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Abstract We map neutrinos to qubit and qutrit states of quantum information theory by constructing the Poincaré sphere using
SU(2) Pauli matrices and SU(3) Gell-Mann matrices, respectively. The construction of the Poincaré sphere in the two-qubit system
enables us to construct the Bloch matrix, which yields valuable symmetries in the Bloch vector space of two neutrino systems.
By identifying neutrinos with qutrits, we calculate the measures of qutrit entanglement for neutrinos. We use SU(3) Gell-Mann
matrices tensor products to construct the Poincaré sphere of two qutrits neutrino systems. The comparison between the entanglement
measures of bipartite qubits and bipartite qutrits in the two neutrino system are shown. The result warrants a study of two qutrits
entanglement in the three neutrino system.

1 Introduction

Quantum entanglement lies at the root of quantum information processing and quantum computation [1]. Quantum entanglement
results from the non-classical correlations between separated quantum systems. Correlations between subsystems of a more extensive
system that are not expressable in terms of correlation between local classical properties of the subsystem characterize quantum
entanglement [2]. Linear independent quantum states can give rise to coherence and entanglement. A quantum system can be in
any possible linear combination of multiple orthogonal states. A superposition of only two orthogonal states is called a qubit. It is
a physical system described by a vectors of a two-dimensional Hilbert space H2. However, most quantum entanglement measures
are realized between pairs of two qubits which lies in a 4-dimensional Hilbert space H2 ⊗ H2. Such measures include the partial
transpose condition, which determines whether a state of two qubits is entangled, and other bipartite measures of entanglement such
as concurrence and the entanglement of formation [3–5]. Bipartite entanglement is limited in its applicability. Studying entangled
states involving more than two qubits or multipartite entanglement opens up new possibilities in developing quantum theory and
new quantum communication protocols. The simplest case of multipartite entanglement is tripartite entanglement in the three-qubit
system. Examples of entangled tripartite states are the W states and the GHZ states of quantum optics. Genuine tripartite measures
of entanglement such as the three-tangle and the three-π have been used to characterize these states [6].

Along with this type of tripartite entanglement, there has been an interest in generalizing the concept of a qubit to a qutrit. A
qutrit is the superposition of three orthogonal states rather than the two which characterize a qubit. An operator representation of
the qutrit density matrix has been developed, and qutrit entanglement has been studied in ref. [2]. Physically implementing a qutrit
quantum computer in the context of trapped ions has been studied [7] and quantum computer simulation packages for qutrits have
been implemented [8–10]. Furthermore, the generalized concurrence formula as a measure of two qutrits entanglement has also
been studied [11].

Most of the systems in which quantum entanglement is studied are photonic or atomic systems. Recently, the ideas of quantum
entanglement have been extended to the realm of particle physics by the study of two- and three-flavour neutrino systems [12–18].
Quantities such as the Leggett-Garg inequalities, whose spatial part is well known as Bell’s inequality, can capture the violation of
Bell-type inequality in the context of two- and three-flavour neutrino oscillations [19–21]. In [12], we place three-mode entanglement
in neutrino oscillations on the same footing as mode entanglement in optical systems by mapping the neutrinos to the three mode
W-state. We have studied tripartite measures such as the three-tangle and the three-π for three-flavour neutrino entanglement. Further
study in this direction has shown that we are able to comprehend and forecast the behavior of neutrino oscillations by employing
quantum information, and notably entanglement measures [22].
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Two- and three-flavour neutrinos systems have been mapped to qubit states used in quantum information theory and encoded on
an IBMQ computer using quantum computing as a tool [23, 24]. It is generally known that the vacuum oscillations, the interaction
with the surrounding matter, and the collective oscillations caused by interactions between various neutrinos all play a role in how the
neutrino flavor changes in extreme astrophysical conditions. On a digital quantum computer of the most recent generation, the time-
dependent many-body evolution of these astrophysical neutrinos has been investigated and showed the fundamental significance of
error mitigation methods to derive meaning from entanglement measures utilising noisy, near-term quantum devices [25]. In addition
to this, the simulation of bipartite entanglement measures in the two-flavour neutrino oscillation is shown on IBMQ processors [26].
Thus, one can say that quantum computing has been a good tool for studying neutrino oscillations and their entanglement properties.

Since the Hilbert space basis for three-flavour neutrino states has three dimensions, it cannot be fully represented using just one
qubit. One possible approach, as suggested in ref. [23], is to encode the minimal representation using two qubits. However, this
leads to a redundant basis state that is not physically meaningful in the context of oscillating neutrinos. In order to eliminate this
redundancy and achieve a more realistic representation, it is natural to consider a qutrit representation for neutrino flavours. This
not only reduces the redundancy but also allows for a greater number of quantum operations to be performed in the neutrino system.

