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Mutually exclusive teams-like patterns of gene regulation characterize phenotypic 
heterogeneity along the noradrenergic-mesenchymal axis in neuroblastoma
Manas Sehgala, Sonali Priyadarshini Nayaka,b, Sarthak Sahooa, Jason A Somarellic, and Mohit Kumar Jolly a

aDepartment of Bioengineering, Indian Institute of Science, Bangalore, India; bMax Planck School Matter to Life, University of Göttingen, Göttingen, 
Germany; cDepartment of Medicine, Duke University, Durham, NC, USA

ABSTRACT
Neuroblastoma is the most frequent extracranial pediatric tumor and leads to 15% of all cancer-related 
deaths in children. Tumor relapse and therapy resistance in neuroblastoma are driven by phenotypic 
plasticity and heterogeneity between noradrenergic (NOR) and mesenchymal (MES) cell states. Despite 
the importance of this phenotypic plasticity, the dynamics and molecular patterns associated with these 
bidirectional cell-state transitions remain relatively poorly understood. Here, we analyze multiple RNA- 
seq datasets at both bulk and single-cell resolution, to understand the association between NOR- and 
MES-specific factors. We observed that NOR-specific and MES-specific expression patterns are largely 
mutually exclusive, exhibiting a “teams-like” behavior among the genes involved, reminiscent of our 
earlier observations in lung cancer and melanoma. This antagonism between NOR and MES phenotypes 
was also associated with metabolic reprogramming and with immunotherapy targets PD-L1 and GD2 as 
well as with experimental perturbations driving the NOR-MES and/or MES-NOR transition. Further, these 
“teams-like” patterns were seen only among the NOR- and MES-specific genes, but not in housekeeping 
genes, possibly highlighting a hallmark of network topology enabling cancer cell plasticity.
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Introduction

Neuroblastoma (NB) is the most frequent pediatric solid 
tumor that represents 6–10% of all childhood tumors and 
accounts for approximately 15% of all cancer deaths in chil-
dren. It almost exclusively occurs in early childhood; the med-
ian age for its diagnosis is about 18 months, and approximately 
40% of NB patients are younger than 1 y at diagnosis. It is 
a neural crest-derived malignancy that manifests along the 
sympathetic nervous system.1–3 NB is marked by considerable 
clinical variability, with the disease spectrum varying from 
spontaneous regression without needing any treatment to 
a treatment-resistant tumor exhibiting metastatic 
dissemination.2 Treatment usually includes high-dose che-
motherapy, surgical resection, radiation therapy and immu-
notherapy (anti-GD2 monoclonal antibodies), with most 
targeted therapy-based inhibitors still in clinical trials.4,5 

Despite intensive therapy, NB patients have high mortality 
rates, and relapsed patients frequently develop treatment resis-
tance. The median survival for high-risk relapsed neuroblas-
toma is only 11 months, and there are no curative options for 
relapsed patients, underscoring the urgent need to improve 
current treatment regimens.6

NB exhibits extensive transcriptional heterogeneity, akin to 
reports in other cancer types.7–9 A low mutational burden in 
the typical NB genome highlights the role of non-genetic 
heterogeneity in enabling therapy resistance.6 Over five dec-
ades ago, neuroblastoma cells were shown to exhibit two dis-
tinct phenotypes in vitro: the N-type (neuroblast) and S-type 

(substrate-adherent). The N-type grew as focal aggregates with 
short neurotic processes and attached poorly to substrate, 
while S-type were largely flattened, attached strongly to sub-
strate, and resembled non-neuronal precursors. Interestingly, 
both these cell types could interconvert spontaneously and 
bidirectionally,10 reminiscent of phenotypic plasticity reported 
in other cancers.11,12 Later, a morphological and biochemical 
intermediate (I-type cells) were proposed; they had the highest 
tumor-forming abilities, expressed stem cell markers,10,13 and 
were postulated to be a possible precursor to both N-type and 
S-type cells. Extensive analysis of developmental origins of 
neuroblastoma have drawn parallels between sympathoblasts – 
the bipotent cells that can generate both mesenchymal and 
neuronal phenotypes – and I-type cells. During development, 
sympathoblasts can give rise to both neuronal (post-ganglionic 
sympathetic neurons, chromaffin cells) and mesenchymal 
(mesenchymal stem cells, fibroblasts, Schwann cells, fibro-
blasts) cell types (Figure 1).14 Further molecular characteriza-
tion led to N-type cells being referred to as noradrenergic 
(NOR) phenotype, while S-type being renamed as mesenchy-
mal (MES) phenotype.10

