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In this paper, we investigate the dynamics of a binary system that orbits a rotating supermassive black
hole. Our approach employs Fermi-Walker transport to construct a local inertial reference frame, and to set
up a Newtonian binary system. We consider a scenario in which a circular geodesic observer is positioned
around a Kerr black hole, and thereby derive the equations of motion governing the binary system. To
eliminate the interaction terms between the c.m. of the binary and its relative coordinates, we introduce a
small acceleration for the observer. This adjustment leads to the c.m. closely following the observer’s orbit,
deviating from a circular geodesic. Here, we first focus on elucidating the stability conditions in a
hierarchical triple system. Subsequently, we discuss the phenomenon of von Zeipel-Lidov-Kozai
oscillations, which manifest when the binary system is compact and the initial inclination exceeds a
critical angle. In hard binary systems, these oscillations exhibit regular behavior, while in soft binary
systems, they exhibit a chaotic character, characterized by irregular periods and amplitudes, albeit
remaining stable. Additionally, we observe an orbital flip under circumstances of large initial inclination.
As for the motion of the c.m., we observe deviations from a purely circular orbit that transform into stable
yet chaotic oscillations characterized by minute amplitude variations.
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I. INTRODUCTION

In the wake of the groundbreaking discovery of gravita-
tional waves (GWs) by the LIGO-Virgo-KAGRA (LVK)
Collaboration [1,2], the fields of astronomy and physics
have embarked on an unprecedented journey. These detec-
tions have ushered in a new era, reshaping our comprehen-
sion of celestial phenomena in profound ways. One
remarkable outcome has been the identification of astro-
physical entities characterized by their astonishingly mas-
sive stellar-mass black holes (BHs) [3]. The synergy
between gravitational wave observations and electromag-
netic counterparts has provided further compelling evidence
affirming Einstein’s general theory of relativity, as we have
observed that the speed of GWs is consistent with the speed
of light [4]. The increase in detections anticipated in the
coming decade offers an opportunity to probe fundamental
questions of the utmost significance—testing of theories of
gravity under the strong field regimes. Additionally, unrav-
eling the redshift distribution of black holes (BHs) and their
surrounding environments holds great promise [5–9]. To
utilize the potential of detections, it is imperative to
accurately model the anticipated GW waveforms.
While current observations from LVK Collaboration

predominantly emanate from isolated binary systems, it

is crucial to remain open to the possibility that nature may
unveil more intricate sources. Since there have been studies
suggesting the presence of a hierarchical triple formation
channel [10,11], our focus turns towards the examination of
three-body systems. Within the densely populated environs
surrounding supermassive black holes (SMBHs) in galactic
nuclei, it is conceivable that binary systems may give rise to
natural hierarchical triple systems [12–17]. Recent com-
pelling evidence from LIGO events has hinted at the
possibility that hierarchical systems could serve as a
prominent formation channel for the merging binary
BHs [11,18,19]. In light of these developments, this paper
explores the dynamics within such hierarchical triple
systems, shedding light on their potential as sources of
gravitational wave signals.
In a hierarchical triple, the distance between two bodies

(forming an “inner” binary) is much less than the distance
to the third body. von Zeipel was the first one to explore the
dynamics of restricted hierarchical triples in 1910,
revealing a remarkable phenomenon [20], and in 1962,
Lidov and Kozai independently rediscovered the same
[21,22], [known as von Zeipel-Lidov-Kozai (vZLK) reso-
nance]—when the two orbits are inclined relative to each
other, there is a periodic exchange between orbital
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eccentricity and relative inclination in secular timescale
[23]. This phenomenon can excite the eccentricity close to
unity, in turn, giving rise to the high emission of GWs lying
in the observable band of future space-based detectors.
While the eccentricity will most likely decay upon entering
the frequency band of ground-based detectors, it may boost
the number of detections if the dominant formation channel
is hierarchical mergers [24].
There has been extensive work on dynamics of such

systems based on Newtonian or post-Newtonian approxi-
mation [25–32]. Indirect observation of GW from a triple
system is also studied by analyzing the cumulative shift of
periastron time of a binary pulsar undergoing vZLK
oscillations [33,34]. The presence of a heavier tertiary
has been considered in previous studies [35,36] using
double-averaged equations of motion to investigate rela-
tivistic effects such as de-Sitter and Lens-Thirring preces-
sions. An additional study also investigated 3-body PN
(3BpN) secular effect in a hierarchical system with heavy
third body using a multiple scale method [37]. As well, they
pointed out that 3BpN effects affected the evolution of
these triples, resulting in a wider range of eccentricity and
inclination. Some research studies explores the impact of
supermassive black hole spin on nearby binary black hole
systems. SMBH spin (Lense-Thirring precession and
gravitomagnetic force in particular) affects binary black
hole (BBH) eccentricity and orbital inclination, potentially
altering BBH merger times [38,39]. Furthermore, in recent
years, substantial interest has been directed toward three-
body systems and their gravitational wave emissions
[40–51]. In the context of a triple system with a massive
tertiary component, the vZLK timescale is significantly
reduced to just a few years, enhancing the gravitational
observations’ potential to capture recurrent gravitational
waves arising from vZLK oscillations [48,50].
In our approach, we consider a binary system orbiting an

SMBH and the binary is treated as perturbations of SMBH
spacetime. When dealing with a single object orbiting the
SMBH, it can be regarded as a test particle, subject to the
gravitational influence of the central black hole. However,
the dynamics become notably more intricate in the case of a
binary system because the self-gravitational mutual inter-
action is much stronger than the gravitational tidal force by
SMBH. In order to analyze such a hierarchical system, we
first prepare a local inertial frame and set up a binary in this
frame. When a binary is tightly bounded but the mutual
gravitational interaction is not so strong, the binary motion
can be discussed by Newtonian gravitational dynamics.
Using Fermi normal coordinate system or Fermi-Walker

transport, we can construct a local inertial frame [52–54].
Using such a technique, there are several discussions on a
tidal force acting on stars near SMBH [55–58], and a few
works on a binary system have been discussed [59–61].
In the previous paper, assuming that SMBH is described
by a spherically symmetric Schwarzschild spacetime, we

analyze dynamics of such a system in detail [62]. We
showed that the vZLK oscillations appear even near the
innermost stable circular orbit (ISCO) radius when a binary
is compact enough and the inclination angle is larger than
the critical value. Although the oscillations are regular
for a highly compact binary, when a binary is softer, we find
the chaotic vZLK oscillations, i.e., the oscillations become
irregular both in the oscillation period and in the amplitude.
Especially, if the initial inclination is large, we find an
orbital flip of the relative inclination of the inner and
outer orbits. However SMBH may be rotating in nature.
Hence in this paper, we extend our analysis into a rotating
Kerr SMBH.
The paper is organized as follows: We summarize our

method discussed in the previous paper, which can be
applied to any background spacetime, in Sec. II. In Sec. III,
assuming an observer moving along a circular geodesic in
Kerr black hole, we derive the equations of motion for a
binary system. We also discuss the interaction terms
between the c.m. of a binary and its relative coordinates.
Introducing small acceleration of an observer, we remove
the interaction terms, finding the equations of motion for
the c.m., which gives small deviations from a circular
geodesic. In Sec. IV, for our numerical analysis, we rewrite
the equations of motion in dimensionless form, introduce
the orbital parameters for analysis, and show how to
prepare the initial data. In Sec. VA, we analyze many
models numerically to find the stability conditions for a
hierarchical triple system. We then show the properties of
binary motions such as the vZLK oscillations, chaotic
features, and orbital flips. A summary and discussion
follow in Sec. VI. In Appendix A, we solve motions of
the c.m. of a binary and show its stability. We also present
the Lagrange planetary equations of the model and write
down the equations for the orbital parameters of a binary
taking averages over inner and outer binary cycles in
Appendix B. We show that this simplified method recovers
numerical results obtained by direct integration of the
equations of motion in the case of a hard binary. It also
provides the vZLK oscillation timescale and the maximum
and minimum values of eccentricity.
Notation used: Greek letters range from 0 to 3, while

Roman letters run from 1 to 3; Hatted indices denote tetrad
components in a proper reference frame rotating along an
observer; Bar over symbols correspond to quantities in a
static tetrad frame. We use G ¼ c ¼ 1 unless specified
otherwise.

II. BINARY SYSTEM IN A CURVED SPACETIME

We first summarize how to calculate a binary motion
near a supermassive black hole (SMBH), which was
described in details in paper I [62]. We discuss a binary
system in a fixed curved background. A binary consists of
two point particles with the masses m1 and m2. In order to
solve a binary motion around SMBH, we set up a local
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inertial frame [52,63], and then put a self-gravitating binary
system, which follows approximately Newtonian dynamics
in a local inertial frame [59].

A. Proper reference frame

The background spacetime metric, which describes an
SMBH, is given by ds̄2 ¼ ḡμνdxμdxν. We consider an
observer, whose orbit is given by a world line γ described
by xμ ¼ zμðτÞ, where τ is a proper time of the observer. The
4-velocity of the observer is given by uμðτÞ≡ dzμ=dτ.
We then prepare an orthonormal tetrad system feμα̂g

along γ, which is defined by the conditions such that
eμα̂eβ̂μ ¼ ηα̂ β̂, e

μ
0̂
¼ uμ, where ηα̂ β̂ is Minkowski spacetime

metric.
For a given 4-velocity uμ, this tetrad system is deter-

mined up to three-dimensional rotations. The tetrad eμα̂ is
transported along γ as

Deî
μ

dτ
¼ −ðaμuν − uμaν þ uαωβϵ

αβμνÞeîν;

where aμ ≡Duμ=dτ and ωμ are the acceleration of the
observer and the angular velocity of a rotating spatial basis
vector eμðaÞ, respectively.
Next, we construct a local coordinate system (the

observer’s proper reference system) near the world line
γ, which is described as ðxμ̂Þ ¼ ðcτ; xâÞ , where the spatial
components xâ is measured from the point at τ on the world
line γ along the spatial hypersurface ΣðτÞ perpendicular
to γ.
The metric form of this proper reference frame up to the

second order of xâ is given by

gμ̂ ν̂ ¼ ημ̂ ν̂ þ εμ̂ ν̂ þOðjxk̂j3Þ; ð2:1Þ

where

ε0̂ 0̂ ¼ −
1

c2

�
2ak̂x

k̂ þ ðc2R̄0̂ k̂ 0̂ l̂ − ωĵ k̂ω
ĵ
l̂
Þxk̂xl̂ þ ðak̂xk̂Þ2

c2

�
;

ð2:2Þ

ε0̂ ĵ ¼ −
1

c2

�
cωĵ k̂x

k̂ þ 2

3
c2R̄0̂ k̂ ĵ l̂x

k̂xl̂
�
; ð2:3Þ

εî ĵ ¼ −
1

c2

�
1

3
c2R̄î k̂ ĵ l̂x

k̂xl̂
�
; ð2:4Þ

with R̄μ̂ ν̂ ρ̂ σ̂ being the tetrad component of the Riemann

curvature of a background spacetime and ωĵ k̂ ≡ ϵĵ k̂ l̂ω
l̂

[52,59,63].
The acceleration and angular frequency in the proper

reference frame are defined by

aĵ ≡ eĵμ
Duμ

dτ
;

ωĵ ≡ 1

2
ϵ
ð3Þĵ k̂ l̂

el̂μ
Dek̂

μ

dτ
;

where ϵ
ð3Þĵ k̂ l̂ ≡ eĵνek̂ρel̂σuμϵμνρσ. If the observer’s orbit is

the geodesic, we recover the Fermi normal coordinates.

