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Abstract
This article addresses the question concerning the existence of global entropy solution for
generalized Eulerian droplet models with air velocity depending on both space and time
variables. When f (u) = u, κ(t) = const . and ua(x, t) = const . in (1.1), the study
of the Riemann problem has been carried out by Keita and Bourgault (J Math Anal Appl
472(1):1001–1027, 2019) and Zhang et al. (Appl Anal 102(2):576–589, 2023). We show
the global existence of the entropy solution to (1.1) for any strictly increasing function f (·)
and ua(x, t) depending only on time with mild regularity assumptions on the initial data via
shadow wave tracking approach. This represents a significant improvement over the findings
of Yang (J Differ Equ 159(2):447–484, 1999). Next, by using the generalized variational
principle, we prove the existence of an explicit entropy solution to (1.1) with f (u) = u,

for all time t > 0 and initial mass v0 > 0, where ua(x, t) depends on both space and time
variables, and also has an algebraic decay in the time variable. This improves the results of
many authors such as Ha et al. (J Differ Equ 257(5):1333–1371, 2014), Cheng and Yang
(Appl Math Lett 135(6):8, 2023) and Ding and Wang (Quart Appl Math 62(3):509–528,
2004) in various ways. Furthermore, by employing the shadow wave tracking procedure, we
discuss the existence of global entropy solution to the generalized two-phase flow model
with time-dependent air velocity that extends the recent results of Shen and Sun (J Differ
Equ 314:1–55, 2022).
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1 Introduction andMain Results

1.1 Overview

In this article, we consider the 1D Eulerian droplet model

vt + (v f (u))x = 0, x ∈ R, t > 0,

(vu)t + (vu f (u))x = κ(t)(ua(x, t) − u)v, x ∈ R, t > 0,
(1.1)

adjoined with the initial data

(v, u)(x, 0) = (v0(x), u0(x)), x ∈ R. (1.2)

The precise conditions on the initial data will be specified later depending on different sit-
uations. Here v, u in (1.1) denotes the volume friction and the velocity of the droplets,
respectively. Moreover, we take the following assumption on f in (1.1):

f : R → R is a C1 strictly increasing function.

Furthermore, ua(x, t) is a locally bounded function that indicates the velocity of the carrier
fluid or air, which depends on the position of the particle and time, and κ(t) ∈ L∞([0, T );R)

is the drag coefficients between the carrier fluid and the droplets. The above system (1.1) can
be derived from a more general system

vt + (v f (u))x = 0,

(vu)t + (vu f (u))x = κ(t)(ua(x, t) − u)v +
(
1 − ρ

ρl

)
1

Fr2
g,

(1.3)
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by neglecting the source term involving the gravitational force g. The system (1.3), for

f (u) = u, κ(t) = CD Red
24K where K = ρl d2U∞

18 Lμ
is an inertia parameter, Fr = U∞√

Lg0
is the

Froude number, U∞ is the speed of air at infinity; g0 is a characteristic external field; and L
is a characteristic length, and ua(x, t) = ua was introduced by Bourgault et al. [55]. For a
detailed physical description of (1.3), applications, and numerical experiments, see [42, 43,
55].

In order to understand the system (1.1) from a more analytical point of view, we con-
sider different cases depending on the function f (·), the air velocity ua(x, t) and the drag
coefficient κ(t) as follows:
Case I: f (u) = u. This case can be split into two subcases depending on the contributions
from the drag coefficient κ(t).
Subcase I. κ(t) = 0. In this case the system (1.1) turns out to be the usual system of
pressureless gas dynamics and the initial value problem has been extensively studied in the
last few decades. As it is well known now, among others, one of the main issues is that,
v is no longer a function, but a measure. So the natural space where one should search
for a weak solution to (1.1) is the space of Radon measures. The existing results consist
of different notions of weak solutions, for example, measure-valued solutions [17], duality
solutions, and solutions via vanishing viscosity approach [18, 19, 29]. The global existence
of weak solutions via mass and momentum potentials was established in [49, 53]. An explicit
formula using generalized potentials and variational principles was obtained in [16, 21, 57].
A new perspective to the global existence of weak solutions for 1D pressureless gas dynamics
equation is due to Natile and Savaŕe [32] by constructing sticky particle solutions using a
suitable metric projection onto the cone of monotone maps. Later, Cavalletti et al. [24] gave a
more direct proof by using the notion of differentiability of metric projections introduced by
Haraux. On the other hand, Nguyen and Tudorascu [47, 48] gave a general global existence
result for (1.1) with or without viscosity by constructing an entropy solution for appropriate
scalar conservation laws. They also obtained the uniqueness of the solution via the contraction
principle in the Wasserstein metric. Other uniqueness results are due to Wang and Ding [58]
&Haung andWang [21] where they used generalized characteristics introduced byDafermos
[12]. On the contrary, Bressan and Nguyen [5] showed the non-uniqueness and non-existence
of solutions in the multi-D case by constructing different initial data. Regarding numerical
methods employed to the pressureless gas model, we refer to [20, 30].
Subcase II. Now we consider κ(t) �= 0. The work of Ha et al. [40] is the first useful result
for us to consider in this scenario. They took κ(t) = 1 and ua(x, t) = 0, i.e., the system
(1.1) takes the form

vt + (vu)x = 0,

(vu)t + (vu2)x = −uv.
(1.4)

The system (1.4) is strongly related to the pressureless Euler systemwith flocking dissipation

∂tv + ∇x · (vu) = 0, x ∈ R
n, t > 0,

∂t (uv) + ∇x · (vu ⊗ u) = −Kv

∫
Rn

ψ(|x − y|)(u(x) − u(y))v(y)dy,
(1.5)

where K is the positive coupling strength and ψ is a Lipschitz continuous function that
denotes the communication weight. The system (1.4) can be obtained from (1.5) by setting
the following quantities:

n = 1, K ≡ 1, ψ ≡ 1,
∫ ∞

−∞
vdx = 1, and

∫ ∞

−∞
vudx = 0.

123



Journal of Dynamics and Differential Equations

To study the initial value problem for (1.4), the authors used a variational approach. Fur-
thermore, they showed the uniqueness of the entropy solution by adopting the arguments of
[58] in their setting. As it is mentioned earlier, in the case when κ(t) and ua(x, t) both are
constants, the Riemann problem for (1.1) is studied by Bourgault and Keita in [42]. More
recently, Cheng and Yang [27] studied the Riemann problem for the system

vt + (vu)x = 0,

(vu)t + (vu2)x = (kx − αu)v.
(1.6)

The nonhomogeneous term in (1.6) can easily be obtained by setting κ(t) = α > 0 and
ua(x, t) = kx/α in (1.1). For other related studies, we refer to [10, 50] and the references
cited therein where the authors considered the pressureless Euler systemwith a coulomb-like
friction term βv, β > 0 and a source term of the form vx, respectively. Recently, Leslie and
Tan [46] developed a global wellposedness theory and long-time behavior for weak solutions
of the 1D Euler-alignment system (similar to the system (1.5)) with measure-valued density,
and bounded velocity which is an example of a nonlocal system [6].
Case II: f : R → R be any function satisfying f ′(u) > 0. Similar to the above, we consider
two subcases below.
Subcase I. κ(t) = 0. This case corresponds to the generalized pressureless Euler system.
To the best of our knowledge, Yang [26] first considered the Riemann problem for the
homogeneous version of (1.1), where f (u) is assumed to be a smooth and strictly monotone
function. He used the characteristics method to obtain the Riemann solution and showed the
existence of a non-classical measure-valued solution. In fact, he proved there are only two
kinds of solution: one that involves vacuum and the other one contains a delta measure in the
component v. Furthermore, he proposed a generalized Rankine-Hugoniot relation for delta
shock solutions to the system (1.1).

The next result on the homogeneous version of system (1.1) is due to Huang [22], where
he established the existence of a global weak solution with the initial data v0(x) ≥ 0, u0(x) ∈
L∞(R). When f (u) �= u, the key difference between this system and the usual pressureless
gas dynamics is that, here one has to deal with two kinds of speeds: one is the characteristics
speed f (u) and the other one is the physical velocity u. Due to this, several tools, including
duality solutions, sticky particle approaches, andmost importantly the generalized variational
principle (GVP), are inapplicable in this situation. Huang [22] established the existence of
global weak solution by developing an approach that can be seen as a combination of the
front-tracking method and generalized characteristics. First, the initial data is approximated
by piecewise constant functions and a sequence of Riemann solution (vn, un) is obtained up
to a finite time when the first interactions of waves occur. Then a set of Riemann problems
with δ-initial data are solved to continue the process.

In [14],Mitrović andNedeljkov showed that theRiemann solutions to the generalized pres-
sureless gas dynamics equation (which is a non-strictly hyperbolic system) can be obtained
as a vanishing pressure limit of the strictly hyperbolic system

vt + (v f (u))x = 0,

(vu)t + (vu f (u) + εp(v))x = 0,
(1.7)

where ε > 0 is a small parameter and the pressure term p is a non-negative C2-function
satisfying: p′ ≥ 0 and p′′ > 0. The system (1.7) is strictly hyperbolic [2] and can be solved
for arbitrary Riemann data. The distributional limit as ε → 0 of the BV solutions to the
system (1.7) converges to the delta shock solution of the homogeneous version of (1.1).
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Remark 1.1 In this context, it is important to note that when f ′(u) changes sign, system (1.1)
can be associated with the general system of Keyfitz-Kranzer [7] or Aw-Rascle type [1].
The global existence results to such systems have been obtained by Lu (see [51, 52] and the
references cited therein) using compensated compactness arguments for the homogeneous
case, i.e., when κ(t) = 0.

Subcase II. κ(t) �= 0. For f (u) �= u, there are very few papers in the literature that considers
this case. Recently, Zhang et al. [38] studied the Riemann problem for the system

vt + (v f (u))x = 0,

(vu)t + (vu f (u))x = (β − αu)v,
(1.8)

where the constants α and β denote the dissipation coefficient and the friction coefficient,
respectively. Note that (1.8) can be derived from (1.1) by simply setting ua(x, t) = β/α and
κ(t) = α. Also, for α = 0, the Riemann solutions are obtained by Zhang and Zhang in [54].

1.2 Main Results

In this section, we state our main results. Keeping the above literature in mind, we ask the
following question:

Q. Depending on the function f and the source term, what are the possible cases for
which the system (1.1)–(1.2) admits a global entropy solution?

Our answer is two-fold:

• When f is anyC1 strictly increasing function,we establish the existence of global entropy
solution for the following system

vt + (v f (u))x = 0,

(vu)t + (vu f (u))x = κ(t)(ua(t) − u)v.
(1.9)

To achieve our objective, we utilize shadow wave tracking method [41]. Note that here
the drag coefficient κ and the air velocity ua are locally bounded functions of t .

• When f (u) = u, using the generalized variational principle, we obtain an explicit rep-
resentation of the entropy solution for the system

vt + (vu)x = 0,

(vu)t + (vu2)x = 1

t + κ

(
x

t + κ
− u

)
v.

(1.10)

We derive the above system (1.10) by setting κ(t) = 1
t+κ and ua(x, t) = x

t+κ in (1.1)
where κ ∈ R

+. Note that, here the air velocity ua(x, t) depends both on the time and
space variables. Also, κ(t) is a function that decays algebraically in time.

The first part of the article is devoted to the results related to the system (1.9). We start
with the concept of shadowwaves [34–36]. Shadowwaves (in short SDW) are constructed as
a net of piecewise constant (more precisely, piecewise constant for each time t) functions that
approximate delta shocks in a small neighborhood of the shock location. Let a delta shock
is supported by a curve x = c(t) with speed c′(t). We perturb the curve from both sides by
a small parameter ε > 0, and replace the delta shock with a fan of shocks that depend on ε.

Next we give a formal definition of shadow wave solution.
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Definition 1.1 A shadow wave is a piecewise constant (for each time t) function of the form

U ε(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(vl(t), ul(t)), x < c(t) − aε(t) − xl,ε,

(vl,ε(t), ul,ε(t)), c(t) − aε(t) − xl,ε < x < c(t),

(vr ,ε(t), ur ,ε(t)), c(t) < x < c(t) + bε(t) + xr ,ε,

(vr (t), ur (t)), x > c(t) + bε(t) + xr ,ε,

(1.11)

where aε(t), bε(t), xl,ε, xr ,ε areO(ε) for each t > 0. We say that the SDW (1.11) solves the
system (1.9) if its substitution in the RHS and LHS of (1.9) gives the same limit as ε → 0
in the sense of distributions.

The idea of replacing delta (or singular) shocks with a fan of shocks reminds us of the
method of front tracking for conservation laws (see [2–4, 11, 12, 25, 37] ). As a first step, the
initial data (1.2) is approximated by piecewise constant functions and finitely many Riemann
problems are solved at the initial level t = 0. The solution can be continued until t = t1,
when the first interaction of waves occurs. Since the interaction of two waves produces only
a single delta wave, the number of shock fronts decreases in time. At the time level t = t1,
one needs to solve a finite number (less than the initial case) of Riemann problems with delta
initial data and the process can be continued further.

In [22], Huang started with a similar method but later on, he defined generalized character-
istics and mass-momentum-energy potentials by using the approximate solution to produce
a complete solution. We take a different route of using shadow wave solution at each stage of
interaction (including the initial stage where no interaction happens) and obtain a complete
solution in an approximated sense. One of the advantages of this approach is that it can be
implemented to study 3 × 3 systems (see Sect. 2) of having unbounded solutions whereas it
seems that Huang’s method is restrictive in such cases. Although, the solution constructed
by Huang can be seen as an actual solution that satisfies the weak formulation.

Next, we present the global existence result for the system (1.9).

Theorem 1.1 Let v(x) ∈ L∞([R,∞)) be positive, u(x) ∈ L∞([R,∞)) ∩ C([R,∞)) and
u(x) be a function having finitely many extremes. Take a partition {Yi }i∈N∪{0} of [R,∞)

such that Y0 = R and C1ε
α < Yi − Yi+1 < C2ρ(ε) for every i = 0, 1, 2, · · · · · · where

C1,C2 ≥ 1, α ∈ (0, 1) and ρ(ε) → 0 as ε → 0. Then there exists a global admissible
solution to (1.9) and (4.1). More precisely, there exists a function U ε = (vε, uε) that satisfies

lim
ε→0

{〈
∂
∂t v

ε, ϕ
〉+ 〈 ∂

∂x (vε f (uε)), ϕ
〉 = 0,〈

∂
∂t (v

εuε), ϕ
〉+ 〈 ∂

∂x (vεuε f (uε)), ϕ
〉 = 〈κ(t)(ua(t) − uε)vε, ϕ〉 ,

for every test function ϕ ∈ C∞
c (R × [0,∞)) and the admissibility condition.

Theorem 1.1 can be extended to a 3 × 3 system of pressureless drift-flux equations of
two-phase flow model

vt + (v f (u))x = 0,

wt + (w f (u))x = 0,

((v + w)u)t + ((v + w)u f (u))x = κ(t)(ua(t) − u)(v + w),

(1.12)

in which v and w represent the masses of gas and liquid, respectively. For more on the drift-
flux model, we refer to [23, 44, 45]. Recently, considering f (u) = u and the source term to
be −μ(v + w), Shen and Sun [9] studied the Riemann problem for (1.12) and showed the
existence of delta shock wave invoking the vanishing pressure limit approach. We can prove
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an analogous result of Theorem 1.1 for (1.12) as our method only requires that there exists
a unique solution to the Riemann problem and the interactions consisting of shadow waves
or elementary waves.

Next, we prove that a sequence of solutions constructed in Theorem 1.1 has a weak limit
in the space of Radon measures.

Theorem 1.2 Grant the assumptions of Theorem 1.1 on the initial data (4.1). Take a partition
{Y ν

i }i∈N∪{0} of [R,∞) such that Y0 = R,C1ε
α
ν < Yi − Yi+1 < C2ρ(εν) for every i =

0, 1, 2, · · · · where C1,C2 ≥ 1, α ∈ (0, 1) and ρ(εν) → 0 as εν → 0 for any sequence
{εν}ν∈N∪{0}. Let {U ν}ν∈N∪{0} be a sequence of approximated solution obtained in Theorem
1.1. Then there exists a subsequence still denoted as {U ν}ν∈N∪{0} and a Radon measure U∗

such that U ν ∗
⇀ U∗ as ν → ∞.