In this paper, we have presented the mathematical framework for neutrinos to be used in ternary system. We illustrate tripartite
entanglement in neutrinos by considering them as “qutrits”. A qutrit is a linear superposition of three orthonormal basis states, |1〉,
|2〉 and |3〉: |ψ〉 � α|1〉 + β|2〉 + γ |3〉, where |α|2+|β|2+|γ |2� 1 and α, β, γ ∈ C. Since neutrino flavour states are a superposition
of three states, it is only natural to try and characterize them as qutrits. We do this by mapping the density matrix for neutrinos
to a generalized Poincaré sphere [2, 27]. In the two-flavour neutrino oscillation, geometric and topological phases such as the
Berry’s and Panchratnam’s phase in terms of oscillation probabilities have been calculated using the Poincaré sphere and are directly
observable [28, 29]. The Poincaré sphere has its origin in optics and is a way of visualizing different types of polarized light using
the mapping from SU(2) to S3. A qubit represents a point on the Poincaré sphere of SU(2) defined as, complex projective line
H2 � CP1 � SU(2)/U (1). A generalization of the Poincaré sphere to SU(3) can be constructed [30–32]. This construction has
been the basis for characterizing qutrits that live in a 3-dimensional Hilbert space H3. A qutrit is represented by a point on the
complex projective plane H3 � CP2 � SU(3)/U (2) [33]. This work describes the entanglement of neutrinos by constructing
Poincaré sphere representation for two- and three-flavour neutrino states using SU(2) Pauli matrices and SU(3) Gell-Mann matrices,
respectively, to map the neutrino states to the qutrits states of quantum information theory.

The paper’s organization is as follows: In Sect. 2, we represent a single qubit density matrix of two-flavour neutrino states in
the basis of SU(2) Pauli matrices. In Sect. 3, we use the tensor product of Pauli matrices as a basis to represent a two-qubit density
matrix that led to the Bloch matrix construction in the two-qubit neutrino systems. We also show a bipartite entanglement measure
concurrence quantification in the two neutrino system. In Sect. 4, we describe a qutrit density matrix of three-flavour neutrino states
in the basis of SU(3) Gell-Mann matrices. Under a particular set of constraints, the measure for entanglement characterized by the
entropy of mixing for a three-flavour neutrino system is found. In Sect. 5, we represent a two qutrit density matrix in the basis
of SU(3) Gell-Mann matrices tensor products which describe the generalized matrix construction for two qutrits neutrino states.
Furthermore, we compute generalized concurrence as a measure of bipartite qutrits entanglement in the two neutrino system and
compare it with the concurrence of the bipartite qubit neutrino system. Finally, the conclusion is given in Sect. 6.

2 SU(2) Poincaré sphere for two-flavour neutrinos

In [12], the two-flavour neutrino system has been mapped onto a qubit system in quantum optics, with the two flavours mixing
matrix playing the role of the beam splitter in a two-level quantum optical system. It is well known that a two-level system can be
mapped to the Poincaré sphere of two level quantum systems [30]. For a two-dimensional complex Hilbert space H2, a quantum
state |ψ〉 can be written as a superposition

|ψ〉 � c1|0〉 + c2|1〉) (1)

where |c1|2+|c2|2� 1 and c1, c2 ∈ C

|0〉 �
(

1
0

)
; |1〉 �

(
0
1

)
. (2)

Using the polar representation c1 � r1eiϕ0 and c2 � r2eiϕ1 and the fact that, in the case of quantum bits, a quantum state |ψ〉 does
not change if multiplied by an overall phase e−iϕ0 the equivalent quantum state is

e−iϕ0 |ψ〉 � r1|0〉 + r2e
iϕ1−iϕ0 |1〉. (3)

Using the angular representation of complex variables and the fact that r2
1 + r2

2 � 1 and φ � ϕ1 − ϕ0 we get a representation of the
equivalent representation of |ψ〉 as

|ψ〉 � cos(θ )|0〉 + sin(θ )eiϕ |1〉. (4)
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For a two-dimensional complex Hilbert space H2, the density matrix correspond to a pure state |ψ〉 is given by ρ � |ψ〉〈ψ |. Its
expansion in terms of Pauli matrices σ j leads to the Poincaré sphere construction

ρ � |ψ〉〈ψ | � 1

2
(1 + n̂.�σ ), (5)

where ρ† � ρ2 � ρ ≥ 0, Trρ � 1 =⇒ n̂∗ � n̂, n̂.n̂ � 1 ⇐⇒ n̂ ∈ S2 is the unit vector on the sphere. Thus there is a one to one
correspondence between pure qubit states and points on the unit sphere S2 embedded in R3, which is known as the Poincaré sphere
construction (of which the Bloch sphere is a particular case). If

∣∣ψ ′〉 and |ψ〉 are two pure states then

Tr(ρ′ρ) � |< ψ ′|ψ > |2� 1

2
(1 + n̂′.n̂), (6)

where n̂′ is the unit vector on the sphere corresponding to
∣∣ψ ′〉. For orthogonal states |< ψ ′|ψ > |2� 0, so that 1 + n̂′.n̂ � 0 and thus

correspond to the diametrically opposite point on S2 correspond to mutually orthogonal Hilbert space vectors where < ψ ′|ψ > is
the inner product in H2. Applying an SU(2) transformation to |ψ〉 ∈ H2 the representative point in SU(2) n̂ ∈ S2 (circle) undergoes
a rotation belonging to SO(3)∣∣∣ψ ′ 〉 � u|ψ〉, u ∈ SU(2) =⇒ n′

j � R jk(u)nk ;

R jk(u) � 1

2
Tr(σ j uσku

†), (7)

R(u) ∈ SO(3). Thus, all elements R ∈ SO(3) are realized in this way, and we have the coset space identifications (since multiplication
by a phase leads to equivalent representations) S2 � SU(2)/U (1) � SO(3)/SO(2) [30].