Compared to NOR cells, MES cells are resistant to standard 
chemotherapeutic agents used for neuroblastoma patients – 
cisplatin, doxorubicin, and etoposide, and are enriched upon 
treatment of the heterogeneous cell line, SK-N-SH (containing 
both NOR and MES subpopulations) with these drugs.10 

Consistently, they are also enriched in patients with relapse, 
as identified by single-cell analysis of primary and relapsed

CONTACT Mohit Kumar Jolly mkjolly@iisc.ac.in Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
Supplemental data for this article can be accessed online at https://doi.org/10.1080/15384047.2024.2301802

CANCER BIOLOGY & THERAPY                          
2024, VOL. 25, NO. 1, 2301802 
https://doi.org/10.1080/15384047.2024.2301802

© 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits 
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the 
posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0000-0002-6631-2109
https://doi.org/10.1080/15384047.2024.2301802
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/15384047.2024.2301802&domain=pdf&date_stamp=2024-01-17


tumors.6 This enrichment can be enabled by selection of pre-
existing MES cells and/or induction of NOR to MES cell-state 
transition. Single-cell subclones established from NB cell lines 
could repopulate both cell-states in vitro, indicating reversible 
dynamic transitions. Such spontaneous stochastic bidirec-
tional interconversion was also seen in vivo.15–17 Therefore, 
analogous to the well-studied phenomenon of epithelial- 
mesenchymal transition (EMT) and its reverse mesenchymal- 
epithelial transition (MET),18–20 NB displays phenotypic tran-
sitions between the NOR and MES phenotypes – noradrener-
gic-mesenchymal transition (NMT) and mesenchymal- 
noradrenergic transition (MNT) (Figure 1).

NMT/MNT can drive the extensive phenotypic plasticity and 
heterogeneity reported in NB, highlighting the importance of 
non-genetic mechanisms, such as epigenetic and transcriptomic 
reprogramming in enabling disease progression and 
relapse.16,17,21 While the epithelial-hybrid-mesenchymal spec-
trum has been thoroughly investigated with respect to its 
dynamics and impact on hallmarks of cancer,20,22–24 our under-
standing of NMT/MNT is relatively limited, and additional 
research is needed to uncover the underlying patterns of pheno-
typic plasticity and heterogeneity in NB cell populations. A deeper 
understanding of the dynamics of cell fate switching in NB could 
help pinpoint new biomarkers or treatments to target aggressive 
cell states in NB.

Here, we found a mutually exclusive expression pattern 
between two sets of transcription factors (TFs) in NB, one 

driving a NOR phenotype and the other enabling a MES 
one, thus indicating a “teams-like” behavior between gene 
expression patterns that determine these phenotypic cell 
states. This “teams-like” behavior can underlie the pheno-
typic plasticity and is largely unique to gene lists associated 
with noradrenergic/mesenchymal axis in NB. We also 
demonstrated that the NOR- and MES-associated gene 
lists could reproduce cell-state transitions in NB. Further, 
our meta-analysis of NB datasets confirmed an antagonistic 
enrichment of the two phenotypes in bulk transcriptomic 
datasets along with the enrichment of PD-L1 activity, and 
glycolytic and fatty acid oxidation (FAO) programs with 
the mesenchymal state of NB cells. Furthermore, we found 
that the disialoganglioside GD2, a cell surface marker 
abundantly expressed in NB tumors, is associated with 
a NOR phenotype both at bulk and single-cell levels. Our 
analysis elucidates functional and molecular differences 
between NOR and MES phenotypes prevalent in NB.

Materials and methods

Software and data and code availability

All computational and statistical analyses have been performed 
using R (version 4.2.1) and Python (version 3.10.2). Codes 
used are available at https://github.com/Manas-Sehgal/NB_ 
heterogeneity

Figure 1. Neuroblastoma phenotypes and corresponding developmental states. (top) sympathoblast (I-type) serves as a progenitor of many cell types shown in nor 
(N-type) and MES (S-type) lineage, at different stages of lineage differentiation. (bottom) nor and MES cells can switch back and forth, indicating reversible cell-state 
transitions.
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Transcriptomic data retrieval and pre-processing

Publicly accessible bulk and single-cell RNA-sequencing data-
sets were downloaded from NCBI-GEO) repository. Raw gene 
count matrices were normalized for gene length and trans-
formed to Log2(TPM) (transcripts-per-million) values. Single- 
cell RNA-sequencing gene-length normalized data (scRNA- 
seq) was imputed to reduce sparsity using ‘Rmagic’ 
package.25 Microarray datasets were downloaded from GEO 
using the GEOquery R Bioconductor package. A total of 75 NB 
datasets were used for meta-analysis (Table S3). Probe-wise 
gene expression matrices and their corresponding platform 
annotation files were used to map the probes to each gene. If 
two probes matched to the same gene, their mean expression 
values were used. The resultant gene-wise expression matrices 
were then log2 transformed.