B. Self-gravitating binary system

Now we discuss a self-gravitating binary system in a
fixed curved background spacetime [59]. We are interested
in the case where Newtonian dynamics is valid in the
observer’s proper reference frame. The necessary condition
is that the typical scale lbinary of a binary system should
satisfy

lbinary ≪ min

�
1

jaĵj ;
1

jωĵj ;lR̄

�
;

where lR̄ is the minimum curvature radius defined by

lR̄ ≡min ½jR̄μ̂ ν̂ ρ̂ σ̂j−1
2; jR̄μ̂ ν̂ ρ̂ σ̂;α̂j−1

3; jR̄μ̂ ν̂ ρ̂ σ̂;α̂;β̂j−
1
4�:

A gravitational interaction in a self-gravitating binary
system can be described by the metric deviation from a
local Minkowski spacetime. For example, to discuss
Newtonian dynamics of particle 1, it is enough to consider

the 00 component of the metric perturbation, φð1Þ
0̂ 0̂

¼
−2Φð1Þ=c2, where Φð1Þ is the Newtonian potential of
particle 1, which is

Φð1ÞðxîÞ ¼ −
Gm2

jxî1 − xî2j
:

The equations of motion for particle 1 in the observer’s
proper reference frame can be derived by the variation with
respect to xî1 of the action

Sð1Þ ¼
Z

dτLð1Þ;

where

Lð1Þ ≡ −m1c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gð1Þμ̂ ν̂

dxμ̂1
dτ

dxν̂1
dτ

s
;

with the metric gð1Þμ̂ ν̂ given by

gð1Þμ̂ ν̂ ¼ ημ̂ ν̂ þ εμ̂ ν̂ þ φð1Þ
μ̂ ν̂ : ð2:5Þ

We also find a similar action for particle 2. Next, we
perform the post-Newtonian expansion of the total
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Lagrangian L ¼ Lð1Þ þ Lð2Þ. The Lagrangian for a binary
up to 0.5 PN order is given by

Lbinary ¼ LN þ L1=2; ð2:6Þ

where

LN ≡ 1

2

X2
I¼1

mI ẋ2I þ
Gm1m2

jx1 − x2j
þ La þ Lω þ LR̄; ð2:7Þ

with

La ¼ −
X2
I¼1

mIak̂x
k̂
I ;

Lω ¼ −
X2
I¼1

mI

�
ϵĵ k̂ l̂ω

l̂xk̂I ẋ
ĵ
I −

1

2
ðω2x2I − ðω · xIÞ2Þ

�
;

LR̄ ¼ −
1

2

X2
I¼1

mIR̄0̂ k̂ 0̂ l̂x
k̂
I x

l̂
I ;

and

L1=2 ≡ −
2

3

X2
I¼1

mIc2R̄0̂ k̂ ĵ l̂x
k̂
I x

l̂
I
ẋĵI
c
: ð2:8Þ

A dot (·) denotes the proper time derivative d=dτ.
Introducing the c.m coordinates and the relative coor-

dinates by

R ¼ m1x1 þm2x2
m1 þm2

;

r ¼ x2 − x1;

we find the Newtonian Lagrangian [Eq. (2.7)] in terms of R
and r as

LN ¼ LCMðR; ṘÞ þ Lrelðr; ṙÞ; ð2:9Þ

where

LCMðR; ṘÞ ¼
1

2
ðm1 þm2ÞṘ2 þ LCM‐aðR; ṘÞ

þ LCM‐ωðR; ṘÞ þ LCM‐R̄ðR; ṘÞ;

with

LCM-a ¼−ðm1þm2Þa ·R;

LCM-ω¼−ðm1þm2Þ
�
ϵĵ k̂ l̂ω

l̂Rk̂Ṙĵ−
1

2
ðω2R2− ðω ·RÞ2Þ

�
;

LCM-R̄ ¼−
1

2
ðm1þm2ÞR̄0̂ k̂ 0̂ l̂R

k̂Rl̂;

and

Lrelðr; ṙÞ ¼
1

2
μṙ2 þ Gm1m2

r
þ Lrel‐ωðr; ṙÞ þ Lrel‐R̄ðr; ṙÞ;

with

Lrel-ω ¼ −μ
�
ϵĵ k̂ l̂ω

l̂rk̂ṙĵ −
1

2
ðω2r2 − ðω · rÞ2Þ

�
;

Lrel-R̄ ¼ −
1

2
μR̄0̂ k̂ 0̂ l̂r

k̂rl̂:

Here, μ ¼ m1m2=ðm1 þm2Þ is the reduced mass. When we
consider only LN, we can separate the variables R and r. In
particular, when the observer trajectory is a geodesic (a ¼ 0
and ω ¼ 0), the orbit of R ¼ 0 becomes a solution of the
equation for R. This implies that the c.m. follows the
observer’s geodesic. Consequently, our analytical focus
narrows down to the equation dictating the behavior of the
relative coordinate r. However, when we include the 0.5 PN
term, it is not the case. The 0.5 PN Lagrangian L1=2

expression is written by use of R and r as follows:

L1=2 ¼ L1=2-CMðR; ṘÞ þ L1=2-relðr; ṙÞ
þ L1=2-intðR; Ṙ;r; ṙÞ; ð2:10Þ

where

L1=2-CMðR;ṘÞ¼−2

3
ðm1þm2ÞR̄0̂ k̂ ĵ l̂R

k̂Rl̂Ṙĵ;

L1=2-relðr; ṙÞ¼−2

3
μ
ðm1−m2Þ
ðm1þm2Þ

R̄0̂ k̂ ĵ l̂r
k̂rl̂ṙĵ;

L1=2-intðR;Ṙ;r; ṙÞ¼−2

3
μR̄0̂ k̂ ĵ l̂½rk̂rl̂ṘĵþðRk̂rl̂þ rk̂Rl̂Þṙĵ�:

ð2:11Þ

The interaction term [Eq. (2.11)] invalidates the R ¼ 0
orbit as a solution, even when acceleration is absent. The
coupling between the c.m. motion [RðτÞ] and relative
motion [rðτÞ] makes both binary and c.m. trajectories
intricate, even when the observer follows a geodesic.
However, if we introduce an appropriate acceleration a
in 0.5 PN order to cancel the interaction terms, R ¼ 0 will
become a solution, i.e., the c.m. can follow the observer’s
motion as follows: Integrating by parts the interaction term,
we find

L1=2-intðR; Ṙ;r; ṙÞ ¼ −2

3
μR̄0̂ k̂ ĵ l̂½Ṙĵrk̂rl̂ þ ṙĵðRk̂rl̂ þ rk̂Rl̂Þ�

≈ 2μ

�
1

3

dR̄0̂ k̂ ĵ l̂

dτ
rk̂rl̂ þ R̄

0̂k ĵ l̂r
k̂ṙl̂

�
Rĵ

ðintegration by partÞ;
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where the time derivative of the curvature is evaluated
along the observer’s orbit.
If we define the acceleration of the observer by

aĵ ¼
2μ

m1 þm2

�
1

3

dR̄0̂ k̂ ĵ l̂

dτ
rk̂rl̂ þ R̄0̂ k̂ ĵ l̂r

k̂ṙl̂
�
;

two terms L1=2-int and LCM-a cancel each other. As a result,
the Lagrangians for R and r are decoupled, and R ¼ 0
becomes an exact solution of the equation for R, which is
derived from the Lagrangian (LCM þ L1=2-CM). The c.m.
follows the observer’s orbit and therefore, we obtain the
decoupled equation for the relative coordinate r.
To determine the proper observer’s orbit, which deviates

from a geodesic but remains in proximity to it, we must
solve the equation of motion that accounts the small
acceleration such that

DuμCM
dτ

¼aμ¼eμĵaĵ

¼ 2μ

m1þm2

eμĵ
�
1

3

dR̄0̂ k̂ ĵl̂

dτ
rk̂rl̂þR̄0̂ k̂ ĵl̂r

k̂ṙl̂
�
: ð2:12Þ

This equation can also be expressed as

Dpμ
CM

dτ
¼ ðm1 þm2Þaμ

¼ eμĵ
�
1

2
R̄0̂ ĵ k̂ l̂S

k̂ l̂ þ R̄0̂ k̂ ĵ l̂Ṁ
k̂ l̂ þ 2

3

dR̄0̂ k̂ ĵ l̂

dτ
Mk̂ l̂

�
;

ð2:13Þ

where pCM ≡ ðm1 þm2ÞuCM is the c.m. 4-momentum,
Sk̂ l̂ ≡ rk̂pl̂ − rl̂pk̂ is the angular momentum tensor of a
binary, and Mk̂ l̂ ≡ μrk̂rl̂ is the second mass moment,
which can be replaced by the mass quadruople moment
Qk̂ l̂ ≡ rk̂rl̂ − 1

3
r2δk̂ l̂ in the Ricci-flat vacuum background.

The first term in the right-hand side is the similar to the
spin-curvature coupling term appeared in the Mathisson-
Papapetrou-Dixon equations of a spinning test particle in a
curved spacetime [64–66].
Consequently, our initial step involves solving the

equation for the relative coordinate, denoted as r, which
is governed solely by the Lagrangian LrelðrÞ þ L1=2-relðrÞ.
Notably, when the masses are equal, i.e.,m1 ¼ m2, we have
only the Newtonian Lagrangian Lrel because L1=2-rel

vanishes. Once we have obtained the solution for rðτÞ,
we proceed to determine the motion of the c.m. or the
observer within the background spacetime by addressing
Eq. (2.12). Employing the solution for the relative motion
rðτÞ in conjunction with the c.m. motion solution, repre-
sented as xμCMðτÞ, we can deduce the binary system’s

trajectory within the specified curved background space-
time, denoted as xμ1ðτÞ and xμ2ðτÞ.

III. EQUATION OF MOTION OF A BINARY
SYSTEM IN A KERR SPACETIME

Now we consider a rotating SMBH as the background
spacetime, which is given by Kerr solution in Boyer-
Lindquist coordinates as

ds̄2 ¼ −Δ
Σ
ðdt − asin2θdϕÞ2 þ sin2θ

Σ
½ðr2 þ a2Þdϕ − adt�2

þ Σ
Δ
dr2 þ Σdθ2; ð3:1Þ

where

Σ ¼ r2 þ a2sin2θ and Δ ¼ r2 − 2Mrþ a2:

M and a are a gravitational mass and proper angular
momentum of a supermassive black hole, respectively.

A. A test particle on the equatorial plane

We consider a circular geodesic on the equatorial plane
of a test particle with a unit mass. The proper energy and
proper angular momentum are determined by the radius
r0 as

E ¼ r20 − 2Mr0 þ aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
r0Fσðr0Þ

; ð3:2Þ

L ¼ σ
ffiffiffiffiffiffiffiffiffi
Mr0

p ðr20 þ a2 − 2aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p Þ
r0Fσðr0Þ

; ð3:3Þ

where

Fσðr0Þ≡
�
r20 − 3Mr0 þ 2aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p �
1=2

;

and σ ¼ þ1 or −1, which correspond to prograde and
retrograde orbits, respectively. The existence condition of a
circular orbit is

r20 − 3Mr0 þ 2aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
≥ 0:

The innermost stable circular orbit (ISCO) is obtained by
the conditions such that

dE
dr0

¼ 0;
dL
dr0

¼ 0;

which gives [67]

rISCO
M

¼ 3þ Z2 − σ½ð3 − Z1Þð3þ Z1 þ 2Z2Þ�1=2;
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where

Z1 ¼ 1þ ð1 − χ2Þ1=3½ð1 − χÞ1=3 þ ð1þ χÞ1=3�;
Z2 ¼ ð3χ2 þ Z2

1Þ1=2;
with χ ≡ a=M.
Since the energy and angular momentum are defined by

E ¼ −ut; L ¼ uϕ;

we find

ut ¼ r20 þ aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
r0Fσðr0Þ

;

uϕ ¼ σ
ffiffiffiffiffiffiffiffiffi
Mr0

p
r0Fσðr0Þ

:

From the latter equation, we find the angular velocity of a
circular observer measured by the proper time as

dϕ
dτ

¼ uϕ ¼ σw0;

where

w0 ≡
ffiffiffiffiffiffiffiffiffi
Mr0

p
r0Fσðr0Þ

:

B. A local inertial reference frame

For the present purpose, there is one convenient tetrad
system of Kerr spacetime, which is called Carter’s tetrad
system such that

eμ t̄ ¼
1ffiffiffiffiffiffiffi
ΣΔ

p ðr2 þ a2; 0; 0; aÞ;

eμr̄ ¼
ffiffiffiffi
Δ
Σ

r
ð0; 1; 0; 0Þ;

eμθ̄ ¼
1ffiffiffi
Σ

p ð0; 0; 1; 0Þ;

eμϕ̄ ¼ 1ffiffiffi
Σ

p
�
a sin θ; 0; 0;

1

sin θ

�
:

Now we construct a local inertial reference frame along
the observer. The transformation matrix from Carter’s
tetrad to a rotating proper reference frame ðτ; x; y; zÞ is
given by

Λ0̂
ᾱ ¼

�
Eðr20 þ a2Þ − aL

r0
ffiffiffiffi
Δ

p ; 0; 0;
L − aE

r0

�
;