In the second part of the paper, we obtain the explicit formula for (1.10) and show that
it satisfies the weak formulation (see Definition 1.2). We use the method of generalized
variational principle (GVP). The next paragraphs are dedicated to briefly discussing the
method and stating this part’s main result.

As mentioned earlier, Rykov et al. [16] introduced the generalized variational principle
for pressureless gas dynamics equation by generalizing the variational principle due to Lax
and Oleinik for scalar conservation laws, in particular for Burger’s equation. Huang and
Wang [21] & Ding et al. [57] extended the method of generalized potentials when the initial
data u0 is not continuous and v0 ≥ 0 is a Radon measure, respectively. In this setting, the
solution concept is the following: we show that (v, u) is actually a weak solution to the
system (1.10). First, we construct locally bounded measurable functions m(x, t) and u(x, t)
such that m(x, t) is of locally BV in x for a.e t . Therefore m defines a Lebesgue-Stieltjes
measure dm and its derivative in the sense of distribution defines a Radon measure v = mx .

These two objects are the same through the identification

−〈m, ϕx 〉 = −
∫ ∞

−∞
ϕxmdx =

∫ ∞

−∞
ϕmxdx =

∫ ∞

−∞
ϕdm = 〈v, ϕ〉 for all ϕ ∈ C∞

c (R).

Furthermore, similar identification allows us to define

〈vu, ϕ〉 =
∫ ∞

−∞
ϕudm.

These identifications lead to the notion of generalized solution to (1.10). The first equation
can be written in the distributional sense as

0 = 〈v, ϕt 〉 + 〈vu, ϕx 〉 = −
∫∫

ϕxtmdxdt +
∫∫

φxudmdt .

Similarly, the second equation of (1.10) can be written as

0 = 〈vu, ϕt 〉 + 〈vu2, ϕx
〉+
〈

1

t + κ

(
x

t + κ
− u

)
v, ϕ

〉

=
∫∫

uϕtdmdt +
∫∫

u2φxdmdt +
∫∫

1

t + κ

(
x

t + κ
− u

)
ϕdmdt .

Therefore the weak formulation to the system (1.10) is the following:
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Definition 1.2 The pair (v, u) is said to be a generalized solution to the system (6.1) if the
following integral identities∫∫

ϕtmdxdt −
∫∫

ϕudmdt = 0, (1.13)
∫∫

ϕt u + ϕxu
2 + 1

(t + κ)

(
x

t + κ
− u

)
ϕdmdt = 0, (1.14)

hold for all test functions ϕ ∈ C∞
c (R × R

+), where the distributional derivative mx defines
the Radon measure v.

The construction of the generalized solution (m, u) is done in two levels. First, by
introducing generalized potential F(y, x, t)weconstructu and thenwe introduce themomen-
tum and energy potentials q(x, t) and E(x, t), respectively and some auxiliary functionals
H(·, x, t), I (·, x, t), J (·, x, t). Moreover, by establishing relations between the measures
dq, dE, dm, and dJ we show that q, E,m satisfy Definition 1.2.

Now we state the main result of this part.

Theorem 1.3 Let v0(x) > 0, u0(x) are locally bounded measurable functions, then the pair
(m, u) given by (6.5)–(6.6) is a global weak solution to the system (1.10)–(1.2) in the sense
of Definition 1.2.

Remark 1.2 We want to point out that the system (1.10) can be associated with the sys-
tem (1.5) if we consider a more general communication weight ψ(|x − y|, t) which is of
the form κ(t) := 1/(t + κ). Also, if we take further assumptions

∫∞
−∞ v(y)dy = 1 and∫∞

−∞ v(y)u(y)dy = 1, the nonhomogeneous term in (1.5) would take a form 1
t+κ (1 − u) v.

The source term considered in (1.10) is even more general involving the space variable.
Note that, in the situation described above the communication weight is a decaying func-
tion of time. Therefore, Theorem 1.3 essentially gives an answer to the question of Ha et
al. [40, Section 7] where they made a query: whether the generalized variational principle
would apply for non-constant communication weights, for instance, algebraically decaying
communication weights.

1.3 Plan of The Paper

The article is organized into two separate parts. The first part of the article consists of Sects. 2,
3, 4 and 5. In Sect. 2, we study the Riemann problem and the interactions for (1.9) and (1.12).
In Sect. 3, using the entropy-entropy flux pair, we introduce the notion of dissipative shadow
waves for the system (1.9) and show its equivalence to the overcompressibility condition.
Section4 is devoted to prove Theorems 1.1 and 1.2. In Sect. 5, we provide some examples of
physically relevant models that are included in (1.9). The second part of the paper consists
of Sect. 6 where we give the proof of Theorem 1.3.
Part I: Global existence results for (1.9) and (1.12).

2 Riemann Problem and Interactions

In this section, we study the shadow wave solution for the Riemann type initial data and
initial data containing δ-measure for the systems (1.9) and (1.12). We start with the system
(1.9).
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2.1 Riemann Problem to the System (1.9)

First, we observe that for a smooth solution the system (1.9) reduces to

ut + f (u)ux = κ(t)(ua(t) − u).

From the characteristic equation we have the system of ODEs as follows:⎧⎪⎨
⎪⎩

dx(t)
dt = f (u(x(t), t)),

du(x(t),t)
dt = κ(t)(ua(t) − u(x(t), t)),

x(0) = x0.

(2.1)

Solving (2.1), we obtain

u(x, t) = e− ∫ t0 κ(θ)dθ
(∫ t

0
F(θ)dθ + u0(x0)

)
, and

x(t) = x0 +
∫ t

0
f

(
e− ∫ s0 κ(θ)dθ

(∫ s

0
F(θ)dθ + u0(x0)

))
ds,

where F is given by F(t) = κ(t) ·ua(t) · e
∫ t
0 κ(θ)dθ . This motivates us to consider the shadow

wave in the following form:

U ε = (vε, uε)(x, t) =

⎧⎪⎨
⎪⎩

(vl ,Ul(t)) , x < c(t) − ε
2 t − xε,

(vε(t), uε(t)) , c(t) − ε
2 t − xε < x < c(t) + ε

2 t + xε,

(vr ,Ur (t)) , x > c(t) + ε
2 t + xε,

(2.2)

where Ul,r (t) := e− ∫ t0 κ(θ)dθ ·
(∫ t

0 F(θ)dθ + ul,r
)
and xε, vε(t) are O(ε) and O(1/ε), and

lim
ε→0

uε(t) = χ(t). First, we study the above system (1.9) when initial data contains a δ-

measure and is of the following form

(v, u)(x, 0) =

⎧⎪⎨
⎪⎩

(vl , ul), x < 0,

(m̄δ(x), ū), x = 0,

(vr , ur ), x > 0,

(2.3)

where vl,r ≥ 0, m̄ > 0 and ul > ū > ur . This situation arises when two approaching
shock waves interact. Suppose we are given a piecewise constant data: (vl , ul), (vm, um) and
(vr , ur )with ul > um > ur . The delta shock curve joining (vl , ul) to (vm, um) interacts with
another delta shock curve connecting the states (vm, um) to (vr , ur ) at some point (X , T )

and at this level, we need to solve a Riemann problem with a δ-initial data. When m̄ = 0,
then the data is purely of Riemann type and can be seen as a particular case of (2.3). Without
loss of any generality, we may assume (X , T ) = (x, 0).

Substituting the shadow wave solution (2.2) into the system (1.9), from the definition of
shadow wave we have

lim
ε→0

[〈
∂

∂t
vε, ϕ

〉
+
〈

∂

∂x

(
vε f (uε)

)
, ϕ

〉]
= 0, (2.4)

lim
ε→0

[〈
∂

∂t

(
vεuε
)
, ϕ

〉
+
〈

∂

∂x

(
vεuε f (uε)

)
, ϕ

〉
− 〈κ(t)(ua(t) − uε)vε, ϕ

〉] = 0, (2.5)

for all ϕ ∈ C∞
c (R × [0,∞)).
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Now for a fixed ε > 0, by using integration by parts in the term involving time derivative of
(2.4), we get

−
〈

∂

∂t
vε, ϕ

〉
=
∫ ∞

0

∫ ∞

−∞
vε ∂

∂t
ϕ(x, t)dxdt +

∫ ∞

−∞
vε(x, 0)ϕ(x, 0)dx

=
∫ ∞

0

∫ c(t)− ε
2 t−xε

−∞
vl

∂

∂t
ϕ(x, t)dxdt +

∫ −xε

−∞
vε(x, 0)ϕ(x, 0)dx

+
∫ ∞

0

∫ c(t)+ ε
2 t+xε

c(t)− ε
2 t−xε

vε(t)
∂

∂t
ϕ(x, t)dxdt +

∫ xε

−xε

vε(x, 0)ϕ(x, 0)dx

+
∫ ∞

0

∫ ∞

c(t)+ ε
2 t+xε

vr
∂

∂t
ϕ(x, t)dxdt +

∫ ∞

xε

vε(x, 0)ϕ(x, 0)dx .

Simplifying the above expression, we obtain

−
〈

∂

∂t
vε, ϕ

〉
=
∫ ∞

0
(vε(t) − vl) ϕ

(
c(t) − ε

2
t − xε, t

) (
c·(t) − ε

2

)
dt

+
∫ ∞

0
(vr − vε(t)) ϕ

(
c(t) + ε

2
t + xε, t

) (
c·(t) + ε

2

)
dt

−
∫ ∞

0

∫ c(t)+ ε
2 t+xε

c(t)− ε
2 t−xε

∂

∂t
vε(t)ϕ(x, t)dt +

∫ xε

−xε

vε(0)ϕ(x, 0)dx . (2.6)

Similarly, the term involving spatial derivatives of (2.4) gives

−
〈

∂

∂x
vε f (uε), ϕ

〉
=
∫ ∞

0
[vl f (Ul(t)) − vε(t) f (uε(t))]ϕ

(
c(t) − ε

2
t − xε, t

)
dt

+
∫ ∞

0
[vε(t) f (uε(t)) − vr f (Ur (t))]ϕ

(
c(t) + ε

2
t + xε, t

)
dt .

(2.7)

Next, we use the following Taylor series expansion for ϕ with respect to x = c(t) to
evaluate the above integrals, we have

ϕ
(
c(t) − ε

2
t − xε, t

)
= ϕ(c(t), t) −

( ε
2
t + xε

) ∂

∂x
ϕ(c(t), t) + O(ε2),

ϕ
(
c(t) + ε

2
t + xε, t

)
= ϕ(c(t), t) +

( ε
2
t + xε

) ∂

∂x
ϕ(c(t), t) + O(ε2),

ϕ(x, t) = ϕ(c(t), t) + O(ε), for c(t) − ε

2
t − xε < x < c(t) + ε

2
t + xε. (2.8)

By employing the Taylor expansions into the Eqs. (2.6)–(2.7) and simplifying, we obtain

−
〈

∂

∂t
vε, ϕ

〉
−
〈

∂

∂x
vε f (uε), ϕ

〉
=
∫ ∞

0

[
c·(t)(vr − vl ) − ∂

∂t

(
2
( ε
2
t + xε

)
vε(t)
)]

ϕ(c(t), t)dt

+
∫ ∞

0

[
(vl f (Ul(t)) − vr f (Ur (t))) + ε

2
(vl + vr )

]
ϕ(c(t), t)dt

+
∫ ∞

0
c·(t) [vr − 2vε(t) + vr ]

( ε
2
t + xε

) ∂

∂x
ϕ(c(t), t)dt +

∫ xε

−xε

vε(0)ϕ(x, 0)dx

+
∫ ∞

0
[2vε(t) f (uε(t)) − vl f (Ul(t)) − vr f (Ur (t))]

( ε
2
t + xε

) ∂

∂x
ϕ(c(t), t)dt + O(ε).

(2.9)
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In a similar way as above, we can calculate (2.5). However, we have to consider the contri-
bution of the nonhomogeneous term. Following the same calculations, simplifying the terms
for time derivative and the source, we get

−
〈

∂

∂t

(
vεuε
)
, ϕ

〉
+ 〈κ(t)(ua(t) − uε)vε, ϕ

〉

=
∫ ∞

0
[vε(t)uε(t) − vlUl(t)]ϕ

(
c(t) − ε

2
t − xε, t

) (
ċ(t) − ε

2
t
)
dt

+
∫ ∞

0
[vrUr (t) − vε(t)uε(t)]ϕ

(
c(t) + ε

2
t + xε, t

) (
ċ(t) + ε

2
t
)
dt

+
∫ ∞

0

∫ c(t)+ ε
2 t+xε

c(t)− ε
2 t−xε

[
κ(t)(ua(t) − uε(t))vε(t) − ∂

∂t
(vε(t)uε(t))

]
ϕ(x, t)dxdt

+
∫ xε

−xε

vε(0)uε(0)ϕ(x, 0)dx,

(2.10)

and for spatial derivatives, we have

−
〈

∂

∂x

(
vεuε f (uε)

)
, ϕ

〉
=
∫ ∞

0
[vlUl (t) f (Ul (t)) − vε(t)uε(t) f (uε(t))]ϕ

(
c(t) − ε

2
t − xε, t

)
dt

+
∫ ∞

0
[vε(t)uε(t) f (uε(t)) − vrUr (t) f (Ur (t))]ϕ

(
c(t) + ε

2
t + xε, t

)
dt .

(2.11)

Again using the Taylor expansion of the test function ϕ in (2.10)–(2.11), we obtain

−
〈

∂

∂t

(
vεuε
)
, ϕ

〉
−
〈

∂

∂x

(
vεuε f (uε)

)
, ϕ

〉
+ 〈κ(t)(ua(t) − uε)vε, ϕ

〉

=
∫ ∞

0

[
ċ(t) (vrUr (t) − vlUl(t)) + ε

2
(vrUr (t) + vlUl(t)) + vlUl(t) f (Ul (t))

−vrUr (t) f (Ur (t))]ϕ(c(t), t)dt

+
∫ ∞

0
2
( ε
2
t + xε

) [
κ(t)(ua(t) − uε(t))vε(t) − ∂t

(
2
( ε
2
t + xε

)
vε(t)uε(t)

)]
ϕ(c(t), t)dt

+
∫ ∞

0
[ċ(t) (vrUr (t) − 2vε(t)uε(t) + vlUl(t))]

( ε
2
t + xε

) ∂

∂x
ϕ(x, t)dt

+ 2
∫ ∞

0
[vε(t)uε f (uε(t)) − vlUl(t) f (Ul(t)) − vrUr (t) f (Ur (t))]

( ε
2
t + xε

)
ϕx (x, t)dt .

(2.12)

Now passing to the limit as ε tends to zero in the equations (2.9) and (2.12), we obtain the
following relations

∂

∂t
(ξ(t)) = ċ(t)[v] − [v f (U (t))], ξ(0) = m̄,

∂

∂t
(ξ(t)χ(t)) + κ(t)(χ(t) − ua(t))ξ(t) = ċ(t)[vU (t)] − [vU (t) f (U (t))], ξ(0)χ(0) = m̄ū,

f (χ(t)) = ċ(t),
(2.13)
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where lim
ε→0

2
(

ε
2 t + xε

)
vε(t) = ξ(t), lim

ε→0
uε(t) = χ(t) and [·] := ·r − ·l denotes the jump

across the discontinuity curve. From the first equation of (2.13), we have

ξ(t) = c(t)[v] + vl

∫ t

0
f (Ul(θ))dθ − vr

∫ t

0
f (Ur (θ))dθ + m̄.

Setting �(t) = ξ(t)χ(t), second equation of (2.13) can be written as

e
∫ t
0 κ(θ)dθ

[
∂

∂t
�(t) + κ(t)�(t)

]
= F(t)

[
c(t)(vr − vl) + vl

∫ t

0
f (Ul(θ))dθ

−vr

∫ t

0
f (Ur (θ))dθ + m̄

]

+ ċ(t)
[
vr

( ∫ t

0
F(θ)dθ + ur

)
− vl

( ∫ t

0
F(θ)dθ + ul

)]

−
[
vr

( ∫ t

0
F(θ)dθ + ur

)
f (Ur (t)) − vl

( ∫ t

0
F(θ)dθ + ul

)
f (Ul(t))

]
,

which implies the following identity.