Principal component analysis and K-means clustering

Principal component analysis (PCA) was used for dimension-
ality reduction of simulation and transcriptomic data using 
‘Scikit-learn’ Python library. K-means clustering was per-
formed on samples in each bulk dataset using the ‘Scikit- 
learn’ Python library to create two groups (K = 2) based on 
their segregation along the principal component 1.

For gene swapping analysis, PCA was performed on gene- 
expression matrices before and after swapping genes from the 
wild-type 26 NOR/MES gene list was done using ‘prcomp’ 
function in R. List of housekeeping genes for this analysis 
was obtained from a previous study (Table S2).26

Gene signatures and gene set enrichment analysis

A total of 14 NOR-specific and 12 MES-specific genes (Table 
S1) and extended lists of 369 NOR-specific and 485 MES- 
specific genes from a previous study were used.17 Gene set 
enrichment analysis (GSEA) was performed on K-means- 
generated clusters to examine the enrichment of the noradre-
nergic and mesenchymal genesets using GSEAPY Python 
library.27 Gene signatures for Hallmark EMT, fatty acid oxida-
tion (FAO) and glycolysis pathways, Hallmark G2M check-
point geneset, WP cell cycle, Biocarta cell cycle and KEGG cell 
cycle were obtained from molecular signatures database 
(MSigDB).28 Single-sample gene set enrichment analysis 
(ssGSEA) was performed to obtain sample-wise normalized 
enrichment scores (NES) for each pathway for bulk transcrip-
tomic data, and AUCell was performed on the imputed 
scRNA-seq gene matrices.29 Partial EMT and Programmed 
death-ligand 1 (PD-L1) scores were obtained using previous 
gene lists.22,30 All gene lists used in this study are included in 
Table S2.

Gene correlation matrices and J-metric calculation

Spearman’s correlation coefficients were used to assess the 
pairwise association between MES-specific and NOR-specific 
genes. R package ‘ggcorrplot’ was used to plot the correlation 
matrices. Normalized expression values of genes correspond-
ing to NOR and MES phenotypes (shown in Figure 1) were 

used to calculate J-metric value for each dataset. To calculate 
the J-metric value, the sum of Spearman correlation coeffi-
cients between genes of different teams was subtracted from 
the sum of correlation coefficients of genes belonging to the 
same team. Only significant correlations (p < .05) were con-
sidered for this calculation.

Results

NB phenotypic heterogeneity includes the existence of 
two distinct phenotypes and their corresponding “teams” 
of genes

To characterize phenotypic heterogeneity in NB, we first col-
lated a set of 14 NOR-specific and 12 MES-specific genes that 
regulate and/or correspond to noradrenergic and mesenchy-
mal cell-states (Table S1) from a previous study.17 In our prior 
studies of epithelial-mesenchymal plasticity in cancer, we have 
observed that sub-networks of specific genes exist as coordi-
nated “teams” to regulate the dynamics of cellular plasticity.31 

Players within a “team” activated each other, while those 
across “teams” inhibited each other directly or indirectly, 
thus the presence of “teams” can lead to mutually exclusive 
expression patterns in transcriptomic data. For example, we 
have pinpointed the epithelial “team” comprised of players 
such as microRNA-200, OVOL2, GRHL2, and the mesenchy-
mal “team” comprised of players such as ZEB1, SNAIL1 and 
TWIST.32 Similar “teams” behavior was seen in both the 
underlying network structure as well as in transcriptomic 
datasets in additional cancer types, where two mutually antag-
onistic “teams” promoted invasive/proliferative heterogeneity 
in melanoma and neuroendocrine/non-neuroendocrine het-
erogeneity in small cell lung cancer.7,12 With these features in 
mind, we sought to understand if the genes involved in reg-
ulating the NOR and MES phenotypes in NB were organized 
in “teams” as well.

To do this, we then computed the pairwise correlations 
between these genes in multiple bulk transcriptomic datasets 
(denoted by GSE IDs) comprising NB cell lines and primary 
tumor samples – GSE9169 (n = 86),33 GSE17714 (n = 22),34 

GSE28019 (n = 24), GSE64000 (n = 8),35 GSE66586 (n = 10),36 

GSE78061 (n = 29), GSE19274 (patient samples only; n =  
100),37 GSE44537 (n = 6)38 and GSE73292 (n = 6).39 We 
observed that expression levels of 14 NOR-specific genes 
were mostly positively correlated with each other but nega-
tively correlated 12 MES-specific genes. Similarly, the 12 MES- 
specific genes correlated positively with each other, but nega-
tively with 14 NOR-specific ones (Figure 2). This consistent 
pattern across datasets indicates the existence of two “teams” 
of players wherein one set of genes corresponds to a NOR 
phenotype and the other set corresponds to the MES pheno-
type. Thus, such mutual exclusivity between the two “teams” 
characterizes NB heterogeneity patterns.