Two-flavour neutrino oscillations involve a Hilbert space of two dimensions H2, and the mixing matrix is given by the SU(2)
matrix [34]. Let the mass eigenstates of the two-flavour neutrino system be |ν1〉 and |ν2〉 then using the mixing matrix U (θ ) (where
U∗(θ ) is complex conjugate of U (θ )), the flavour state |νe〉 and

∣∣νμ

〉
can be written in linear superposition of mass eigenstates (|ν1〉,

|ν2〉) basis as (|νe〉∣∣νμ

〉) � U∗(θ )

(|ν1〉
|ν2〉

)
;

where, U (θ ) �
(

cosθ sin θ

−sinθ cos θ

)
∈ SU(2). (8)

Then, the time evolved flavour neutrino states in linear superposition of two mass eigenstate basis are

|νe(t)〉 � cosθe−i E1t/�|ν1〉 − sinθe−i E2t/�|ν2〉,∣∣νμ(t)
〉 � sinθe−i E1t/�|ν1〉 + cosθe−i E2t/�|ν2〉. (9)

|νe(t)〉 can be parametrized by two angles θ and φ as

|νe(θ , φ)〉 �e−i E1t/�(cos θ |ν1〉 − sin θe−i(E2−E1)t/�|ν2〉),
�e−i E1t/�(cos θ |ν1〉 − sin θe−iφ |ν2〉), (10)

where E1 � (p2 + m2
1)1/2, E2 � (p2 + m2

2)1/2 and φ � (E2−E1)t
�

� m2t
2E�

, m2 ≡ m2
2 − m2

1. The overall phase is redundant and
leads to an equivalent representation in such a way that the coefficient of |ν1〉 is real. Thus, the normalized time evolved electron
neutrino and muon neutrino flavour state are as follows:

|νe(θ , φ)〉 � cosθ |ν1〉 − sinθe−iφ |ν2〉,∣∣νμ(θ , φ)
〉 � sinθ |ν1〉 + cosθe−iφ |ν2〉, (11)

respectively. Now we can easily identify the mass eigenstates of a flavour neutrino state to the qubit states

|0〉 � |ν1〉 �
(

1
0

)
; |1〉 � |ν2〉 �

(
0
1

)
. (12)

Identifying the states |ψ〉 and
∣∣ψ ′〉 with time evolved flavour neutrino states |νe(θ , φ)〉 �

(
cosθ

−e−iφsinθ

)
and,

∣∣νμ(θ , φ)
〉 �(

sinθ

e−iφcosθ

)
, we see that |νe(θ , φ)〉 is an eigenstate with eigenvalue +1.

Ô � n̂(θ , φ).�σ �
(

cos2θ − sin2θeiφ

−sin2θe−iφ − cos2θ

)
∈ SU(2). (13)
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Here, �σ � (σ1, σ2, σ3) and n̂(θ , φ) is a real unit vector, n̂(θ , φ) � −sin2θcosφê1 + sin2θsinφê2 + cos2θ ê3 called the Poincaré unit
vector. Therefore,

Ô|νe(θ , φ)〉 � |νe(θ , φ)〉. (14)

Thus, a state |νe(θ , φ)〉 ∈ H2 is expressed in terms of a unit vector n̂(θ , φ) on the surface of the Poincaré sphere. This correspondence
is one-to-one if the ranges of θ and φ are restricted to 0 ≤ θ ≤ π and 0 ≤ φ < 2π . The 2 × 2 density matrix is given by

ρe
2×2 �

(
cos2θ − eiφsinθcosθ

−e−iφsinθcosθ sin2θ

)
� 1

2
(I + n̂.�σ ), (15)

which is the same as Eq. (5). The eigenvalues of ρe
2×2 are 1 and 0, therefore ρe

2×2 is a rank 1 density matrix. This maps the neutrino
state |νe(t)〉 to the surface of the unit sphere in the three-dimensional vector space. A similar mapping can be done for the neutrino
state

∣∣νμ(t)
〉
. The density matrix correspond to

∣∣νμ(θ , φ)
〉

is

ρ
μ
2×2 �

(
sin2θ eiφsinθcosθ

e−iφsinθcosθ cos2θ

)
� 1

2
(I + n̂′.�σ ), (16)

where n̂′(θ , φ) � sin2θcosφê1 − sin2θsinφê2 − cos2θ ê3. When θ → θ
2 then the Poincaré sphere becomes the Bloch sphere used

in quantum optics. In the next section, we use Eqs. (15 and 16) to describe the Bloch vector and its generalized representation in the
two-qubit neutrino systems.

3 Bloch matrix construction of two-qubit neutrino states

A 4×4 density matrix ρ4×4 ∈ H2 ⊗H2 represent either a single four-level system, or a pair of coupled two-level systems [27]: two
qubits. The study of the Bloch matrix using the density matrix ρ4×4 will give useful symmetries in the Bloch-vector space. This
section studies the two-qubit density matrices of two-flavour neutrino states in the Dirac-basis to construct the Bloch-matrix. We
extend this idea to study the entanglement nature of two-qubit neutrino systems.

