lfloor n^{s}\right\rfloor$. For fixed $a>0$ and $m=a \times n$, the transition of positivity is at exponent 1 . For the critical exponent to be less than 1 , we need $m=\Theta\left(n^{s}\right)$ with $s<1$, which is much smaller than $n$, unlike in the study of spectrum of Wishart matrices.

A standard way to study the distribution of eigenvalues of a random matrix is to look at the limit of empirical spectral distributions using method of moments. For example, Wigner's proof of semi-circle law for Gaussian ensemble uses this method (for more see [1]). In our case, the entries of the matrix $B_{n, \alpha, s}$ are sums of products of random variables and the entries on the same row or column are correlated. The entrywise absolute fractional power makes this problem intractable, if we try to use method of moments or Stieltjes transforms.

### 1.1 Outline of the paper

First we prove Proposition 1.3 in Section 2. This is done using Gershgorin's circle theorem and the sub-exponential Bernstein's inequality. Note that this proposition is not needed to prove Theorem 1.1.

The proof of Theorem 1.1 is divided into two parts. In the first part of the proof, we consider the range $\alpha<s$. We use Lemma 3.3 to conclude that the expected empirical spectral distribution (EESD) of $B_{n, \alpha, s}$ has positive weight on negative reals. Using a concentration of measure result, we then show that with high probability, $B_{n, \alpha, s}$ has negative eigenvalues. This is done in Subsection 3.1.

In the second part of the proof, we consider the range $s<\alpha$. We further divide this range by looking at $\left(\frac{k+1}{k}\right) s<\alpha$, where $k$ is an integer greater than 1 and let $k \rightarrow \infty$. For $\left(\frac{k+1}{k}\right) s<\alpha$, we consider $C_{m}$, a different modification of $B_{n, \alpha, s}$, whose EESD has $2 k$-th moment converging to 0 to conclude that the probability of $B_{n, \alpha, s}$ having a negative eigenvalue converges to 0 . We then let $k$ be arbitrarily large. This is done in Subsection 3.2.

### 1.2 Notation

We use the following notations in this paper.

1) $m=\left\lfloor n^{s}\right\rfloor$.
2) $\lambda_{\min }(A)$ and $\lambda_{\max }(A)$ denote the smallest and largest eigenvalues of symmetric matrix $A$ respectively.
3) $R_{i}$ denotes the $i$-th row of $X_{m, n}\left(R_{i}^{T} \sim N\left(0, I_{n}\right)\right.$ in Section 3 but not necessarily in Section 2).
4) $\rho_{i j}=\frac{\left\langle R_{i}, R_{j}\right\rangle}{\left\|R_{i}\right\|\left\|R_{j}\right\|}$.
5) $\ell_{\alpha}=\mathbb{E}\left[|Z|^{\alpha}\right]$, where $Z$ is a standard normal random variable.
6) $J_{n}=$ All ones matrix of size $n \times n$ and $I_{n}=n \times n$ identity matrix.
7) $\mathcal{F}_{i, j}=$ The sigma algebra generated from the $i$-th row and $j$-th row of $X_{m, n}$.
8) $\sigma_{i}=\left\|R_{i}\right\| / \sqrt{n}$.
9) $Y_{i j}=\mathbb{E}\left[\left.\left(\left|\frac{\left\langle R_{i}, R_{k}\right\rangle}{\sqrt{n}}\right|^{\alpha}-m_{\alpha}\right)\left(\left|\frac{\left\langle R_{k}, R_{j}\right\rangle}{\sqrt{n}}\right|^{\alpha}-m_{\alpha}\right) \right\rvert\, \mathcal{F}_{i, j}\right]$.

## 2 Proof of Proposition 1.3

For the rest of this section we fix $s \leq 1$ and $\alpha>2 s$. Also we recall that the entries of $R_{i}$ in $X_{m, n}$ for this section are i.i.d. sub-Gaussian random variables. For ease of notation, we write $B_{n, \alpha, s}$ as $B_{n}$. We will use concentration inequalities to show that $B_{n}(i, i) \in[1-\varepsilon, 1+\varepsilon]$ and $\sum_{i \neq j}\left|B_{n}(i, j)\right| \leq \varepsilon$ with high probability. We then apply Gershgorin circle theorem to prove that all eigenvalues of $B_{n}$ are in $[1-2 \varepsilon, 1+2 \varepsilon]$ with high probability.

Proof of Proposition 1.3. The diagonal entries of $B_{n}$ are of the form $\left(\frac{\left\langle R_{i}, R_{i}\right\rangle}{n}\right)^{\alpha}$ and offdiagonal entries are of the form $\left|\frac{\left\langle R_{i}, R_{j}\right\rangle}{n}\right|^{\alpha}$. Note that all the off-diagonal entries are identically distributed and all the diagonal entries are identically distributed. First we give an upper bound for the probability that $\sum_{i=2}^{m}\left(B_{n}\right)_{1 i}>\varepsilon$.

$$
\mathbb{P}\left(\sum_{i=2}^{m}\left(B_{n}\right)_{1 i}>\varepsilon\right) \leq m \mathbb{P}\left(\left(B_{n}\right)_{12}>\frac{\varepsilon}{m}\right)
$$

Note that $\left(B_{n}\right)_{12}$ is a function of sum of $n$ independent sub-exponential random variables (product of independent Gaussians is sub-exponential (Lemma 2.7.7 of [11]). We now recall the Bernstein inequality for sub-exponential random variables from [11].

Theorem 2.1 (Theorem 2.8.1 of [11]). Let $X_{1}, X_{2}, \ldots, X_{N}$ be independent, mean zero, sub-exponential random variables. Then, for every $t \geq 0$, we have

$$
\mathbb{P}\left(\left|\sum_{i=1}^{N} X_{i}\right| \geq t\right) \leq 2 \exp \left[-c \min \left(\frac{t^{2}}{\sum_{i=1}^{N}\left\|X_{i}\right\|_{\psi_{1}}^{2}}, \frac{t}{\max _{i}\left\|X_{i}\right\|_{\psi_{1}}}\right)\right]
$$

where $c>0$ is an absolute constant and $\|X\|_{\psi_{1}}$ is the sub-exponential norm of $X$.
Bernstein's inequality and the fact that $m=\left\lfloor n^{s}\right\rfloor$ gives us that

$$
\mathbb{P}\left(\left(B_{n}\right)_{12}>\frac{\varepsilon}{m}\right)=\mathbb{P}\left(\left|\left\langle R_{1}, R_{2}\right\rangle\right| \geq n\left(\frac{\varepsilon}{m}\right)^{1 / \alpha}\right) \leq 2 \exp \left(-c_{1} n^{1-\frac{2 s}{\alpha}}\right)
$$

for some constant $c_{1}=c_{1}(\varepsilon)$. This implies that

$$
\mathbb{P}\left(\sum_{i=2}^{m}\left(B_{n}\right)_{1 i}>\varepsilon\right) \leq 2 m \exp \left(-c_{1} n^{1-\frac{2 s}{\alpha}}\right)
$$