∂

∂t

(
e
∫ t
0 κ(θ)dθ�(t)

)
= ċ(t)[vu] + [v] ∂

∂t

(
c(t)
∫ t

0
F(θ)dθ

)
+ [vu f (U (t))] + m̄F(t)

+ vl
∂

∂t

(∫ t

0
F(θ)dθ ·

∫ t

0
f (Ul(θ))dθ

)
− vr

∂

∂t

(∫ t

0
F(θ)dθ ·

∫ t

0
f (Ur (θ))dθ

)
.

(2.14)

The ODE presented in (2.14) directly yields,

�(t) := ξ(t)χ(t) = c(t)[vU (t)] + vlUl(t)
∫ t

0
f (Ul(θ))dθ − vrUr (t)

∫ t

0
f (Ur (θ))dθ + m̄Ū (t)

where Ū (t) = e− ∫ t0 κ(θ)dθ
(∫ t

0 F(θ)dθ + ū
)
. Thus χ(t) is of the following form

χ(t) = c(t)[vU (t)] + vl(Ul(t))
∫ t
0 f (Ul(θ))dθ − vrUr (t)

∫ t
0 f (Ur (θ))dθ + m̄(Ū (t))

c(t)[v] + vl
∫ t
0 f (Ul(θ))dθ − vr

∫ t
0 f (Ur (θ))dθ + m̄

.

Now, we need to consider the region D := {(c(t), t)| ∫ t0 f (Ur (θ))dθ ≤ c(t) ≤∫ t
0 f (Ul(θ))dθ} to prove the overcompressibility condition as ul > ū > ur . In the above
region D , we find ξ(t) > 0,

χ(t) = Ul(t) +
vr (Ul(t) −Ur (t))

(∫ t
0 f (Ur (θ))dθ − c(t)

)
+ m̄
(
Ū (t) −Ul(t)

)
ξ(t)

< Ul(t),

and

χ(t) = Ur (t) +
vl(Ul(t) −Ur (t))

(∫ t
0 f (Ul(θ))dθ − c(t)

)
+ m̄
(
Ū (t) −Ur (t)

)
ξ(t)

> Ur (t).

Furthermore, since f is C1 the following ODE

ċ(t) = f (χ(t)) = H(c(t), t),

c(0) = 0,
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has a unique solution [15, 28] in the region D . Finally, by using the increasing property of
f , we have f (Ur (t)) < f (χ(t)) < f (Ul(t)).
Next, we turn our attention to the case of Riemann-type initial data, i.e.,

(v, u)(x, 0) =
{

(vl , ul), x < 0,

(vr , ur ), x > 0,
(2.15)

where vl,r > 0. When ul > ur in (2.15), substituting the shadow wave

U ε = (vε, uε)(x, t) =

⎧⎪⎨
⎪⎩

(vl ,Ul(t)) , x < c(t) − ε
2 t,

(vε(t), uε(t)) , c(t) − ε
2 t < x < c(t) + ε

2 t,

(vr ,Ur (t)) , x > c(t) + ε
2 t,

(2.16)

we obtain the system of ODE’s (2.13) where lim
ε→0

εtvε(t) = ξ(t), lim
ε→0

uε(t) = χ(t) with

the initial conditions ξ(0) = 0 and ξ(0)χ(0) = 0. We take the particular form of uε(t) =
e− ∫ t0 κ(θ)dθ

(∫ t
0 F(θ)dθ + uε

)
, in which uε’s are constants and independent of t . Hence,

lim
ε→0

e− ∫ t0 κ(θ)dθ

(∫ t

0
F(θ)dθ + uε

)
= e− ∫ t0 κ(θ)dθ

(∫ t

0
F(θ)dθ + χ0

)
= χ(t),

where χ0 is constant. Thus the second equation of (2.13) takes the simple form

∂ξ(t)

∂t
· χ(t) = c·(t)[v(U (t))] − [v(U (t)) f (U (t))].

The first equation of (2.13) yields

f (χ(t)) ([v](χ(t)) − [v(U (t))]) − (χ(t)) [v f (U (t))] + [v(U (t)) f (U (t))] = 0.

Let us consider the function K(x) as

K(x) = f (x)
(
[v]x − [v(U (t))]

)
− x[v f (U (t))] + [v(U (t)) f (U (t))].

One can observe that K(Ul(t)) = vr (ul − ur ) ( f (Ul(t)) − f (Ur (t))) > 0, since f is
increasing. Similarly, we have K(Ur (t)) < 0. Also, a simple calculation shows

K′(x) = vr (x − (Ur (t))) f ′(x) + vl ((Ul(t)) − x) f ′(x) + vr ( f (x) − f (Ur (t)))

+vl ( f (Ul(t)) − f (x)) .

Since f is increasing, we find K′(x) > 0 and therefore K(x) = 0 has a unique solution in
(Ur (t),Ul(t)). Now using K(χ(t)) = 0, we obtain the overcompressibility condition:

Ur (t) < χ(t) < Ul(t) implies f (Ur (t)) < f (χ(t)) < f (Ul(t)).

When ul < ur the solution consists of contact discontinuity and vacuum, i.e.,

(v, u)(x, t) =

⎧⎪⎨
⎪⎩

(vl ,Ul(t)) , x <
∫ t
0 f (Ul(s))ds,

(0, z(x, t)) ,
∫ t
0 f (Ul(s))ds < x <

∫ t
0 f (Ur (s))ds,

(vr ,Ur (t)) , x >
∫ t
0 f (Ur (s))ds,

(2.17)

where z(x, t) is a continuous function that satisfies z
(∫ t

0 f (Ul(s))ds, t
)

= Ul(t) and

z
(∫ t

0 f (Ur (s))ds, t
)

= Ur (t). Summarizing the above discussion we prove the following:
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Lemma 2.1 (Riemann solution) The system (1.9)with initial data (2.15) has a unique shadow
wave solution of the form (2.16) in the case ul > ur . If ul ≤ ur , then the solution is a
combination of contact discontinuities and vacuum of the form (2.17).

Lemma 2.2 (Interaction of shadow waves) If ul > ū > ur , then the system (1.9) with initial
data (2.3) has a unique shadow wave solution of the form (2.2).

Remark 2.1 We observe that conservation of mass holds true due to the first equation in the
system (1.9). For the quantity

M0(t) := ξ(t) +
∫ c(t)

−∞
v(x, t)dx +

∫ ∞

c(t)
v(x, t)dx,

we have M0(0) = M0(t) for all t > 0. Indeed, using the first equation of (2.13), we get

Ṁ0(t) = ξ̇ (t) + v(c(t)−, t)ċ(t) +
∫ c(t)

−∞
∂

∂t
v(x, t)dx − v(c(t)+, t)ċ(t) +

∫ ∞

c(t)

∂

∂t
v(x, t)dx

= ξ̇ (t) − ċ(t)[v] + [v f (U )] = 0.

However, the momentum satisfies a differential equation. Define

M1(t) := ξ(t)χ(t) +
∫ c(t)

−∞
v(x, t)u(x, t)dx +

∫ ∞

c(t)
v(x, t)u(x, t)dx .

A similar calculation as above leads to

Ṁ1(t) = ∂

∂t
(ξ(t)χ(t)) − ċ(t)[v] + [vU f (U )] +

∫ c(t)

−∞
κ(t)(ua(t) − u(x, t))v(x, t)dx

+
∫ ∞

c(t)
κ(t)(ua(t) − u(x, t))v(x, t)dx

= ∂

∂t
(ξ(t)χ(t)) − ċ(t)[v] + [vU f (U )] − κ(t)

[∫ c(t)

−∞
v(x, t)u(x, t)dx

+
∫ ∞

c(t)
v(x, t)u(x, t)dx

]

+ κ(t)ua(t)

[∫ c(t)

−∞
v(x, t)dx +

∫ ∞

c(t)
v(x, t)dx

]

=κ(t)(ua(t) − χ(t))ξ(t) − κ(t)(M1(t) − ξ(t)χ(t)) + κ(t)ua(t)(M0(t) − ξ(t))

=κ(t)(ua(t)M0(t) − M1(t)).

Therefore momentum M1 satisfies the ODE

Ṁ1(t) + κ(t)M1(t) = κ(t)ua(t)M0(t). (2.18)

Solving (2.18) explicitly, we get

M1(t) = e− ∫ t0 κ(θ)dθ
[∫ t

0
e
∫ s
0 κ(θ)dθ κ(s)ua(s)M0(s)ds + m̄ū

]
. (2.19)

When κ(t) := κ and ua(t) := ua are constants, using Ṁ0(t) = 0 we get a simplified form
of (2.18)

M̈1(t) + κṀ1(t) = 0,
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which gives

M1(t) = (m̄ū − C) + Ce−κt (2.20)

for some constant C . From the expressions (2.19) and (2.20) it can be easily seen that the
momentum is conserved as t → 0.

2.2 Riemann Problem to the System (1.12)

Now we extend the Lemmas 2.1 and 2.2 for the drift flux equation of two-phase flow. We
start with the construction of shadowwave solution for (1.12) adjoined with the δ initial data.
Similar to Sect. 2.1, we consider the shadow waves solution

U ε = (vε, wε, uε)(x, t) =

⎧⎪⎨
⎪⎩

(vl , wl ,Ul (t)) , x < c(t) − ε
2 t − xε,

(vε(t), wε(t), uε(t)) , c(t) − ε
2 t − xε < x < c(t) + ε

2 t + xε,

(vr , wr ,Ur (t)) , x > c(t) + ε
2 t + xε,

(2.21)

where Ul,r (t) := e− ∫ t0 κ(θ)dθ ·
(∫ t

0 F(θ)dθ + ul,r
)
and xε, vε(t) are O(ε) and O(1/ε), and

lim
ε→0

uε(t) = χ(t). We study the system (1.12) when initial data contains a δ-measure and is

of the following form

(v,w, u)(x, 0) =

⎧⎪⎨
⎪⎩

(vl , vl , ul), x < 0,

(m̄δ(x), n̄δ(x), ū), x = 0,

(vr , wr , ur ), x > 0,

where vl,r , wl,r ≥ 0, m̄, n̄ > 0 and ul > ū > ur .
Substituting the above shadowwave solution (2.21) into the system (1.12), fromDefinition

1.1 we have

lim
ε→0

[〈
∂

∂t
vε, ϕ

〉
+
〈

∂

∂x

(
vε f (uε)

)
, ϕ

〉]
= 0, (2.22)

lim
ε→0

[〈
∂

∂t
wε, ϕ

〉
+
〈

∂

∂x

(
wε f (uε)

)
, ϕ

〉]
= 0, (2.23)

lim
ε→0

[〈
∂

∂t

(
(vε + wε)uε

)
, ϕ

〉
+
〈

∂

∂x

(
(vε + wε)uε f (uε)

)
, ϕ

〉

− 〈κ(t)(ua(t) − uε)(vε + wε), ϕ
〉] = 0, (2.24)

for all ϕ ∈ C∞
c (R × [0,∞)).

Nowpassing to the limit as ε tends to zero in theEqs. (2.22)–(2.24),we obtain the following
relations

∂

∂t
(ξv(t)) = ċ(t)[v] − [v f (U (t))], ξv(0) = m̄, (2.25)

∂

∂t
(ξw(t)) = ċ(t)[w] − [w f (U (t))], ξw(0) = n̄, (2.26)

∂

∂t
((ξv(t) + ξw(t))χ(t)) + κ(t)(χ(t) − ua(t))(ξv(t) + ξw(t)) = ċ(t)[(v + w)U (t)]
− [(v + w)U (t) f (U (t))],

(ξv(0) + ξw(0))χ(0) = (m̄ + n̄)ū, (2.27)
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f (χ(t)) = ċ(t), (2.28)

where lim
ε→0

2
(

ε
2 t + xε

)
vε(t) = ξv(t), lim

ε→0
2
(

ε
2 t + xε

)
wε(t) = ξw(t), lim

ε→0
uε(t) = χ(t) and

[·] := ·r − ·l denotes the jump across the discontinuity curve.
Following exactly the same calculations of Sect. 2.1 from (2.25)–(2.28), we obtain

�(t) + �(t) : = χ(t)(ξv(t) + ξw(t)) = c(t)[(v + w)U (t)]
+ (vl + wl)Ul(t)

∫ t

0
f (Ul(θ))dθ − (vr + wr )Ur (t)

∫ t

0
f (Ur (θ))dθ + (m̄ + n̄)Ū (t),

where �(t) := ξv(t)χ(t) and �(t) := ξw(t)χ(t) and Ū denotes the same from Sect. 2.1.
Again, the overcompressibility for shadow wave solution (2.21) follows from the arguments
of Sect. 2.1.

Now we will consider the case of Riemann-type initial data, i.e.,

(v,w, u)(x, 0) =
{

(vl , wl , ul), x < 0,

(vr , wr , ur ), x > 0,
(2.29)

where vl,r , wl,r > 0. For Riemann type of initial data (2.29) when ul > ur , substituting the
shadow wave

U ε = (vε, wε, uε)(x, t) =

⎧⎪⎨
⎪⎩

(vl , wl ,Ul(t)) , x < c(t) − ε
2 t,

(vε(t), wε(t), uε(t)) , c(t) − ε
2 t < x < c(t) + ε

2 t,

(vr , wr ,Ur (t)) , x > c(t) + ε
2 t,

we have the ODE’s (2.25)–(2.27) with lim
ε→0

εtvε(t) = ξv(t), lim
ε→0

εtwε(t) = ξw(t) and lim
ε→0

uε(t) = χ(t) with the initial conditions ξv(0) = 0, ξw(0) = 0 and (ξv(0)+ ξw(0))χ(0) = 0.

As in the Sect. 2, we take the particular form of uε(t) = e− ∫ t0 κ(θ)dθ
(∫ t

0 F(θ)dθ + uε

)
,

where uε’s are constants and independent of t . Hence

lim
ε→0

e− ∫ t0 κ(θ)dθ

(∫ t

0
F(θ)dθ + uε

)
= e− ∫ t0 κ(θ)dθ

(∫ t

0
F(θ)dθ + χ0

)
,

where χ0 is constant. Thus the third equation of (2.25) takes the simple form

∂

∂t
((ξv(t) + ξw(t)) · χ(t) = c·(t)[(v + w)U (t)] − [(v + w)U (t) f (U (t))].

The first equation of (2.25) implies

f (χ(t)) ([v + w](χ(t)) − [(v + w)(U (t))]) − (χ(t)) [(v + w) f (U (t))]

+ [(v + w)(U (t)) f (U (t))] = 0.

Now considering the function K(x) as

K(x) = f (x)
(
[v+w]x−[(v+w)(U (t))]

)
−x[(v+w) f (U (t))]+[(v+w)(U (t)) f (U (t))].

and following the arguments of Sect. 2, we show that the overcompressibility condition

Ur (t) < χ(t) < Ul(t) implies f (Ur (t)) < f (χ(t)) < f (Ul(t))

holds.
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In the case of ul < ur the solution consists of contact discontinuity and vacuum, i.e.,

(v,w, u)(x, t) =

⎧⎪⎨
⎪⎩

(vl , wl ,Ul(t)) , x <
∫ t
0 f (Ul(s))ds,

(0, 0, z(x, t)) ,
∫ t
0 f (Ul(s))ds < x <

∫ t
0 f (Ur (s))ds,

(vr , wr ,Ur (t)) , x >
∫ t
0 f (Ur (s))ds,

where z(x, t) is a continuous function that satisfies z
(∫ t

0 f (Ul(s))ds, t
)

= Ul(t) and

z
(∫ t

0 f (Ur (s))ds, t
)

= Ur (t). Summarizing the above calculations, we proved the anal-

ogous results of Lemmas 2.1 and 2.2 for system (1.12).

3 Entropy Inequality

In this section, we introduce the dissipative shadow wave solution for the system (1.9) and
show the equivalence of dissipative shadow waves and overcompressibility condition. We
can express the entropy-entropy flux pair as follows:

η(v, u) = 1

2
v f 2(u) and q(v, u) = 1

2
v f 3(u),

where η and q represent entropy and entropy flux, respectively.

Definition 3.1 A shadow wave U ε = (vε, uε) is called a dissipative shadow wave solution
if it satisfies the following entropy inequality

lim
ε→0

(〈
∂

∂t
η(vε, uε), ϕ

〉
+
〈

∂

∂x
q(vε, uε), ϕ

〉
− 〈κ(t)(ua(t) − uε)vε f (uε) f ′(uε), ϕ

〉) ≤ 0,

(3.1)

for all non-negative ϕ ∈ C∞
c (R × (0,∞)).