In general, any 2 × 2 density matrix ρ2×2 of a single qubit state can be represented as in the Pauli basis as

ρ2×2 � 1

2
(1 + �u · �σ ) � 1

2
rμσμ, (17)

where the scalar coefficients rμ � Tr(æ2×2œ¯) (μ � 0, 1, 2, 3) in which r0 is always unity to ensure Trρ2×2 � 1, and r1, r2, r3

are the components of the Bloch vector u, and σμ are the Pauli matrices. Similarly, using Eq. (17), the density matrix ρ4×4 of any
two-qubit states can be constructed using the Dirac matrices, denoted Dμν � σμ ⊗ σν (the tensor product of two Pauli matrices) as
its basis such that

ρ4×4 � 1

4
rμνDμν , (18)

where μ, ν � 0, 1, 2, 3. The characterization of the Pauli matrices and Dirac matrices are shown in ref. [27]. The scalar coefficients
rμν is defined as

rμν � Tr (ρ4×4Dμν) �< σμ ⊗ σν > (19)

constitute 16 entries of the Bloch matrix M [27]. The Bloch matrix M is split into four components: a scalar of unity, two three-
dimensional vectors, and a 3×3 matrix. We write

M �

⎡
⎢⎢⎣

1 r01 r02 r03

r10 r11 r12 r13

r20 r21 r22 r23

r30 r31 r32 r33

⎤
⎥⎥⎦, (20)

where ui � ri0 and v j � r0 j (i , j � 1, 2, 3) are the components of two local Bloch vectors u and v, respectively. Ri j � ri j is the
matrix elements of correlation matrix R, and r00 � 1 implies ρ4×4 be a Hermitian matrix, of unit trace, and positive semidefinite.

Using Eqs. (15 and 16), we construct the density matrix of two-qubit neutrino states
∣∣νeμ(θ , φ)

〉 � |νe(θ , φ)〉 ⊗ ∣∣νμ(θ , φ)
〉
in the

standard basis (|0〉 ⊗ |0〉 ≡ |00〉, |0〉 ⊗ |1〉 ≡ |01〉, |1〉 ⊗ |0〉 ≡ |10〉, |1〉 ⊗ |1〉 ≡ |11〉) as

ρ
eμ
4×4 �ρe

2×2 ⊗ ρ
μ
2×2 � ∣∣νeμ(θ , φ)

〉〈νeμ(θ , φ)|

�

⎛
⎜⎜⎝

cos2 θ sin2 θ eiφ cos3 θ sin θ −eiφ cos θ sin3 θ −e2iφ cos2 θ sin2 θ

e−iφ cos3 θ sin θ cos4 θ − cos2 θ sin2 θ −eiφ cos3 θ sin θ

−e−iφ cos θ sin3 θ − sin2 θ cos2 θ sin4 θ eiφ cos θ sin3 θ

−e−2iφ sin2 θ cos2 θ −e−iφ sin θ cos3 θ e−iφ cos θ sin3 θ sin2 θ cos2 θ

⎞
⎟⎟⎠ (21)
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We can expand the above two-qubit density matrix ρ
eμ
4×4 uniquely as

ρ
eμ
4×4 � ρe

2×2 ⊗ ρ
μ
2×2 � 1

4
[(I + n̂ · �σ e) ⊗ (I + n̂′ · �σμ)]

�1

4
[I ⊗ I + �σ e · n̂ ⊗ I + I ⊗ �σμ · n̂′ +

3∑
i , j�1

ri jσ
e
i ⊗ σ

μ
j ], (22)

the expansion coefficients are

ni � tr(ρeμ
4×4σi ⊗ I),

n′
j � tr(ρeμ

4×4I ⊗ σj),

ri j � tr(ρeμ
4×4σi ⊗ σj),

(23)

where i , j � 1, 2, 3. In Eq. (23), ni and n′
j are the elements of Poincaré unit vector n̂ and n̂′, respectively and the coefficients ri j

of the basis σi ⊗ σ j is defined as a correlation matrix R between the two sub-system ρe and ρμ as

R �
⎛
⎝r11 r12 r13

r21 r22 r23

r31 r32 r33

⎞
⎠. (24)

Using Eq. (23), the elements of ri j can be obtained as: r11 � −4cos2θsin2θcos2φ, r12 � r21 � 2cos2θsin2θsin2φ, r13 � r31 �
1
2 sin4θcosφ, r22 � −sin22θsin2φ, r23 � r32 � − 1

2 sin4θsinφ, r33 � −cos22θ . Alternative representation of Eq. (22) is Eq. (18).
So, we can incorporate this correlation matrix R (see Eq. 24) into the Bloch-matrix M shown in Eq. (20).

Following Eq. (18) and using Eq. (21) in Eq. (19), the Bloch matrix for ρ
eμ
4×4 can be constructed as

Meμ �

⎡
⎢⎢⎣

1 cosφsin2θ − sin2θsinφ − cos2θ

−cosφsin2θ − 4cos2θcos2φsin2θ 2cos2θsin2θsin2φ 1
2 cosφsin4θ

sin2θsinφ 2cos2θsin2θsin2φ − sin22θsin2φ − 1
2 sin4θsinφ

cos2θ 1
2 cosφsin4θ − 1

2 sin4θsinφ − cos22θ

⎤
⎥⎥⎦. (25)

By comparing the matrix elements of Meμ (see Eq. 25) with M (see Eq. 20), we find that ri0 and r0 j are the components of local unit
Bloch vectors n̂ and n̂′, respectively (i,j=1,2,3). The matrix elements ri j are the elements of the correlation matrix R which is exactly
equal to Eq. (24). Thus, we have incorporated the correlation matrix R inside the Bloch matrix Meμ. Since, we can decompose
the Bloch matrix Meμ in terms of Bloch-vectors components of two sub-systems (ρe