Using the identical distribution of off-diagonal entries, we get that

$$
\begin{equation*}
\mathbb{P}\left(\bigcup_{i=1}^{m}\left(\sum_{j=1, j \neq i}^{m}\left(B_{n}\right)_{i j}>\varepsilon\right)\right) \leq 2 m^{2} \exp \left(-c_{1} n^{1-\frac{2 s}{\alpha}}\right) \tag{2.1}
\end{equation*}
$$

For the diagonal entry $\left(B_{n}\right)_{11}$, we have

$$
\mathbb{P}\left(\left(B_{n}\right)_{11} \leq 1-\varepsilon\right) \leq \mathbb{P}\left(\left\langle R_{1}, R_{1}\right\rangle-n \leq n\left((1-\varepsilon)^{1 / \alpha}-1\right)\right) \leq 2 \exp \left(-c_{2} n\right)
$$

for a constant $c_{2}=c_{2}(\varepsilon, \alpha)$. Here we have used Theorem 2.1 in the last inequality, as $\left\langle R_{1}, R_{1}\right\rangle-n$ is a sum of $n$ mean 0 , i.i.d. sub-exponential random variables and $t=n\left((1-\varepsilon)^{1 / \alpha}-1\right)$.

This implies that

$$
\begin{equation*}
\mathbb{P}\left(\bigcup_{i=1}^{m}\left(\left(B_{n}\right)_{i i} \leq 1-\varepsilon\right)\right) \leq 2 m \exp \left(-c_{2} n\right) \tag{2.2}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\mathbb{P}\left(\bigcup_{i=1}^{m}\left(\left(B_{n}\right)_{i i} \geq 1+\varepsilon\right)\right) \leq 2 m \exp \left(-c_{2} n\right) \tag{2.3}
\end{equation*}
$$

Applying Gershgorin circle theorem (Theorem 6.1.1 of [6]) to $B_{n}$, using (2.1), (2.2), (2.3), gives us that, with probability at least $1-4 m^{2} \exp \left(-c_{3} n^{1-\frac{2 s}{\alpha}}\right), \lambda_{\min } \geq 1-2 \varepsilon$ and $\lambda_{\max } \leq$ $1+2 \varepsilon$. Here $c_{3}>0$ depends on $\varepsilon$ and $\alpha$. As $\alpha>2 s$, this completes the proof of Proposition 1.3.

## 3 Proof of Theorem 1.1

### 3.1 Proof of Theorem 1.1 for the range $\alpha<s$

For the proof we define the following matrices. Let $C_{n, \alpha, s}:=\frac{B_{n, \alpha, s}}{n^{\frac{s-\alpha}{2}}}$. For ease of notation, we write $C_{n, \alpha, s}$ as $C_{m} . C_{m}$ is a $m \times m$ matrix where $m=\left\lfloor n^{s}\right\rfloor$. Define the diagonal matrix $D_{m}$, with $D_{m}(i, i):=C_{m}(i, i)-\frac{\ell_{\alpha}}{n^{s / 2}}$ and $E_{m}:=C_{m}-D_{m}-\frac{\ell_{\alpha}}{n^{s / 2}} J_{m}$, where $\ell_{\alpha}, J_{m}$ are as defined in Subsection 1.2. We define a few terms here which will be used in the rest of the article. Empirical spectral distribution of a symmetric random matrix $A_{n}$ is the random probability measure $\mu_{A_{n}}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}}$, where $\lambda_{i} \mathrm{~s}$ are the eigenvalues
of $A_{n}$. Expected empirical spectral distribution(EESD) of $A_{n}$ is the probability measure $\bar{\mu}_{A_{n}}$ such that $\int_{\mathbb{R}} f d \bar{\mu}_{A_{n}}=\mathbb{E}\left[\int_{\mathbb{R}} f d \mu_{A_{n}}\right]$, for all bounded continuous functions $f$ (for more see [1]).

We use Lemma 3.3 which shows that the limiting distribution of EESDs of $E_{m}$ has positive weight on the negative reals. We then use a concentration of measure result to prove Lemma 3.1 which immediately implies Theorem 1.1 for the range $\alpha<s$. We then give the proof of Lemma 3.3.
Lemma 3.1. Fix $\alpha<s$. Then $\mathbb{P}\left(\lambda_{\min }\left(C_{n, \alpha, s}\right)<0\right) \rightarrow 1$, as $n \rightarrow \infty$.
Proof of Lemma 3.1. We complete the proof of Lemma 3.1 assuming Lemma 3.3 and then provide the proof of Lemma 3.3. For the sake of contradiction assume that $\mathbb{P}\left(\lambda_{\min }\left(C_{m}\right)<\right.$ 0 ) does not converge to 1 , then by going to a subsequence we may assume that $\exists \varepsilon>0$ such that $\mathbb{P}\left(\lambda_{\min }\left(C_{m}\right) \geq 0\right)>\varepsilon$.

Let $\bar{\mu}_{E_{m}}$ converge weakly to some probability distribution $\mu$ (using (ii) of Lemma 3.3 we get the tightness of $\bar{\mu}_{E_{m}}$ ). Using Lemma 3.3 and uniform integrability one can see that $\mu$ must have mean 0, positive variance (see Remark 3.4). As $\mu$ has zero mean and positive variance, $\mu(-\infty,-\omega) \geq \eta$ for some $\eta, \omega>0$. This gives us that $\bar{\mu}_{E_{m}}(-\infty,-\omega)>\frac{\eta}{2}$ for large enough $n$. We would like to say with high probability, empirical spectral distributions of $E_{m}$ also have positive weight on the negative reals. This would imply the existence of negative eigenvalues, with high probability. Here we make use of the following McDiarmid-type concentration result due to Guntuboyina and Leeb [5]. Let $F_{\mu_{A}}$ denote the cumulative distribution function of $\mu_{A}$ and $F_{\mu_{A}}(f)=\int_{\mathbb{R}} f d \mu_{A}$. The Kolmogorov-Smirnov distance between two probability measures $\mu, \mu^{\prime}$ is defined as $d_{K S}\left(\mu, \mu^{\prime}\right):=\left\|F_{\mu}-F_{\mu^{\prime}}\right\|_{\infty}$. Let $V_{g}([a, b])$ denote the total variation of the function $g$ on an interval $[a, b]$ and $V_{g}(\mathbb{R}):=\sup _{[a, b]} V_{g}([a, b])$.
Theorem 3.2 (Theorem 6 of [5]). Let $M$ be a random symmetric $n \times n$ matrix that is a function of $m$ independent random quantities $Y_{1}, Y_{2}, \ldots, Y_{m}$, i.e., $M=M\left(Y_{1}, Y_{2}, \ldots, Y_{m}\right)$. Write $M_{(i)}$ for the matrix obtained from $M$ after replacing $Y_{i}$ by an independent copy, i.e., $M_{(i)}=M\left(Y_{1}, \ldots, Y_{i-1}, Y_{i}^{*}, Y_{i+1}, \ldots, Y_{m}\right)$ where $Y_{i}^{*}$ is distributed as $Y_{i}$ and independent of $Y_{1}, Y_{2} \ldots, Y_{m}$. For $S=M / \sqrt{m}$ and $S_{(i)}=M_{(i)} / \sqrt{m}$, assume that