Λx̂
ᾱ ¼ 1ffiffiffi

S
p ð0; r0Λ0̂

0̄; 0; 0Þ;

Λŷ
ᾱ ¼ σ

ffiffiffiffi
K
S

r �
Λ0̂

0̄; 0; 0;
S
K
Λ0̂

ϕ̄

�
;

Λẑ
ᾱ ¼ σffiffiffiffi

K
p ð0; 0;−r0Λ0̂

ϕ̄; 0Þ;

where

K ≡ ðL − aEÞ2;
S≡ r20 þ K:

K is the so-called Carter’s constant.
Here, we choose the Descartes coordinates (x, y, z) as

shown in Fig. 1.
Inserting Eqs. (3.2) and (3.3), we obtain the trans-

formation matrix Λα̂
λ̄ as

Λ0̂
λ̄ ¼ 1

Fσðr0Þ
ð

ffiffiffiffiffiffiffiffiffiffiffiffi
Δðr0Þ

p
; 0; 0; σ

ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞ; ð3:4Þ

Λx̂
λ̄ ¼ ð0; 1; 0; 0Þ; ð3:5Þ

Λŷ
λ̄ ¼ 1

Fσðr0Þ
ðσ

ffiffiffiffiffiffiffiffiffi
Mr0

p
− a; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffi
Δðr0Þ

p
Þ; ð3:6Þ

Λẑ
λ̄ ¼ ð0; 0;−1; 0Þ; ð3:7Þ

which provides the tetrad of the rotating proper reference
frame eα̂μ ≡ Λα̂

λ̄eλ̄
μ as

e0̂
μ ≡ 1

r0Fσðr0Þ
ðr20 þ aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p
; 0; 0; σ

ffiffiffiffiffiffiffiffiffi
Mr0

p
Þ;

ex̂μ ¼
�
0;

ffiffiffiffiffiffiffiffiffiffiffiffi
Δðr0Þ

p
r0

; 0; 0

�
;

eŷμ ¼
1

r0Fσðr0Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Δðr0Þ

p �
σ

ffiffiffiffiffiffiffiffiffi
Mr0

p
½r20 þ a2 − 2aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p
�;

0; 0; r20 − 2Mr0 þ aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p �
;

eẑμ ¼
�
0; 0;−

1

r0
; 0

�
:

FIG. 1. A tetrad system fex̂; eŷ; eẑg rotating with an angular
velocity w0 along a circular orbit.
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To discuss the dynamics of a binary, nonrotating proper
reference frame is more convenient. We then rotate the
xy-plane as (ðx; yÞ → ðx; yÞ), with transformation given by

Λ̃x̂
ᾱ ¼ Λx̂

ᾱ cosΨðτÞ − Λŷ
ᾱ sinΨðτÞ;

Λ̃ŷ
ᾱ ¼ Λx̂

ᾱ sinΨðτÞ þ Λŷ
ᾱ cosΨðτÞ;

where the rotation angle Ψ satisfies the evolution equation
such that

Ψ̇ ¼ σ

ffiffiffiffi
K

p

r20

�
Eðr20 þ a2Þ − aL

S
þ aðL − aEÞ

K

�
¼ σwR;

with

wR ¼ M1=2

r3=20

;

being the angular frequency of the rotating frame. It gives

Ψ ¼ σwRτ:

In order to revert to the nonrotating frame, we have to
transform back using the angular velocity. The difference
between the two angular velocities

wP ≡ w0 −wR;

gives rotation of inertial frame. It also gives the precession
of the angular momentum as we will show it later. It
contains two relativistic precessions, i.e., the so-called de-
Sitter precession and the Lense-Thirring precession. This is
evident when we take the limit ofM=r0 ≪ 1. Since a ≤ M,
this limit gives a=r0 ≪ 1. In this limit, we find

w0 ¼
ffiffiffiffiffiffiffiffiffi
Mr0

p
r0ðr20 − 3Mr0 þ 2aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p Þ1=2

≈
M1=2

r3=20

�
1þ 3M

2r0
−
aσ
r0

ffiffiffiffiffi
M
r0

s �

¼ wR þwdS þwLT;

where

wdS ¼ 3M
2r0

wR ¼ 3M3=2

2r5=20

;

wLT ¼ −
aσ
r0

ffiffiffiffiffi
M
r0

s
wR ¼ −

Maσ
r30

:

The frequencies wdS and wLT correspond to those of
de-Sitter and Lense-Thirring precessions, respectively.

These two frequencies are quite similar to those discussed
in [35,36].
In Fig. 2, we show the behavior ofwP in terms of the Kerr

parameter a. In Fig. 2(a), we set r0 ¼ rISCO, and in Fig. 2(b),
we change the radius as r0=rISCO ¼ 1, 2, 5, and 10.
We find that wP gets larger as a increases and this

increase become particularly rapid near the extreme limit of
a → 1, which means that the Lense-Thirring precession
becomes dominant. The critical value acr, beyond which
the Lense-Thirring precession is larger than the de-Sitter
precession, is evaluated by

wPðacrÞ ¼ 2wdS;

where wdS ¼ wPða ¼ 0Þ. In the case of r0 ¼ rISCO, we
find acr ≈ 0.43185973M.
However when we fix the radius r0, wP does not depend

on a so much as shown in Fig. 3. We show the cases of
r0 ¼ 6M and r0 ¼ 10M. For r0 ¼ 6M, we give only for the
prograde orbits because the ISCO radius for the retrograde
orbits is larger than 6M.
In the prograde orbits, it decreases as a increases, while it

increases for the retrograde orbits.

C. Riemann curvature components in rotating
proper reference frame

The nontrivial components of the Riemann curvature in
the Carter’s tetrad system are given by

(a)

(b)

FIG. 2. The precession frequency wP in terms of the Kerr
parameter a=M. (a) The position of the c.m. r0 is chosen at
the ISCO radius. (b) r0 for prograde orbits are chosen as
r0 ¼ rISCO; 2rISCO; 5rISCO, and 10rISCO.
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Rt̄ ϕ̄ t̄ ϕ̄ ¼ −Rr̄ θ̄ r̄ θ̄ ¼ −
1

2
Rt̄ r̄ t̄ r̄ ¼

1

2
Rθ̄ ϕ̄ θ̄ ϕ̄

¼ Rt̄ θ̄ t̄ θ̄ ¼ −Rr̄ ϕ̄ r̄ ϕ̄ ¼ Q1;

Rt̄ ϕ̄ r̄ θ̄ ¼
1

2
Rt̄ r̄ ϕ̄ θ̄ ¼ Rt̄ θ̄ ϕ̄ r̄ ¼ −Q2;

where

Q1 ¼
Mrðr2 − 3a2cos2θÞ

Σ3

Q2 ¼
Ma cos θð3r2 − a2cos2θÞ

Σ3
:

On the equatorial plane (θ ¼ π=2), we find simpler
expression such that the nontrivial components are very
similar to the Schwarzschild case as

Rt̄ θ̄ t̄ θ̄ ¼ Rt̄ ϕ̄ t̄ ϕ̄ ¼ −Rr̄ θ̄ r̄ θ̄ ¼ −Rr̄ ϕ̄ r̄ ϕ̄ ¼ M
r3

Rθ̄ ϕ̄ θ̄ ϕ̄ ¼ −Rt̄ r̄ t̄ r̄ ¼
2M
r3

: ð3:8Þ

Since we know the Riemann curvature components
in the Carter’s tetrad frame [Eq. (3.8)] and the trans-
formation matrix Λλ̄

α̂ to the rotating proper reference frame
[Eqs. (3.4)–(3.7)], we can easily find the nontrivial
Riemann curvature components in rotating proper reference
frame as

R̄0̂ x̂ 0̂ x̂ ¼ −R̄ŷ ẑ ŷ ẑ

¼ −
M

F2
σðr0Þr30

ð2r20 þ 3a2 − 3Mr0 − 2aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
Þ;

R̄0̂ ŷ 0̂ ŷ ¼ −R̄ẑ x̂ ẑ x̂ ¼
M
r30

;

R̄0̂ ẑ 0̂ ẑ ¼ −R̄x̂ ŷ x̂ ŷ ¼
M

F2
σðr0Þr30

ðr20 þ 3a2 − 4aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
Þ;

R̄0̂ x̂ ŷ x̂ ¼ −R̄0̂ ẑ ŷ ẑ ¼ −
3M

F2
σðr0Þr30

ffiffiffiffiffiffiffiffiffiffiffiffi
Δðr0Þ

p
ðσ

ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞ:

D. Equations of motion of a binary

Since the c.m. of a binary follows the observer’s circular
geodesic (R ¼ 0), we have to solve only the equations of
motion for the relative coordinate r. Using x ¼ r1̂;
y ¼ r2̂; z ¼ r3̂, the relative motion of a binary is given
by the Lagrangian

Lrelðr; ṙÞ ¼
1

2
μṙ2 þGm1m2

r
þ Lrel-wðr; ṙÞ

þ Lrel-R̄ðr; ṙÞ; ð3:9Þ

with

Lrel-w¼−μ
�
σw0ðxẏ−yẋÞ−w2

0

2
ðx2þy2Þ

�
;

Lrel-R̄¼−
μ

2
ðR̄0̂x̂0̂ x̂x

2þR̄0̂ ŷ0̂ŷy
2þR̄0̂ ẑ0̂ ẑz

2Þ

¼−
μM
2r30

�
r2þ 3

F2
σðr0Þ

ð−Δðr0Þx2þðσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
−aÞz2Þ

�
:

The first and second terms in Lrel-w describe the Coriolis
force and the centrifugal force, respectively. The first half
terms in Lrel-R̄ are the same as those in Newtonian
hierarchical triple system under quadrupole approximation.
Note that in the present approach (approximation up to the
second order of râ), we cannot go beyond quadrupole
approximation.
In order to analyze the relative motion of a binary, it is

better to work in a nonrotating initial reference frame. Since
the angular frequency of a rotating tetrad frame is wR, the
position ðx; y; zÞ in the rotating frame can be replaced by
the position ðx; y; zÞ in a nonrotating Descartes coordinate
system by use of the following transformation;

x ¼ x cos σwRτ − y sin σwRτ;

y ¼ x sin σwRτ þ y cos σwRτ;

z ¼ z:

The Lagrangian Lrel in a nonrotating proper reference
frame is given by

Lrel ¼
1

2
μ

�
dr
dτ

�
2

þ Gm1m2

r
þ Lrel-Pðr; ṙÞ

þ Lrel-R̄ðr; τÞ; ð3:10Þ

where

FIG. 3. The precession frequency wP in terms of a. We fix the
position of the c.m. at r0 ¼ 10M and 6M. The blue and red curves
denote the prograde and retrograde cases, respectively. The value
for a ¼ 0 is also given by the black dashed lines as reference.
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Lrel-Pðr; ṙÞ ¼ μσwPðẋy − ẏxÞ þ μ

2
w2

Pðx2 þ y2Þ;

Lrel-R̄ðr; τÞ ¼ −
μM
2r30

�
r2 þ 3

F2
σðr0Þ

ð−Δðr0Þðx cos σwRτ − y sin σwRτÞ2 þ ðσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞ2z2Þ

�
:

Since the momentum is defined by

px ≡ ∂L
∂ẋ

¼ μẋþ μσwPy;

py ≡ ∂L
∂ẏ

¼ μẏ − μσwPx;

pz ≡ ∂L
∂ż

¼ μż;

we obtain the Hamiltonian as

Hrel ¼ H0 þH1; ð3:11Þ

where

H0 ¼
1

2μ
p2 −

Gm1m2

r
;

H1 ¼ H1−P þH1-R̄;

with

H1-P ¼ σwPðpyx − pxyÞ;

H1-R̄ ¼ μM
2r30

�
r2 þ 3

F2
σðr0Þ

ð−Δðr0Þðx cos σwRτ − y sin σwRτÞ2 þ ðσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞ2z2Þ

�
:

The equations of motion are given as

ẋ ¼ ∂H
∂px

¼ px
μ
− σwPy; ð3:12Þ

ẏ ¼ ∂H
∂py

¼ py
μ
þ σwPx; ð3:13Þ

ż ¼ ∂H
∂pz

¼ pz
μ
; ð3:14Þ

and

ṗx¼−
∂H
∂x

¼−
Gm1m2

r3
x−σwPpy

−
μM
r30

½x−3λðxcosσwRτ−ysinσwRτÞcoswRτ�; ð3:15Þ

ṗy¼−
∂H
∂y

¼−
Gm1m2

r3
yþσwPpx

−
μM
r30

½yþ3λðxcosσwRτ−ysinσwRτÞsinwRτ�; ð3:16Þ

ṗz ¼ −
∂H
∂z

¼ −
Gm1m2

r3
z −

μM
r30

½−2þ 3λ�z; ð3:17Þ

where

λ≡ Δðr0Þ
F2
σðr0Þ

¼ r20 − 2Mr0 þ a2

r20 − 3Mr0 þ 2aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p : ð3:18Þ

IV. PRELIMINARY CONSIDERATIONS

For numerical analysis in next section, we shall first
rewrite the basic equations using dimensionless variables,
introduce the orbital parameters, show how to set up initial
data, and discuss validity of the present model and stability
condition.