2×2 and ρ
μ
2×2), therefore, the two-qubit density

matrix ρ
eμ
4×4 � ρe

2×2 ⊗ ρ
μ
2×2 is a separable state (or product state). In fact, such interpretations of the Bloch matrix M are also valid

for the other separable states ρee
4×4 � ρe

2×2 ⊗ ρe
2×2, ρ

μμ
4×4 � ρ

μ
2×2 ⊗ ρ

μ
2×2, and ρ

μe
4×4 � ρ

μ
2×2 ⊗ ρe

2×2.
Furthermore, the concurrence is the measure of entanglement in the two-qubit system and it is defined as [4]

C(ρ4×4) �[max(κ1 − κ2 − κ3 − κ4, 0)],

ρ̃4×4 �(σy ⊗ σy)ρ∗
4×4(σy ⊗ σy), (26)

where κ1, ..., κ4 are the square roots of the eigenvalues of non-Hermitian matrix ρ4×4ρ̃4×4 in decreasing order. The ρ̃4×4 is the
“spin-flipped” density matrix, where the asterisk denotes the complex conjugation in the two-qubit standard basis (|00〉, |01〉, |10〉,
|11〉), and σx , σy are Pauli matrices. We find that for the state ρ

eμ
4×4 � ρe

2×2 ⊗ ρ
μ
2×2 (see Eq. 21), all eigenvalues of ρ

eμ
4×4ρ̃

eμ
4×4 are

zero. i.e. κ1 � κ2 � κ3 � κ4 � 0, which mean according to Eq. (26) the concurrence C(ρeμ
4×4) is 0. Similarly, for all other possible

states: ρee
4×4 � ρe

2×2 ⊗ ρe
2×2, ρ

μμ
4×4 � ρ

μ
2×2 ⊗ ρ

μ
2×2, and ρ

μe
4×4 � ρ

μ
2×2 ⊗ ρe

2×2, the concurrence is

C(ρeμ
4×4) � C(ρee

4×4) � C(ρμμ
4×4) � C(ρμe

4×4) � 0. (27)

We see that concurrence is zero for all the states as expected because they are separable states and we know that there should not be
any quantum correlations exist between any two sub systems (ρe

2×2 and ρ
μ
2×2) of a given separable state. However, if a given state

is not separable
∣∣νeμ(θ , φ)

〉 �� |νe(θ , φ)〉 ⊗ ∣∣νμ(θ , φ)
〉

then it is an entangled state.
Now, we map the neutrino mass eigenstates |ν1〉 and |ν2〉 directly to the bipartite qubit states as |ν1〉 � |1〉1 ⊗ |0〉2, |ν2〉 �

|0〉1 ⊗ |1〉2. In that case, using Eq. (8), the time evolved electron flavour neutrino state |νe(t)〉 in superposition of two-qubit mass
eigenstates, parametrized by θ and φ, can be written as

|νe(θ , φ)〉 � cosθ |10〉 − sinθe−iφ |01〉, (28)

and its two-qubit density matrix is

ρe
4×4 � |νe(θ , φ)〉〈νe(θ , φ)| �

⎛
⎜⎜⎝

0 0 0 0
0 cos2θ − cosθsinθeiφ 0
0 − sinθcosθe−iφ sin2θ 0
0 0 0 0

⎞
⎟⎟⎠. (29)
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Using Eq. (29) in Eq. (18) and in Eq. (19), the Bloch matrix M (see Eq. 20) for ρe
4×4 is obtained as

Me �

⎡
⎢⎢⎣

1 0 0 − cos2θ + sin2θ

0 − 2sinθcosθcosφ − 2cosθsinθsinφ 0
0 2cosθsinθsinφ − 2cosθsinθcosφ 0

cos2θ − sin2θ 0 0 − cos2θ − sin2θ

⎤
⎥⎥⎦. (30)

We notice from Eq. (30) that some components of the local Bloch vector for the individual system is zero, and thus we cannot
decompose the Bloch matrix Me in terms of Bloch-vectors components of two subsystems. Therefore, the two-qubit density matrix
ρe

4×4 of the state |νe(θ , φ)〉 is an entangled state. At θ � π
4 and φ � 0, the Bloch matrix Me of ρe

2×2 become

Mψ− �

⎡
⎢⎢⎣

1 0 0 0
0 − 1 0 0
0 0 − 1 0
0 0 0 − 1

⎤
⎥⎥⎦, (31)

which is identified as the Bloch matrix of two-qubit Bell’s state
∣∣ψ−〉 � 1√

2
(|01〉 − |10〉). Similarly, for the state

∣∣νμ(θ , φ)
〉 � sinθ

|10〉 + cosθe−iφ |01〉, we have

ρ
μ
4×4 � ∣∣νμ(θ , φ)

〉〈
νμ(θ , φ)

∣∣ �

⎛
⎜⎜⎝

0 0 0 0
0 sin2θ cosθsinθeiφ 0
0 sinθcosθe−iφ cos2θ 0
0 0 0 0

⎞
⎟⎟⎠, (32)

and the corresponding Bloch Matrix is

Mμ �

⎡
⎢⎢⎣

1 0 0 − cos2θ + sin2θ

0 2sinθcosθcosφ 2cosθsinθsinφ 0
0 − 2cosθsinθsinφ 2cosθsinθcosφ 0

cos2θ − sin2θ 0 0 − cos2θ − sin2θ

⎤
⎥⎥⎦. (33)

