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ABSTRACT

Nonlinear damping plays a significant role in several areas of physics, including the dynamics of nanoresonators. However, many aspects
remain unclear, and the microscopic source of nonlinear damping is still an active area of research. In particular, the effect of mode coupling
on the observed damping has drawn significant interest. Here, we report on the effect of mode coupling on nonlinear damping in a highly
tunable MoS2 nano-mechanical drum resonator. In our experiments, we observe enhanced nonlinear damping in the parameter space that
favors internal resonance. We observe this enhanced damping both in the direct drive and the parametric drive measurements. The study
presents a comprehensive characterization of the tunable nonlinear damping of a MoS2 resonator in a parametric regime. Our work marks a
significant advancement in understanding the potential sources of nonlinear damping. Moreover, a highly tunable 2D material based nanore-
sonator offers an excellent platform to study nonlinear physics and exploit tunable nonlinear damping.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0177422

The dynamical motion of a system is intricately related to energy
exchange with other entities. There are several ways through which a
system accomplishes this energy exchange with its surroundings. In
many cases, this exchange is dissipative and is modeled as linear damp-
ing in the simplest of cases. Some common damping mechanisms are
thermoelastic damping, surface loss, loss through defects, clamping
loss, and loss through coupling.1–5 However, many other systems
exhibit dissipative phenomena, which are nonlinear.6–8

Nanomechanical systems are one such system wherein nonlinear dissi-
pation has been observed.7–10 In general, the effects of nonlinear dissi-
pation are minute and are observed when vibration amplitudes are
large11 or if the other dominant effects are minimized.12

A clear understanding of the origin of nonlinear damping and its
impact on dynamics is critical and is of interest due to its importance
in biology,13 magnetization,14 quantum optics,15 quantum oscillators,16

and quantum information technologies.17 Advancement in the fabrica-
tion and transduction technologies in the nanomechanical system in
the last decade has led to exploration of these nonlinear dissipation
mechanisms.5,7–9,18–20 The nonlinear dissipation term can be included
in the equation of motion in terms of the type gz _z , gz2 _z , or g _z3, where
g is the nonlinear damping coefficient, z is the displacement, and _z is
the velocity.11,21,22 The most accepted and tested term is gz2 _z in
micro/nanoresonators and we aim to probe this nonlinear damping
term in our nano-resonator. Though there are several models explain-
ing the microscopic origin of nonlinear damping, the precise mecha-
nism is not very well understood.18,23,24 This is partly due to the

challenges in isolating and decoupling the nonlinear damping mecha-
nism from other nonlinear effects. 2D materials based nanoresonators
with an ultra-thin profile and tunable properties are fantastic tools for
exploring nonlinear effects, including the nonlinear damping effects
and their origin. In this context, a recent work by Keşkekler et al.9 indi-
cates the possible mechanism of the nonlinear damping through inter-
nal resonance (IR) in a graphene nanoresonator using optical
actuation and detection technique. Damping through IR is a manifes-
tation of loss through coupling mechanism within a resonator distin-
guishing itself from the more conventional viscous damping
mechanisms.1–4

In this work, we observe the nonlinear IR damping mechanism
in a molybdenum disulfide (MoS2) device using the electrostatic
homodyne capacitive actuation and detection method. The method
provides a clean, fast, and simple platform to study the nonlinear sys-
tem.25,26 We employ two measurement techniques to investigate tun-
able nonlinear damping in our experiment, utilizing observation and
characterization based on amplitude gain. Our results demonstrate
enhanced control over nonlinear parameters compared to a prior simi-
lar experiment,9 enabling decoupling of Duffing nonlinearity and
probing nonlinear damping effectively. Our device shows two promi-
nent modes with resonance frequency x1 and x2 � 2x1. The reso-
nance frequencies of the two modes are highly tunable. This tunability
provides a favorable tool to study the nonlinear damping in the para-
metric regime and probe the associated dissipation mechanisms. In
our experiments, we tune the ratio of the resonance frequencies of the
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two modes by changing the applied DC gate voltage. We observe that
the effect of nonlinear damping increases considerably when the two
modes are commensurate with each other in a 2:1 ratio. We examine
the nonlinear damping in two distinct ways, first using direct drive
where actuation force is applied close to the resonance frequency
(x � x1) and second using parametric pumping where force is
applied close to twice the resonance frequency (x � 2x1). Using the
direct drive method, we monitor the dynamical response of mode 1 at
constant actuation force while tuning the tension in the membrane
with Vdc