A. Normalization

In this paper we will analyze a binary model with
m1 ¼ m2. We have to solve Eqs. (3.12)–(3.17). In order
to solve these basic equations, we shall introduce dimen-
sionless variables as follows: Since we consider a hierar-
chical triple system, the initial motion of a binary can be
approximated by an elliptic orbit. Hence, the length scale of
a binary is normalized by an initial semimajor axis a0,
while timescale is normalized by an initial binary mean
motion n0, which is defined by

n0 ≡
�
Gðm1 þm2Þ

a30

�
1=2

:

Note that the initial binary period is given by Pin ¼ 2π=n0.
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Introducing

τ̃ ¼ n0τ;

x̃ ¼ x
a0

; ỹ ¼ y
a0

; z̃ ¼ z
a0

; r̃ ¼ r
a0

;

p̃x ¼
px

μa0n0
; p̃y ¼

py
μa0n0

; p̃z ¼
pz

μa0n0
;

we find

dx̃
dτ̃

¼ p̃x − σw̃Pỹ; ð4:1Þ

dỹ
dτ̃

¼ p̃y þ σw̃Px̃; ð4:2Þ

dz̃
dτ̃

¼ p̃z; ð4:3Þ

and

dp̃x
dτ̃

¼ −
x̃
r̃3
− σw̃Pp̃y

−
1

f
½x̃ − 3λðx̃ cos σw̃Rτ̃ − ỹ sin σw̃Rτ̃Þ cos σw̃Rτ̃�;

ð4:4Þ

dp̃y
dτ̃

¼ −
ỹ
r̃3
þ σw̃Pp̃x

−
1

f
½ỹþ 3λðx̃ cos ˜σwRτ̃ − ỹ sin σw̃Rτ̃Þ sin σw̃Rτ̃�;

ð4:5Þ

dp̃z
dτ̃

¼ −
z̃
r̃3
−
1

f
ð−2þ 3λÞz̃; ð4:6Þ

where

w̃P ≡wP

n0
;

w̃R ≡wR

n0
;

and

λ ¼ r20 − 2Mr0 þ a2

r20 − 3Mr0 þ 2aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p :

f denotes the firmness parameter of a binary, which is
defined by

f≡ gravitational force
tidal force by SMBH

¼ Gm1m2=a20
GμMa0=r30

¼
�
m1 þm2

M

��
r0
a0

�
3

:

The initial semimajor axis a0 is given by

a0 ¼ f−
1
3

�
m1 þm2

M

�
1=3

r0: ð4:7Þ

Using f, we find

w̃P ¼ νf−
1
2; ð4:8Þ

w̃R ¼ f−
1
2; ð4:9Þ

where

ν≡ r0
Fσðr0Þ

− 1 ¼ r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 − 3Mr0 þ 2aσ

ffiffiffiffiffiffiffiffiffi
Mr0

pp − 1: ð4:10Þ

The basic equations (4.1)–(4.6) contain three indepen-
dent parameters; λ, ν, and the firmness f. λ changes from 1
to 4=3, while ν runs from 0 to

ffiffiffi
2

p
− 1 for a ¼ 0 and to ∞

for a ¼ M.
As for the firmness f, as we will discuss it later, f ≫ 1 is

required for stability. In the limit of f → ∞, we find an
integrable system. The orbit shows the precession with the
period w̃P.

B. Orbital parameters

In order to discuss the properties of a binary orbit, it is
more convenient to use the orbital parameters. We may
assume that the binary motion is close to an elliptic orbit,
which is described by

r ¼ að1 − e2Þ
1þ e cos f

;

where a is a semimajor axis, e is the eccentricity, and f is
true anomaly. Since the orbital plane is not, in general,
z ¼ 0, we have to introduce three angular variables;
the argument of periapsis ω, the ascending node Ω and
the inclination angle I. We have the relations between the
position r ¼ ðx; y; zÞ of the component of a binary and the
orbital parameters ðω;Ω; a; e; I; fÞ as0
B@

x

y

z

1
CA ¼ r

0
B@

cosΩ cosðωþ fÞ − sinΩ sinðωþ fÞ cos I
sinΩ cosðωþ fÞ þ cosΩ sinðωþ fÞ cos I

sinðωþ fÞ sin I

1
CA:

ð4:11Þ
In order to extract the orbital parameters from the orbit

given by the Cartesian coordinates, one can use the
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osculating orbit when the orbit is close to an ellipse. The
magnitude of the normalized Laplace-Runge-Lenz vector,
which is defined by

e≡ p̃ × ðr̃ × p̃Þ − r̃
r̃
; ð4:12Þ

is commonly used for a measure of orbital eccentricity.
The inclination angle I is defined as mutual inclination

between angular momenta of the inner and outer binary.

I ¼ cos−1
�
L̃z

jL̃j

�
; ð4:13Þ

where L̃≡ r̃ × p̃ is the angular momentum of a binary.
The other two essential angles Ω and ω governing the

orientation of the orbital plane. The line that marks the
intersection of the orbital plane with the reference plane
(the equatorial plane in the present case) is called the node
line, and the point on the node line where the orbit passes
above the reference plane from below is called the
ascending node. The angle between the reference axis
(say x-axis) and node line vector N is the longitude of
ascending node Ω. First, node line is defined as

N ¼ ẑ × L̃: ð4:14Þ

where ẑ is normal to the reference plane (the unit vector in
the z direction). Thus, Ω is computed as

Ω ¼ cos−1ðNx=NÞ: ð4:15Þ

The argument of periapsis ω is the angle between node line
and periapsis measured in the direction of motion.
Therefore,

ω ¼ cos−1
�
N · e
Ne

�
: ð4:16Þ

However, one must be careful with the definitions of
orbital elements when using the osculating method.
Notably, eccentricity can exhibit unusual behavior, such
as “apparent” rise or unphysical rapid oscillations, particu-
larly when dealing with very small eccentricities and using
the magnitude of the Runge-Lenz vector as an eccentricity
measure, as observed in [68]. In such a case, it is better to
define the eccentricity by the averaged one over one
cycle as

hei≡ rmax − rmin

rmax þ rmin
;

where rmax and rmin correspond to orbital separation at
adjacent turning points of an eccentric orbit.
When the orbit can be approximatedwell by the osculating

one, e is given by the normalized Laplace-Runge-Lenz

vector (4.12). Otherwise, we define the averaged eccentricity
vector by

hei≡ −
ðrmin þ rmaxÞ
ðrmin þ rmaxÞ

pointing towards the periapsis, where rmax and rmin are
obtained from the numerical data of position vectors. We
have used both definitions and found that most results
agree well.

C. Initial data

In order to provide the initial data of a binary, i.e.,
x̃0; ỹ0; z̃0 and p̃x0; p̃y0; p̃z0, we shall give the initial orbital
parameters ðω0;Ω0; a0; e0Þ. From (4.11), assuming f ¼ 0
at τ ¼ 0, we find

x̃0 ¼ ð1 − e0Þ½cosΩ0 cosω0 − sinΩ0 sinω0 cos I0�;
ỹ0 ¼ ð1 − e0Þ½sinΩ0 cosω0 þ cosΩ0 sinω0 cos I0�;
z̃0 ¼ ð1 − e0Þ sinω0 sin I0:

As for the momentum p̃x0; p̃y0; p̃z0, we use the definitions
of the orbital parameters of the osculating orbit, i.e.,
Eqs. (4.12), (4.13), (4.16), and (4.15) with (4.14).
From Eq. (4.14) we find

Nx0 ¼ −L̃y0; Ny0 ¼ L̃x0; Nz0 ¼ 0:

From Eq. (4.15) we obtain

Nx0 ¼ N0 cosΩ0:

Since N2
0 ¼ N2

x0 þ N2
y0, we find

Ny0 ¼ N0 sinΩ0:

Hence, from Eq. (4.16), we find

e0 cosω0 ¼
�
N0

N0

· e0

�
¼ cosΩ0ex0 þ sinΩ0ey0;

where

ex0 ¼ p̃y0L̃z0 − p̃z0L̃y0 −
x̃0
r̃0
;

ey0 ¼ p̃z0L̃x0 − p̃x0L̃z0 −
ỹ0
r̃0
;

with

L̃x0 ¼ ỹ0p̃z0 − z̃0p̃y0;

L̃y0 ¼ z̃0p̃x0 − x̃0p̃z0:
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Since

cosΩ0 ¼
Nx0

N0

¼ −
L̃y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L̃2
x0 þ L̃2

y0

q ;

sinΩ0 ¼
Ny0

N0

¼ L̃x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L̃2
x0 þ L̃2

y0

q ;

and

L̃z0 ¼ L̃0 cos I0;

we find that

L̃x0 ¼ L̃0 sin I0 sinΩ0; L̃y0 ¼ −L̃0 sin I0 cosΩ0:

From the normalized Laplace-Runge-Lenz vector e0, we
obtain

e20 ¼ ½p̃20r̃20 − ðp̃0 · r̃0Þ2�
�
p̃20 −

2

r̃0

�
þ 1:

Hence, when we prepare the initial orbital parameters (e0,
I0, ω0,Ω0), we can provide the initial data of ðr̃0; p̃0Þ for the
normalized evolution equations (4.1)–(4.6). Note that since
we choose the initial point at the periapsis (f ¼ 0 at τ ¼ 0),
we find

ðp̃0 · r̃0Þ ¼ 0;

which can be used to find the initial data.

D. Validity and stability

Before showing our numerical results, we discuss
validity of the present approach and the stability conditions.
The minimum curvature radius at the radius r0 is evalu-
ated as

lR̄ ≡min½jR̄μ̂ ν̂ ρ̂ σ̂j−1
2; jR̄μ̂ ν̂ ρ̂ σ̂;α̂j−1

3; jR̄μ̂ ν̂ ρ̂ σ̂;α̂;β̂j−
1
4�

∼min

��
M
r30

�
−1
2

;

�
M
r40

�
−1
3

;

�
M
r50

�
−1
4

�

∼ r0

�
r0
M

�
1=4

:

When we put a binary at r ¼ r0, the binary size lbinary

should satisfy

lbinary ≪ lR̄:

The relativistic effect in a binary is not important when

lbinary ≫
Gðm1 þm2Þ

c2
:

As for stability of a binary, the mutual gravitational
interaction between a binary should be much larger than the
tidal force by a third body. The condition is given by

Gm1m2

r2
≫

μM
r30

r;

which corresponds to the condition on the firmness
parameter as f ≫ 1. It gives the constraint on a binary
size lbinary as

lbinary ≪
�
m1 þm2

M

�1
3

r0: ð4:17Þ

Hence, for a binary with the size of

Gðm1 þm2Þ
c2

≪ lbinary ≪
�
m1 þm2

M

�1
3

r0;

we may apply the present Newtonian approach.
If we are interested in the orbit near the ISCO radius of

near extreme Kerr BH (r0 ¼ M), we find the condition as

2 × 10−7au

�
m1 þm2

20M⊙

�
≪ lbinary

≪ 6 × 10−3au

�
m1 þm2

20M⊙

�1
3

�
M

108M⊙

�2
3

:

Note that lR̄ ∼ 1auðM=108M⊙Þ in this limit.
We also have another criterion for stability. In order to

avoid a chaotic energy exchange instability, we may have
to impose the condition for the ratio of the circular radius r0
to the binary size lbinary such that

r0
lbinary

≲ Cchaotic

�
M

m1 þm2

�
p
;

when M ≫ m1; m2. Two parameters in this inequality are
evaluated by N-body simulations of two groups [69,70] as

Cchaotic ∼ 2.8 and p ¼ 2

5
ðcriterion 1Þ;

Cchaotic ∼ 5.2f
1
3 and p ¼ 1

3
ðcriterion 2Þ:

Here f is a complicated function of inner eccentricity e and
inclination I such that

f ¼ 1 −
2

3
eð1 − e2Þ

− 0.3 cos I

�
1 −

e
2
þ 2 cos I

�
1 −

5

2
e3=2 − cos I

��
:
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It takes the value in the range of 0 to 2.25, but mostly
between 0.6 and 1.0.
Since the above stability condition is only obtained for

stellar masses triples and the direct N-body integration is a
reliable test of stability in such a setting, we will check such
chaotic instability condition in our model.