At θ � π
4 and φ � 0, the Bloch-matrix Mμ become

Mψ+ �

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 − 1

⎤
⎥⎥⎦, (34)

which is identified as the Bloch matrix of two-qubit Bell’s state
∣∣ψ+

〉 � 1√
2

(|01〉 + |10〉). Furthermore, concurrence for ρe
4×4 and

ρ
μ
4×4 we get as C(ρe

4×4) � C(ρμ
4×4) � sin2θ , which tends to 1 at θ � π

4 . The nonzero value of concurrence shows that ρe
4×4 and

ρ
μ
4×4 is a bipartite entangled pure state when time evolved neutrino flavour state are linear superposition of mass eigenstates basis.

However, in general, neutrinos change its flavour while traveling in space with time. Therefore, it is useful to quantify concurrence
when time evolved neutrino flavour states are linear superposition of flavour basis. In that case, the state of the mass eigenstates can
be written in linear superposition of flavour basis as (|ν1〉

|ν2〉
)

� U (θ )

(|νe〉∣∣νμ

〉). (35)

Then using Eq. (35) in Eq. (11), the time evolved electron and muon flavour neutrino state (|νe(t)〉 and
∣∣νμ(t)

〉
) in linear superposition

of flavour basis can be simply written as

|νe(θ , φ)〉 f � (cos2θ + sin2θe−iφ)|νe〉 + sinθcosθ (1 − e−iφ)
∣∣νμ

〉
,

∣∣νμ(θ , φ)
〉
f � sinθcosθ (1 − e−iφ)|νe〉 + (sin2θ + cos2θe−iφ)

∣∣νμ

〉
, (36)

respectively, where suffix f represent that the flavour neutrino state should be written in flavour basis but not in mass basis. L � ct

(with c being the speed of light) is the distance traveled by the neutrino particle. φ � m2t
2E�

is typically a function of L/E as neutrino
masses are very small so in the ultra-relativistic limit in natural units (c � 1, � � 1) L ≈ t . For the state |νe(θ , φ)〉 f , the flavour
transition probabilities are

Pe→e � |< νe(θ , φ)|νe > |2f � cos4θ + sin4θ + 2sin2θcos2θcosφ,

Pe→μ � |< νe(θ , φ)|νμ > |2f � 1 − Pe→e. (37)
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Now we map flavour states at time t=0 to bipartite state in the two-qubit system as |νe〉 � |1〉e ⊗ |0〉μ and
∣∣νμ

〉 � |0〉e ⊗ |1〉μ,
therefore Eq. (36) become

|νe(θ , φ)〉 f � (cos2θ + sin2θe−iφ)|10〉 + sinθcosθ (1 − e−iφ)|01〉,∣∣νμ(θ , φ)
〉
f � sinθcosθ (1 − e−iφ)|10〉 + (sin2θ + cos2θe−iφ)|01〉. (38)

The density matrix ρe
f 4×4

� |νe(θ , φ)〉 f f 〈νe(θ , φ)| of the state |νe(θ , φ)〉 f in the two-qubit standard basis is

ρe
f 4×4

�

⎛
⎜⎜⎝

0 0 0 0
0 |(cos2θ + sin2θe−iφ)|2 (cos2θ + sin2θe−iφ)sinθcosθ (1 − eiφ) 0
0 (cos2θ + sin2θeiφ)sinθcosθ (1 − e−iφ) |sinθcosθ (1 − e−iφ)|2 0
0 0 0 0

⎞
⎟⎟⎠. (39)

We construct the spin-flip density matrix ρ̃e
f 4×4 and find that only one eigenvalues of the product state ρe

f 4×4
ρ̃e
f 4×4 is nonzero, i.e.

κ1 � 2
√
Pe→e Pe→μ, which means that according to equation Eq. (26), the concurrence for the state ρe

f 4×4
is quantified as

C(ρe
f 4×4

) � 2
√
Pe→e Pe→μ. (40)

When Pe→e � Pe→μ � 1
2 , the concurrence C(ρe

f 4×4
) tends to 1. This results show that time evolved electron flavour neutrino states

is a bipartite qubit entangled state. This result is also valid for the state
∣∣νμ(θ , φ)

〉
f .

4 SU(3) Poincaré sphere for three-flavour neutrinos

This section uses the Gell-Mann matrices, instead of Pauli’s matrices, to map the three-flavour neutrino states onto the SU(3) Poincaré
sphere. In the same way as the mass eigenstates of a two-flavour neutrino system were mapped to qubits in the two-dimensional
Hilbert space H2, we now consider the three-dimensional Hilbert space H3. A qutrit is realized by three mutually orthogonal states
[2]: |1〉, |2〉, |3〉.