To better understand this “teams-like” behavior, we applied 
dimensionality reduction to the transcriptomic datasets. In our 
previous analysis of cell-fate decision networks of EMT and 
pluripotency, we observed that the underlying “teams-like” 
structure in a network can reduce the dimensionality of the 
system and could segregate phenotypes distinctly along
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principal component 1 (PC1) in a principal component ana-
lysis (PCA).40 When projected on their first two principal 
components (PCs), we observed the segregation of samples 
into two distinct clusters along PC1 across the datasets 
shown, further highlighting the distinct, “teams-like” behavior 
of these regulatory pathways (Figure 3a–e). Next, we applied 
K-means clustering (K = 2) to samples in each dataset to iden-
tify two clusters (represented by green and purple color) and 
calculated the enrichment of the reported 485-gene MES and 
359-gene NOR signatures in these two segregated clusters 
using GSEA.27 We noticed a striking pattern across the 

datasets, albeit to varying extents, that while one of the two 
clusters showed enrichment of NOR gene list, the other cluster 
showed enrichment of the MES gene set (Figure 3a–e, S1). In 
addition, the extent of enrichment of NOR and MES pheno-
types was anti-correlated across datasets (Figure 3f, Table S4). 
Together, these observations indicate that the two observed 
clusters in each dataset can be mapped onto the NOR and MES 
phenotypes.

Further, we evaluated whether the segregation of samples 
based on a relatively small gene list (14 NOR-specific and 12 
MES-specific) correlated with the clustering obtained through

Figure 2. Prevalence of “teams-like” behavior corresponding to the two major phenotypes —noradrenergic and mesenchymal. Correlation matrices illustrating 
pairwise Spearman’s correlation of NOR-specific and MES-specific genes for GSE9169 (n = 86), GSE17714 (n = 22), GSE28019 (n =24), GSE64000 (n = 8), GSE66586 (n = 
10), GSE78061 (n = 29), GSE19274 (n = 100), GSE44537 (n = 6) and GSE73292 (n = 6). All pairwise correlations are significant (p<.05) except the ones indicated by ‘X’. 
The color bar legend depicts the values of the correlation coefficient. ‘n’ denotes the number of samples in each dataset.
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Figure 3. Two distinct phenotypes—mesenchymal and adrenergic – are observed in NB. a-e) PCA plot showing two distinct classes of samples exist in multiple datasets 
(left). K-means clustering for K = 2 yields two clusters (shown in green and violet color) along principal component 1 (PC1). GSEA for the mesenchymal (MES) geneset 
(middle) and adrenergic (NOR) geneset (right) confirms that these two clusters correspond to respective phenotypes for a) GSE9169 (n = 86); b) GSE28019 (n =24); c) 
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a much larger dimensionality of the system investigated (359- 
gene NOR signature, 485-gene MES signature). To this end, we 
used a set of 75 transcriptomic NB datasets for this analysis 
(Table S3). Previously, we defined a J-metric to quantify the 
extent of “teams” behavior in each transcriptomic dataset by 
analyzing the values of a corresponding pairwise correlation 
matrix.12 The larger the J-metric, the stronger the “teams” 
behavior in terms of mutual exclusivity and antagonism 
between the two phenotypes. Thus, for each transcriptomic 
dataset, we quantified the J-metric for the pairwise correlation 
matrix based on 14 NOR-specific and 12 MES-specific genes 
and calculated the correlation coefficient between the single- 
sample gene set enrichment analysis (ssGSEA) scores for the 
359-gene NOR signature vs. those for 485-gene MES signature. 
We observed across datasets that the value of J-metric was 
positive, and the correlation coefficient between NOR and 
MES signatures was negative. We observed that the J-metric 
and correlation coefficients between the larger NOR/MES gene 
lists are negatively correlated with each other (r = −0.33, p  
< .05, Figure 3f). This trend indicates that both the sets of 
genes can consistently capture the antagonism between the 
two phenotypes with a high degree of consistency, thereby 
suggesting that the “teams-like” behavior also hold true for 
larger gene-sets belonging to the given biological programs. 
Put together, these results indicate that two distinct pheno-
types can be observed across NB cell lines and primary tumor 
samples, along with the prevalence of two “teams” of genes 
driving each phenotype.