V. NUMERICAL ANALYSIS

In a hierarchical triple system, there are several important
features. One is the so-called vZLK oscillations. If the
system is inclined more than some critical angle, there
appears an oscillation between the eccentricity and incli-
nation angle. The second interesting feature is an orbital
flip, which may appears when the inclination angle evolves
into near 90°. The last one which we show is a chaotic
feature in the long-time evolution.
Before showing the dynamical evolution of the present

system, we first discuss chaotic instability condition in
our model.

A. Chaotic instability

In this subsection, we show our results of stability
analysis for several values of the initial orbital parameters
(the semimajor axis a0, eccentricity e0, inclination I0), the
circular radius r0, and Kerr rotation parameter a. We choose
a¼0.1;0.3;0.5;0.7;0.9;0.999M, a0¼0.005;0.015;0.025M,
e0 ¼ 0.01, 0.9 and I0 ¼ 0ðcoplanarÞ; 85°. We fix the argu-
ment of periapsis and the ascending node as ω0 ¼ 60°;
Ω0 ¼ 30° for simplicity.
We perform the simulation until τ̃ ¼ 104, which is

τ ¼ 104n0 ≈ 1600P0, where P0 is initial orbital period of
a binary. Since a binary is broken when the system is
unstable, we judge stability at the end point of the
simulation. However, since the present system is non-
integrable and show some chaotic features as we will show
later, the boundary values between stability and instability
is not sharp. In fact, fixing the orbital parameters of a binary
and Kerr parameter a, even when we find a stable orbit for
some value of r0, we obtain an unstable orbit for a slightly
larger value of r0. Changing the values of r0, the stable and
unstable orbits appear randomly. Fortunately, there exists
the minimum value of r0 for stable orbits, below which a
binary is broken before τ̃ ≈ 1000 (mostly within a few
dynamical timescale).
In Fig. 4, we show this minimum value (r0ðcrÞ) for given

orbital parameters as a reference of chaotic instability. We
choose the initial orbital parameters of a binary as the
semimajor axis a0 ¼ 0.005M (dotted line), 0.015M
(dashed line), and 0.025M (thin line). The initial eccen-
tricity e0 is chosen 0.01 (blue) and 0.9 (red). We fix the
other initial orbital parameters as I0 ¼ 85°;ω0 ¼ 60°;
Ω0 ¼ 30°.
Below the critical radius r0ðcrÞ, we always find unstable

binary within τ̃ ¼ 103. While, beyond the critical radius,

stable and unstable orbits appear randomly. In this case,
however, unstable orbit can evolve beyond τ̃ ¼ 103, but a
binary is broken before τ̃ ¼ 104. Since the instability
appears after many orbital cycles, it is not dynamical
instability but may be caused by chaotic instability. It is
consistent with the fact that stable and unstable orbits
appear randomly beyond the critical radius. The appearance
of unstable orbits becomes less frequent as r0 increases. We
expect that the system becomes much stable when r0 is
large enough as we show later.
Figure 4 shows that the critical radius r0ðcrÞ is almost

independent of the Kerr parameter a. We also find that its
dependence on the initial eccentricity is rather small. The
compactness of a binary (the initial semimajor axis a0) is
the most important factor. We find that the more compact
binary can have stable orbits closer to SMBH. In fact, a
stable binary with a0 ¼ 0.005M can exist near the ISCO
radius.
The inclination dependence is also important as shown in

Fig. 5, in which we include the coplanar cases (I0 ¼ 0°). The
green andmagenta colored lines correspond to the cases with
the initial eccentricity e0 ¼ 0.01 and 0.9, respectively.
Figure 5 shows that the critical radius in the coplanar

case is smaller than that in the highly inclined orbit. The
coplanar binary is more stable than the highly inclined
binary. It may be because the vZLK oscillation appears in
the highly inclined orbit.
As we discussed in Sec. IV D, the criterion of chaotic

instability of three body system can be described by two
parameters, Cchaotic and p. In the present model, we can
also evaluate those parameters. We find p ¼ 1=3 and
Cchaotic ¼ f1=3ðcrÞ, because the critical value of the firmness

parameter f depend slightly on the initial eccentricity e0 and

FIG. 4. The minimum radius (r0ðcrÞ) in terms of Kerr rotation
parameter a for given values of the semimajor axis a0 ¼
0.025Mðthin lineÞ, 0.015Mðdashed lineÞ, 0.005Mðdotted lineÞ.
The blue and red correspond to the cases of the initial eccentricity
e0 ¼ 0.01 and 0.9, respectively. We fix the other initial orbital
parameters as e0 ¼ 0.01; I0 ¼ 85°;ω0 ¼ 60°;Ω0 ¼ 30°. Below
the critical radius r0ðcrÞ, we always find unstable binary. Beyond
the critical radius, stable orbits and unstable ones appear randomly.
We also show the ISCO radius (black), below which the circular
orbit of the c.m. becomes unstable.
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inclination I0, but are almost independent of the other
parameters, which means criterion 2 is more suitable to the
present model. We show our results of Cchaotic in Fig. 6.
The values of Cchaotic for the highly inclined orbits is

always larger than those for the coplanar orbits. The values
of Cchaotic in our model is always smaller than those in the
criterion 2, which is given by Mylläri et al. (MVPM) [70].
However, since the system is chaotic near Cchaotic, there is
no clear critical value. In fact, a binary with some initial
data with the firmness f > fcr ≡ C3

chaotic shows instability. In
this sense, our result is consistent with criterion 2.

B. vZLK oscillations

In a hierarchical triple system, when the inclination is
larger than some critical angle, a stable binary orbit shows
vZLK oscillations. We present four typical models, which

are listed in Table I, in order to clarify the important
properties of vZLK oscillations.

1. Regular vZLK oscillations

We first show Model I as an example of the regular
vZLK oscillations in Fig. 7. We choose the Kerr rotation
parameter as a ¼ 0.9M, the initial orbital parameters of a
binary as a0 ¼ 0.005M, e0 ¼ 0.01, I0 ¼ 85°, ω0 ¼ 60°,
Ω0 ¼ 30°, and the circular radius as r0 ¼ 10M.

TABLE I. Parameters of the models. The Kerr rotation param-
eter a, the argument of periapsis ω0, and the ascending node Ω0

are fixed.

Model a=M a0=M r0=M e0 I0 ω0 Ω0

I 0.9 0.005 10 0.01 85° 60° 30°
II 0.9 0.005 2.9 0.01 60° 60° 30°
III 0.9 0.005 3.2 0.01 85° 60° 30°
IV 0.9 0.015 10 0.01 85° 60° 30°

FIG. 5. The critical radius (r0ðcrÞ) in terms of Kerr rotation
parameter a for given values of the semimajor axis a0 ¼
0.025Mðthin lineÞ, 0.015Mðdashed lineÞ, 0.005Mðdotted lineÞ.
We add the coplanar cases (I0 ¼ 0°) in Fig. 4. The green and
magenta colored lines correspond to the cases of the initial
eccentricity e0 ¼ 0.01 and 0.9, respectively. We fix the other
initial orbital parameters as ω0 ¼ 60°;Ω0 ¼ 30°.

FIG. 6. Cchaotic is shown for various values of the parameters.
The colors and types of lines denote the same models as those in
Fig. 5. The values of Cchaotic for the highly inclined orbits is larger
than those for the coplanar orbits. As references, we also show the
values of Cchaotic in criterion 2 by the dot-dashed lines.

FIG. 7. Time evolution of the eccentricity e and inclination
angle I with a0 ¼ 0.005M and r0 ¼ 10M (Model I) [(a) prograde
orbit, (b) retrograde orbit]. The Kerr parameter is a ¼ 0.9M, and
the other initial orbital parameters of a binary are e0 ¼ 0.01; I0 ¼
85°;ω0 ¼ 60°; and Ω0 ¼ 30°.
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We can clearly see the vZLK oscillations (a periodic
exchange between the eccentricity e and inclination I). The
eccentricity can reach almost unity. Since the critical radius
for a0 ¼ 0.005M is r0ðcrÞ ¼ 3.2M, this model with r0 ¼
10M should be highly stable. In fact, as shown in Fig. 7, the
oscillations are highly regular.

2. Comparison with the double-averaging approach

In Newtonian hierarchical triple system, one sometimes
use the double-averaging (DA) approach, in which we take
averages of the Lagrange planetary equations over two
orbital periods and analyze the averaged equations for the
orbital parameters in order to find their long-time behav-
iors. In Appendix B, we discuss the planetary equations in
the present models and analyze the DA equations.
In the present Model I, the DA approach gives very good

approximation as shown in Fig. 8, which is the result for the
prograde orbit. We also find the almost same figures for the
retrograde orbit.

3. Oscillation period

One of the important properties of vZLK oscillations for
observation is the oscillation period TvZLK. For Newtonian
vZLK oscillations. It is approximately given by

TvZLK ∼
P2
out

Pin
¼ ðm1 þm2Þ

M

�
r0
a0

�
3

Pin ¼ fPin:

As we discussed in the previous subsection, when we find
regular vZLK oscillations, the DA approach gives a good
approximation. Using the DA approximation, we can easily
evaluate the oscillation period analytically as shown in
Appendix B. It shows that the relativistic effects reduce the
vZLK timescale by a factor 0.1–0.25.
One interesting observation in Fig. 7 is that the oscil-

lation period for the retrograde orbit is smaller than that for
the prograde orbit. It is confirmed by Fig. 14 obtained by
the DA approach.

4. Critical inclination angle

The critical inclination angle, beyond which the vZLK
oscillation occurs, can be obtained by evaluating the
maximum value of the eccentricity, emax, in the models
with very small initial eccentricity.
In Fig. 9, we show emax in terms of the initial inclination

angle I0. We choose e0 ¼ 0.01, a0 ¼ 0.005M and r0 ¼
10M to find regular vZLK oscillations. The solid curve
denotes emax obtained by the DA approximation. Although
we show the case of a ¼ 0.9M in Fig. 9, the results do not
depend on a at all. This figure shows that the critical
inclination angle is a little less than 40°.
The direct integration gives a little bit smaller value of

the critical inclination angle than the DA approximation,
but the DA scheme is not too contrasting. In the extreme
limit such that r0 → rISCO as well as a → M, the larger
critical inclination angle such as 60° could be found as
discussed in Appendix 2 c. However, it turns out that when
we restrict to stable binary orbits, the critical value is much
smaller even in the extreme limit. This is confirmed by the
direct integration (red dots in Fig. 16), which provides
almost the same as Fig. 9.

FIG. 9. The maximum value of the eccentricity in vZLK
oscillations in terms of the initial inclination angle I0. We assume
e0 ¼ 0.01, a0 ¼ 0.005M, r0 ¼ 10M, and a ¼ 0.9M. The solid
curve denotes emax obtained by the DA approximation.

FIG. 8. Comparison of the direct integration (blue) and the
double-averaging approximation (red) of (a) the eccentricity e
and (b) inclination angle I. The model is the same model as that in
Fig. 7. The results are completely overlapped.
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C. Chaotic features

Since a three-body system is nonintegrable, we may find
chaotic features in binary orbits, especially near the critical
boundary between stable and unstable orbits. As we
discussed in Sec. VA, there exists a critical radius r0ðcrÞ
for given orbital parameters of a binary, below which a
binary is broken before τ̃ ¼ 103. We then expect some
chaotic features appear in a stable binary orbit with a
slightly larger radius than r0ðcrÞ. Here we give three models
(Model II, Model III, and Model IV) listed in Table I.
In Model II, we change the circular radius r0 from 10M

(Model I) to the critical radius r0ðcrÞ ¼ 2.9M as well as the
initial inclination angle I0 from 85° to 60°, while in Model
III we change only the circular radius r0 from 10M to
r0ðcrÞ ¼ 3.2M. In Model IV, we change only the semimajor
axis a0 from 0.005M in Model I to 0.015M. In Model II and
Model III, the parameters are just on the critical boundary
for chaotic instability, while in Model IV, they are near the
instability boundary.
We find two typical chaotic features in those models:

irregular vZLK oscillations and orbital flip.