Theorem 3.1 A shadow wave solution U ε = (vε, uε) is dissipative if and only if

2ξ(t) f (χ(t)) f ′(χ(t))

{
∂

∂t
χ(t) + κ(t) (χ(t) − ua(t))

}
+ ∂

∂t
ξ(t) f 2(χ(t))

≤ f (χ(t))[v f 2(U (t))] − [v f 3(U (t))], (3.2)

where ξ(t) and χ(t) are defined as before.

Proof Inserting the the shadow wave solution (2.2) and following the similar calculation as
previous, we obtain

−
〈

∂

∂t
η(vε, uε), ϕ

〉

= 1

2

∫ ∞

0

(
vε(t) f

2(uε(t)) − vl f
2(Ul(t))

) (
ċ(t) − ε

2

)
ϕ
(
c(t) − ε

2
t − xε, t

)
dt

+ 1

2

∫ ∞

0

(
vr f

2(Ur (t)) − vε(t) f
2(uε(t))

) (
ċ(t) + ε

2

)
ϕ
(
c(t) + ε

2
t + xε, t

)
dt

−
∫ ∞

0

∫ c(t)− ε
2 t−xε

−∞
κ(t)(ua(t) − ul)vl f (Ul(t)) f

′(Ul(t))ϕ(x, t)dxdt
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− 1

2

∫ ∞

0

∫ c(t)+ ε
2 t+xε

c(t)− ε
2 t−xε

∂

∂t

(
vε(t) f

2(uε(t))
)
ϕ(x, t)dxdt

−
∫ ∞

0

∫ ∞

c(t)+ ε
2 t+xε

κ(t)(ua(t) − ur )vr f (Ur (t)) f
′(Ur (t))ϕ(x, t)dxdt, (3.3)

where in the third and fifth lines we used

U̇l,r (t) = κ(t)
(
ua(t) −Ul,r (t)

)
.

Similarly,

−
〈

∂

∂x
q(vε, uε), ϕ

〉
= 1

2

∫ ∞

0

(
vl f

3(Ul(t)) − vε(t) f
3(uε(t))

)
ϕ
(
c(t) − ε

2
t − xε, t

)
dt

+ 1

2

∫ ∞

0

(
vε(t) f

3(uε(t)) − vr f
3(Ur (t))

)
ϕ
(
c(t) + ε

2
t + xε, t

)
dt .

(3.4)

Now using the Taylor expansions (2.8) in (3.3)–(3.4) and considering the contributions from
the source term of (3.1), we find

1

2

∫ ∞

0

[ (
ċ(t)[v f 2(U (t))] + ε

2

(
vr f (Ur (t)) + vl f

2(Ul (t))
))

− ∂

∂t

(
2
( ε
2
t + xε

)
vε(t) f

2(uε(t))
)

− [v f 3(U (t))] + 4κ(t)
( ε
2
t + xε

)
(ua(t) − uε(t))vε(t) f (uε(t)) f

′(uε(t))

]
ϕ(c(t), t)dt

+ 1

2

∫ ∞

0

[
c·(t)
(
vr f

2(Ur (t)) + vl f (Ul (t)) − 2vε(t) f
2(Uε(t))

)

+
(
2vε(t) f

3(uε(t)) − vl f
3(Ul (t)) − vr f

3(Ur (t))
) ( ε

2
t + xε

) ] ∂

∂x
ϕ(c(t), t)dt . (3.5)

From the Eq. (3.1), we have

lim
ε→0

∫ ∞

0

∫ ∞

−∞

(
η(vε, uε)

∂

∂t
ϕ(x, t) + q(vε, uε)

∂

∂t
ϕ(x, t)

)
dxdt

+
∫ ∞

0

∫ ∞

−∞
κ(t)(ua(t) − uε) f (uε) f ′(uε)vεϕ(x, t)dxdt ≥ 0. (3.6)

Now passing to the limit as ε → 0, from (3.5) and (3.6), we obtain

∂

∂t

(
ξ(t) f 2(χ(t))

) ≤ ċ(t)[v f 2(U (t))]
−[v f 3(U (t))] + 2κ(t) (ua(t) − χ(t)) ξ(t) f (χ(t)) f ′(χ(t)), (3.7)

and simplifying we get the inequality (3.2). ��

Lemma 3.1 Let f 2 be a convex function, then a shadow wave solution U ε is dissipative if
and only if it satisfies the overcompressibility condition.

Proof Using convexity of f 2, we have a function g such that

f 2(x) = f 2(x0) + 2(x − x0) f (x0) f
′(x0) + g(x) (3.8)
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with g ≥ 0 and g(x0) = g′(x0) = 0. Inserting (3.8) into the inequality (3.7) and taking
x = χ(t), x0 = χ(t0) we have

∂

∂t

(
ξ(t)
[
2 f (χ(t0)) f

′(χ(t0))χ(t) + f 2(χ(t0)) − 2 f (χ(t0)) f
′(χ(t0))χ(t0) + g(χ(t))

]) ∣∣∣∣
t=t0

≤ f (χ(t0))[v f 2(U (t0))] − [v f 3(U (t0))] + 2κ(t0) (ua(t0) − χ(t0)) ξ(t0) f (χ(t0)) f
′(χ(t0)).

Since g(χ(t0)) = g′(χ(t0)) = 0, we find ∂
∂t (ξ(t)g(χ(t)))

∣∣∣
t=t0

= 0 and the above inequality

takes the form

2 f (χ(t0)) f
′(χ(t0))

∂

∂t
(ξ(t)χ(t))

∣∣∣
t=t0

+ ( f 2(χ(t0)) − 2 f (χ(t0)) f
′(χ(t0))χ(t0)

) ∂

∂t
ξ(t)
∣∣∣
t=t0

≤ f (χ(t0))[v f 2(U (t0))] − [v f 3(U (t0))] + 2κ(t0)(ua(t0) − χ(t0))ξ(t0) f (χ(t0)) f
′(χ(t0)).

Now using the ODE (2.13) and simplifying the above inequality, we find

vr

(
f (χ(t0)) − f (Ur (t0))

)
g(Ur (t0)) − vl

(
f (χ(t0)) − f (Ul(t0))

)
g(Ul(t0)) ≥ 0. (3.9)

If the shadow wave is overcompressive, non-negativity of vl,r and positivity of g implies that
the above inequality (3.9) holds, i.e., the shadow wave is dissipative for any t0. The other
way is not difficult to see and follows from the arguments of [33]. ��
Remark 3.1 In the above proof, we assumed that f ∈ C1 and f 2 be convex, but there is no
assumption on the sign of f ′, which is assumed to be positive in the previous section. f ′ > 0
becomes an admissible assumption if we consider the relation of the system (1.9) with scalar
conservation laws. As we mentioned earlier for the smooth solution the system (1.9) reduced
to

ut + f (u)ux = κ(t)(ua(t) − u)

which is of the form ut+F(u)x = h(x, t, u)with F ′(u) = f (u).For scalar conservation laws
convexity condition F ′′(u) = f ′(u) > 0 on flux function is useful to obtain explicit formulas.
Let us define the sets S1 := { f | f is C1 and f ′ > 0

}
and S2 := { f | f 2 is convex

}
. We

observe that there is no containment relation between S1 and S2. For instance, S1 �⊂ S2 : let
f (x) = log x, f ′ = 1

x > 0 for x > 0 and ( f 2)′′(x) = 2
x2

(1 − log x) < 0 for some x > 0.

Again S2 �⊂ S1 : let f (x) = −x, then f 2 = x2 which is convex but f ′ = −1 < 0. Hence in
this section we are working with the class of functions S1 ∩ S2.

4 Global Existence of Entropy Solution

In this section, we begin with a concise description of the shadow wave tracking procedure.
Subsequently, we give the proofs for Theorems 1.1 and 1.2.

4.1 TheWave Tracking Algorithm

Let us introduce the shadow wave tracking algorithm. To begin, we establish the notations
primarily borrowed from [41].

1. For any two given states (vi , ui ) and (v j , u j ) with i < j, vi , v j > 0, SDWi, j denotes
a shadow wave solution joining (vi , ui ) on the left and (v j , u j ) on the right. Note that
SDWi, j exists if ui > u j .
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2. For any given three states (vi , ui ), (vm, um), (v j , u j ) with i < m < j, vi , vm, v j >

0. Suppose the states (vi , ui ) and (vm, um) are connected by contact discontinuities
CDi

1,CDm
2 and a vacuum Vaci,m = (0, ui (x, t)) and the states (vm, um) and (v j , u j )

are connected by a shadow wave SDWm, j .Now at time t = T , if the states (0, ui (x, T ))

on the left and (v j , u j ) on the right are connected by a shadow wave, we denote it as
iSDW j . Note that iSDWm = CDm

2 .

3. In a similar situation described above, SDW j
i denotes the shadowwave joining the states

(vi , ui ) on the left to the state (0, u j (x, t)) on the right.
4. Finally iSDW j denotes a shadowwave joining the state (0, ui (x, t)) on the left to a state

(0, u j (x, t)) on the right.

Now we describe the wavefront tracking algorithm. We take the initial data for the system
(1.9) as

(v, u)(x, 0) =
{

(v0, u0), x ≤ R,

(v(x), u(x)), x > R.
(4.1)

Here v0, u0 ∈ R, v0 > 0 and v(x) > 0, u(x) ∈ Cb ([R,∞)) . Let ε be given sufficiently
small positive real number. Define ((vε(x), uε(x)))ε as a piecewise constant approximation
for (v(x), u(x)). For a fixed ε > 0, take a corresponding partition R := Y0 < Y1 < Y2 · · · · ·
of the interval [R,∞) that satisfies Yi − Yi+1 ≤ ρ(ε), i = 0, 1, 2, · · · · · where ρ(ε) → 0
as ε → 0. Now choose vi+1 := vε(x) = v(Yi+1) and ui+1 := uε(x) = u(Yi+1) for
x ∈ (Yi , Yi+1], i ∈ N ∪ {0}.
Algorithm:
Step 0: Let v0, u0 be given as in (4.1) and ({vi }, {ui })i∈N be a piecewise constant approx-
imation obtained by the procedure describes as above. Therefore an approximation of the
initial data (4.1) can be expressed as follows:

Ui = (v, u)(x, 0) =
{

(vi , ui ), x ≤ Yi ,

(vi+1, ui+1), x > Yi ,
(4.2)

for i = 0, 1, 2, · · · · · .
Step 1: Let S0 denotes the collection of all states at time t = T0, i.e., S0 = {Ui | i ∈ I0}
where Ui ’s are given by (4.2) and I0 = {0, 1, 2, 3, · · · · } be an index set. A shadow wave
solution of the Riemann problem consisting of the states in S0 gives rise to two possibilities:
either there is no further interaction of waves or two (possibly more) waves interact at time
t = T1. If there is no further interaction then the procedure has to be stopped at t = T0.
In the event of wave interaction, there are four possible ways in which the interaction can
occur, as described above. Each interaction leads to a single resulting shadow wave. The new
resulting waves and the non-interacted waves together give a new collection of initial states
S1 = {Ui | i ∈ I1} where I1 ⊂ I0 is a new index set for t ≥ T1.
Step j to j+1: Suppose that j-th interaction happens at a time t = Tj . Then eliminating all
the middle states from S j−1, we obtain a new collection of states S j = {Ui | i ∈ I j }where
I j = {0, j1, j2, · · · · · · } ⊆ I j−1, 1 ≤ j1 < j2 < · · · denotes the index set at j-th level. All
non-interacting waves continue to propagate after t > Tj . We can repeat the procedure by
substituting j + 1 in place of j after a new interaction at t = Tj+1. The algorithm finishes
if there is no such Tj+1.

The above-stated procedure will help us to prove the global existence of an admissible
solution to the problem (1.9) and (4.1).
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4.2 Proof of Theorem 1.1

Let us consider the initial data

(v, u)(x, 0) =

⎧⎪⎨
⎪⎩

(vl , ul), x < X1,

(vm, um), X1 < x < X2,

(vr , ur ), x > X2,

with ul > um > ur . Then two shadow waves are emanating from X1 and X2 with the central
shadow wave line x(t) = X1 +c(t) and x(t) = X2 +c(t). Let x1(t) = X1 +c(t)+ ε

2 t + x1,ε
and x2(t) = X2 + c(t) − ε

2 t − x2,ε are the right external shadow wave line and left external
shadow wave line, respectively. Suppose Tε is the time when two external shadow wave lines
interact and T is the time when two central shadowwave lines interact. Then T −Tε = O(ε).
In summary of the aforementioned fact, we can state the following lemma.

Lemma 4.1 ([41], Lemma 3.2) Let two approaching shadow waves with the central lines
given by x = cl(t) and x = cr (t) interact at time t = T̃ . The value of T̃ is obtained by
solving the equation

cl(t) + ε

2
(t − Tl) + xl,ε = cr (t) − ε

2
(t − Tr ) + xr ,ε

where cl(t)+ ε
2 (t − Tl)+ xl,ε is the right external SDW line of the first approaching shadow

wave, while cr (t) − ε
2 (t − Tr ) + xr ,ε is the left external SDW line of the second approaching

shadow wave. Also, let xl,ε, xr ,ε ∼ ε. A solution T to cl(t) = cr (t) will be called the
interaction time since the area bounded by two external shadow wave lines, and the lines
t = T and t = T̃ is of order ε2 and all terms of order εα, α > 1 are neglected. Note that
T = T̃ +O(ε). The assertion stays true if one of the shadow waves is substituted by a contact
discontinuity.

The next lemma is the first step towards proving Theorem 1.1. We will be using Lemma
4.1 in the following proofs without mentioning it repeatedly.

Lemma 4.2 Let v(x) > 0, u(x) ∈ L∞([R,∞)) ∩ C([R,∞)) and u(x) be an increasing
function on [R,∞). Take a partition {Yi }i∈N∪{0} of [R,∞) such that Y0 = R,C1ε

α <

Yi −Yi+1 < C2ρ(ε) for every i = 0, 1, 2, · · · · where C1,C2 ≥ 1, α ∈ (0, 1) and ρ(ε) → 0
as ε → 0. Then there exists a global admissible solution to (1.9) and (4.1). More precisely,
there exists a function U ε = (vε, uε) that satisfies

lim
ε→0

{〈
∂
∂t v

ε, ϕ
〉+ 〈 ∂

∂x (vε f (uε)), ϕ
〉 = 0,〈

∂
∂t (v

εuε), ϕ
〉+ 〈 ∂

∂x (vεuε f (uε)), ϕ
〉 = 〈κ(t)(ua(t) − uε)vε, ϕ〉 ,

(4.3)

for every test function ϕ ∈ C∞
c (R × [0,∞)) and the admissibility condition.

Proof To prove this lemma, we consider two cases.
Case 1. When u0 ≤ u(Y1). Since u is an increasing function on [R,∞), we get u0 <

u1 < u2, · · · · · and at each {Yi }i∈N∪{0} we have a solution as a combination of contact
discontinuities and vacuum, i.e., CDi

1 + Vaci,i+1 + CDi+1
2 for i = 0, 1, 2, · · · · · . As the

speed of the fronts do not overlap each other, no interaction occurs in this case.
Case 2. When u0 > u(Y1). Since u(x) is bounded for x > R, we have lim

i→∞ ui = ũ. Then

two cases arise.
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Subcase 1. Let ũ ≤ u0. Let T01 be the time when first interaction occurs, i.e., SDW0,1 meets
CD1

1 = Y1 + ∫ t0 f (U1(ξ))dξ. Therefore the first step is to study − 〈 ∂
∂t v

ε, ϕ
〉
in the interval

[0, T01]. In the interval [0, T0,1], we have

−
〈

∂

∂t
vε, ϕ

〉
=
∫ T01

0

∫ ∞

−∞
vε ∂

∂t
ϕ(x, t)dxdt −

∫ ∞

−∞
[
(vεϕ)(x, T01−) − (vεϕ)(x, 0)

]
dx

= I0 −
∫ ∞

−∞
[
(vεϕ)(x, T01−) − (vεϕ)(x, 0)

]
dx .