“Teams-like” behavior is exclusive to the set of NOR/MES 
specific genes

Our previous analysis revealed that the “teams” structure was 
largely unique to the underlying biological network. When 
compared to an ensemble of random networks of similar size 
and density and same in-degree and out-degree of each node 
in the network, the biological network usually had a much 
higher team strength, thus highlighting that the “teams” topol-
ogy is a salient feature of networks controlling cancer cell 
plasticity.7,12,31 Thus, we next investigated how exclusive the 
“teams-like” behavior is to the 14 NOR-specific and 12 MES- 
specific data sets.

As a control, we generated 1000 random ensembles of 26 
genes from a set of housekeeping genes (Table S2) and per-
formed PCA for the expression value matrix for those 26 genes 
in each dataset. We noticed that across datasets, the variance 
explained by PC1 was much higher for the ‘wild-type’ 26 gene 
set (14 NOR-specific and 12 MES-specific) than that explained 
by PC1 corresponding to the 1000 random combinations of 26 
housekeeping genes (Figure 4a, i-iii, S4). As another control 
case, we generated 1000 random combinations of 26 genes 
with 14 of them randomly chosen from the 369 NOR-specific 

gene set and 12 of them randomly chosen from the 485 MES- 
specific gene set and quantified the variance along PC1 for all 
of them. On average, the ensemble of these 1000 combinations 
accounted for a higher PC1 variance than the ensemble of 1000 
combinations comprising housekeeping genes. This trend sug-
gests that the “teams-like” behavior is exclusive to the specific 
sets of genes associated with a NOR and MES phenotype.

To better understand this trend, we began with replacing 
one gene at a time in the 26-gene set (14 NOR-specific and 12 
MES-specific) with a housekeeping gene. Given many possible 
combinations depending on which of the 26 genes is (are) 
being replaced and with which housekeeping gene(s), we 
tried 100 combinations for each scenario of a fixed number 
of swaps and plotted the distribution of PC1 variance corre-
sponding to them. We noticed a linear decrease in the average 
PC1 variance for a given number of swaps, thus, the higher the 
no. of genes swapped from the 26-gene set, the lower the PC1 
variance explained (Figure 4b, S2). This analysis endorses the 
low dimensionality of the NOR-MES phenotypic landscape 
and validated the presence of strong “teams” of players exclu-
sive to the genes considered in the analysis. These trends break 
down once random housekeeping genes that are not connected 
with NOR-MES axis are introduced.

The trends of 1) a higher PC1 variance of the 26-gene set 
than a corresponding set of 26 housekeeping genes and 2) 
a negative correlation between the number of genes swapped 
and the PC1 variance were both consistently observed across 
all nine datasets (Figure 4c) investigated (Figure 1).

Experimental perturbations cause phenotypic alterations 
along the NOR-MES axis

To further substantiate the antagonistic enrichment of the two 
phenotypes in samples at a bulk level, we obtained ssGSEA 
scores of each sample across multiple datasets (denoted by 
GSE IDs) and compared scores of the samples with perturba-
tions to that of the control/wildtype (Figure 5).

Topoisomerase-2B (TOP2B) was shown to be essential for SH- 
SY5Y cells to maintain an adrenergic neural-like (NOR) pheno-
type, and its deletion upregulated mesenchymal (MES) markers.41 

Consistent with this observation, RNA-seq data for TOP2B-null 
samples, relative to control, showed a significant reduction in 
enrichment of a 369 NOR-based gene list and a concomitant 
enrichment of a 485 MES-based gene list (Figure 5a, i) 
(GSE142383). Further, ALK inhibitor (TAE684)-resistant SH- 
SY5Y cells showed AXL activation and induction of EMT.39 

Similar behavior was reflected in transcriptomic data where resis-
tant SH-SY5Y cells were enriched in the MES gene set and down-
regulated in the NOR gene set, when compared to the parental 
cell-line (Figure 5a, ii) (GSE73292). Next, SK-N-AS cells, upon 
treatment with the EZH2 inhibitor, tazemetostat, exhibit an 
increase in NOR scores and reduced MES scores (GSE180512

GSE64000 (n = 8); d) GSE66586 (n = 10) and e) GSE78061 (n = 29). ‘n’ stands for number of samples in each dataset. Percentage variance explained by each PC is 
indicated along the respective axes. f). Scatter plot depicting nor (x-axis) and MES (y-axis) ssGSEA scores of samples of GSE66586 (left). Correlation matrix for GSE66586 
representing the calculation of J-metric using the correlations between genes shown in Figure 1 (middle) and scatter plot depicting the Spearman correlation 
coefficient ‘R’ between nor and MES scores across 75 bulk datasets (x-axis) and corresponding J-metric (y-axis) (right). Only 42 datasets in which NOR and MES show 
significant correlation (p <.05) have been included (Table S6).
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Figure 5. Experimental perturbations reveal changes in noradrenergic and mesenchymal programs in bulk RNA-seq data. Barplots depicting experimentally observed 
significant changes in ssGSEA scores of nor and MES gene signatures in control samples vs. samples with different perturbations in bulk RNA-seq datasets denoted by 
respective GSE IDs. Error bars represent standard errors in mean values of the replicates and statistically significant differences are indicated by asterisks (*, **, ***, **** 
for p <.05, <.01, <.001 and <.0001 respectively) for Bonferroni-adjusted p-values.