1. Irregular oscillations

In Fig. 10, we show time evolution of the eccentricity
(red curve) and inclination (blue curve). We find the vZLK
oscillations are stable but quite irregular. We can easily find
that the oscillation period is not constant in Fig. 10(b). We
also see that the maximum and minimum values of the
eccentricities are changing in time.
Since the oscillation period looks regular, Model IV is

less chaotic than Model II and Model III. It is because
r0 ¼ 10M of Model IV is slightly larger than the critical
radius r0ðcrÞ ¼ 9.1M for a0 ¼ 0.015M, while the parame-
ters of Model II and Model III are just on the critical
boundary for chaotic instability.

2. Orbital flip

When the initial inclination angle is close to 90°, we may
expect a phenomenon of orbital flip, in which the inclina-
tion angle will evolve beyond 90°. We do not find such
phenomenon when the initial inclination angle is not so
large, e.g., I0 ¼ 60° as shown in Fig. 10(a). Even when
the initial inclination angle is close to 90°, the orbital flip
does not occur in regular vZLK oscillations as shown
in Fig. 7.
When the initial inclination angle is close to I0 ¼ 90°

and the vZLK oscillations are chaotic (Model III and
Model IV), we find the orbital flips as shown in
Figs. 10(b) and (c). Although it is quite random when
the orbital flip occurs, it happens when the eccentricity gets
large. It is interesting because in a regular vZLK oscil-
lations, the eccentricity is larger when the inclination angle
becomes smaller, while in the orbital flip models, the
eccentricity becomes very large not only when the

inclination angle becomes smaller but also when the
inclination angle goes beyond 90°. Our results align with
the outcomes reported in the Newtonian (or 1PN) triple
system study by Naoz et al. [71].

FIG. 10. Time evolution of eccentricity and inclination for
(a) Model II, (b) Model III, and (c) Model IV, respectively. The
model parameters are given in Table I.
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D. Rotation dependence

As we mentioned before, the properties of dynamics of a
binary are little dependent of a SMBH rotation parameter a
when the circular radius r0 and the initial semimajor axis a0
are fixed. It is because the Riemann curvature on the
equatorial plane only depends on r0 just as Schwarzschild
BH and the procession frequency wP at the fixed r0 very
weakly depends on a as shown in Fig. 3.
However, the ISCO radius, below which the c.m. of a

binary becomes unstable as shown in Appendix A, highly
depends on a. As a result, a highly compact binary can exist
at more inner circular radius for a more rapidly rotating
SMBH. In the top figure of Fig. 11, We show the critical
semimajor axis a0ðcrÞ below which a binary is stable. The
circular radius is chosen at r0 ¼ rISCO. The initial eccen-
tricity is e0 ¼ 0.01, while the initial inclination angle is
chosen as I0 ¼ 0 (coplanar) and I0 ¼ 85°. The coplanar
case (I0 ¼ 0) is shown by black curves. Since it is a regular
orbit, the boundary between stable and unstable orbit is
clear. On the other hand, in highly inclined case (I0 ¼ 85°),

since the system is chaotic, stability highly depends on the
initial conditions. As a result, there are two critical radii;
one is that all orbits are stable below some critical radius
(blue curves), and the other is that there exist stable and
unstable orbits between blue curves and another critical
radius (red curves).
In the bottom figure of Fig. 11, we show a0ðcrÞ=rISCO,

which is little dependent on the Kerr rotation parameter a.
In the extreme limit of a → M, there appears strange
behaviors especially for I0 ¼ 85°. It is becausewP becomes
very large near the ISCO radius (see Fig. 2).

VI. SUMMARY AND DISCUSSION

In this paper, we discuss dynamics of a binary system
orbiting around a rotating SMBH. Assuming an observer
rotating on a nearly circular orbit around a Kerr SMBH, we
write down the equations of motion of a binary in the
observer’s local inertial frame. Using Fermi-Walker trans-
port with small acceleration, which removes the interaction
terms between the c.m. of a binary and its relative
coordinates, we set up Newtonian self-gravitating system
in the local proper reference frame. As a result, the c.m. of a
binary follows the observer’s orbit, but its motion deviates
from an exact geodesic. Since the relative motion is
decoupled from the system, we first solve it, and then find
the motion of the c.m. by the perturbation equations with
the small acceleration, which is given by the relative
motion.
To present our results, we first discuss the stability

conditions. In the hierarchical triple system, there are two
widely used criteria for chaotic instability, which are
evaluated by N-body simulations by two independent
groups [69,70]. The criterion given by [70] fits our model
because the dependence of mass parameter is the same as
p ¼ 1=3. The critical value for chaotic instability (Cchaotic)
in our model is slightly smaller than the result by [70].
However, the system is chaotic near Cchaotic, there is no
clear critical value. In fact, a binary with some initial data
with the firmness f > fcr ≡ C3

chaotic shows instability. In this
sense, our result is consistent with that by [70].
We then analyze the properties of stable vZLK oscil-

lations. Although we show the result only for the case of
a ¼ 0.9M, the behaviors of a binary are almost the same
when we fix the circular radius r0 and the initial semimajor
axis a0.
For highly compact binaries with large firmness param-

eter (f ≫ fcr), the vZLK oscillations is quite regular and
stable. The double-averaging method gives a good approxi-
mation in this parameter space. The critical inclination
angle for vZLK oscillations is about 40°, which is also
almost independent of the rotation parameter a.
For the binary with the firmness parameter slightly larger

than the critical value (f≳ fcr), since the system is chaotic,
we find chaotic vZLK oscillations, which become irregular
both in the oscillation period and in the amplitude. If the

FIG. 11. (Top) Critical semimajor axis a0ðcrÞ at rISCO in terms of
the Kerr rotation parameter a. (Bottom) a0ðcrÞ=rISCO in terms of a.
The initial eccentricity is e0 ¼ 0.01, while the initial inclination
angle are chosen as I0 ¼ 0 (black) and I0 ¼ 85° (red and blue).
For the coplanar case (I0 ¼ 0), all orbits are stable below black
curves. For I0 ¼ 85°, all orbits are stable below blue curves, while
there exist stable and unstable orbits between blue curves and red
curves.

CHAOTIC VON ZEIPEL-LIDOV-KOZAI OSCILLATIONS OF A … PHYS. REV. D 108, 123041 (2023)

123041-17



initial inclination is large, we find an orbital flip, which also
appears randomly.
In this paper, we assume that the c.m. of a binary moves

along an almost circular orbit, but an eccentric orbit is
interesting to be studied since the vZLK oscillation may be
modulated on a longer timescale [72–76]. However, for
such a highly eccentric orbit, the present proper reference
frame expanded up to the second order of the spatial
coordinates xâ may not be sufficient. We may need higher-
order terms in the metric, where the derivatives of the
Riemann curvature appear [53,54]. Although the basic
equations are very complicated, such an extension is
straightforward.
Our future work will involve evaluating the GWs from

the present hierarchical triple setting using the black hole
perturbation approach, since near the ISCO radius the
quadrupole formula may not be valid [77].
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APPENDIX A: MOTION WITH 0.5 PN
CORRECTION TERM

As we discussed in the text, in order to analyze the
motion of the c.m. of a binary system, we have to consider
0.5 PN terms. As shown before, we can assume R ¼ 0 by
introduction of the acceleration given by Eq. (2.12). We
first solve the relative coordinates r, and then the motion of
the observer (or the c.m.).

1. Equations of motion for relative coordinates

The equation of motion for relative coordinates r of a
binary is now given by

L̃relðr; ṙÞ ¼ Lrelðr; ṙÞ þ L1=2-relðr; ṙÞ;

where Lrel is given by Eq. (3.9), while

L1=2−relðr; ṙÞ ¼ −μ
2ðm1 −m2Þ
3ðm1 þm2Þ

ðR̄0̂ x̂ ŷ x̂xðxẏ − yẋÞ þ R̄0̂ ẑ ŷ ẑzðzẏ − yżÞÞ

¼ −μ
2ðm1 −m2ÞM
ðm1 þm2Þr30

ffiffiffiffiffiffiffiffiffiffiffiffi
Δðr0Þ

p ðσ ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞ

F2
σðr0Þ

ð−xðxẏ − yẋÞ þ zðzẏ − yżÞÞ:

In nonrotating Fermi-Walker coordinates, we find Lrel is given by Eq. (3.10), while

L1=2−relðr; ṙÞ ¼ μ
2ðm1 −m2ÞM
ðm1 þm2Þr30

ffiffiffiffiffiffiffiffiffiffiffiffi
Δðr0Þ

p ðσ ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞ

F2
σðr0Þ

× fcos σwRτ½xðxẏ − yẋÞ þ zðyż − zẏÞ þwRxðx2 þ y2 − z2Þ�
− sin σwRτ½yðxẏ − yẋÞ þ zðzẋ − xżÞ þwRyðx2 þ y2 − z2Þ�g:

The momentum is obtained from the Lagrangian L̃relðr; ṙÞ as

px ¼ μẋþ μwPyþ μ
2ðm1 −m2ÞM
ðm1 þm2Þr30

ffiffiffiffiffiffiffiffiffiffiffiffi
Δðr0Þ

p ðσ ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞ

F2
σðr0Þ

ð−xy cos σwRτ þ ðy2 − z2Þ sin σwRτÞ;

py ¼ μẏ − μwPxþ μ
2ðm1 −m2ÞM
ðm1 þm2Þr30

ffiffiffiffiffiffiffiffiffiffiffiffi
Δðr0Þ

p ðσ ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞ

F2
σðr0Þ

ð−xy sin σwRτ þ ðx2 − z2Þ cos σwRτÞ;

pz ¼ μżþ μ
2ðm1 −m2ÞM
ðm1 þm2Þr30

ffiffiffiffiffiffiffiffiffiffiffiffi
Δðr0Þ

p ðσ ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞ

F2
σðr0Þ

zðy cos σwRτ þ x sin σwRτÞ:
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The Hamiltonian is given by

H̃relðr;pÞ ¼ Hrelðr;pÞ þH1=2-relðr;pÞ;

where Hrelðr;pÞ is given by Eq. (3.11), while

H1=2−relðr;pÞ ¼ −
2μðm1 −m2Þ2M2

ðm1 þm2Þ2r60
Δðr0Þðσ

ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞ2

F4
σðr0Þ

½ð−xy cos σwRτ þ ðy2 − z2Þ sin σwRτÞ2

þ ð−xy sin σwRτ þ ðx2 − z2Þ cos σwRτÞ2 þ z2ðy cos σwRτ þ x sin σwRτÞ2�:

This Hamiltonian is complicated, but it should not be considered because it is beyond quadrupole approximation, although
the momenta of the particles are modified. For an equal mass binary (m1 ¼ m2), the 0.5 PN correction term vanishes and the
momenta are also the same as the Newtonian ones. As a result, the Newtonian solution is also valid.