$$
\left\|F_{S}-F_{S_{(i)}}\right\|_{\infty} \leq \frac{r}{n}
$$

holds (almost surely) for each $i=1,2, \ldots, m$ and for some (fixed) integer $r$. Finally, assume that $g: \mathbb{R} \rightarrow \mathbb{R}$ is of bounded variation on $\mathbb{R}$. For each $\varepsilon>0$, we then have

$$
\mathbb{P}\left(\left|F_{S}(g)-\mathbb{E}\left[F_{S}(g)\right]\right| \geq \varepsilon\right) \leq 2 \exp \left[-\frac{n^{2} 2 \varepsilon^{2}}{m r^{2} V_{g}^{2}(\mathbb{R})}\right]
$$

We apply Theorem 3.2 where $E_{m}$ is the matrix $M$ which is a function of the $\left\lfloor n^{s}\right\rfloor$ rows (independent) of $X_{m, n}$. In order to apply Theorem 3.2, we need to show

$$
\begin{equation*}
\left\|F_{E_{m}}-F_{E_{m(i)}}\right\|_{\infty} \leq \frac{r}{\left\lfloor n^{s}\right\rfloor} \tag{3.1}
\end{equation*}
$$

almost surely. Here $E_{m(i)}$ is the matrix obtained when $i$-th row of $X_{m, n}$ is replaced by an independent and identical copy. Using the fact that $\operatorname{rank}\left(E_{m}-E_{m(i)}\right) \leq 2$ and the standard rank inequality (Lemma 2.5 of [2]) we see that (3.1) holds for $r=2$.

We can now apply Theorem 3.2 to the matrices $E_{m}$, using the function $f=\mathbb{1}_{(-\infty,-\omega)}$. Note that $f$ is of bounded variation and $V_{f}(\mathbb{R})$ is finite and independent of $n$. Applying Theorem 3.2, we get

$$
\begin{equation*}
\mathbb{P}\left(\left|F_{E_{m}}(f)-\mathbb{E}\left[F_{E_{m}}(f)\right]\right| \geq \eta / 4\right) \leq 2 \exp \left(-c\left\lfloor n^{s}\right\rfloor \eta^{2}\right) \tag{3.2}
\end{equation*}
$$

for some $c>0$. As $\bar{\mu}_{E_{m}}(-\infty,-\omega)>\frac{\eta}{2}$ and using (3.2), we get that, for large enough $n$

$$
\mathbb{P}\left(\mu_{E_{m}}(-\infty,-\omega) \geq \eta / 4\right) \geq 1-\frac{\varepsilon}{2}
$$

$E_{m}$ is almost $C_{m}$, with diagonals made 0 and then off-diagonals are subtracted by $\ell_{\alpha} /\left\lfloor n^{s}\right\rfloor$.
Using (2.3), it can be seen that

$$
\begin{align*}
\mathbb{P}\left(\bigcup_{i=1}^{m}\left(\left(C_{m}\right)_{i i} \geq n^{\frac{\alpha-s}{2}}(1+\varepsilon)\right)\right) & \leq 2 m \exp \left(-c_{2} n\right)  \tag{3.3}\\
\mathbb{P}\left(\bigcup_{i=1}^{m}\left(\left(D_{m}\right)_{i i} \geq n^{\frac{\alpha-s}{2}}\left(1+\varepsilon-\frac{\ell_{\alpha}}{n^{\alpha / 2}}\right)\right)\right) & \leq 2 m \exp \left(-c_{2} n\right) \tag{3.4}
\end{align*}
$$

Weyl's inequality (Theorem 4.3 .1 of [6]) bounds the amount of perturbation of eigenvalues due to perturbation of a matrix. Using Weyl's inequality, along with (3.4) gives that,

$$
\begin{array}{r}
\mathbb{P}\left(\mu_{E_{m}+D_{m}}\left(-\infty,-\omega+n^{\frac{\alpha-s}{2}}\left(1+\varepsilon-\frac{\ell_{\alpha}}{n^{\alpha / 2}}\right) \geq \eta / 4\right)\right. \\
\geq 1-\frac{\varepsilon}{2}-2 m \exp \left(-c_{2} n\right)
\end{array}
$$

As $\operatorname{rank}\left(E_{m}+D_{m}-C_{m}\right)=1$ and $\alpha<s$, using rank inequality (Lemma 2.5 of [2]) again, we get that

$$
\mathbb{P}\left(\text { all the eigenvalues of } C_{m} \text { are non-negative }\right)<\frac{\varepsilon}{2}+\frac{1}{n}+2 m \exp \left(-c_{2} n\right)
$$

which contradicts the earlier assumption. This completes the proof of Lemma 3.1.
Lemma 3.3. Let $\bar{\mu}_{E_{m}}$ be the EESD of $E_{m}$. Then
i) Limit of first moment of $\bar{\mu}_{E_{m}}$ is 0
ii) Limit of second moment of $\bar{\mu}_{E_{m}}$ is a positive constant
iii) The fourth moments of $\bar{\mu}_{E_{m}}$ are uniformly bounded.

Remark 3.4. As $\bar{\mu}_{E_{m}}$ is a tight sequence of measures, any subsequential limit must have mean zero and finite variance.

Proof of Lemma 3.3. Computation of moments of $\bar{\mu}_{E_{m}}$ : Before we start the computations, we make a note of the form of entries of $E_{m}$.