Inserting the shadow wave

U ε = (vε, uε) =

⎧⎪⎨
⎪⎩

(v0,U0(t)) , x < R + c(t) − ε
2 t,(

v0,ε(t), u0,ε(t)
)
, R + c(t) − ε

2 t < x < R + c(t) + ε
2 t,

(v1,U1(t)) , x > R + c(t) + ε
2 t,

in the above equation, we obtain

I0 =
∫ T01

0

∫ R+c(t)− ε
2 t

−∞
v0

∂

∂t
ϕ(x, t)dxdt +

∫ T01

0

∫ R+c(t)+ ε
2 t

R+c(t)− ε
2 t

v0,ε(t)
∂

∂t
ϕ(x, t)dxdt

+
∫ T01

0

∫ Y1+
∫ t
0 f (U1(ξ))dξ

R+c(t)+ ε
2 t

v1
∂

∂t
ϕ(x, t)dxdt

+
∞∑
i=1

∫ T01

0

∫ Yi+1+
∫ t
0 f (Ui+1(ξ))dξ

Yi+
∫ t
0 f (Ui (ξ))dξ

vi+1
∂

∂t
ϕ(x, t)dxdt = I01 + I02 + I03 + I04.

Simplifying the above expressions, we get

I01 = −
∫ T01

0
v0ϕ
(
R + c(t) − ε

2
t, t
) (

ċ(t) − ε

2

)
dt +
∫ R+c(T01)− ε

2 T01

−∞
v0ϕ(x, T01)dx

−
∫ R

−∞
v0ϕ(x, 0)dx,

I02 =
∫ R+c(T01)+ ε

2 T01

R+c(T01)− ε
2 T01

v0,ε(T01)ϕ (x, T01) dx −
∫ T01

0
v0,ε(t)ϕ

(
R + c(t) + ε

2
t, t
) (

ċ(t) + ε

2

)
dt

+
∫ T01

0
v0,ε(t)ϕ

(
R + c(t) − ε

2
t, t
) (

ċ(t) − ε

2

)
dt −
∫ R+c(t)+ ε

2 t

R+c(t)− ε
2 t

∂

∂t
v0,ε(t)ϕ(x, t)dxdt,

I03 =
∫ Y1+

∫ T01
0 f (U1(ξ))dξ

R+c(T01)+ ε
2 T01

v1ϕ(x, T01)dx −
∫ Y1

R
v1ϕ(x, 0)dx

+
∫ T01

0
v1ϕ
(
R + c(t) + ε

2
t
) (

ċ(t) + ε

2

)
dt

−
∫ T01

0
v1ϕ

(
Y1 +
∫ t

0
f (U1(ξ))dξ, t

)
f (U1(t)) dt,

I04 =
∞∑
i=1

∫ Yi+1+
∫ T01
0 f (Ui+1(ξ))dξ

Yi+
∫ T01
0 f (Ui (ξ))dξ

vi+1ϕ(x, T01)dx −
∞∑
i=1

∫ Yi+1

Yi
vi+1ϕ(x, 0)dx

−
∞∑
i=1

∫ T01

0
vi+1ϕ

(
Yi+1 +

∫ t

0
f (Ui+1(ξ))dξ, t

)
f (Ui+1(t)) dt
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+
∞∑
i=1

∫ T01

0
vi+1ϕ

(
Yi +
∫ t

0
f (Ui+1(ξ))dξ, t

)
f (Ui+1(t)) dt .

Finally adding up I01, I02, I03 and I04, we obtain

I0 =
∫ T01

0
(v0,ε(t) − v0)ϕ

(
R + c(t) − ε

2
t, t
) (

ċ(t) − ε

2

)
dt −
∫ R+c(t)+ ε

2 t

R+c(t)− ε
2 t

∂

∂t
v0,ε(t)ϕ(x, t)dxdt

+
∫ T01

0
(v1 − v0,ε(t))ϕ

(
R + c(t) + ε

2
t, t
) (

ċ(t) + ε

2

)
dt +
∫ ∞

−∞
vεϕ(x, T01)dx

−
∫ ∞

−∞
vεϕ(x, 0)dx −

∫ T01

0
v1ϕ

(
Y1 +
∫ t

0
f (U1(ξ))dξ, t

)
f (U1(t)) dt

−
∞∑
i=1

∫ T01

0
vi+1ϕ

(
Yi+1 +

∫ t

0
f (Ui+1(ξ))dξ, t

)
f (Ui+1(t)) dt

+
∞∑
i=1

∫ T01

0
vi+1ϕ

(
Yi +
∫ t

0
f (Ui+1(ξ))dξ, t

)
f (Ui+1(t)) dt .

A similar calculation for the flux term in [0, T01] gives

−
〈

∂

∂x
vε f (uε), ϕ

〉
=
∫ T01

0

(
v0 f (U0(t)) − v0,ε(t) f (u0,ε(t))

)
ϕ
(
R + c(t) − ε

2
t, t
)
dt

+
∫ T01

0

(
v0,ε(t) f (u0,ε(t)) − v1 f (U1(t))

)
ϕ
(
R + c(t) + ε

2
t, t
)
dt

+
∫ T01

0
v1 f (U1(t))ϕ

(
Y1 +
∫ t

0
f (U1(ξ))dξ, t

)
dt

+
∞∑
i=1

∫ T01

0
vi+1 f (Ui+1(t))ϕ

(
Yi+1 +

∫ t

0
f (Ui+1(ξ))dξ, t

)
dt

−
∞∑
i=1

∫ T01

0
vi+1 f (Ui+1(t))ϕ

(
Yi +
∫ t

0
f (Ui+1(ξ))dξ, t

)
dt

and hence we have

−
〈

∂

∂t
vε, ϕ

〉
−
〈

∂

∂x
vε f (uε), ϕ

〉
=
∫ T01

0
(v0,ε(t) − v0)ϕ

(
R + c(t) − ε

2
t, t
) (

ċ(t) − ε

2

)
dt

+
∫ T01

0
(v1 − v0,ε(t))ϕ

(
R + c(t) + ε

2
t, t
) (

ċ(t) + ε

2

)
dt

−
∫ R+c(t)+ ε

2 t

R+c(t)− ε
2 t

∂

∂t
v0,ε(t)ϕ(x, t)dxdt

+
∫ T01

0

(
v0 f (U0(t)) − v0,ε(t) f (u0,ε(t))

)
ϕ
(
R + c(t) − ε

2
t, t
)
dt

+
∫ T01

0

(
v0,ε(t) f (u0,ε(t)) − v1 f (U1(t))

)
ϕ
(
R + c(t) + ε

2
t, t
)
dt .

(4.4)

Now using the Taylor series expansion (2.8) in (4.4) and following the calculations of Sect. 2
(cf. Lemma 2.1), we find

−
〈

∂

∂t
vε, ϕ

〉
−
〈

∂

∂x
vε f (uε), ϕ

〉
= O(ε) in [0, T01]. (4.5)

123



Journal of Dynamics and Differential Equations

Next by replacing vε with vεuε in (4.5) and performing calculations similar to the ones
described above, Lemma 2.1 gives

−
〈

∂

∂t
vεuε, ϕ

〉
−
〈

∂

∂x
vεuε f (uε), ϕ

〉
+ 〈κ(t)

(
ua(t) − uε

)
vε
〉 = O(ε) in [0, T01].

(4.6)

Now we consider the interval [T0i , T1i ]. Note that at T0i -th level for each i ∈ {1, 2, · · · · · },
we have initial data that contains delta function as follows

(v, u)(x, T0i ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(v0, u0), if x < Xi,i ,

(ξ(T0i )δT0i , χ(T0i )), if x = Xi,i ,

(0, u j ), if X j, j < x < X j, j+1,

(v j+1, u j+1), if X j, j+1 < x < X j+1, j+1,

where

X j, j = Y j +
∫ T0i

0
f (Uj (ξ))dξ, X j, j+1 = Y j +

∫ T0i

0
f (Uj+1(ξ))dξ,

X j+1, j+1 = Y j+1 +
∫ T0i

0
f (Uj+1(ξ))dξ for j = i, i + 1, i + 2 · · · · · .

Therefore we use the shadow wave (2.2), i.e.,

U ε = (vε, uε)(x, t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(v0,U0(t)) , x < Xi,i + c(t − T0i ) − ε
2 (t − T0i ) − xT0iε ,(

vT0i ,ε(t), uT0i ,ε(t)
)
, Xi,i + c(t − T0i ) − ε

2 (t − T0i ) − xT0iε

< x < Xi,i + c(t − T0i ) + ε
2 (t − T0i ) + xT0iε ,

(0,Ui (t)) , Xii + c(t − T0i ) + ε
2 (t − T0i ) + xT0iε

< x < Yi + ∫ t0 f (Ui+1(ξ))dξ,

(v j+1,Uj+1(t)), Y j + ∫ t0 f (Uj+1(ξ))dξ < x < Y j+1 + ∫ t0 f (Uj+1(ξ))dξ,

(4.7)

for j = i, i + 1, i + 2, · · · · · · · . In the intervals [T0i , T1i ], we have

−
〈

∂

∂t
vε, ϕ

〉
=
∫ T1i

T0i

∫ ∞

−∞
vε ∂

∂t
ϕ(x, t)dxdt −

∫ ∞

−∞
[
(vεϕ)(x, T1i−) − (vεϕ)(x, T0i+)

]
dx

= I1 −
∫ ∞

−∞
[
(vεϕ)(x, T1i−) − (vεϕ)(x, T0i+)

]
dx .

Substituting the shadow wave (4.7) in the above equation, we get

I1 =
∫ T1i

T0i

∫ Xi,i+c(t−T0i )− ε
2 (t−T0i )−x

T0i
ε

−∞
v0

∂

∂t
ϕ(x, t)dxdt

+
∫ T1i

T0i

∫ Xi,i+c(t−T0i )+ ε
2 (t−T0i )+x

T0i
ε

Xi,i+c(t−T0i )− ε
2 (t−T0i )−x

T0i
ε

vT0i ,ε(t)
∂

∂t
ϕ(x, t)dxdt

+
∞∑
j=i

∫ T1i

T0i

∫ Y j+1+
∫ t
0 f (Uj+1(ξ))dξ

Y j+
∫ t
0 f (Uj+1(ξ))dξ

v j+1
∂

∂t
ϕ(x, t)dxdt = I11 + I12 + I13.
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Simplifying the above, we have

I11 = −
∫ T1i

T0i
v0ϕ
(
Xi,i + c(t − T0i ) − ε

2
(t − T0i ) − xT0iε , t

) (
ċ(t − T0i ) − ε

2

)
dt

+
∫ Xi,i+c(T1i−T0i )− ε

2 (T1i−T0i )−x
T0i
ε

−∞
v0ϕ(x, T1i )dx −

∫ Xi,i−x
T0i
ε

−∞
v0ϕ(x, T0i )dx,

I12 =
∫ Xi,i+c(T1i−T0i )+ ε

2 (T1i−T0i )+x
T0i
ε

Xi,i+c(T1i−T0i )− ε
2 (T1i−T0i )−x

T0i
ε

vT0i ,ε(T1i )ϕ(x, T1i )dx

−
∫ Xi,i+x

T0i
ε

Xi,i−x
T0i
ε

vT0i ,ε(T0i )ϕ(x, T0i )dx

+
∫ T1i

T0i
vT0i ,ε(t)ϕ

(
Xi,i + c(t − T0i ) − ε

2
(t − T0i ) − xT0iε , t

) (
ċ(t − T0i ) − ε

2

)
dt

−
∫ T1i

T0i
vT0i ,ε(t)ϕ

(
Xi,i + c(t − T0i ) + ε

2
(t − T0i ) + xT0iε , t

) (
ċ(t − T0i ) + ε

2

)
dt

−
∫ T1i

T0i

∫ Xi,i+c(t−T0i )+ ε
2 (t−T0i )+x

T0i
ε

Xi,i+c(t−T0i )− ε
2 (t−T0i )−x

T0i
ε

∂

∂t
vT0i ,ε(t)ϕ(x, t)dxdt,

and

I13 =
∞∑
j=i

∫ Y j+1+
∫ T1i
0 f (Uj+1(ξ))dξ

Y j+
∫ T1i
0 f (Uj+1(ξ))dξ

v j+1ϕ(x, T1i )dxdt

−
∞∑
j=i

∫ Y j+1+
∫ T0i
0 f (Uj+1(ξ))dξ

Y j+
∫ T0i
0 f (Uj+1(ξ))dξ

v j+1ϕ(x, T0i )dxdt

+
∞∑
j=i

∫ T1i

T0i
v j+1 f (Uj+1(t))

[
ϕ

(
Y j +
∫ t

0
f (Uj+1(ξ))dξ, t

)

−ϕ

(
Y j+1 +

∫ t

0
f (Uj+1(ξ))dξ, t

)]
dt .

Summing up I11, I12, I13 and inserting the expression of I1 in above, we obtain

−
〈

∂

∂t
vε, ϕ

〉

=
∫ T1i

T0i

(
vT0i ,ε(t) − v0

)
ϕ
(
Xi,i + c(t − T0i ) − ε

2
(t − T0i ) − xT0iε , t

) (
ċ(t − T0i ) − ε

2

)
dt

−
∫ T1i

T0i
vT0i ,ε(t)ϕ

(
Xi,i + c(t − T0i ) + ε

2
(t − T0i ) + xT0iε , t

) (
ċ(t − T0i ) + ε

2

)
dt

−
∫ T1i

T0i

∫ Xi,i+c(t−T0i )+ ε
2 (t−T0i )+x

T0i
ε

Xi,i+c(t−T0i )− ε
2 (t−T0i )−x

T0i
ε

∂

∂t
vT0i ,ε(t)ϕ(x, t)dxdt

+
∞∑
j=i

∫ T1i

T0i
v j+1 f (Uj+1(t))

[
ϕ

(
Y j +
∫ t

0
f (Uj+1(ξ))dξ, t

)
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−ϕ

(
Y j+1 +

∫ t

0
f (Uj+1(ξ))dξ, t

)]
dt .

Again,

−
〈

∂

∂x
vε f (uε), ϕ

〉

=
∫ T1i

T0i

(
v0 f (U0(t)) − vT0i ,ε(t) f (uT0i ,ε(t))

)
ϕ
(
Xi,i + c(t − T0i ) − ε

2
(t − T0i ) − xT0iε , t

)
dt

+
∫ T1i

T0i
vT0i ,ε(t) f (uT0i ,ε(t))ϕ

(
Xi,i + c(t − T0i ) + ε

2
(t − T0i ) + xT0iε , t

)
dt

+
∞∑
j=i

∫ T1i

T0i
v j+1 f (Uj+1(t))

[
ϕ

(
Y j+1 +

∫ t

0
f (Uj+1(ξ))dξ, t

)

−ϕ

(
Y j +
∫ t

0
f (Uj+1(ξ))dξ, t

)]
dt .

Hence, we have

−
〈

∂

∂t
vε, ϕ

〉
−
〈

∂

∂x
vε f (uε), ϕ

〉
= O(ε) in [T0i , T1i ]

follows from Lemma 2.2, and replacing vε by vεuε we conclude (4.6) in [T0i , T1i ]. Finally
[T1i , T0(i+1)] can be treated in the same way by using an appropriate shadow wave. The
interaction procedure terminates at a finite stage due to the compact support of ϕ and the
fact Yi+1 − Yi ≥ C1ε

α for 0 < α < 1. It can be seen that we have at most C1Cϕ

εα number of
interactions where Cϕ denotes the constant depending on ϕ. Thus we conclude (4.3) as both
the equations in (4.5) and (4.6) are of order O(ε1−α).

Subcase 2. Let ũ > u0. Since ũ is the limit of ui as i → ∞, there exists a large n0 ∈ N such
that un0+1 ≥ u0 and un0 < u0. In this case the shock curve x = c(t) will stay between CD0

1

and CDn0+1
2 emanating from Xn0,n0 and the interaction stops after the time level T0n0 . This

completes the proof. ��
Lemma 4.3 Let u(x) ∈ L∞([R,∞)) ∩ C([R,∞)) be a decreasing function and grant all
other assumptions of Lemma 4.2. Then (4.3) holds.

Proof The proof is similar to the arguments of Lemma 4.2 and hence we give a sketch of the
proof by omitting the detailed analysis. We consider two cases.
Case 1.When u0 ≤ u(Y1). In this case we have u0 ≤ u1 and ui > ui+1 for i = 1, 2, · · · · · .