2. Motion of the center of mass of a binary and its stability

In order to study stability of the c.m. of a binary system, we analyze Eq. (2.12). Since R is measured by the circular
observer at r ¼ r0, we can split the 4-velocity uμ as

uμ ¼ uμð0Þ þ uμð1Þ;

where

uμð0Þ ¼
dxμð0Þ
dτ

¼ ðu0ð0Þ; 0; 0; u3ð0ÞÞ ¼
1

r0Fσðr0Þ
ðr20 þ aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p
; 0; 0; σ

ffiffiffiffiffiffiffiffiffi
Mr0

p
Þ;

uμð1Þ ¼
dxμð1Þ
dτ

;

with

xμð0Þ ¼
�
r20 þ aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p
r0Fσðr0Þ

τ; r0;
π

2
;
σ

ffiffiffiffiffiffiffiffiffi
Mr0

p
r0Fσðr0Þ

τ

�
;

xμð1Þ ≡ eμl̂R
l̂:

The acceleration aμ is given by the motion of a binary xμ̂ðτÞ in a rotating frame as

aμ ¼ 6μ

m1 þm2

ffiffiffiffi
Δ

p ðσ ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞ

F2
σðr0Þ

M
r30

�
δμ1

ffiffiffiffi
Δ

p

r0
ẏxþ δμ2

1

r0
ẏz

þ 1

r0Fσðr0Þ
ffiffiffiffi
Δ

p ðδμ0σ
ffiffiffiffiffiffiffiffiffi
Mr0

p
ðr20 þ a2 − 2aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p
Þ þ δμ3ðr20 − 2Mr0 þ aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p
ÞÞð−ẋxþ żzÞ

�
:

Here, we assume that the deviation from a circular orbit is small, i.e., xμð1Þ and uμð1Þ are small perturbations. Ignoring
nonlinear deviation terms in the equations of motion Duμ

dτ ¼ aμ, because the circular orbit xμð0ÞðτÞ is a geodesic, we obtain a

linear differential equation as

duμð1Þ
dτ

þ 2Γμ
ρσðr0Þuρð0Þuσð1Þ þ

∂Γμ
ρσ

∂xα
ðr0Þxαð1Þuρð0Þuσð0Þ ¼ aμ;

where aμ acts as an external force. Describing the deviation as

xμð1Þ ¼ ðtð1Þ; rð1Þ; θð1Þ;φð1ÞÞ;
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we find

d2tð1Þ
dτ2

þ 2M
r0Δðr0ÞFσðr0Þ

ðr20 þ a2 − 2aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
Þ drð1Þ

dτ

¼ a0 ¼ −
6μ

m1 þm2

M
r40F

3
σðr0Þ

ðMr0 − aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
Þðr20 þ a2 − 2aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p
Þðẋx − żzÞ; ðA1Þ

d2rð1Þ
dτ2

−
3MΔðr0Þ
r30F

2
σðr0Þ

rð1Þ þ
2MΔðr0Þ
r30Fσðr0Þ

dtð1Þ
dτ

−
2Δðr0Þ
r30Fσðr0Þ

ðMaþ σr0
ffiffiffiffiffiffiffiffiffi
Mr0

p
Þ dφð1Þ

dτ

¼ a1 ¼ 6μ

m1 þm2

MΔðσ ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞ

r40F
2
σðr0Þ

xẏ; ðA2Þ

d2θð1Þ
dτ2

þ M
r30F

2
σðr0Þ

ðr20 þ 3a2 − 4aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
Þθð1Þ ¼ a2 ¼ 6μ

m1 þm2

M
ffiffiffiffi
Δ

p ðσ ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞ

r40F
2
σðr0Þ

zẏ; ðA3Þ

d2φð1Þ
dτ2

þ 2

r0Δðr0ÞFσðr0Þ
ðMaþ σ

ffiffiffiffiffiffiffiffiffi
Mr0

p
ðr0 − 2MÞÞ drð1Þ

dτ

¼ a3 ¼ −
6μ

m1 þm2

M
r40F

3
σðr0Þ

ðσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞðr20 − 2Mr0 þ aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p
Þðẋx − żzÞ; ðA4Þ

Integrating Eqs. (A1) and (A4), we obtain

dtð1Þ
dτ

¼ −
2M

r0Δðr0ÞFσðr0Þ
ðr20 þ a2 − 2aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p
Þrð1Þ

−
3μ

m1 þm2

M
r40F

3
σðr0Þ

ðMr0 − aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
Þðr20 þ a2 − 2aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p
Þðx2 − z2Þ; ðA5Þ

dφð1Þ
dτ

¼ −
2

r0Δðr0ÞFσðr0Þ
ðMaþ σ

ffiffiffiffiffiffiffiffiffi
Mr0

p
ðr0 − 2MÞÞrð1Þ

−
3μ

m1 þm2

M
r40F

3
σðr0Þ

ðσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞðr20 − 2Mr0 þ aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p
Þðx2 − z2Þ; ðA6Þ

where we set the integration constants as zero. Plugging Eqs. (A5) and (A6) into Eq. (A2), we obtain the perturbation
equation for the radial coordinates rð1Þ as

d2rð1Þ
dτ2

þ k2rrð1Þ þ Aðx2 − z2Þ þ Bẏx ¼ 0; ðA7Þ

where

k2r ≡ M
r30F

2
σðr0Þ

ðr20 − 6Mr0 − 3a2 þ 8aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
Þ ðA8Þ

A≡ 6 μMΔ
ðm1 þm2Þr50F4

σðr0Þ
ðr20 − 3Mr0 − 2a2Þ ðA9Þ

B≡ −
6 μMΔ

ðm1 þm2Þr40F2
σðr0Þ

ðσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞ: ðA10Þ

We also rewrite the equation for θð1Þ as
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d2θð1Þ
dτ2

þ k2θθð1Þ þ Bẏz ¼ 0; ðA11Þ

where

k2θ ≡ M
r30F

2
σðr0Þ

ðr20 þ 3a2 − 4aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
Þ: ðA12Þ

We find that k2r > 0 and k2θ > 0 when r0 > rISCO, which
guarantees stability against homogeneous perturbations.
This fact is consistent with the stability of a circular
geodesic. In order to understand the oscillations of the
deviation rð1Þ and θð1Þ, we expand the oscillation frequen-
cies k2r and k2θ in the limit of M=r0 ≪ 1 as

kr ≈
M1=2

r3=20

�
1 −

3M
2r0

þ 3aσ
r0

ffiffiffiffiffi
M
r0

s �
¼ wR −wdS − w̃LT;

kθ ≈
M1=2

r3=20

�
1þ 3M

2r0
−
3aσ
r0

ffiffiffiffiffi
M
r0

s �
¼ wR þwdS þ w̃LT;

where w̃LT ¼ −3Maσ=r30. The meaning of the θð1Þ oscil-
lations is more clear since it describes the deviation from
the equatorial plane. There are three origins of the oscil-
lations; one is the angular frequency of the rotating frame,
the second is caused by the de Sitter precession, and the
third is related to the Lense-Thirring precession between
the rotation of the c.m. and the BH spin, which is slightly
different from that of a binary angular momentum and the
BH spin [35,36].

Including the inhomogeneous perturbations caused by a
binary motion, we find formally general solutions for
Eqs. (A7) and (A11) as

rð1Þ ¼ ar cos½krτ� þ br sin½krτ�

−
1

kr

Z
τ

0

dτ0½Aðxðτ0Þ2 − zðτ0Þ2Þ þ Bẏðτ0Þxðτ0Þ�

× sin½krðτ − τ0Þ�; ðA13Þ

θð1Þ ¼ aθ cos½kθτ� þ bθ sin½krτ�

−
B
kθ

Z
τ

0

dτ0ẏðτ0Þzðτ0Þ sin½krðτ − τ0Þ�; ðA14Þ

where ar; br; aθ, and bθ are arbitrary constants, which are
determined by initial conditions. Since ẏx and ẏz may
oscillate around zero, the integration with those terms may
not induce instability. On the other hand, the integration
with ðx2 − z2Þ does not have definite sign. We have to
check its stability numerically by use of numerical solution
of a binary motion.
In Figs. 12 and 13, we show the time evolution of rð1Þ

and θð1Þ for Model I (a ¼ 0.9M; r0 ¼ 10M, and a0 ¼
0.005M) and Model III (a ¼ 0.9M; r0 ¼ 3.2M, and a0 ¼
0.005M). We assume that the initial values of rð1Þ and θð1Þ
and their time derivatives vanish.
Since Model I shows a regular vZLK oscillation, from

Fig. 12, we find good correlation between the eccentricity
and the deviations from a circular orbit. rð1Þ oscillates
around small nonzero positive value with small amplitude.
The oscillation center slightly increases when the eccen-
tricity becomes large, but the oscillation amplitude does not
change. For θð1Þ, the oscillation center is almost zero, and

FIG. 12. The time evolution of rð1Þ (left) and θð1Þ (right) for Model I (a ¼ 0.9M; r0 ¼ 10M, and a0 ¼ 0.005M). The bottom figures
show the enlargement of the period of τ̃ ¼ 9000–15000. We also show the evolution of the eccentricity (red curves) to see the
correlation.
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oscillation amplitude changes in time. Although there is no
correlation with the eccentricity, the oscillation pattern is
periodic and the period is the same as that of the vZLK
oscillations. Note that the oscillation amplitude in the radial
direction [jrð1Þj ∼ 10−4] is much smaller than that in the θ

direction [jθð1Þj ∼ 10−2].
For Model III (Fig. 13), the binary system is close to the

chaotic boundary. In this chaotic vZLK oscillation model,
we find the motion of the c.m. also becomes irregular. There
is no correlation between the evolution of the eccentricity
(red curves) and the oscillations of rð1Þ and θð1Þ (blue
curves), as shown in the bottom figures of 13. The oscillation
amplitudes of the radial direction and θ direction are almost
the same in this chaotic case [jrð1Þj ∼ jθð1Þj ∼ 10−2].

APPENDIX B: LAGRANGE PLANETARY
EQUATIONS FOR A BINARY SYSTEM

NEAR SMBH

To comprehend our numerical findings better, we should
consider the Lagrange planetary equations. These equa-
tions provide the evolution of orbital parameters, such as
the semimajor axis, eccentricity, and inclination. To derive
these planetary equations, we work with the proper
Hamiltonian, where the mass parameter is set to μ ¼ 1.
The proper Hamiltonian is defined as follows:

H̄ ¼ H̄0 þ H̄1;

where

H̄0 ¼
1

2
p̄2 −

Gðm1 þm2Þ
r

;

H̄1 ¼ σwPðp̄yx − p̄xyÞ þ
M
2r30

�
r2 þ 3

F2
σðr0Þ

ð−Δðr0Þðx cos σwRτ − y sin σwRτÞ2 þ ðσ
ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞ2z2Þ

�
:

The position r ¼ ðx; y; zÞ of a binary should be described in
the nonrotating proper reference frame.
The unperturbed Hamiltonian, denoted as H̄0, is equiv-

alent to that of a binary system in Newtonian dynamics. It
leads to an elliptical orbit, described by the equation

r ¼ að1 − e2Þ
1þ e cos f

; ðB1Þ

Here, r represents the radial distance from the c.m., while a,
e, and f are the semimajor axis, eccentricity, and true
anomaly, respectively. This orbital plane is inclined at an

angle I relative to the equatorial plane in the proper
reference frame. Consequently, the relative position vector
r ¼ ðx; y; zÞ of the binary system can be determined by
the orbital parameters ðω;Ω; a; e; I; fÞ as described in
Eq. (4.11) with Eq. (B1). The introduction of Delaunay
variables further refines this description as follows:

8<
:
l¼ nðt− t0Þ
g¼ω

h¼Ω
and

8>><
>>:
L¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gðm1þm2Þa
p

G¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1þm2Það1−e2Þ

p
H¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1þm2Það1−e2Þ

p
cosI;

FIG. 13. The time evolution of rð1Þ (left) and θð1Þ (right) for the model with a ¼ 0.9M; r0 ¼ 3.2M, and a0 ¼ 0.005M. The bottom
figures (a), (b), and (c) depict the first tenth, the middle tenth and the last tenth of the period, respectively. We show the evolution of the
eccentricity (red curves). There is no correlation between the eccentricity (e) and the deviations [rð1Þ; θð1Þ].
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where

n≡ 2π

P
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1 þm2Þ

a3

r
;

is themeanmotion, we find new unperturbedHamiltonian as

˜̄H0 ¼ −
G2ðm1 þm2Þ2

2L2
:

Including the perturbations H̄1, we obtain the
Hamiltonian for the Delaunay variables as

˜̄H ¼ ˜̄H0 þ H̄1:

The proper Hamiltonian is described by the orbital
parameters by inserting the relation given in Eq. (4.11)
with Eq. (B1). We then find the perturbed Hamiltonian as

H̄1 ¼ H̄1-P þ H̄1-R̄;

where

H̄1−P ¼ σwPr2ða; e; fÞfn cos Ið1 − e2Þ−3=2ð1þ e cos fÞ2 −wPðcos2ðωþ fÞ þ sin2ðωþ fÞcos2IÞg; ðB2Þ

H̄1−R̄ ¼ M
2r30

r2ða; e; fÞ
	
1 −

3Δðr0Þ
F2
σðr0Þ

½cosðΩþ σwRτÞ cosðωþ fÞ − sinðΩþ σwRτÞ sinðωþ fÞ cos I�2

þ 3ðσ ffiffiffiffiffiffiffiffiffi
Mr0

p
− aÞ2

F2
σðr0Þ

sin2ðωþ fÞsin2I


: ðB3Þ

We then obtain the planetary equations for the present
hierarchical triple system, which is mathematically equiv-
alent to our basic equations in the text.