A quantum state in the Hilbert space H3 spanned by the three orthogonal qutrit states |1〉 �
⎛
⎝1

0
0

⎞
⎠; |2〉 �

⎛
⎝0

1
0

⎞
⎠; and |3〉 �

⎛
⎝0

0
1

⎞
⎠ is

|ψ〉 � α|1〉+β|2〉+γ |3〉 where |α|2+|β|2+|γ |2� 1. Using the polar representation a quantum state |ψ〉 does not change if multiplied
by an overall phase, the equivalent quantum state is (0 ≤ θ , φ ≤ π

2 ; 0 ≤ ξ1, ξ2 < 2π) [2]

|ψ〉 � eiξ1 sin(θ ) cos(φ)|1〉 + eiξ2 sin(θ ) sin(φ)|2〉 + cos(θ )|3〉. (41)

The corresponding density matrix for the state |ψ〉 is

ρ3×3(ψ) � |ψ〉〈ψ | �
⎛
⎜⎝

sin2θcos2φ ei(ξ1−ξ2)

2 sin2θsin(2φ) eiξ1

2 sin(2θ )cosφ
ei(ξ2−ξ1)

2 sin2θsin(2φ) sin2θsin2φ eiξ2

2 sin(2θ )sinφ
e−iξ1

2 sin(2θ )cosφ e−iξ2

2 sin(2θ )sinφ cos2θ

⎞
⎟⎠. (42)

The pure state |ψ〉 in Eq. (41) is dependent on 4 parameters θ , φ, ξ1, ξ2. However, the five parameters are needed to characterize
the neutrino state, and the sum of the squares of the state’s coefficients should be one.

Now we will define the density operator of a qutrit system using SU(3) in general and then map it to the neutrino system. The
density matrix ρ3×3 � |ψ〉〈ψ | is a 3 × 3 unitary matrix such that (ρ3×3)† � ρ3×3; and Tr (ρ3×3) � 1. The qutrit representation
of the density matrix uses the eight (Hermitian, traceless) generators of SU(3) as an operator basis called the Gell-Mann matrices

[2]. By supplementing the eight Gell-Mann matrices λi , i � 1, ..., 8 with the unit operator λ0 ≡
√

2
3 1, the qutrit density matrix

operator is a vector in the space spanned by λα , α � 0, ..., 8 and therefore can be written as

ρ3×3 �|ψ〉〈ψ |� 1

3
cαλα

�(α|1〉 + β|2〉 + γ |3〉)(α∗〈1|+β∗〈2|+γ ∗〈3|), (43)

�
√

3

2
λ0 +

1

2
(αβ∗ + βα∗)λ1 +

i

2
(αβ∗ − βα∗)λ2 +

1

2
(|α|2−|β|2)λ3 +

1

2
(αγ ∗ + γα∗)λ4

+
i

2
(αγ ∗ − γα∗)λ5 +

1

2
(βγ ∗ + γβ∗)λ6 +

i

2
(βγ ∗ − γβ∗)λ7 +

1

2
√

3
(|β|2−2|γ |2)λ8, (44)

the (real) expansion coefficients are

cα � 3

2
tr (ρ3×3λα). (45)
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Normalization implies that c0 �
√

3
2 , so the density operator can be simplified to the SU(3) equivalent of Eq. (5), which we shall

show is the Poincaré sphere representation of the qutrit states

ρ3×3 � 1

3
(1 + c jλ j ) � 1

3
(1 + �c.�λ), (46)

where �c � c j ê j and �λ � λ j ê j .
To find the coefficients ci we note that

ρ2
3×3 � 1

9

(
1 +

2

3
�c.�c

)
1 +

1

3
�λ.

(
2

3
�c +

1

3
√

3
�c � �c

)
, (47)

where the “star” product is defined as

�c � �d ≡ ê j d jkl ckdl . (48)

The characterization of the Gell-Mann matrices and d jkl can be found in [35] or any group theory text book. The star product
condition is well explained in ref. [2]. For a pure state |ψ〉, ρ2

3×3 � ρ3×3, so we must have �c.�c � 3 and �c � �c � √
3�c. Defining the

eight dimensional unit vector n̂ � �c/√3, we find any qutrit pure state density matrix can be written as

ρ3×3 � |ψ〉〈ψ | � 1

3

(
I +

√
3n̂.�λ

)
, (49)

where n̂ satisfies

n̂ · n̂ � 1 and n̂ � n̂ � n̂. (50)

Eq. (49) is the equation for the 7-dimensional unit sphere n̂ ∈ S7 embedded in Euclidean eight dimensional space R8 spanned by
the Gell-Mann matrices. It is in fact a representation of the coset space SU(3)/U(2) [30], with components of unit vector n̂ given by

n j �
√

3

2
tr (ρ3×3λ j ) �

√
3

2
〈ψ |λ j |ψ〉. (51)

Thus, we have outlined the Poincaré sphere representation of the density matrix in H3.
Three-flavour neutrino oscillations involve a Hilbert space H3 and the mixing matrix is given by the SU(3) matrix [34]. Let the

mass eigenstates of the three-flavour neutrino system be |ν1〉, |ν2〉 and |ν3〉 then the relationship between the mass eigenstates and
the flavour states is ⎛

⎝|νe〉∣∣νμ

〉
|ντ 〉

⎞
⎠ � U∗(θ , φ, η, δCP )

⎛
⎝|ν1〉

|ν2〉
|ν3〉

⎞
⎠, (52)

where U (θ , φ, η, δCP ) is the Unitary PMNS (Pontecorvo-Maki-Nakagawa-Sakata) neutrino mixing matrix

U (θ , φ, η, δCP ) �
⎛
⎝ CθCφ SθCφ Sφe−iδCP

−SθCη − Cθ SφSηeiδCP CθCη − Sθ SφSηeiδCP CφSη

Sθ Sη − Cθ SφCηeiδCP − Cθ Sη − Sθ SφCηeiδCP CφCη

⎞
⎠ ∈ SU(3), (53)

where (Sθ , Sφ , Sη) ≡ (sinθ12, sinθ13, sinθ23); (Cθ , Cφ , Cη) ≡ (cosθ12, cosθ13, cosθ23), the θi j ’s are the neutrino mixing angles
between the states i and j (i , j � 1, 2, 3) [36].