Figure 4. “Teams-like” behavior is exclusive to the set of NOR/MES team genes. a) i) Histogram (in red) showing the percentage of variance explained by PC1 for 1000 
unique combinations of randomly chosen housekeeping genes for GSE28019. The vertical red line depicts the variance explained by the original NOR-MES 26 gene list. 
Histogram (in blue) showing the same percentage of variance explained by PC1 for 1000 unique combinations based on 14 genes chosen randomly from 369 NOR- 
specific signature, and 12 genes chosen randomly from 485 MES-specific signature. ii) and iii) are same as i) but for GSE9169 and GSE66586 respectively; b) i) boxplots 
illustrating distribution of the fraction of variance explained by PC1 (y-axis) vs. number of genes from NOR/MES gene list swapped with housekeeping genes for (x-axis) 
for GSE28019. The equations for a linear fit of mean values for each swap are also shown. ii) and iii) same as i) but for GSE9169 and GSE66586 respectively; c) heatmap 
depicting the percentile of variance explained by PC1 by original NOR-MES list in distribution of PC1 variance for random combinations of housekeeping genes; 
R-squared value (goodness of fit) and Pearson correlation coefficient for linear fit on mean values of variance explained by PC1.

CANCER BIOLOGY & THERAPY 7



(Figure 5a, iii). PRRX1A is a MES-specific transcription factor 
whose overexpression in adrenergic-type SK-N-BE(2C) cells 
could reprogram them to a mesenchymal state (GSE90804).17,42 

This role of PRRX1A was recapitulated in ssGSEA scores of NOR 
and MES gene sets (Figure 5a, iv). Along similar lines, knockdown 
of TCF4, a crucial neurodevelopmental TF, in SH-SY5Y cells led 
to increased expression of many EMT regulators such as SNAI2, 
ZEB2 and other TGF-β targets.43 These experimental observa-
tions are reinforced in transcriptomic analysis of enrichment of 
NOR and MES specific gene lists (Figure 5b, i) (GSE48367). 
Similar results were observed for BE2C cells treated with both 
JQ1 (a BET bromodomain inhibitor) and THZ1 (a CDK7 inhi-
bitor) that decreased the expression levels of relevant transcrip-
tion factors, including HAND2, PHOX2B, TBX2, ISL1, MYCN 
and GATA3.44 These six factors are a part of the 14 NOR specific 
gene set, thus their downregulation via JQ1 and THZ1, as 
expected, led to a reduced NOR signature and an increased 
MES signature (Figure 5b, ii) (GSE108914). Further, overexpres-
sion of chromatin assembly factor 1 subunit p150 (CHAF1A) – 
a known inhibitor of neuronal differentiation45 – was able to 
significantly drive up the enrichment of the mesenchymal gene 
set in SHEP cells after 96 h as compared to control (GSE144311) 
(Figure 5b, iii). We observed a similar trend with SH-SY5Y cells 
treated with thapsigargin, an endoplasmic reticulum Ca(2+)- 
ATPase inhibitor that is known to inhibit cell proliferation.46 

Given the association of NOR with a higher proliferative status 
than MES states (Figure S3, Table S5), we noticed a decrease in 
NOR scores and simultaneous increase in MES scores upon 
thapsigargin treatment (Figure 5b, iv) (GSE24500). Together, 
these results highlight how NOR and MES gene lists could cap-
ture the cell-state transitions driven by various cellular 
perturbations.

We next sought to identify additional factors associated 
with NMT/MNT. First, knockdown of ATRX in NGP (a neu-
roblastoma cell line) was found to enrich for NOR signature 
along with a decrease in MES signature (GSE183648) 
(Figure 5c, i), thus suggesting ATRX as a MES-specific factor. 
Second, knock out of Huntington’s gene (Htt) in SH-SY5Y NB 
cells upregulated the NOR gene signature with concurrent 
reduction in activity of MES signature, as compared to par-
ental cells (Figure 5c, ii) (GSE178467).47

Overall, these results indicate that both known and novel 
experimental perturbations in NB cell lines can drive cell-state 
transitions along noradrenergic/mesenchymal spectrum in an 
antagonistic manner.