g . We observe a change in the dissipation as the tension in the
membrane changes. A clear enhancement in damping is observed
when the conditions favor IR. To further probe this effect, we use the
second method of parametric pumping. We observe that the effect of
nonlinear damping manifests itself in parametric gain in the vicinity of
IR. The parametric gain decreases by about six times when the nonlinear
damping is maximum.We quantify the nonlinear damping and demon-
strate that the enhancement is due to strong coupling between the two
modes near internal resonance. The experiment sheds light on the
mechanism of the nonlinear damping in highly tunable nanoresonators.

Our device is �6 layer thick MoS2 drum resonator suspended
over a 2lm diameter trench. The device is strained and actuated by
applying voltage (Vg) to the gate electrode. The gate electrode is
300nm below the suspended membrane. Figure 1(a) shows the sche-
matic of the setup used to provide direct actuation, parametric pump
and measure the displacement of the membrane. The membrane is
strained by applying a DC gate voltage (Vdc

g ) and actuated with an AC
voltage (Vac

g ). The DC and the AC voltages are combined using a bias-
tee before applying them to the gate electrode. Applied potential differ-
ence exerts a force on the suspended membrane, thereby displacing it
from the equilibrium position. The displacement of the membrane
modulates the geometric capacitance between the gate and the

membrane, leading to the change in voltage at the drain.27,28 The
change in drain voltage is amplified using a low-noise amplifier before
measuring at the lock-in amplifier. Figures 1(b) and 1(c) show the fre-
quency dispersion of two modes with applied DC gate voltage. We
observe two distinct modes with similar frequency tuning with gate
voltage. The frequencies of the two modes are x1 � 56MHz and
x2 � 111MHz at around Vdc

g ¼ 23V. The modes are interesting due
to a 1:2 (i.e., x2 � 2x1) ratio of the frequencies, which enables us to
achieve internal resonance. We can achieve a strong IR condition by
tuning the DC gate voltage.

To obtain the elementary characteristics of the device, we drive it
with fixed force (F / Vdc

g Vac
g ) over a range of gate voltages (Vdc

g ).
Varying the DC gate voltages enables us to modify the resonance fre-
quencies of the modes while a constant force allows us to observe and
compare the variation of amplitude response curve at different reso-
nance frequencies. We drive the resonator with a force small enough
to keep the response linear. The linear response can be quantified by
the symmetry of the peak about the resonance frequency. In the non-
linear regime, a hysteresis in the frequency response curve is observed.
Figure 2(a) shows amplitude response with frequency at different gate
voltages. We observe that amplitude decreases with increase in DC
gate voltage and reaches a minimum value around Vdc

g � 22V. In a
linear system, a constant force should ideally result in a constant
amplitude and linewidth due to linear dissipation. The observed reduc-
tion in amplitude for a constant applied force indicates enhanced dissi-
pation. The linewidth of the response curve is shown in the Fig. 2(b). It
shows that the damping is maximum at 22V. Furthermore, as the
driving force is increased, we observe the peak splitting around Vdc

g
¼ 23V to Vdc

g ¼ 24V [see Figs. 2(c) and 2(d)]. The splitting indicates
coupling of this mode to one of the other vibrational modes.29 The
mode coupling can be enhanced by increasing the actuation force.