Diagonal entries: $\left(E_{m}\right)_{i i}=0$
Off diagonal entries: $\left(E_{m}\right)_{i j}=\frac{1}{n^{s / 2}}\left(\left|\frac{\left\langle R_{i}, R_{j}\right\rangle}{\sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right)$
We prove limits of first and second moments of $\bar{\mu}_{E_{m}}$ are 0 and a positive value.
Limit of first moments: One can see that the limit is 0 as

$$
\int_{\mathbb{R}} x d \bar{\mu}_{E_{m}}(x)=\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left[\left(E_{m}\right)_{i i}\right]=0
$$

Limit of second moments: $\int_{\mathbb{R}} x^{2} d \bar{\mu}_{E_{m}}(x)=\mathbb{E}\left[\int_{\mathbb{R}} x^{2} d \mu_{E_{m}}(x)\right]=\frac{1}{m} \sum_{i, j} \mathbb{E}\left[\left(\left(E_{m}\right)_{i j}\right)^{2}\right]$. As the off-diagonal entries are identically distributed, it is enough to look at the limit of $\sum_{i=1}^{m} \mathbb{E}\left[\left(\left(E_{m}\right)_{1 i}\right)^{2}\right]$.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{m} \mathbb{E}\left[\left(\left(E_{m}\right)_{1 i}\right)^{2}\right]=\lim _{n \rightarrow \infty}(m-1) \mathbb{E}\left[\left(\left(E_{m}\right)_{12}\right)^{2}\right]
$$

Using central limit theorem, uniform bound on $\mathbb{E}\left[\left(\frac{\left\langle R_{1}, R_{2}\right\rangle}{\sqrt{n}}\right)^{4}\right]$ and $m=\left\lfloor n^{s}\right\rfloor$, one can see that the limit is $\mathbb{E}\left[\left(|Z|^{\alpha}-\ell_{\alpha}\right)^{2}\right]$. We now prove that the fourth moments of $\bar{\mu}_{E_{m}}$ are uniformly bounded.

## Uniform bound of fourth moments:

$$
\int_{\mathbb{R}} x^{4} d \bar{\mu}_{E_{m}}(x)=\frac{1}{m} \sum_{i_{1} i_{2} i_{3} i_{4}} \mathbb{E}\left[\left(E_{m}\right)_{i_{1} i_{2}}\left(E_{m}\right)_{i_{2} i_{3}}\left(E_{m}\right)_{i_{3} i_{4}}\left(E_{m}\right)_{i_{4} i_{1}}\right] .
$$

This is a sum of expectations with each term corresponding to a closed walk of length 4 on the complete graph $K_{m}$. It is enough to look at closed walks starting and ending at vertex 1 . Such walks can visit 2,3 or 4 different vertices, including the vertex 1 .

$$
\begin{array}{r}
\int_{\mathbb{R}} x^{4} d \bar{\mu}_{E_{m}}(x)=\sum_{i \neq 1} \mathbb{E}\left[\left(E_{m}\right)_{1 i}^{4}\right]+\sum_{j, k \neq 1} \mathbb{E}\left[\left(E_{m}\right)_{1 j}^{2}\left(E_{m}\right)_{1 k}^{2}\right] \\
+\sum_{i, j \neq 1} \mathbb{E}\left[\left(E_{m}\right)_{1 i}^{2}\left(E_{m}\right)_{i j}^{2}\right]+\sum_{i, j, k \neq 1} \mathbb{E}\left[\left(E_{m}\right)_{1 i}\left(E_{m}\right)_{i j}\left(E_{m}\right)_{j k}\left(E_{m}\right)_{k 1}\right]
\end{array}
$$

The four terms in the above equation correspond to four different types of walks as shown in above figures.


Figure 1: The walk corresponding to $\mathbb{E}\left[\left(E_{m}\right)_{1 i}^{4}\right]$.


Figure 2: The walk corresponding to $\mathbb{E}\left[\left(E_{m}\right)_{1 j}^{2}\left(E_{m}\right)_{1 k}^{2}\right]$.


Figure 3: The walk corresponding to $\mathbb{E}\left[\left(E_{m}\right)_{1 i}^{2}\left(E_{m}\right)_{i j}^{2}\right]$.


Figure 4: The walk corresponding to $\mathbb{E}\left[\left(E_{m}\right)_{1 i}\left(E_{m}\right)_{i j}\left(E_{m}\right)_{j k}\left(E_{m}\right)_{k 1}\right]$.

Using the fact that off-diagonal entries of $E_{m}$ are identically distributed, uniform bound on $\mathbb{E}\left[\left(\frac{\left\langle R_{1}, R_{2}\right\rangle}{\sqrt{n}}\right)^{4}\right]$, one can see that $\lim _{n \rightarrow \infty} \sum_{i \neq 1} \mathbb{E}\left[\left(E_{m}\right)_{1 i}^{4}\right]=0$. Using a similar argument as above it can be seen that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i, j \neq 1} \mathbb{E}\left[\left(E_{m}\right)_{1 i}^{2}\left(E_{m}\right)_{1 j}^{2}\right]=\lim _{n \rightarrow \infty} \sum_{i, j \neq 1} \mathbb{E}\left[\left(E_{m}\right)_{1 i}^{2}\left(E_{m}\right)_{i j}^{2}\right]=\mathbb{E}\left[\left(\left|Z_{1}\right|^{\alpha}-\ell_{\alpha}\right)^{2}\left(\left|Z_{2}\right|^{\alpha}-\ell_{\alpha}\right)^{2}\right] \tag{3.5}
\end{equation*}
$$

where $Z_{1}, Z_{2}$ are i.i.d. standard Gaussians. If we prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i, j, k \neq 1} \mathbb{E}\left[\left(E_{m}\right)_{1 i}\left(E_{m}\right)_{i j}\left(E_{m}\right)_{j k}\left(E_{m}\right)_{k 1}\right]=0 \tag{3.6}
\end{equation*}
$$

then using (3.5), (3.6), we would have proved that fourth moments of $\bar{\mu}_{E_{m}}$ are uniformly bounded and we would be done with the proof of Lemma 3.1. Note that

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \sum_{i, j, k \neq 1} \mathbb{E}\left[\left(E_{m}\right)_{1 i}\left(E_{m}\right)_{i j}\left(E_{m}\right)_{j k}\left(E_{m}\right)_{k 1}\right]= \\
\lim _{n \rightarrow \infty} m \mathbb{E}\left[\left(\left|\frac{\left\langle R_{1}, R_{2}\right\rangle}{\sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right)\left(\left|\frac{\left\langle R_{2}, R_{3}\right\rangle}{\sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right)\left(\left|\frac{\left\langle R_{3}, R_{4}\right\rangle}{\sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right)\left(\left|\frac{\left\langle R_{4}, R_{1}\right\rangle}{\sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right)\right] \tag{3.7}
\end{array}
$$

Let $\mathcal{F}_{1,3}$ denote the sigma algebra generated from the 1st row and 3rd row of $X_{m, n}$ and

$$
Y_{1,3}:=\mathbb{E}\left[\left.\left(\left|\frac{\left\langle R_{1}, R_{2}\right\rangle}{\sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right)\left(\left|\frac{\left\langle R_{2}, R_{3}\right\rangle}{\sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right) \right\rvert\, \mathcal{F}_{1,3}\right] .
$$

Note that using independence of 2 nd row and 4 th row of $X_{m, n}$, RHS of (3.7) can be written as, $\lim _{n \rightarrow \infty} m \mathbb{E}\left[Y_{1,3}^{2}\right]$.