Meta-analysis of transcriptomic datasets reveals 
association of NOR/MES phenotypes with metabolic 
programs and immune markers

Next, we conducted a meta-analysis of 75 bulk transcriptomic 
datasets (Table S3) using ssGSEA to 1) characterize the modifica-
tions in metabolic programs brought on by these cell state transi-
tions and 2) analyze their associations with novel 
immunotherapeutic targets for NB patients.

First, we noticed that out of 42 datasets that showed sig-
nificant correlation between NOR and MES signatures, 36 of 
them (85.7%) were negatively correlated, in support of our 
previous findings (Figure 6a, left). We next investigated the 

correlation of NOR and MES genes with a signature associated 
with PD-L1 activity in carcinomas.22 Consistent with the 
results observed for carcinomas, out of 37 datasets in which 
NOR and PD-L1 scores were significantly correlated, 36 
(97.29%) showed a negative correlation and 92.3% (36/39) 
datasets showed a positive correlation with the MES phenotype 
(Figure 6a, middle, right).

Additionally, we evaluated how these two phenotypes asso-
ciated with two key metabolic processes – glycolysis and fatty 
acid oxidation (FAO) – that have been shown to be perturbed 
in NB cells.48,49 In this context, we observed that in 75.9% 
datasets, the NOR phenotype is negatively linked with FAO, 
while the MES signature is strongly positively coupled with 
FAO (Figure 6b). Similarly, glycolysis scores are also negatively 
linked with NOR, but show a strong positive link with the MES 
phenotype. Further, activity of the NOR geneset correlated 
negatively with the Hallmark EMT signature, while MES 
scores correlated positively, suggesting similarity between 
NMT and EMT at a transcriptomic level (Figure S2a). PD-L1 
levels were found to be positively associated with both the 
hallmark EMT and partial EMT signatures, as well as glycolysis 
and FAO levels across datasets, reminiscent of observations 
made in carcinomas22,50 (Figure S2).

Finally, we also analyzed the links between NOR/MES scores 
with the cell surface marker protein – Disialoganglioside (GD2), 
which is abundantly expressed on cell surfaces of NB cells and is 
reported to be a potential target for immunotherapy in NB 
patients.51 However, recent observations have indicated that the 
mesenchymal state of NB cells can confer resistance to anti-GD2 
therapy.52 To characterize the association of GD2 with NMT, we 
used the gene expression values of B4GALNT1 (GD2 synthase) – 
which showed a predominantly positive correlation with the 
NOR signature and a largely negative correlation with the MES 
signature, indicating a downregulation of GD2 in cells under-
going NMT. This observation may explain the observation of an 
enriched mesenchymal tumor population as a hallmark of anti- 
GD2 therapy resistance in NB patients.

To confirm our observations from bulk transcriptomic data, 
we also analyzed recently published scRNA-seq data of the NB 
cell line IMR-575.53 When projected onto the NOR-MES plane, 
cells showed a significant negative association (R = −0.58, p <  
10−15) between the two phenotypes (Figure 6e). These datapoints 
were then segregated into two groups – high and low – based on 
their ranks relative to the median AUCell enrichment score for 
a gene set. We observed that glycolysishigh cells were concentrated 
at the MEShighNORlow end of the plane, whereas glycolysislow cells 
were predominantly present in the MESlowNORhigh region 
(Figure 6e, top). FAO showed a similar trend – FAOhigh cells 
were mostly clustered around the MEShighNORlow area and 
FAOlow cells were spread in MESlowNORhigh portion of the 2D 
plane (Figure 6e, middle). Furthermore, B4GALNT1 expression 
was high for cells with MESlowNORhigh whereas it was low in cells 
with MEShighNORlow phenotype (Figure 6e, bottom). These 
observations are largely concordant with our analysis of datasets 
at the bulk level and highlight the association of NOR/MES 
phenotypes with glycolysis, FAO and GD2 expression. These 
functional synergies might be leveraged in the future to design 
efficient combinatorial treatment methods that target multiple 
axes simultaneously to overcome therapy resistance.
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Discussion

NB is the most common form of extracranial cancer in 
infants.1 Its origin is attributed to improper differentiation of 
neural crest cells, and the degree of differentiation of these 
neural crest cells positively correlates with a favorable outcome 
for patients.53–56 NB cells are heterogeneous in terms of bio-
chemical and morphological traits, broadly classified into 
N-type (NOR), S-type (MES) and an intermediate (I-type) 
cell possessing traits of both N- and S-type cells.57 These 
phenotypes have diverse transcriptomic and epigenetic pro-
files. While their interconversion has serious clinical implica-
tions, the dynamics of NMT/MNT is yet to be thoroughly 
studied,10 unlike EMT/MET where systems-level computa-
tional and experimental approaches have mapped distinct cell- 
states, trajectories, and reversibility patterns.24