By Lemma 2.1, the solution consists of contact discontinuities and vacuum of the following
form

(v, u)(x, t) =

⎧⎪⎨
⎪⎩

(v0,U0(t)) , x < R + ∫ t0 f (U0(ξ))dξ,

(0, w(x, t)) , R + ∫ t0 f (U0(ξ))dξ < x < R + ∫ t0 f (U1(ξ))dξ,

(v1,U1(t)) , x > R + ∫ t0 f (U1(ξ))dξ,

and for each Yi , i = 1, 2, 3, · · · · · a unique shadow wave SDWi,i+1 emanates. Due to the
overcompressibility CD1

2 := R + ∫ 10 f (U1(ξ))dξ meets SDW1,k at a time level Tk(k+1) for
k = 2, 3, · · · · · . At this time level, we have a set of new initial data with delta-function and
(4.3) can be concluded by combining the arguments of Lemmas 2.2 and 4.2.
Case 2. When u0 > u(Y1). Since u(x) is decreasing, in this case we have ui > ui+1 for
i = 0, 1, 2, · · · · · . By Lemma 2.1 a unique shadow wave solution SDWi,i+1 emerges from
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each Yi , i = 0, 1, 2, · · · · · . Consider the initial data

(v, u)(x, 0) =
{

(vi , ui ), x < Yi ,

(vi+1, ui+1), x > Yi ,

and

(v, u)(x, 0) =
{

(vi+1, ui+1), x < Yi+1,

(vi+2, ui+2), x > Yi+1.
.

Then SDWi,i+1 and SDWi+1,i+2 emerges from Yi and Yi+1, respectively with the speed
f (χi (t)) and f (χi+1(t)). Since SDWi,i+1 and SDWi+1,i+2 are overcompressive, it follows
that f (χi+1(t)) ≤ f (χi (t)) and therefore these two shadow waves meet at some time say
Ti(i+1). It is difficult to determine forwhich i first interaction happens, since the comparison of
speed between any consecutive shadow waves SDWi,i+1 and SDWi+1,i+2 is not precisely
known. Then at this level, we have a new set of initial data that contains a δ-function.
Again, since u(x) is decreasing, applying Lemma 2.2 we conclude (4.3). The interaction
procedure terminates after a finite number of steps because of the same reason given in
Lemma 4.2. ��

Now we are ready to prove the Theorem 1.1.

Proof of Theorem 1.1 Let u(x) be a function having finitely many local extremes. For the
sake of concreteness, we only consider that u(x) has a local maximum and local minimum
at YM , Ym ∈ {Yi }, M < m, respectively for i = 0, 1, 2, · · · · · . So, u(x) is increasing on
[R, YM ], decreasing on (YM , Ym] and again increasing on (Ym,∞).

Now if u0 ≤ u(Y1) then no interactions occur up to the state YM−1 and the solution is
given by CDi−1

1 + Vaci−1,i + CDi
2, i = 1, 2, 3 · · · · · M . By Lemma 2.1, there exists a

unique shadow wave SDWM,M+1 from YM . The waves continued to propagate until the first
interaction occurs and this case is dealt with in Lemma 4.2. Further, a sequence of shadow
waves SDWi,i+1, i = M, · · · · ·m − 1 emanates from each {Yi }m−1

i=M and they interact due
to the overcompressibility and this case is studied in Lemma 4.3. Finally, since Ym is the
local minimum, there exists a solution consistingCDm

1 +Vacm,m+1+CDm+1
1 starting from

Ym . Again the solution propagates until the time when SDWm−1,m meets CDm
1 and this

interaction occur as CDm
1 = f (Um(t)) < f (χm−1(t)) < f (Um−1(t)) where f (χm−1(t))

denotes the speed of the shadowwave SDWm−1,m emerging from Ym−1.This case falls under
Lemma 4.2.

If u0 > u(Y1), then SDW0,1 emanates from Y0 = R and interacts with CD1
1 which is

considered in Lemma 4.2. The other cases are also similar and an application of Lemma 4.2
and Lemma 4.3 depending on the situation concludes the proof. ��

An analogue of Theorem 1.1 can be proved for the 3 × 3 system (1.12) following the
above steps and using the Riemann problem of Sect. 2.

4.3 Proof of Theorem 1.2

The aim of this section is to prove the Theorem 1.2. We start with the well-known Riesz’
representation theorem.
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Theorem 4.1 (Riesz’ representation theorem) Let Iμ : Cc(R
d) → R be a nonnegative linear

functional. Then there exists a unique signed Radon measure μ such that

Iμ(ϕ) :=
∫
K

ϕ dμ

for any compact set K ⊂ R
d with support(ϕ) ⊂ K .

We denoteM(Rd) as the space of all signed Radon measures endowed with the topology
of the dual space of Cc(R

d).

Definition 4.1 (Weak* convergence of measures) Let {μν}ν∈N∪{0} be a sequence of nonnega-
tive locally finite measures onRd . The sequence {μν}ν∈N∪{0} is said to be converges weakly*
to μ (denoted as μν

∗
⇀ μ) if

lim
ν→∞

∫
ϕ dμν =

∫
ϕ dμ

for every ϕ ∈ Cc(R
d).

Lemma 4.4 ([13], Proposition 2.5) Let {μν}ν∈N∪{0} be a sequence of uniformly locally
bounded measures. Then there exists a subsequence still denoted as {μν} and a Radon

measure μ such that μν

∗
⇀ μ.

To prove Theorem 1.2, we need to show that |U ν | = (vν, |uν |) is locally uniformly
bounded for each ν ∈ N ∪ {0}. This is the content of the next lemma.

Lemma 4.5 Suppose v(x) > 0 is bounded and u(x) ∈ L∞([R,∞)) ∩ C([R,∞)) and u(x)
has finitely many local extremes. Also assume U ν = (vν, uν) be the admissible solution to
(1.9) and (4.1). Then {U ν}ν∈N∪{0} is locally uniformly bounded for each ν.

Proof The proof follows from overcompressibility and conservation of mass principle.
Step 1. For t ∈ (t0, T ), using

∣∣∣∣
∫ t

0
F(ξ)dξ

∣∣∣∣ ≤ ||ua ||L∞([t0,T ])
(
e||κ||L∞([t0,T ])T − 1

)
,

we get

χ(t) ≤ ∣∣Ul,r (t)
∣∣ ≤ ||ua ||L∞([t0,T ])

(
e||κ||L∞([t0,T ])T − 1

)
+ |ul,r |,

and hence ċ(t) is also locally uniformly bounded. This, combined with the fact that u(x) in
(4.1) is bounded gives |uν | is locally uniformly bounded for each ν ∈ N ∪ {0}.
Step 2. To prove vν ≥ 0 is locally uniformly bounded, observe that for any compact set
K ⊂ R × [0,∞) we have

0 ≤
∫
K

vν(x, t)dxdt ≤ CK max

{
v0, sup

x>R
v(x)

}
< ∞.

Therefore, |U ν | = (vν, |uν |) is bounded in L1(K ) for each compact set K ⊂ R × [0,∞).

This completes the proof. ��
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Now we complete the proof of Theorem 1.2. We will use the Jordan Decomposition of
signed measures. If μ is a signed measure, then there exist unique positive mutually singular
measures μ+ and μ− such that μ = μ+ − μ−. The measures μ+ and μ− are called positive
and negative variations of μ and |μ| = μ+ + μ− is defined as the total variation of the
measure μ.

Proof of Theorem 1.2 The proof can be completed following the same lines given in [41,
Theorem 7.1]. We repeat it here for the sake of completeness. Using Lemma 4.5 and decom-
position of measures, {U ν+}ν∈N∪{0} and {U ν−}ν∈N∪{0} are locally uniformly bounded where

U ν = U ν+ − U ν−. Thus by Lemma 4.4, U ν+
∗
⇀ U∗+ and U ν−

∗
⇀ U∗− where U∗± are Radon

measures. Therefore U ν converges weakly* to a Radon measure U∗ = U∗+ − U∗−. Also a
direct use of Lemma 4.4 gives |U ν | converges weakly* to |U∗|. ��

5 Some Examples

In this section, we present some examples of physically relevant models which can be derived
from (1.9). The first obvious example is the pressureless gas dynamics model with flocking
dissipation that can be derived by setting f (u) = u, κ(t) = 1, and ua(t) = 0. We provide
some more examples below.

5.1 System of Nonlinear Geometric Optics

The following examples can be constructed by setting f : U �→ U√
1+U2 in (1.9), i.e., consider

the system of the following form
⎧⎨
⎩

vt +
(

vU√
1+U2

)
x

= 0,

(vU )t +
(

vU2√
1+U2

)
x

= κ(t)(ua(t) −U )v,

with the initial data (v,U )(x, 0) = (v0(x),U0(x)). One can easily check that f ′(U ) > 0.
The motivation for considering the above system comes from the system of nonlinear

geometric optics with a damping source. We use the transformation U = u
v
, i.e., u = vU to

obtain the following:
⎧⎨
⎩

vt +
(

u2√
u2+v2

)
x

= 0,

ut +
(

uv√
u2+v2

)
x

= κ(t)(ua(t)v − u).

For the homogeneous version of the above example, see [26, 54].

5.2 AModel with f(u) = uk, kOdd.

In their work [39], Cruz and Juajibioy investigated the Riemann problem associated with the
pressureless model featuring linear damping, described by the following equations:

{
vt + (vuk)x = 0,

(vu)t + (vuk+1
)
x = −αuv,
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where k is an odd natural number, α > 0 is a constant. This system can immediately be
obtained by plugging f (u) = uk, κ(t) = α, and ua(t) = 0. Since k is odd, clearly f ′(u) =
kuk−1 > 0.

5.3 Pressureless Hydrodynamic Model

Recently, Piccoli et al. [8] derived a pressureless hydrodynamic model from the second-order
macroscopic traffic flow. The model reads

⎧⎨
⎩

vt +
(

vu
a+u

)
x

= 0,

(vu)t +
(

vu2
a+u

)
x

= μpv2(sd (v)−u)
2(ν+1) ,

where v and u denote the traffic density and the local mean headway (i.e., the distance from
their leading vehicles), respectively. Furthermore, a > 0 denotes the magnitude of the driver
sensitivity, 0 < μ < 1 corresponds to the equilibrium coefficient in order to control the
deviation, whereas ν > 0 is related to the cost of control. The function sd(v) is used to
express the safe distance from the preceding vehicle and 0 ≤ p ≤ 1 denotes the percentage
of vehicles in a traffic flow. More recently, the Riemann problem for the non-homogeneous
version of the above system is studied by Wang and Sun [56]. Setting f (u) = u

a+u in (1.9),
we propose a pressureless hydrodynamic model with a damping source that depends on time.
For this f , it is easy to check f ′(u) = a

(a+u)2
> 0.

Part II: Explicit formula for (1.10).

6 Eulerian Droplet Model Involving Space-time Dependent Source

In this section, we deal with the case f (u) = u and ua(x, t) depending on both space and time
variables.We employ generalized variational techniques and obtain an explicit representation
of the solution to the system (6.1) with air velocity that has an algebraic decay in time. We
start by introducing the generalized potential for the initial value problem as follows

vt + (vu)x = 0,

(vu)t + (vu2)x = κ(t)(ua(x, t) − u)v, (6.1)

adjoined with the initial data (v(x, 0), u(x, 0)) = (v0(x), u0(x)). We recall κ(t) = 1
t+κ and

ua(x, t) = x
t+κ for any κ ∈ R

+. The characteristics equation for the above system reduces
to ⎧⎪⎨

⎪⎩
dx(t)
dt = u(x(t), t),

du(x(t),t)
dt = 1

t+κ ( x
t+κ − u(x(t), t)),

x(0) = x0.

(6.2)

From (6.2), we obtain second-order ODE as follows:

d2x

dt2
+ 1

t + κ

dx

dt
− 1

(t + κ)2
x = 0,

x(0) = x0. (6.3)
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Solving the above ODE (6.3), we obtain

x(t) =
(
x0
2κ

+ u0(x0)

2

)
(t + κ) +

(
x0
2

− u0(x0)κ

2

)
κ

(t + κ)
,

u(x(t), t) =
(
x0
2κ

+ u0(x0)

2

)
−
(
x0
2

− u0(x0)κ

2

)
κ

(t + κ)2
.

Now we introduce our generalized potential as the following.

F(y, x, t) =
∫ y

0

((
η

2κ
+ u0(η)

2

)
(t + κ) +

(
η

2
− u0(η)κ

2

)
κ

(t + κ)
− x

)
v0(η)dη.

(6.4)

Given a point (x, t), let y∗(x, t) and y∗(x, t) be the leftmost and the rightmost points on the
x- axis such that

min
y∈R F(y, x, t) = F(y∗(x, t), x, t) = F(y∗(x, t), x, t).

Below, we give the explicit representation for m(x, t) and u(x, t). The formula for the pair
(m, u) is given by

m(x, t) =
∫ y∗(x,t)

0
v0(η)dη, (6.5)

u(x, t)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1+ κ2

(t+κ)2

(t+κ)− κ2
(t+κ)

[
x − 1

2

(
t+κ
κ + κ

t+κ

)
y∗(x, t)

]

+ y∗(x,t)
2

(
1
κ − κ

(t+κ)2

)
, if y∗(x, t) = y∗(x, t),

1∫ y∗
y∗ v0(η)dη

∫ y∗
y∗

[(
η
2κ + u0(η)

2

)
−
(

η
2 − u0(η)κ

2

)
κ

(t+κ)2

]
v0(η)dη, if y∗(x, t) �= y∗(x, t).

(6.6)

6.1 Derivation of the Formula (6.6)

In this sectionwe derive the above formula. Derivation of the formula (6.6) consists of several
steps that are formulated as lemmas. We Define the left backward characteristics and right
backward characteristics for 0 ≤ t < t0 as

Xl(x0, t0, t) = y∗(x0, t0)
2

(
t + κ

κ
+ κ

t + κ

)

+
(

(t + κ) − κ2

t + κ

) x0 − y∗(x0,t0)
2

(
t0+κ

κ + κ
t0+κ

)
(
(t0 + κ) − κ2

t0+κ

) ,

Xr (x0, t0, t) = y∗(x0, t0)
2

(
t + κ

κ
+ κ

t + κ

)

+
(

(t + κ) − κ2

t + κ

) x0 − y∗(x0,t0)
2

(
t0+κ

κ + κ
t0+κ

)
(
(t0 + κ) − κ2

t0+κ

) . (6.7)
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Also, let us denote

X+
l,r (x0, t0, t) := {(x, t)∣∣x ≥ Xl,r (x0, t0, t)

}
, X−

l,r (x0, t0, t) := {(x, t)∣∣x ≤ Xl,r (x0, t0, t)
}
.

Next, we define the characteristic triangle.

Definition 6.1 The area {(x, t) | x ∈ R, 0 ≤ t ≤ t0} ∩ X+
l (x0, t0, t) ∩ X−

r (x0, t0, t) is said
to be a characteristic triangle associated to (x0, t0) and it is denoted as �(x0, t0).

Next, we collect some basic properties of the functional F(y, x, t), minimizers
y∗(x, t), y∗(x, t) and the characteristic triangles which can be proved easily following [21,
31, 57].

Lemma 6.1 Grant the assumptions on the initial data. Then, we have

(1) For a fixed t, y∗(x, t) and y∗(x, t) are monotonically increasing in x and for x1 < x2,
y∗(x1, t) ≤ y∗(x2, t). Furthermore, y∗(x, t) is lower semicontinuous and y∗(x, t) is
upper semicontinuous.

(2) For fixed (x, t), let the min
y∈[0,∞)

F(y, x, t) be attained at y1. Then for any given point

(x ′, t ′) on the curve joining (y1, 0) and (x, t), we have F(y, x ′, t ′) > F(y1, x ′, t ′) for
y �= y1.

(3) The function F : R×[0,∞) → R, i.e.,(x, t) �→ F(x, t) is locally Lipschitz continuous.
(4) Let t > 0 be fixed, and x1 �= x2 be arbitrary. Then the characteristic triangles associated

with (x1, t) and (x2, t) do not intersect inR×[0,∞).Consequently, if two characteristic
triangles intersect in R × [0,∞), then one is contained in the other.

(5) For any time t0 > 0, we have⋃
x∈R

�(x, t0) = {(x, t)∣∣x ∈ R, 0 ≤ t ≤ t0
}
.

Now we are ready to derive the formula (6.6).

Lemma 6.2 Let t1 > 0. Each point (x1, t1) uniquely determines a Lipschitz continuous curve
x = X(t), for t ≥ t1 with x1 = X(t1) such that the characteristic triangles associated with
points on the curve form an increasing family of sets. At every t ≥ t1, u(x, t) is defined as
the slope of the curve X ′(t).