Using Lemma 3.5 it follows that $\lim _{n \rightarrow \infty} m \mathbb{E}\left[Y_{1,3}^{2}\right]=0$ and hence the fourth moments of $\bar{\mu}_{E_{m}}$ are uniformly bounded.

This proves that the fourth moments are uniformly bounded. This completes the proof of Lemma 3.3.

Lemma 3.5. $\mathbb{E}\left[\left(n Y_{1,3}\right)^{k}\right]$ is uniformly bounded by $M_{k}, \forall n, k \in \mathbb{N}$, where $M_{k}>0$ are some constants dependent on $k$.

Proof of Lemma 3.5.

$$
\begin{gathered}
Y_{1,3}=\mathbb{E}\left[\left.\left(\left|\frac{\left\langle R_{1}, R_{2}\right\rangle}{\sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right)\left(\left|\frac{\left\langle R_{2}, R_{3}\right\rangle}{\sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right) \right\rvert\, \mathcal{F}_{1,3}\right]= \\
\mathbb{E}\left[\left.\sigma_{1}^{\alpha}\left(\left(\left|\frac{\left\langle R_{1}, R_{2}\right\rangle}{\sigma_{1} \sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right)+\left(\ell_{\alpha}-\frac{\ell_{\alpha}}{\sigma_{1}^{\alpha}}\right)\right) \sigma_{3}^{\alpha}\left(\left(\left|\frac{\left\langle R_{2}, R_{3}\right\rangle}{\sigma_{3} \sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right)+\left(\ell_{\alpha}-\frac{\ell_{\alpha}}{\sigma_{3}^{\alpha}}\right)\right) \right\rvert\, \mathcal{F}_{1,3}\right] \\
=\sigma_{1}^{\alpha} \sigma_{3}^{\alpha} \mathbb{E}\left[\left(\left|Z_{1}\right|^{\alpha}-\ell_{\alpha}\right)\left(\left|Z_{3}\right|^{\alpha}-\ell_{\alpha}\right)\right]+\ell_{\alpha}^{2}\left(\sigma_{1}^{\alpha}-1\right)\left(\sigma_{3}^{\alpha}-1\right) .
\end{gathered}
$$

Here $Z_{1}, Z_{3}$ are standard normal random variables (after conditioning on $\mathcal{F}_{1,3}$ ) with correlation coefficient $\rho_{13}$. Note that almost surely $0<\left|\rho_{13}\right|<1$ and hence $\left(Z_{1}, Z_{3}\right)$ have joint density.

Define a function of correlation coefficient as below,

$$
I(\rho):=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \int_{\mathbb{R}} \int_{\mathbb{R}}\left(|x|^{\alpha}-\ell_{\alpha}\right)\left(|y|^{\alpha}-\ell_{\alpha}\right) \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left(x^{2}+y^{2}-2 x y \rho\right)\right) d x d y
$$

Note that $I(0)=0, I(\rho)=I(-\rho)$ and $I(\rho)$ is a smooth function. Above given expansion of $Y_{1,3}$ can be written as

$$
Y_{1,3}=\sigma_{1}^{\alpha} \sigma_{3}^{\alpha} \rho_{13}^{2} \frac{I\left(\rho_{13}\right)}{\rho_{13}^{2}}+\ell_{\alpha}^{2}\left(\sigma_{1}^{\alpha}-1\right)\left(\sigma_{3}^{\alpha}-1\right)
$$

We now show $I(\rho) / \rho^{2}$ is a bounded function. Fix $t>0$. For $|\rho|>t$, note that $I(\rho)$ is Gaussian expectation and therefore $I(\rho) / \rho^{2}$ is bounded. We use L'Hospital's rule to get a bound on $\frac{I(\rho)}{\rho^{2}}$ when $|\rho|<t$. Using differentiation under integral sign, and using L'Hospital's rule twice, it can be seen that $I(\rho) / \rho^{2}$ is a bounded function. Hence we can write, $|Y| \leq M \sigma_{1}^{\alpha} \sigma_{3}^{\alpha}\left|\rho_{13}^{2}\right|+m_{\alpha}^{2}\left|\sigma_{1}^{\alpha}-1\right|\left|\sigma_{3}^{\alpha}-1\right|$. As $\forall \alpha<2$,

$$
\begin{equation*}
\left|\sigma_{1}^{\alpha}-1\right| \leq\left|\frac{\left\langle R_{1}, R_{1}\right\rangle}{n}-1\right| \leq \frac{1}{\sqrt{n}}\left|\frac{\left\langle R_{1}, R_{1}\right\rangle-n}{\sqrt{n}}\right| . \tag{3.8}
\end{equation*}
$$

As a result we can write,

$$
|n Y| \leq M \sigma_{1}^{\alpha} \sigma_{3}^{\alpha} n \rho_{13}^{2}+\left|\frac{\left\langle R_{1}, R_{1}\right\rangle-n}{\sqrt{n}}\right|\left|\frac{\left\langle R_{3}, R_{3}\right\rangle-n}{\sqrt{n}}\right| .
$$

One can see that, the $k$-th moments of $\sigma_{1}^{\alpha}, \sigma_{3}^{\alpha}, n \rho_{13}^{2},\left|\frac{\left\langle R_{1}, R_{1}\right\rangle-n}{\sqrt{n}}\right|$ are uniformly bounded by some constant, $\forall n \in \mathbb{N}$ and hence $k$-th moments of $n Y$ are also uniformly bounded. This completes the proof of Lemma 3.5.