To unravel the complexity and heterogeneity displayed 
by neuroblastoma, we collated a cohort of factors that are 
associated with the two major phenotypes (NOR/MES 
type).17 Analyzing their expression levels in multiple bulk 
transcriptomic datasets pinpointed the presence of 
mutually exclusive “teams-like” behavior among players 
that correspond to NOR and MES phenotypes. This beha-
vior is reminiscent of our previous observations in other 
examples of cancer cell-state plasticity – melanoma, neu-
roendocrine differentiation and EMT.7,12,32 PCA led to 

clear segregation of two clusters, which can be mapped to 
either a NOR or MES phenotype using GSEA. Importantly, 
the “teams-like” behavior and consequent PC1 variance are 
specific to NOR and MES gene lists and were not wit-
nessed for housekeeping genes, indicating functional impli-
cations of this mutual antagonism. Such “teams” behavior 
for epithelial (E) and mesenchymal (M) factors, but not for 
hybrid E/M ones, was proposed to underlie the difference 
in plasticity of these phenotypes.31 Similar experimental 
observations for I-type as reported for hybrid E/M pheno-
types – higher plasticity, tumor-forming ability and malig-
nancy, and correlation with worse survival as compared to 
N-type or S-type13,20,58,59 – and similar “teams-like” beha-
vior seen in transcriptomic data for both EMT/MET and 
NMT/MNT highlight possible common fundamental 
design principles in regulatory networks and correspond-
ing phenotypic space. It remains to be seen whether 
“teams-like” behavior is seen for the I-type as well or if 
the I-type state emerges because of weakening of “teams- 
like” behavior among the NOR and MES networks. Future 
work on identifying I-type specific signatures and compar-
ing I-type, MES-type and NOR-type samples from the 
same experimental dataset can help us better appreciate 
the association between “teams-like” behavior and I-type 
state in NB.

Figure 6. Modes of association between NOR and MES phenotypes with metabolic programs, PD-L1 and GD2 synthase gene (B4GALNT1). a) volcano plots showing 
Spearman correlation coefficients (x-axis) and -log10(p-value) (y-axis) for NOR vs. MES (left), NOR vs. PD-L1 (middle) and MES vs. PD-L1 gene signature (right). 
Significant correlations (R > ± 0.3 and p < .05) are shown as red (positive) and blue (negative) datapoints. Same as a) but for b) nor vs. FAO (top), MES vs. FAO (bottom), 
c) NOR vs. Glycolysis (top), MES vs. Glycolysis (bottom) and d) NOR vs. B4GALNT1 (top), MES vs. B4GALNT1 (bottom). e) scatterplots of scRNA-seq data depicting NOR 
(x-axis) and MES scores (y-axis) of each cell for the control sample of GSE163429. The vertical and horizontal green lines are positioned at the median of NOR and MES 
scores, respectively. Maroon datapoints correspond to ‘high’, and blue datapoints represent ‘low’ glycolysis (top), FAO scores (middle), imputed B4GALNT1 gene 
expression values (bottom). Threshold for ‘high’ and ‘low’ is set at the median value.
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The NOR/MES antagonism was also distinctly observed in 
our meta-analysis of 75 bulk RNA-seq datasets, and in 10 
datasets where we evaluated different experimental perturba-
tions capable of inducing a phenotypic switch along the nor-
adrenergic/mesenchymal axis. Functionally speaking, we 
observed a positive association of MES phenotype with both 
glycolysis and PD-L1 signatures, reminiscent of mesenchymal 
state traits seen in multiple carcinomas.50 Expression levels of 
GD2, a cell surface marker reported to be a therapeutic target 
for NB patients,51 correlated negatively with MES, but posi-
tively with a NOR phenotype. These trends were also largely 
consistent at a single-cell level and suggest that combinatorial 
targeting of GD2 and PD-L1 may be a potent therapeutic 
strategy to overcome NB heterogeneity. By elucidating the 
“teams-like” behavior, our analysis indicates how the expres-
sion of a set of genes corresponding to a given phenotype is 
tightly co-regulated, possibly offering additional biomarkers to 
identify NB phenotypes. Further, we lay the groundwork for 
future mechanistic mathematical models that can quantita-
tively explain clinically observed dynamic fluctuations in 
PDL1 and GD2 expression levels during treatment, potentially 
due to therapy-driven adaptive plasticity response.
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