FIG. 1. Characterization of the device: (a)
inset: SEM image of the device, the two
thick yellow lines are source and drain
electrodes, the suspended region is 2 lm
in diameter. The gate is 300 nm below the
suspended membrane. Schematic of the
measurement setup: homodyne capacitive
actuation and detection technique.
Membrane frequency is tuned using DC
gate voltage Vdc

g , actuated directly using
Vac
g at frequency x and parametrically at

2x using Vac
p . AC voltages are combined

using RF power combiner, further DC is
combined using a bias-tee. Readout is
amplified using a low noise amplifier and
measured at lock-in amplifier locked at x.
Frequency dispersion with Vdc

g , two
modes x1 (b) and x2 (c) with frequency
tuning >1MHz/V and x2 � 2x1.
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To further probe this increase in damping, we perform paramet-
ric pumping by tuning the stiffness of the membrane. Parametric
pumping offers an advantage in probing a mode by applying a force
away from the resonant frequency and study the coupling of modes. A
parametric pump can be used alone or with a direct drive. In paramet-
ric pumping, vibration amplitude is amplified by compensating the lin-
ear damping. In the simplest case, the damping can be overcome by
modulating the spring constant at twice the resonance frequency.

We use the following equation of motion to describe the paramet-
ric amplification in our system:11

m€z þ c _z þmx2
0 z þ g _z z2 þ aeff z

3 ¼ F x tð Þ þ Fp 2x tð Þ z; (1)

where m is the mass of the system c is the linear damping, x0 is the
resonance frequency, g is the nonlinear damping coefficient, aeff is the
effective Duffing nonlinearity coefficient, F is the direct force applied

at the frequency x, the term containing Fp is the parametric force act-
ing on the system at the frequency 2x, and z is the vibration
amplitude.

To study parametric amplification, we apply an alternating volt-
age (Vac

p ) at twice the resonance frequency of mode 1 at the gate in
addition to Vac

g [see Fig. 1(a)]. In a parametric system, there exists a
critical pumping force beyond which the system overcomes linear
damping and reaches an unstable region also known as Mathew’s
tongue.11,30 The critical pump force can be measured by sweeping Vac

p
near 2x. Figure 3(a) shows amplitude response using parametric drive
beyond critical pump voltage (Vac0

p Þ for different Vdc
g . Beyond the criti-

cal pumping, the amplitude response is governed by the nonlinear
parameters and offers an excellent regime to probe the nonlinear coef-
ficients. There are two dominant nonlinearities present in our device,
namely, Duffing nonlinearity (aeff Þ and nonlinear damping (g). The
parametric response at different gate voltages indicates that aeff
changes from positive to negative around Vdc

g � 24V. This near can-
celation of nonlinearities allows us to probe the effect of nonlinear
damping by minimizing the effect of the prominent geometric nonlin-
earity. Figures 3(b) and 3(c) show amplitude vs frequency response far
away from Vdc

g � 24V and aeff in the two cases is different. Figure 3
(d) shows the computed value of aeff using the continuum model (see
the supplementary material). The variation of computed aeff matches
well with our experimental findings. Figure 3(a) also shows a decrease
in amplitude response at around Vdc

g � 24V. The variation in ampli-
tude response is similar to the experimental findings shown in
Fig. 2(a). Previously, it has been shown that the amplitudes in the para-
metric regime are saturated by nonlinearities present in the system.31

To probe the nonlinear damping, we perform parametric amplification
and observe the amplitude gain in the system.

In parametric amplification, the gain (G ¼ zon
zoff
) is defined as the

amplitude ratio when Vac
p is ON and OFF. Figure 4(a) shows paramet-

ric gain with Vac
p for different Vdc

g . It shows that gain increases steadily
and get saturated after the critical pumping voltage. The maximum

FIG. 2. (a) Amplitude response curve of mode 1 (x1) at multiple gate voltages.
Vdc
g � Vac

g ¼ 0:2 V2, which is proportional to the actuation force, is kept constant
for these experiments. The shaded region shows the variation of amplitude.
Amplitude is minimum at Vdc

g ¼ 22 V (b) Inverse of the quality factor at different
Vdc
g , it quantifies the damping in the system. Damping is maximum at Vdc

g ¼ 22 V.
(c) Frequency dispersion as the actuation force is increased, peak splitting can be
observed in the range Vdc

g ¼ 22 V to Vdc
g ¼ 24 V. Peak splitting indicates mode

coupling with higher order mode. (d) Amplitude vs frequency response with increas-
ing strain (Vdc

g ) at high actuation drive Vac
g ¼ 35mV.