### 3.2 Proof of Theorem 1.1 for the range $\alpha>s$

In this subsection we consider the range $\alpha>s$. We prove Lemma 3.6 which immediately implies Theorem 1.1 for the range $\alpha>s$. For this we define the following matrices. For ease of notation, we write $B_{n, \alpha, s}$ as $B_{m}$. Define a diagonal matrix $D_{m}$ such that $D_{m}(i, i)=B_{m}(i, i)-\frac{\ell_{\alpha}}{n^{\alpha / 2}}$. Let $C_{m}:=B_{m}-\left(\frac{\ell_{\alpha}}{n^{\alpha / 2}}\right) J_{m}-D_{m}$. Note that $C_{m}(i, j)=\frac{1}{n^{\alpha / 2}}\left(\left|\frac{\left\langle R_{i}, R_{j}\right\rangle}{\sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right)$ and the diagonal entries of $C_{m}$ are zero. We show that $\mathbb{E}\left[\operatorname{Tr}\left(C_{m}^{2 k}\right)\right] \rightarrow 0$. By Markov inequality and Weyl's inequality this implies Lemma 3.6.
Lemma 3.6. Fix $s<\alpha$ and $0<\varepsilon<1 / 2$. Then $\mathbb{P}\left(\lambda_{\min }\left(B_{n, \alpha, s}\right)>\varepsilon\right) \rightarrow 1$, as $n \rightarrow \infty$.
Proof of Lemma 3.6. We first show that $\mathbb{P}\left(\lambda_{\min }\left(C_{m}\right) \leq-1+2 \varepsilon\right) \rightarrow 0$ implies Lemma 3.6. Note that, using Lemma 2.1, we have

$$
\begin{equation*}
\mathbb{P}\left(\bigcup_{i=1}^{m}\left(\left(D_{m}\right)_{i i} \leq 1-\varepsilon\right)\right) \leq 2 m \exp \left(-c_{3} n\right) \tag{3.9}
\end{equation*}
$$

for some constant $c_{3}>0$ depending on $\alpha$. To get the matrix $B_{m}$, we add $C_{m}$ with $D_{m}+\left(\ell_{\alpha} / n^{\alpha / 2}\right) J_{m}$. Using Weyl's inequality (Theorem 4.3.1 of [6]), we get

$$
\begin{equation*}
\mathbb{P}\left(\lambda_{\min }\left(B_{m}\right)-\lambda_{\min }\left(C_{m}\right)<1-\varepsilon\right) \leq 2 m \exp \left(-c_{3} n\right) \tag{3.10}
\end{equation*}
$$

The above inequality shows that the eigenvalues of $B_{m}$ are at least $1-\varepsilon$ more than that of $C_{m}$, with high probability. Hence $\mathbb{P}\left(\lambda_{\min }\left(C_{m}\right) \leq-1+2 \varepsilon\right) \rightarrow 0$ implies Lemma 3.6. This completes the proof if we prove $\mathbb{P}\left(\lambda_{\min }\left(C_{m}\right) \leq-1+2 \varepsilon\right) \rightarrow 0$. Choose $k$ such that $\alpha>\left(\frac{k+1}{k}\right) s$.

$$
\mathbb{P}\left(\lambda_{\min }\left(C_{m}\right) \leq-1+2 \varepsilon\right) \leq \mathbb{P}\left(\left(\lambda_{\min }\left(C_{m}\right)\right)^{2 k} \geq(1-2 \varepsilon)^{2 k}\right) \leq \frac{\mathbb{E}\left[\operatorname{Tr}\left(C_{m}^{2 k}\right)\right]}{(1-2 \varepsilon)^{2 k}}
$$

We prove that $\mathbb{E}\left[\operatorname{Tr}\left(C_{m}^{2 k}\right)\right] \rightarrow 0$, where $\alpha>\left(\frac{k+1}{k}\right) s$. This completes the proof of the lemma.

Computation of $\mathbb{E}\left[\operatorname{Tr}\left(C_{m}^{2 k}\right)\right] \quad$ Consider a closed walk of length $2 k$ on complete graph $K_{m}$. Let $i_{1} i_{2} \ldots i_{2 k-1} i_{1}$ be the closed walk. This corresponds to the term $\mathbb{E}\left[C_{i_{1} i_{2}} \ldots C_{i_{2 k-1} i_{1}}\right]$ in expansion of $\mathbb{E}\left[\operatorname{Tr}\left(C_{m}^{2 k}\right)\right]$. Thus terms in expansion of $\mathbb{E}\left[\operatorname{Tr}\left(C_{m}^{2 k}\right)\right]$ correspond to closed walks of length $2 k$ (starting point can be any of the $m$ vertices). As the diagonal entries
are zero, the paths cannot have loops at any vertices. We first look at walks without "leaf vertices". By "leaf vertices" we mean the vertices, like " 3 " and " 1 ", which are of degree 2 and have only one neighbour, as shown in Figure 5 (In the graph generated due to closed walk, such vertices are leafs).


Figure 5: The vertices 1,3 are leaf vertices.

So we look at closed walks of length $2 k$ without loops and leaf vertices. As the offdiagonal entries of $C_{m}$ are of the order $1 / n^{\alpha / 2}$ and $\alpha>\left(\frac{k+1}{k}\right) s$, the sums of expectations corresponding to paths visiting $k+l$ vertices with $l \leq 1$ (each vertex can be chosen in at most $\left\lfloor n^{s}\right\rfloor$ ways), goes to 0 . So it is enough to look at paths visiting at least $k+2$ vertices.

Closed walks of length $2 k$, visiting $k+l, l \geq 2$ vertices, must have at least $2 l$ vertices of degree 2 (none of which are leaf vertices) as shown below. This is due to the fact that since it is a closed walk, degree of every vertex is even and sum of degrees of vertices must equal twice the total number of edges.

There would be $C_{i, j} C_{j, k}$ term when expanding $\operatorname{Tr}\left(C_{m}^{2 k}\right)$ as sum of product of entries of $C_{m}$. This factor shows up due to the vertex $j$ having degree 2 . We would like to condition on the rows $i, k$ of $X_{m, n}$ and use Lemma 3.5. It could happen that more than 1 , say $t$, degree-2 vertices come together in series as shown in Figure 6. In such a case we condition as shown below.


Figure 6: The rows corresponding to a, c, e are conditioned on.