1. Double-averaging approach

Rather than directly solving the Lagrange planetary
equations, our approach involves averaging the perturbed
Hamiltonian over two periods; the inner and outer orbital
periods. This allows us to simplify the equations for
analysis. We are interested in understanding the long-term
behavior of the system, particularly phenomena like the
vZLK mechanism.

The doubly-averaged Hamiltonian is defined by

⟪H̄1⟫≡ 1

2π

Z
2π

0

dlout

�
1

2π

Z
2π

0

dlH̄1

�

Since the outer orbit is circular, we find that lout ¼
fout ¼ w0τ. We also have

dl ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
�
r
a

�
2

df:

Inserting Eqs. (B2) and (B3) into the above integrals, we
find the doubly-averaged Hamiltonian as

⟪H̄1⟫ ¼ σwPna2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
cos I −

a2

8

	
ð2þ 3e2Þ

�
w2

Pð3þ cos 2IÞ þMðr20 þ 3a2 − 4aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p Þ
4F2

σðr0Þr30
ð1þ 3 cos 2IÞ

�

þ 10e2sin2I cos 2ω

�
w2

P þ
3Mðr20 þ 3a2 − 4aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p Þ
4F2

σðr0Þr30

�

: ðB4Þ

Using the double-averaged Hamiltonian Eq. (B4), we obtain the double-averaged Lagrange planetary equations as

ė ¼ 5

4

�
w2

P þ
3Mðr20 þ 3a2 − 4aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p Þ
4F2

σðr0Þr30

�
e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

n
ð1 − cos 2IÞ sin 2ω; ðB5Þ

İ ¼ −
5

4

�
w2

P þ
3Mðr20 þ 3a2 − 4aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p Þ
4F2

σðr0Þr30

�
e2

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p sin 2I sin 2ω; ðB6Þ
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ω̇ ¼ 1

4n

�
w2

P þ
3Mðr20 þ 3a2 − 4aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p Þ
4F2

σðr0Þr30

�
½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
½3þ 5 cos 2I þ 5ð1 − cos 2IÞ cos 2ω�

þ 5e2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ð1þ cos 2IÞð1 − cos 2ωÞ� þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

n
w2

P; ðB7Þ

Ω̇ ¼ σwP þ
cos I

2n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
�
w2

P þ
3Mðr20 þ 3a2 − 4aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p Þ
4F2

σðr0Þr30

�
½−ð2þ 3e2Þ þ 5e2 cos 2ω�: ðB8Þ

The semimajor axis a is constant in the present approxi-
mation. Also, from Eqs. (B5) and (B6), we can easily check
the conservation equation such that

d
dτ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
cos IÞ ¼ 0;

which corresponds to conservation of the z-component of
the angular momentum.

2. vZLK oscillations

Introducing a “potential” by VS ≡ −⟪H̄1⟫, we rewrite
the above planetary equations as

ė ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

na2e
∂VS

∂ω
; ðB9Þ

İ ¼ cos I

na2 sin I
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ∂VS

∂ω
; ðB10Þ

ω̇ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

na2e
∂VS

∂e
−

cos I

na2 sin I
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ∂VS

∂I
; ðB11Þ

Ω̇ ¼ 1

na2 sin I
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ∂VS

∂I
: ðB12Þ

We derive closed-form differential equations for the var-
iables e, I, and ω using Eqs. (B9), (B10), and (B11). These
equations provide insights into various properties of vZLK
oscillations, including the oscillation amplitude of eccen-
tricity and the oscillation timescale. This analysis is
consistent with previous studies on Newtonian and 1 PN
hierarchical triple systems, as discussed in [34].
The potential is written by use of η≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2
p

and μI ≡
cos I as

VS ≡ −⟪H̄1⟫

¼ a2Mðr20 þ 3a2 − 4aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p Þ
16F2

σðr0Þr30
vSðη; μIÞ;

where

vSðη; μIÞ≡ 2ð−1þ 3μ2Iη
2Þð1þ αPÞ þ 12CvZLK

þ 4αP

�
2 −

3σn
wP

μIη

�
;

with

αP ≡ 4w2
PF

2
σðr0Þr30

3Mðr20 þ 3a2 − 4aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p Þ ;

CvZLK ≡ ð1 − η2Þ
�
ð1þ 2αPÞ −

5

2
ð1þ αPÞð1 − μ2I Þsin2ω

�
:

Note that when αP ¼ 0, we find the same equations for
Newtonian hierarchical triple system with quadrupole
approximation. The terms with αP give relativistic
corrections.
Introducing the normalized time τ̃, which is defined by

τ̃≡ τ

τvZLK
;

with the typical vZLK timescale

τvZLK ≡ 16nF2
σðr0Þr30

Mðr20 þ 3a2 − 4aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p Þ ;

the above planetary equation is rewritten as

dη
dτ̃

¼ ∂vS
∂ω

;

1

μI

dμI
dτ̃

¼ −
1

η

∂vS
∂ω

;

dω
dτ̃

¼ −
∂vS
∂η

þ μI
η

∂vS
∂μI

:

From these equations, we can easily show that

dðμIηÞ
dτ̃

¼ 0;
dvS
dτ̃

¼ 0;
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which means there exist two conserved quantities ϑ≡ μIη
and CvZLK just as the Newtonian and 1 PN hierarchical
triple system under dipole approximation. Using these
two conserved quantities, we obtain a single equation
for η as

dη2

dτ̃
¼ −24

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðη2Þgðη2Þ

q
;

with

fðη2Þ≡ ð1þ 2αPÞð1 − η2Þ − CvZLK;

gðη2Þ≡ −5ð1þ αPÞϑ2 − ð3þ αPÞη4
þ ½5ð1þ αPÞϑ2 þ 3þ αP þ 2CKvZLK�η2:

Setting ξ ¼ η2, we find

dξ
dτ̃

¼−24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ2αPÞð3þαPÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ−ξ0Þðξ−ξþÞðξ−ξ−Þ

p
;

where

ξ0 ¼ 1 −
CvZLK

1þ 2αP
;

ξ� ¼ 1

2

"�
1þ 5ð1þ αPÞ

3þ αP
ϑ2 þ 2

3þ αP
CvZLK

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 5ð1þ αPÞ

3þ αP
ϑ2 þ 2

3þ αP
CvZLK

�
2

−
20ð1þ αPÞ
3þ αP

ϑ2

s #
;

are the solutions of fðξÞ ¼ 0 and gðξÞ ¼ 0, respectively.
We can find the relativistic corrections with αP, which is

evaluated as

αP ¼
4ðr0 − Fσðr0ÞÞ2

3ðr20 þ 3a2 − 4aσ
ffiffiffiffiffiffiffiffiffi
Mr0

p Þ :

This constant αP is small when rotation of SMBH is
small (the maximum value for Schwarzschild BH is
0.11), but it can be large when SMBH is rotating rapidly
and the c.m. is near the ISCO radius. For example, when
a ¼ 0.9Mð0.99MÞ, αP ≈ 0.88ð5.56Þ at the ISCO radius,
and it diverges as a → M. It is because the denominator
vanishes in this limit.
Analyzing the above equation, we find that there exists

vZLK oscillations in this system just the same as in
Newtonian hierarchical triple system, and we can classify
the vZLK oscillations by the sign of CvZLK into two cases:
(a) CvZLK > 0 (rotation); (b) CvZLK < 0 (libration).

a. CvZLK > 0 (rotation)

In this case, 0 < ξ− < 1 < ξþ and 0 < ξ0 < 1. This is
possible if

0 < CvZLK < 1þ 2αP:

Hence, we find the maximum and minimum values of
the eccentricity as

emax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ−

p
; emin ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ0

p
:

The vZLK oscillation timescale is given by

TvZLK ¼ τvZLKT
ðrotÞ
vZLK; ðB13Þ

where

TðrotÞ
vZLK ≡

K

� ffiffiffiffiffiffiffiffiffiffi
ξ0−ξ−
ξþ−ξ−

q �
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2αPÞð3þ αPÞðξþ − ξ−Þ

p :

KðkÞ is the complete elliptic integral of the first kind with
the elliptic modulus k.

b. CvZLK < 0 (libration)

Since 0 < ξ− < ξþ < 1 and ξ0 < 0 in this case, we find

emax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ−

p
; emin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξþ

p
:

It occurs when

−
3þ αP

2
< CvZLK < 0;

and

ϑ <
ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ αP
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2CvZLK

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð1þ αPÞ

p :

The vZLK timescale is given by

TvZLK ¼ τvZLKT
ðlibÞ
vZLK; ðB14Þ

where
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TðlibÞ
vZLK ≡

K

� ffiffiffiffiffiffiffiffiffiffi
ξþ−ξ−
ξ0−ξ−

q �
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2αPÞð3þ αPÞðξ0 − ξ−Þ

p :

The maximum and minimum values of the eccentricity in
the vZLK oscillations are determined by two conserved
parameters, ϑ and CvZLK. Note that the maximum eccen-
tricity in vZLK oscillations is important, especially when
we discuss emission of GWs.
The timescale of the vZLK oscillations is also important

for observation of the gravitational waves. SinceTðrotÞ
vZLK and

TðlibÞ
vZLK are order of unity, the timescale is almost determined

by τvZLK, which is rewritten by

nτvZLK ¼ 16f
ðr20 − 3Mr0 þ 2aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p Þ
ðr20 þ 3a2 − 4aσ

ffiffiffiffiffiffiffiffiffi
Mr0

p Þ : ðB15Þ

Some example of the exact values of TvZLK is given
in Fig. 14.
We then may evaluate the relativistic effects (including

de Sitter precession) by comparison with the Newtonian

value TðNÞ
vZLK as shown in Fig. 15.

Fig. 15 shows that the relativistic effects reduce the
vZLK timescale by a factor 0.1–0.25. Although the ratio
vanishes at the ISCO radius in the limit of a → M, the
double-averaging approximation is no longer valid in
this limit.

c. Critical inclination angle

We can also evaluate a critical inclination angle, beyond
which the vZLK oscillation occurs even when the initial
eccentricity is very small. It is given by the condition for a
bifurcation point with CvZLK ¼ 0 with ω ¼ 90°. Setting

ð1þ 2αPÞ −
5

2
ð1þ αPÞ sin2 Icrit ¼ 0;

we obtain

Icrit ¼ sin−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2αPÞ
5ð1þ αPÞ

s
:

We find that the critical inclination angle changes from
63.4° (a ¼ M) [41.6° (a ¼ 0)] to the Newtonian value

IðNÞcrit ¼ sin−1
ffiffiffiffiffiffiffiffi
2=5

p
≈ 39.2° as r0 increases from the ISCO

radius to infinity. However the critical value depends on the
orbital parameters, especially on r0 and a0. Assuming

FIG. 14. The period of vZLK oscillations TvZLK is shown in
terms of the Kerr rotation parameter a. The blue and red curves
correspond to the prograde (σ ¼ 1) and retrograde (σ ¼ −1)
orbits. The solid curves show the case of r0 ¼ 9M, while the dot-
dashed one and dashed ones are r0 ¼ 6M and r0 ¼ rISCO,
respectively. The semimajor axis is chosen as a ¼ 0.005M.

FIG. 15. The ratio of vZLK oscillation period TvZLK to its
Newtonian value is shown in terms of the Kerr rotation para-
meter a. The colors and types of the curves are the same as those
in Fig. 14. The semimajor axis is chosen as a ¼ 0.005M.

FIG. 16. The maximum values of the eccentricity in vZLK
oscillations based on the double-averaging approximation:
(a) Cchaotic ¼ 1 (the dashed curve), (b) Cchaotic ¼ 3 (the dotted
curve), (c) Cchaotic ¼ 5 (the solid curve). We choose r0 ¼ rISCO
and a ¼ 0.999M. The red dots denote the result obtained by the
direct integration of the equations of motion.
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a ¼ 0.999M, r0 ¼ rISCO, and e0 ¼ 0.01, we evaluate the
maximum value of the eccentricity in vZLK oscillations,
which is given in Fig. 16. In the case of Cchaotic ¼ 1, which
corresponds to the firmness parameter f ¼ 1, the critical
inclination angle is slightly larger than 60°. However, this
models suffers from chaotic instability. As we discussed in

the text, stability against chaotic perturbations must satisfy
Cchaotic ≲ 3–4. In that case, the critical inclination angle
becomes smaller as 40°–50°. The red dots denote the result
obtained by the direct integration of the equations of
motion, which shows that the true critical inclination angle
is about 40° even for a ¼ 0.999M.
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