Proof Let t < t ′ < t ′′ and x ′ = X(t ′), x ′′ = X(t ′′). Applying (1) of Lemma 6.1, we have

y∗(x ′′, t ′′) ≤ y∗(x ′, t ′) ≤ y∗(x, t) ≤ y∗(x, t) ≤ y∗(x ′, t ′) ≤ y∗(x ′′, t ′′)

and {y∗(x ′′, t ′′), y∗(x ′, t ′)} and {y∗(x ′′, t ′′), y∗(x ′, t ′)} tend to y∗(x, t) and y∗(x, t), respec-
tively as t ′′, t ′ → t . Now, we consider the following two cases.
Case I. Let y∗(x, t) = y∗(x, t). Take any two points (x1, t ′) and (x2, t ′) on the backward
characteristics Xl(x ′′, t ′′, t) and Xr (x ′′, t ′′, t), respectively. Then we have

x ′′ − x2(t ′)
t ′′ − t ′

≤ x ′′ − x ′

t ′′ − t ′
≤ x ′′ − x1(t ′)

t ′′ − t ′
.

Using (6.7) and simplifying, we obtain

x ′′ − x1(t ′)
t ′′ − t ′

= x ′′

t ′′ − t ′

[
1 − (t ′ + κ) − κ2

t ′+κ

(t ′′ + κ) − κ2

t ′′+κ

]
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− y∗(x ′′, t ′′)
2(t ′′ − t ′)

⎡
⎣
(
t ′ + κ

κ
+ κ

t ′ + κ

)
−
(
t ′′+κ

κ + κ
t ′′+κ

) (
(t ′ + κ) − κ2

t ′+κ

)

(t ′′ + κ) − κ2

t ′′+κ

⎤
⎦ .

(6.8)

Similarly, x ′′−x2(t ′)
t ′′−t ′ can be written in the above form by replacing y∗(x ′′, t ′′) by y∗(x ′′, t ′′) in

(6.8). Now passing to the limit as t ′′, t ′ → t in (6.8), we get

X ′(t) ≤ x

⎡
⎣
(
1 + κ2

(t+κ)2

)

(t + κ) − κ2

t+κ

⎤
⎦− y∗(x, t)

2

⎡
⎣
(
t+κ
κ + κ

t+κ

)
(
(t + κ) − κ2

t+κ

)
(
1 + κ2

(t + κ)2

)
−
(
1

κ
− κ

(t + κ)2

)⎤⎦ .

Rearranging the above expression we get (6.6) for the case y∗(x, t) = y∗(x, t).
Case II. Let y∗(x, t) �= y∗(x, t). First we note that

F(y∗(x ′′, t ′′), x ′′, t ′′) − F(y∗(x ′, t ′), x ′′, t ′′) ≤ F(y∗(x ′′, t ′′), x ′, t ′) − F(y∗(x ′, t ′), x ′, t ′). (6.9)

Inserting the potential (6.4) in (6.9) and simplifying, we get

1

t ′′ − t ′

∫ y∗(x ′′,t ′′)

y∗(x ′,t ′)

[(
η

2κ
+ u0(η)

2

)
(t ′′ − t ′) +

(
η

2
− u0(η)κ

2

)(
κ

(t ′′ + κ)
− κ

t ′ + κ

)]
v0(η)dη

≤ x ′′ − x ′

t ′′ − t ′

∫ y∗(x ′′,t ′′)

y∗(x ′,t ′)
v0(η)dη. (6.10)

Passing to the limit as t ′′, t ′ → t in (6.10) we obtain

X ′(t) ≥ 1∫ y∗
y∗ v0(η)dη

∫ y∗

y∗

[(
η

2κ
+ u0(η)

2

)
−
(

η

2
− u0(η)κ

2

)
κ

(t + κ)2

]
v0(η)dη.

(6.11)

Again, considering the inequality

F(y∗(x ′, t ′), x ′, t ′) − F(y∗(x ′′, t ′′), x ′, t ′) ≤ F(y∗(x ′, t ′), x ′′, t ′′) − F(y∗(x ′′, t ′′), x ′′, t ′′),

we get

X ′(t) ≤ 1∫ y∗
y∗ v0(η)dη

∫ y∗

y∗

[(
η

2κ
+ u0(η)

2

)
−
(

η

2
− u0(η)κ

2

)
κ

(t + κ)2

]
v0(η)dη.

(6.12)

Combining (6.11)–(6.12), we obtain (6.6). ��
The next result shows that the curve X(t) can actually be started from t = 0. The proof

can be completed using the arguments of [21, 57] and also see [31] for a more general case
extended to the initial-boundary value problem.

Theorem 6.1 Let X(η, t) be a curve defined in Lemma 6.2 and S be a countable set of
points on the x-axis. Then for all (η, 0) /∈ S there exists a unique Lipschitz continuous curve
x = X(η, t), t ≥ 0 such that X(η, 0) = η and the characteristics triangles associated to the
points form an increasing family of sets. Also, for all (η, 0) /∈ S, we have

∂

∂t
X(η, t) = u(X(η, t), t) for a.e t > 0.
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6.2 Verification ofWeak Formulation, Entropy Criterion, and Initial Condition

The goal of this section is to prove Theorem 1.3. We verify that the pair (m, u) satisfies the
weak formulation, Lax entropy criterion, and the initial condition.

6.2.1 Verification of Weak Formulation (1.13)–(1.14)

Verification of weak formulation (1.13)–(1.14) consists of several steps. First, let us define
the momentum and energy potentials as follows:

q(x, t) =
∫ y∗(x,t)

0

[(
η

2κ
+ u0(η)

2

)
−
(

η

2
− u0(η)κ

2

)
κ

(t + κ)2

]
v0(η)dη,

E(x, t) = 1

2

∫ y∗(x,t)

0

[(
η

2κ
+ u0(η)

2

)
−
(

η

2
− u0(η)κ

2

)
κ

(t + κ)2

]
v0(η)u(X(η, t), t)dη,

and the functionals

H(y, x, t) =
∫ y

0

[(
η

2κ
+ u0(η)

2

)
−
(

η

2
− u0(η)κ

2

)
κ

(t + κ)2

]
v0(η) (X(η, t) − x) dη,

I (y, x, t) =
∫ y

0

(
η

2
− u0(η)κ

2

)
2κv0(η)

(t + κ)3
(X(η, t) − x) dη,

J (y, x, t) =
∫ y

0

(
η

2
− u0(η)κ

2

)
2κv0(η)

(t + κ)3
dη.

Step 1. The following relations hold:

(i) dq = udm, (i i) dE = 1

2
u2dm. (6.13)

in the sense of Radon-Nikodym derivatives in x .
Proof of Step 1. If y∗(x, t) is a constant in a neighbourhood of (x, t), then (6.13) holds trivially.
Assume that y∗(x, t) is not constant in a neighbourhood of (x, t) and y∗(x, t) = y∗(x, t).
For a fixed t > 0, let x1 < x < x2. By using the definition, we have

F(y∗(x1, t), x1, t) ≤ F(y∗(x2, t), x1, t).

Then, we have ∫ y∗(x2,t)

y∗(x1,t)

u0(η)

2

(
(t + κ) − κ2

(t + κ)

)
v0(η)dη

≤
∫ y∗(x2,t)

y∗(x1,t)

(
x1 − η

2

(
t + κ

κ
+ κ

t + κ

))
v0(η)dη

≤
∫ y∗(x2,t)

y∗(x1,t)

(
x1 − y∗(x1, t)

2

(
t + κ

κ
+ κ

t + κ

))
v0(η)dη.

This implies
∫ y∗(x2,t)

y∗(x1,t)

[(
η

2κ
+ u0(η)

2

)
−
(

η

2
− u0(η)κ

2

)
κ

(t + κ)2

]
v0(η)dη

≤
1 + κ2

(t+κ)2

(t + κ) − κ2

(t+κ)

[
x − 1

2

(
t + κ

κ
+ κ

t + κ

)
y∗(x1, t)

]
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+ y∗(x2, t)
2

(
1

κ
− κ

(t + κ)2

)∫ y∗(x2,t)

y∗(x1,t)
v0(η)dη.

Hence, we obtain

q(x1, t) − q(x2, t)

m(x1, t) − m(x2, t)
≤

1 + κ2

(t+κ)2

(t + κ) − κ2

(t+κ)

[
x − 1

2

(
t + κ

κ
+ κ

t + κ

)
y∗(x1, t)

]

+ y∗(x2, t)
2

(
1

κ
− κ

(t + κ)2

)
. (6.14)

Now passing to the limit as x1 ↗ x and x2 ↘ x in (6.14) we get

lim
x1,x2→x

q(x1, t) − q(x2, t)

m(x1, t) − m(x2, t)
≤ u(x, t).

Similarly, considering the inequality

F(y∗(x2, t), x2, t) ≤ F(y∗(x1, t), x2, t),

and following the same argument as above one can easily obtain the other way inequality

lim
x1,x2→x

q(x1, t) − q(x2, t)

m(x1, t) − m(x2, t)
≥ u(x, t),

and this proves (i).
If y∗(x, t) < y∗(x, t), then

lim
x1,x2→x

q(x1, t) − q(x2, t)

m(x1, t) − m(x2, t)

= lim
x1,x2→x

∫ y∗(x2,t)
y∗(x1,t)

[(
η
2κ + u0(η)

2

)
−
(

η
2 − u0(η)κ

2

)
κ

(t+κ)2

]
v0(η)dη

∫ y∗(x2,t)
y∗(x1,t) v0(η)dη

= u(x, t).

This completes the proof.
Proof of (i i) follows a similar argument. First consider the case y∗(x, t) = y∗(x, t). For

t > 0 and x1 < x < x2, we have

E(x2, t) − E(x1, t) =1

2

∫ y∗(x2,t)

y∗(x1,t)

[(
η

2κ
+ u0(η)

2

)
−
(

η

2
− u0(η)κ

2

)
κ

(t + κ)2

]

v0(η)u(X(η, t), t)dη. (6.15)

On the other hand, for y∗(x1, t) ≤ η ≤ y∗(x2, t), we have

1 + κ2

(t+κ)2

(t + κ) − κ2

(t+κ)

[
x − 1

2

(
t + κ

κ
+ κ

t + κ

)
y∗(x1, t)

]
+ y∗(x1, t)

2

(
1

κ
− κ

(t + κ)2

)

≤ u(X(η, t), t) ≤
1 + κ2

(t+κ)2

(t + κ) − κ2

(t+κ)

[
x − 1

2

(
t + κ

κ
+ κ

t + κ

)
y∗(x2, t)

]

+ y∗(x2, t)
2

(
1

κ
− κ

(t + κ)2

)
. (6.16)
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From (6.15)–(6.16), we get

1

2

1 + κ2

(t+κ)2

(t + κ) − κ2

(t+κ)

[
x − 1

2

(
t + κ

κ
+ κ

t + κ

)
y∗(x1, t)

]
+ y∗(x1, t)

2

(
1

κ
− κ

(t + κ)2

)

≤ E(x2, t) − E(x1, t)

q(x2, t) − q(x1, t)
≤ 1

2

1 + κ2

(t+κ)2

(t + κ) − κ2

(t+κ)

[
x − 1

2

(
t + κ

κ
+ κ

t + κ

)
y∗(x2, t)

]

+ y∗(x2, t)
2

(
1

κ
− κ

(t + κ)2

)
. (6.17)

Passing to the limit x1 ↗ x and x2 ↘ x in (6.17), we obtain

lim
x1,x2→x

E(x2, t) − E(x1, t)

q(x2, t) − q(x1, t)
= 1

2
u(x, t)

and consequently, by (i), we find dE = 1
2u

2dm.

Now if y∗(x, t) < y∗(x, t), it is straightforward to see

lim
x1,x2→x

E(x2, t) − E(x1, t)

q(x2, t) − q(x1, t)
= 1

2
u(x, t)

where we used the fact that y∗(x1, t) → y∗(x, t) and y∗(x2, t) → y∗(x, t) as x1, x2 → x
and for η ∈ [y∗(x, t), y∗(x, t)], we have u(X(η, t), t) = u(x, t). This completes the proof
of (i i).
Step 2. Define F(x, t) = min

y∈R F(y, x, t). Then the following hold

(i)
∂

∂x
F(x, t) = −m(x, t), (6.18)

(i i)
∂

∂t
F(x, t) = q(x, t). (6.19)

Proof of Step 2. To prove (6.18), first we fix t > 0 and choose any two points x1, x2 ∈ R.

We claim that ∫ x2

x1
m(x, t)dx = F(x2, t) − F(x1, t). (6.20)

Take any x, x ′ ∈ [x1, x2] with x < x ′. It is enough to prove

(x ′ − x)m(x, t) ≤ F(x, t) − F(x ′, t) ≤ (x ′ − x)m(x ′, t). (6.21)

The inequality (6.21) can be proved by considering

F(x, t) − F(x ′, t) = F(y∗(x, t), x, t) − F(y∗(x ′, t), x ′, t)
= [F(y∗(x, t), x, t) − F(y∗(x, t), x ′, t)] + [F(y∗(x, t), x ′, t)
− F(y∗(x ′, t), x ′, t)]. (6.22)

It is worth noting that the second term in (6.22) is positive, leading us to the following
inequality,

F(x, t) − F(x ′, t) ≥ F(y∗(x, t), x, t) − F(y∗(x, t), x ′, t).

Similarly, we have

F(x, t) − F(x ′, t) ≤ F(y∗(x ′, t), x, t) − F(y∗(x, t ′), x, t ′).
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Combining the above two inequalities,we conclude (6.21).Note that, since y∗(x, t) is increas-
ing in x and v0 > 0, we have m(x, t) is also increasing in x . Therefore, m(x, t) is Riemann
integrable. Now taking Riemann sum and using the inequality (6.21), we conclude (6.20)
and hence (6.18).

To prove (6.19), we first fix x ∈ R and choose any t, t + h ∈ (0,∞). Then we have

F(x, t + h) − F(x, t) = F(y∗(x, t + h), x, t + h) − F(y∗(x, t), x, t)
= [F(y∗(x, t + h), x, t + h) − F(y∗(x, t + h), x, t)]

+ [F(y∗(x, t + h), x, t) − F(y∗(x, t), x, t)].
Again, using minimization of F, we obtain

F(x, t + h) − F(x, t) ≥ F(y∗(x, t + h), x, t + h) − F(y∗(x, t + h), x, t).

Similarly, we have

F(x, t + h) − F(x, t) ≤ F(y∗(x, t), x, t + h) − F(y∗(x, t), x, t).

Combining the above two inequalities, we get∫ y∗(x,t+h)

0

[(
η

2κ
+ u0(η)

2

)
+
(

η

2
− u0(η)κ

2

)
1

h

(
κ

t + h + κ
− κ

t + κ

)]
v0(η)dη

≤ F(x, t + h) − F(x, t)

h
≤
∫ y∗(x,t)

0

[(
η

2κ
+ u0(η)

2

)
+
(

η

2
− u0(η)κ

2

)

1

h

(
κ

t + h + κ
− κ

t + κ

)]
v0(η)dη. (6.23)

As we know y∗(x, t + h) → y∗(x, t) as h → 0. Then passing to the limit as h → 0 in the
above inequality (6.23), we obtain (6.19). This completes the proof.
Step 3. Now we show that (m, u) satisfies the first equation of the weak formulation (1.13).
For a test function ϕ with compact support inR×]0,∞[ we infer using the step 1 and step 2:

0 =
∫∫

[Fxϕt (x, t) − Ftϕx (x, t)]dxdt =
∫∫

[m(x, t)ϕt (x, t) − q(x, t)ϕx (x, t)]dxdt

=
∫∫

[m(x, t)ϕt (x, t)dxdt −
∫∫

u(x, t)ϕ(x, t)dmdt . (6.24)

This identity proves that (m, u) satisfies the first equation of the system (6.1).
Step 4. Define H(x, t) = min

y∈R H(y, x, t) and I (x, t) = min
y∈R I (y, x, t). Then the following

relations hold:

(i)
∂

∂x
H(x, t) = −q(x, t), (6.25)

(i i)
∂

∂t
H(x, t) = 2E(x, t) + I (x, t). (6.26)

Proof of Step 4. To prove (6.25), following the previous argument, we fix t > 0 and choose
any two points x1, x2 ∈ R and claim that∫ x2

x1
q(x, t)dx = H(x2, t) − H(x1, t).