Suppose there is a path traversing vertices $a$ through $e$, as shown above, where degrees of both $a, e$ are at least 4 and $b, c, d$ are all degree- 2 vertices. Here degrees are calculated in the graph generated by the closed walk of length $2 k$. In such a case we will have the factor $C_{a, b} C_{b, c} C_{c, d} C_{d, e}$ in the expansion of $\operatorname{Tr}\left(C_{m}^{2 k}\right)$ corresponding to that path. In the expectation term corresponding to such a path, we condition on rows $a, c, e$ and use independence to get 2 conditional expectations $Y_{a, c}, Y_{c, e}$ mentioned in Section 3.1. The " x " mark denotes the rows which we are going to condition on. If there are even number of degree-2 vertices coming together, we condition as in Figure 7.


Figure 7: The rows corresponding to $\mathrm{a}, \mathrm{c}, \mathrm{d}$ are conditioned on.

In the case shown above, vertices $a, d$ have degree at least 4 and $b, c$ are degree- 2 vertices. We condition of rows $a, c, d$. All other rows corresponding to vertices with degrees greater than 2 will also be conditioned.

Now we look at $\mathbb{E}\left[\operatorname{Tr}\left(C_{m}^{2 k}\right)\right]$ and the walks of length $2 k$, without loops and leaf vertices, visiting $k+l$ vertices. The $k+l$ vertices can be chosen in $\left\lfloor n^{s}\right\rfloor^{k+l}$ ways and taking the
order of $C_{i, j}$ into account we can write,

$$
\frac{\left\lfloor n^{s}\right\rfloor^{k+l}}{n^{k \alpha}} \mathbb{E}\left[\left(\left|\frac{\left\langle R_{1}, R_{2}\right\rangle}{\sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right) \cdots\right]
$$

corresponding to the walks we are interested in. Using Independence and conditioning on the rows corresponding to the vertices with degree at least 4 and those appropriate vertices when more than 1 degree- 2 vertices come together, we get product of at least $l$ number of conditional expectations like $Y_{i, j}$. Using Lemma 3.5, $n^{l} \mathbb{E}\left[\left(\left|\frac{\left\langle R_{1}, R_{2}\right\rangle}{\sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right) \ldots\right]$ is uniformly bounded. As $l$ was arbitrary and as $\alpha>\left(\frac{k+1}{k}\right) s$, we can see that the expectation corresponding to the walks without loops and leaf vertices goes to 0 with $n$.

Now we look at paths without loops but have leaf vertices. If initially we had a closed walk of length $2 g$ without leaf vertices and visited $l$ different vertices. Note that each leaf vertex attached increases length of walk by 2 and number of vertices visited by 1. Adding $t$ leaf vertices such that $g+t=k$ gives corresponding expectation terms like

$$
\begin{equation*}
\frac{\left\lfloor n^{s}\right\rfloor^{g+l+t}}{n^{(g+t) \alpha}} \mathbb{E}\left[\left(\left|\frac{\left\langle R_{1}, R_{2}\right\rangle}{\sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right) \ldots\right] . \tag{3.11}
\end{equation*}
$$

If such a leaf vertex or multiple leaf vertices can be attached to a vertex which is degree-2 originally, then we condition on the rows corresponding to all the leaf vertices and the vertices whose rows we were conditioning on originally, as shown in Figure 8.


Figure 8: The rows corresponding to a, c, d, e are conditioned on.
The vertices $d, c$ are leaf vertices attached to vertex $b$. Without the vertices $d, c$ and edges between them and $b$, the vertex $b$ would be of degree- 2 . After addition of vertices $d, c$ and the edges, the conditioning will be done on rows corresponding to $a, c, d, e$. This is where Lemma 3.7 is used. Such conditioning gives conditional expectation factor like $G$ in Lemma 3.7 for every vertex which get attached at least one leaf vertex to it.

If leaf vertices are attached to a vertex which is of degree 4 or more originally, then again we condition on rows corresponding to all leaf vertices along with the previous vertices we were conditioning on (Lemma 3.7 is not needed here). As $G$ is of the order of $1 / n$ and $\alpha>\left(\frac{k+1}{k}\right) s$, limit of (3.11) is 0 . This shows that $\mathbb{E}\left[\operatorname{Tr}\left(C_{n}^{2 k}\right)\right] \rightarrow 0$, as $n \rightarrow \infty$. Taking $k$ arbitrarily large completes the proof of Lemma 3.6.

Lemma 3.7. Let $p \in \mathbb{N}_{\geq 3}$ and $\mathcal{F}_{2,3, \ldots, p}$ denote the sigma algebra generated from the $2,3, \ldots, p$-th rows of $X_{m, n}$. Define

$$
G:=n^{(2(p-3)+2) \alpha / 2} \mathbb{E}\left[C_{12} C_{13} C_{14}^{2} C_{15}^{2} \ldots C_{1 p}^{2} \mid \mathcal{F}_{2,3, \ldots, p}\right]
$$

$\mathbb{E}\left[(n G)^{k}\right]$ is uniformly bounded by constant $M_{k}$ for all $k \in \mathbb{N}$.

Proof. Let $W_{12}:=\left(\left|\frac{\left\langle R_{1}, R_{2}\right\rangle}{\sigma_{2} \sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right)+\frac{\ell_{\alpha}}{\sigma_{2}^{\alpha}}\left(\sigma_{2}^{\alpha}-1\right)$. Then

$$
G=\sigma_{2}^{\alpha} \sigma_{3}^{\alpha} \sigma_{4}^{2 \alpha} \sigma_{5}^{2 \alpha} \ldots \sigma_{p}^{2 \alpha} \mathbb{E}\left[W_{12} W_{13} W_{14}^{2} W_{15}^{2} \ldots W_{1 p}^{2} \mid \mathcal{F}_{2,3, \ldots, p}\right]
$$

Due to (3.8), the term $\left(\sigma_{2}^{\alpha}-1\right)$ is of the order of $1 / \sqrt{n}$. All moments of $\sigma_{2}^{\alpha}$ are uniformly bounded. So for $\mathbb{E}\left[(n G)^{k}\right]$ to be uniformly bounded, it is enough to prove that $k$-th moments of

$$
n \mathbb{E}\left[\left.\left(\left|\frac{\left\langle R_{1}, R_{2}\right\rangle}{\sigma_{2} \sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right)\left(\left|\frac{\left\langle R_{1}, R_{3}\right\rangle}{\sigma_{3} \sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right) W_{14}^{2} \ldots W_{1 p}^{2} \right\rvert\, \mathcal{F}_{2,3, \ldots, p}\right]
$$

and

$$
\sqrt{n} \mathbb{E}\left[\left.\left(\left|\frac{\left\langle R_{1}, R_{2}\right\rangle}{\sigma_{2} \sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right) W_{14}^{2} \ldots W_{1 p}^{2} \right\rvert\, \mathcal{F}_{2,3, \ldots, p}\right]
$$

are uniformly bounded, $\forall n \in \mathbb{N}$. We will prove that $k$-th moment of first quantity is uniformly bounded. For the second quantity, similar argument works.