FIG. 3. Tuning of Duffing nonlinearity (aeff Þ: (a) amplitude response with frequency
for different Vdc

g with Vac
p ¼ 500mV and Vac

g ¼ 0. Change in the shape of ampli-
tude response shows variation in nonlinearity. Amplitude response with increasing
parametric force at (b) Vdc

g ¼ 16 V, aeff > 0 and (c) Vdc
g ¼ 28 V, aeff < 0. (d) The

red line is aeff calculated using the continuum model, it crosses the aeff ¼ 0 (blue
line) around Vdc

g ¼ 24 V, which matches the experimental observation in (a).
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gain Gmax obtained is shown in Fig. 4(b). It shows that the Gmax

decreases significantly in the region Vdc
g ¼ 22 to Vdc

g ¼ 26V. The
Gmax at Vdc

g ¼ 24V is�6 lower than Gmax at Vdc
g ¼ 20V.

To understand the low gain around Vdc
g ¼ 24V, we calculate the

nonlinear damping coefficients using the following relation:

g / 2 FpQ�2ð Þ
z2max

, where Fp is the parametric force, Q is the quality factor,

and zmax is the maximum amplitude.11 The relation allows us to esti-
mate the coefficient of nonlinear damping from amplitude response in
the parametric regime. Figure 4(c) shows the coefficient of the nonlin-
ear damping extracted for different gate voltages.

We observe that the nonlinear damping increases significantly
around Vdc

g ¼ 24V in parametric regime. A similar enhancement in
the damping is also observed in the case of direct driving [see Figs. 2(a)
and 2(b)]. Enhancement of nonlinear damping is evident, as suggested
by a decrease in amplitude during direct drive and the gain during
parametric amplification. We observe that the enhancement of the
coefficient of nonlinear damping occurs in the region of strong internal
resonance condition. In internal resonance, the two modes are cou-
pled, providing pathways for energy exchange. In the vicinity of IR,
mode 1 dissipates energy to mode 2 enhancing the nonlinear damping.
Enhanced damping using dispersive coupling has been previously

reported in an engineered micro resonator coupled to a nanoresona-
tor.5 We find that the tunability of nonlinear damping in our experi-
ment is similar to results reported in graphene drum resonators where
2:1 internal resonance has been observed.9 In our experiment, a 2D
nanodrum resonator accommodates modes with integer frequency
ratio. The modes are coupled via tension, which facilitates tunable
nonlinear damping in a single nanoresonator.

In summary, we study complex nonlinear phenomenon in a
MoS2 drum resonator using direct and parametric actuation drive. We
identify two prominent tunable modes in the 50–200MHz range that
are coupled to each other through tension in the membrane.
Dominant nonlinear coefficients aeff and g are tunable in our device
using a DC gate voltage. We tune the modes such that it facilitates
internal resonance and energy exchange. We observe that the nonlin-
ear damping increases significantly in the vicinity of internal reso-
nance, g reaching as high as 15� 1014 kgm�2s�1 in MoS2 drum
resonator. In our experiment, minimizing the effect of aeff helps us to
probe the nonlinear damping efficiently. A highly tunable nanoresona-
tor device such as the one presented here offers improved control of
the nonlinear coefficients and enables detailed study of their dynamics.
Our experiment sheds light on the possible underlying physics of non-
linear damping in oscillating systems. The parametric regime provides
an excellent approach to probing the nonlinear effects by tuning the
fundamental parameters such as stiffness. Tunable damping via g
would be useful where dynamical damping is desired. Complex non-
linear phenomena such as fractals, and chaos could be studied using
the present 2D tunable devices.32,33

See the supplementary material for calculations related to effec-
tive Duffing nonlinearity and nonlinear damping.
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