Take any x, x ′ ∈ [x1, x2] with x < x ′. Exactly as in the proof of (6.18), we show

(x ′ − x)q(x, t) ≤ H(x, t) − H(x ′, t) ≤ (x ′ − x)q(x ′, t),
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and this completes the proof of (6.25).
To prove (6.26), first we fix x and for t, t + h ∈ (0,∞), and following the proof of (6.19),
we have

H(x, t + h) − H(x, t) ≥ H(y∗(x, t + h), x, t + h) − H(y∗(x, t + h), x, t).

Therefore, we have

H(x, t + h) − H(x, t)

h
≥
∫ y∗(x,t+h)

0
v0(η)

(
η

2κ
+ u0(η)

2

)
(X(η, t + h) − X(η, t))

h
dη

−
∫ y∗(x,t+h)

0
v0(η)

(
η

2
− u0(η)κ

2

)
1

h

[
κX(η, t + h)

(t + h + κ)2
− κX(η, t)

(t + κ)2

]
dη

+ x
∫ y∗(x,t+h)

0

(
η

2
− u0(η)κ

2

)
1

h

[
κ

(t + h + κ)2
− κ

(t + κ)2

]
v0(η)dη.

(6.27)

Now passing to the limit as h → 0 in (6.27) and using d
dt X(η, t) = u(X(η, t), t), we get

∂

∂t
H(x, t) ≥

∫ y∗(x,t)

0
v0(η)

(
η

2κ
+ u0(η)

2

)
u(X(η, t), t)dη

−
∫ y∗(x,t)

0
v0(η)

(
η

2
− u0(η)κ

2

)[
κu(X(η, t), t)

(t + κ)2
− 2κX(η, t)

(t + κ)3

]
dη

− x
∫ y∗(x,t)

0
v0(η)

(
η

2
− u0(η)κ

2

)
2κ

(t + κ)3
dη

= 2E(x, t) + I (x, t).

Similarly, considering the inequality

H(x, t + h) − H(x, t) ≤ H(y∗(x, t), x, t + h) − H(y∗(x, t), x, t),

we obtain

∂

∂t
H(x, t) ≤ 2E(x, t) + I (x, t),

and this completes the proof.
Step 5. Define J (x, t) = min

y∈R J (y, x, t). Then we have the following relations:

(i)
∂

∂x
I (x, t) = −J (x, t), (6.28)

(i i) dJ = 1

t + κ

(
x

t + κ
− u

)
dm, (6.29)

in the sense of Radon-Nikodym derivatives in x .
Proof of Step 5. The proof of (6.28) is exactly same as the proof of (6.18) and thus we omit
it.
To prove (6.29), we consider the following two cases.
Case I. Let y∗(x, t) = y∗(x, t). First of all, after a simplification, we obtain

1

t + κ

(
x

t + κ
− u(x, t)

)
= 2κ

(t + κ)
(
(t + κ)2 − k2

)
[
y∗(x, t) − κ

(t + κ)
x

]
.
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On the other hand, fixing t > 0 and taking x1 < x < x2, by the definition of potential we
have

F(y∗(x2, t), x2, t) ≤ F(y∗(x1, t), x2, t).

This implies
∫ y∗(x2,t)

y∗(x1,t)

u0(η)

2

(t + κ)2 − κ2

(t + κ)
v0(η)dη ≤

∫ y∗(x2,t)

y∗(x1,t)

[
x2 − η

2

(t + κ)2 + κ2

κ(t + κ)

]
v0(η)dη.

Multiplying 2κ2

(t+κ)2((t+κ)2−κ2)
≥ 0 in both sides of the above inequality and simplifying, we

get
∫ y∗(x2,t)

y∗(x1,t)

u0(η)

2

2κ2

(t + κ)3
v0(η)dη

≤ 2κ

(t + κ)

∫ y∗(x2,t)

y∗(x1,t)

[
κx2

(t + κ)((t + κ)2 − κ2)
− η

2

(t + κ)2 + κ2)

(t + κ)2((t + κ)2 − κ2)

]
v0(η)dη

= 2κ

(t + κ)

∫ y∗(x2,t)

y∗(x1,t)

[
κx2

(t + κ)((t + κ)2 − κ2)
+ η

2

(
1

(t + κ)2
− 2

(t + κ)2 − κ2

)]
v0(η)dη.

This implies
∫ y∗(x2,t)

y∗(x1,t)

[
2κ

(t + κ)((t + κ)2 − κ2)
· η − 2κ2x2

(t + κ)((t + κ)2 − κ2)

]
v0(η)dη

≤
∫ y∗(x2,t)

y∗(x1,t)

(
η

2
− u0(η)κ

2

)
2κv0(η)

(t + κ)3
dη = J (x2, t) − J (x1, t),

and finally, we obtain

2κ

(t + κ)((t + κ)2 − κ2)

[
y∗(x2, t) − κ

(t + κ)
x2

]
≤ J (x2, t) − J (x1, t)

m(x2, t) − m(x1, t)
.

Hence

lim
x1,x2→x

J (x2, t) − J (x1, t)

m(x2, t) − m(x1, t)
≥ 2κ

(t + κ)((t + κ)2 − κ2)

[
y∗(x, t) − κ

(t + κ)
x

]

= 1

t + κ

(
x

t + κ
− u(x, t)

)
.

Similarly, considering the inequality

F(y∗(x1, t), x1, t) ≤ F(y∗(x2, t), x1, t),

we get

lim
x1,x2→x

J (x2, t) − J (x1, t)

m(x2, t) − m(x1, t)
≤ 1

t + κ

(
x

t + κ
− u(x, t)

)
,

and this completes the proof.
Case II. Let y∗(x, t) < y∗(x, t). In this case we have

J (x1, t) − J (x2, t)

m(x1, t) − m(x2, t)
= 2

t + κ
·
∫ y∗(x2,t)
y∗(x1,t)

[(
η
2 − u0(η)κ

2

)
κ

(t+κ)2
−
(

η
2κ + u0(η)

2

)]
v0(η)dη

∫ y∗(x2,t)
y∗(x1,t)

v0(η)dη
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+ 2

t + κ
·
∫ y∗(x2,t)
y∗(x1,t)

(
η
2κ + u0(η)

2

)
v0(η)dη

∫ y∗(x2,t)
y∗(x1,t)

v0(η)dη

= 1

t + κ
·
∫ y∗(x2,t)
y∗(x1,t)

[(
η
2 − u0(η)κ

2

)
κ

(t+κ)2
−
(

η
2κ + u0(η)

2

)]
v0(η)dη

∫ y∗(x2,t)
y∗(x1,t)

v0(η)dη

+ 1

t + κ
·
∫ y∗(x2,t)
y∗(x1,t)

[(
η
2 − u0(η)κ

2

)
κ

(t+κ)2
+
(

η
2κ + u0(η)

2

)]
v0(η)dη

∫ y∗(x2,t)
y∗(x1,t)

v0(η)dη
.

(6.30)

Using the inequality F(y∗(x1, t), x1, t) ≤ F(y∗(x2, t), x1, t), we get

x1
t + κ

≤
∫ y∗(x2,t)
y∗(x1,t)

[(
η
2 − u0(η)κ

2

)
κ

(t+κ)2
+
(

η
2κ + u0(η)

2

)]
v0(η)dη

∫ y∗(x2,t)
y∗(x1,t) v0(η)dη

. (6.31)

Therefore plugging (6.31) into (6.30), we have

lim
x1,x2→x

J (x1, t) − J (x2, t)

m(x1, t) − m(x2, t)
≥ 1

t + κ
·
∫ y∗(x,t)
y∗(x,t)

[(
η
2 − u0(η)κ

2

)
κ

(t+κ)2
−
(

η
2κ + u0(η)

2

)]
v0(η)dη

∫ y∗(x,t)
y∗(x,t) v0(η)dη

+ x

(t + κ)2

= 1

t + κ

(
x

t + κ
− u(x, t)

)
.

Similarly considering the inequality

F(y∗(x2, t), x2, t) ≤ F(y∗(x1, t), x2, t),

we obtain

lim
x1,x2→x

J (x1, t) − J (x2, t)

m(x1, t) − m(x2, t)
≤ 1

t + κ

(
x

t + κ
− u(x, t)

)
.

This proves (i i).
Step 6.We show that the pair (m, u) satisfies the second equation of (1.14). For that, we have

0 =
∫∫

[Hxϕt x (x, t) − Htϕxx (x, t)]dxdt = −
∫∫

[qϕt x + (2E + I )ϕxx ]dxdt

=
∫∫

[qxϕt + (2E + I )xϕx ]dxdt =
∫∫

[uϕt + u2ϕx ]dmdt −
∫∫

Jϕxdxdt

=
∫∫

[uϕt + u2ϕx ]dmdt +
∫∫

Jxϕdxdt =
∫∫

uϕt + u2ϕx + 1

t + κ

(
x

t + κ
− u

)
ϕdmdt .

(6.32)

The identity (6.32) combined with (6.24) completes the proof of the weak formulation.

6.2.2 Entropy Criterion

Now we show that (m, u) satisfies the Oleinik type entropy condition. For any discontinuity
point (x, t), after simplifying and considering the construction of solution u(x, t),we obtain
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the following expressions.

u(x − 0, t) = (t + κ)2 + κ2

(t + κ)((t + κ)2 − κ2)
x − 2κ

(t + κ)2 − κ2
y∗(x, t),

u(x + 0, t) = (t + κ)2 + κ2

(t + κ)((t + κ)2 − κ2)
x − 2κ

(t + κ)2 − κ2
y∗(x, t).

Since (x, t) is a point of discontinuity, y∗(x, t) < y∗(x, t) and using F(y∗(x, t), x, t) =
F(y∗(x, t), x, t), we have

∫ y∗(x,t)

y∗(x,t)

[
η

2
· (t + κ)2 + κ2

κ(t + κ)
+ u0(η)

2
· (t + κ)2 − κ2

(t + κ)
− x

]
v0(η)dη = 0.

Multiplying (t+κ)2+κ2

(t+κ)((t+κ)2−κ2)
in the above equation and rearranging the terms, we obtain

∫ y∗(x,t)

y∗(x,t)

[
η

2
· (t + κ)2 − κ2

κ(t + κ)2
+ u0(η)

2
· (t + κ)2 + κ2

(t + κ)2

]
v0(η)dη

=
∫ y∗(x,t)

y∗(x,t)

[
(t + κ)2 + κ2

(t + κ)((t + κ)2 − κ2)
x − η · 2κ

(t + κ)2 − κ2

]
v0(η)dη (6.33)

≤
[

(t + κ)2 + κ2

(t + κ)((t + κ)2 − κ2)
x − y∗(x, t) · 2κ

(t + κ)2 − κ2

] ∫ y∗(x,t)

y∗(x,t)
v0(η)dη

= u(x − 0, t)
∫ y∗(x,t)

y∗(x,t)
v0(η)dη. (6.34)

Again, by y∗(x, t) in (6.33), we get the other way inequality
∫ y∗(x,t)

y∗(x,t)

[
η

2
· (t + κ)2 − κ2

κ(t + κ)2
+ u0(η)

2
· (t + κ)2 + κ2

(t + κ)2

]
v0(η)dη

≥ u(x + 0, t)
∫ y∗(x,t)

y∗(x,t)
v0(η)dη. (6.35)

Therefore, combining (6.34) and (6.35), we have u(x + 0, t) ≤ u(x, t) ≤ u(x − 0, t).
Furthermore, for any x1 �= x2, we have

u(x2, t) − u(x1, t)

x2 − x1
≤ u(x2 − 0, t) − u(x1 + 0, t)

x2 − x1
≤ (t + κ)2 + κ2

(t + κ)((t + κ)2 − κ2)
.

6.2.3 Verification of Initial Condition

In this section, we show that the pair (m, u) satisfies the initial condition in the sense that for
almost every x, we have lim

t→0
u(x, t) = u0(x) and lim

t→0
m(x, t) = ∫ x0 ρ0(η)dη. Since y∗(x, t)

and y∗(x, t) converges to x as t → 0+, from the definition of m(x, t) given by (6.5), we get
lim
t→0+m(x, t) = ∫ x0 v0(η)dη.

We show the first assertion for any Lebesgue point x0 of u0(x) and v0(x). To be more
precise, we show that

lim
t→0+ u(x0, t) = u0(x0). (6.36)
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When y∗(x, t) < y∗(x, t), (6.36) follows directly from the construction of u(x, t). We only

consider the case y∗(x0, t) = y∗(x0, t). First we set T = (t+κ)2−κ2

2κ . For any ε > 0,
considering the inequality

F(y∗(x0, t), x0, t) ≤ F(y∗(x0, t) + εT , x0, t),

and calculating as above, we get
∫ y∗(x0,t)+εT

y∗(x0,t)

[
η

2
· (t + κ)2 − κ2

κ(t + κ)2
+ u0(η)

2
· (t + κ)2 + κ2

(t + κ)2

]
v0(η)dη

≥
∫ y∗(x0,t)+εT

y∗(x0,t)

[
(t + κ)2 + κ2

(t + κ)((t + κ)2 − κ2)
x0 − η · 2κ

(t + κ)2 − κ2

]
v0(η)dη,

similar to the inequality (6.33). This implies
∫ y∗(x0,t)+εT
y∗(x0,t)

[(
η
2κ + u0(η)

2

)
−
(

η
2 − u0(η)κ

2

)
κ

(t+κ)2

]
v0(η)dη

∫ y∗(x0,t)+εT
y∗(x0,t) v0(η)dη

≥
[

(t + κ)2 + κ2

(t + κ)((t + κ)2 − κ2)
x0 − y∗(x0, t) · 2κ

(t + κ)2 − κ2
− ε

]
= u(x0, t) − ε. (6.37)

Since x0 is a Lebesgue point of u0(x) and v0(x), passing to the limit as t → 0+ in (6.37),
we conclude

u0(x0) ≥ lim sup
t→0+

u(x0, t) − ε. (6.38)

Similarly, considering the inequality F(y∗(x0, t), x0, t) ≤ F(y∗(x0, t) − εT , x0, t), we
obtain

u0(x0) ≤ lim inf
t→0+ u(x0, t) + ε. (6.39)

Since ε is arbitrary, combining (6.38)–(6.39), we conclude (6.36).

Remark 6.1 Note that one could insert the following shadow wave solution to the system
(6.1)

U ε = (vε, uε)(x, t) =

⎧⎪⎨
⎪⎩

(Vl(t),Ul(x, t)) , x < c(t) − ε
2 t − xε,

(vε(t), uε(t)) , c(t) − ε
2 t − xε < x < c(t) + ε

2 t + xε,

(Vr (t),Ur (x, t)) , x > c(t) + ε
2 t + xε,

where Vl,r (t) and Ul,r (x, t) are given by

Ul,r (x, t) :=
2ul,r
(

κ
t+κ

)
(
t+κ
κ + κ

t+κ

) +
(
1
κ − κ

(t+κ)2

)
(
t+κ
κ + κ

t+κ

) x, Vl,r (t) := 2vl,r(
t+κ
κ + κ

t+κ

) ,

and xε, vε(t) are O(ε) and O(1/ε), respectively. Following the similar calculations as in
Sect. 2, we obtain the system of ODEs given as follows:

dξ(t)

dt
= ċ(t)[V (t)] − [V (t)U (x, t)], ξ(0) = m̄,

d(ξ(t)χ(t))

dt
+ 1

t + κ

(
χ(t) − x

t + κ

)
ξ(t) = ċ(t)[V (t)U (x, t)]
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− [V (t)U 2(x, t)], ξ(0)χ(0) = m̄ū,

ċ(t) = χ(t). (6.40)

where lim
ε→0

2
(

ε
2 t + xε

)
vε(t) = ξ(t), lim

ε→0
uε(t) = χ(t) and [·] := ·r − ·l denotes the jump

across the discontinuity curve x = c(t). Since the system of ODEs (6.40) involves x and
t both, it is not always straightforward to find an explicit expression for ξ(t) and hence for
χ(t) as we found in Sect. 2. Also, one of the advantages to the variational approach is that
we can allow a larger set of initial datum, whereas to proceed with shadow wave tracking
we need some regularity on the initial data. However, the variational approach requires the
assumption v0(x) > 0 while v0(x) = 0 case is allowed in shadow wave tracking.
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