Note that conditional on $\mathcal{F}_{2,3, \ldots, p}$, the conditional expectation $G$ is a function of standard Gaussian random variables, say, $Z_{2}, Z_{3}, \ldots, Z_{p}$, with the correlation matrix being $\tilde{\Sigma}=A_{p-1} A_{p-1}^{T}$, where $A_{p-1}$ is $(p-1) \times n$ matrix with $A_{p-1}(i, j)=\frac{X_{m, n}(i+1, j)}{\sqrt{n} \sigma_{i+1}}$. It can be seen easily that almost surely $\operatorname{rank}\left(A_{p-1}\right)=p-1$ and hence $\tilde{\Sigma}$ is invertible. For any symmetric invertible matrix $\Sigma$ with 1 s on diagonal, define
$h(\Sigma):=\frac{1}{\sqrt{(2 \pi)^{p-1}|\Sigma|}} \int\left(\left|x_{1}\right|^{\alpha}-\ell_{\alpha}\right)\left(\left|x_{2}\right|^{\alpha}-\ell_{\alpha}\right) \ldots\left(\left|x_{p-1}\right|^{\alpha}-\ell_{\alpha}\right)^{2} \exp \left(\frac{-x^{T} \Sigma^{-1} x}{2}\right) d x_{1} \ldots$
Here $h$ is a function of the entries above the diagonal of $\Sigma$. Using symmetry and independence $h\left(I_{p-1}\right)=0$. Expanding $W_{12} W_{13} W_{14}^{2} W_{15}^{2} \ldots W_{1 p}^{2}$ and using the fact that $\left(\sigma_{2}^{\alpha}-1\right)$ is of order $1 / \sqrt{n}$, to prove that $k$-th moments of

$$
n \mathbb{E}\left[\left.\left(\left|\frac{\left\langle R_{1}, R_{2}\right\rangle}{\sigma_{2} \sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right)\left(\left|\frac{\left\langle R_{1}, R_{3}\right\rangle}{\sigma_{3} \sqrt{n}}\right|^{\alpha}-\ell_{\alpha}\right) W_{14}^{2} \ldots W_{1 p}^{2} \right\rvert\, \mathcal{F}_{2,3, \ldots, p}\right]
$$

are uniformly bounded, it is enough to prove that $k$-th moments of $n h(\tilde{\Sigma})$ are uniformly bounded.

It is easy to see that $h$ is a differentiable function. We make use of the multi-variable mean value theorem $|f(y)-f(x)| \leq|\nabla f(c x+(1-c) y)||y-x|$, for some $0 \leq c \leq 1$. Using the fact that $\sum_{i<j} \tilde{\Sigma}_{i, j}^{2}$ is of order of $1 / n$, it is enough to show $h(\Sigma) / \sum_{i<j} \Sigma_{i, j}^{2}$ is bounded.

For $\Sigma$ bounded away from the origin, using Gaussian integrals, it can be seen that $\frac{h(\Sigma)}{\sum_{i<j} \Sigma_{i, j}^{2}}$ is bounded. As $h\left(I_{p-1}\right)=0$ at the origin, mean value theorem and basic computations gives boundedness of $h(\Sigma) / \sum_{i<j} \Sigma_{i, j}^{2}$ in a neighbourhood of the origin. This completes the proof of Lemma 3.7.

## References

[1] Anderson, Greg W. and Guionnet, Alice and Zeitouni, Ofer: An introduction to random matrices. Cambridge University Press, 2009. MR2760897
[2] Bordenave, Charles: High-dimensional probability: Lecture notes on random matrix theory. https://www.math.univ-toulouse.fr/~bordenave/IMPA-RMT.pdf, 2019.
[3] FitzGerald, Carl H. and Horn, Roger A.: On fractional Hadamard powers of positive definite matrices. Journal of Mathematical Analysis and Applications 61, (1977), 633-642. MR0506356
[4] Guillot, Dominique, Khare, Apoorva and Rajaratnam, Bala: Complete characterization of Hadamard powers preserving Loewner positivity, monotonicity, and convexity. Journal of Mathematical Analysis and Applications 425, (2015), 489-507. MR3299675
[5] Guntuboyina, Adityanand and Leeb, Hannes: Concentration of the spectral measure of large Wishart matrices with dependent entries. Electronic Communications in Probability 14, (2009), 334-342. MR2535081
[6] Horn, Roger A. and Johnson, Charles R.: Matrix analysis. Second ed. Cambridge University Press, 2013. MR2978290
[7] Jain, Tanvi: Hadamard powers of some positive matrices. Linear Algebra and its Applications 528, (2017), 147-158. MR3652842
[8] Khare, Apoorva: Matrix analysis and entrywise positivity preservers. Cambridge University Press, 2022. MR4625792
[9] Li, Ai and Horvath, Steve: Network neighborhood analysis with the multi-node topological overlap measure. Bioinformatics 23, (2007), 222-231.
[10] Schoenberg, Issac J.: Positive definite functions on spheres. Duke Mathematical Journal 9, (1942), 96-108. MR0005922
[11] Vershynin, Roman: High-dimensional probability: An introduction with applications in data science. Cambridge University Press, 2018. MR3837109

Acknowledgments. The author thanks Manjunath Krishnapur for suggesting the question addressed in this article and for several helpful discussions without which this article could not have been possible.

# Electronic Journal of Probability Electronic Communications in Probability 

## Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)
- Secure publication (LOCKSS ${ }^{1}$ )
- Easy interface (EJMS²)


## Economical model of EJP-ECP

- Non profit, sponsored by $\mathrm{IMS}^{3}, \mathrm{BS}^{4}$, ProjectEuclid ${ }^{5}$
- Purely electronic


## Help keep the journal free and vigorous

- Donate to the IMS open access fund ${ }^{6}$ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

[^1]
[^0]:    *Indian Institute of Science, Bengaluru. E-mail: jnaneshwarb@iisc.ac.in

[^1]:    ${ }^{1}$ LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
    ${ }^{2}$ EJMS: Electronic Journal Management System: https://vtex.lt/services/ejms-peer-review/
    ${ }^{3}$ IMS: Institute of Mathematical Statistics http://www.imstat.org/
    ${ }^{4}$ BS: Bernoulli Society http://www.bernoulli-society .org/
    ${ }^{5}$ Project Euclid: https://projecteuclid.org/
    ${ }^{6}$ IMS Open Access Fund: https://imstat.org/shop/donation/