The three-flavour states of a neutrino system can be written in the qutrit basis by identifying the mass eigenstates with the qutrit
basis states of the three-dimensional Hilbert space H3 as

|1〉 � |ν1〉 ; |2〉 � |ν2〉 ; |3〉 � |ν3〉. (54)

Without loss of generality, we take δCP � 0 and write the time evolved electron flavor neutrino state as

|νe(t)〉 � e−i E1t/�CθCφ |1〉 + e−i E2t/�(−SθCη − Cθ SφSη)|2〉 + e−i E3t/�(Sθ Sη − Cθ SφCη)|3〉 (55)

Similarly, the time evolved
∣∣νμ(t)

〉
and |ντ (t)〉 neutrino flavor states can be written as∣∣νμ(t)

〉 � e−i E1t/�SθCφ |1〉 + e−i E2t/�(CθCη − Sθ SφSη)|2〉 + e−i E3t/�(−Cθ Sη − Sθ SφCη)|3〉 (56)

and |ντ (t)〉 � e−i E1t/�Sφ |1〉 + e−i E2t/�CφSη|2〉 + e−i E3t/�CφCη|3〉 (57)

respectively. Taking the ultra-relativistic limit L ≈ t (c � 1,� � 1) and defining ξ1 � (E3 − E1)t/� ≈ m2
31L/2E , and

ξ2 � (E3 − E2)t/� ≈ m2
32L/2E , the normalized time evolved electron neutrino flavour state |νe(t)〉 in qutrit basis, parametrized
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Table 1 The three constraints
coming from star product
condition n̂ � n̂ � n̂ (see Eq. 50)
and their corresponding
orthonormal unit vectors

S.No Constraints Corresponding n̂

1 θ � φ � 0, η � π
2 , ξ1 and ξ2 are arbitrary n̂1 �

√
3

2 ê3 + 1
2 ê8

2 θ � π/2, φ � η � 0, ξ1 and ξ2 are arbitrary n̂2 � −
√

3
2 ê3 + 1

2 ê8

3 θ � φ � η � π/2, ξ1 and ξ2 are arbitrary n̂3 � −ê8

by three different mixing angle θ , φ, η and with two arbitrary phases ξ1 and ξ2 (0 ≤ θ , φ, η ≤ π
2 ; 0 ≤ ξ1, ξ2 < 2π) can be written

as

|νe(θ , φ, η, ξ1, ξ2)〉 � eiξ1CθCφ |1〉 + eiξ2 (−SθCη − Cθ SφSη)|2〉 + (Sθ Sη − Cθ SφCη)|3〉. (58)

The 3 × 3 density matrix of the state |νe(θ , φ, η, ξ1, ξ2)〉 is

ρe
3×3 � |νe(θ , φ, η, ξ1, ξ2)〉〈νe(θ , φ, η, ξ1, ξ2)|, (59)

which in matrix form is

ρe3×3 �
⎛
⎜⎝

C2
θC

2
φ − e−i(ξ2−ξ1)CθCφ (SθCη + Cθ Sφ Sη) eiξ1CθCφ (Sθ Sη − CθCφCη)

−ei(ξ2−ξ1)CθCφ (SθCη + Cθ Sφ Sη) (SθCη + Cθ Sφ Sη)2 − eiξ2 (SθCη + Cθ Sφ Sη)(Sθ Sη − CθCφCη)
e−iξ1CθCφ (Sθ Sη − CθCφCη) − e−iξ2 (SθCη + Cθ Sφ Sη)(Sθ Sη − CθCφCη) (Sθ Sη − CθCφCη)2

⎞
⎟⎠.

The density matrix ρe
3×3 satisfies the relation (ρe

3×3)† � (ρe
3×3)2 � ρe

3×3; and Tr (ρe
3×3) � 1. The density matrix for the time

evolved electron flavour neutrino state |νe(θ , φ, η, ξ1, ξ2)〉 can now be cast into the form

ρe
3×3 � |νe(θ , φ, η, ξ1, ξ2)〉〈νe(θ , φ, η, ξ1, ξ2)| � 1

3
(I +

√
3n̂.�λ). (60)

The unit vector (n̂.n̂ � 1), in the Euclidean eight dimensional space R8 is

n̂(θ , φ, η, ξ1, ξ2) � n1ê1 + n2ê2 + n3ê3 + n4ê4 + n5ê5 + n6ê6 + n7ê7 + n8ê8. (61)

Using the density matrix form (ρe
3×3) of Eq. (59) in Eq. (51), the components of the unit vector n̂(θ , φ, η, ξ1, ξ2) can be obtained

as:

n1 � − √
3CθCφ(SθCη + Cθ SφSη) cos(ξ2 − ξ1);

n2 � − √
3CθCφ(SθCη + Cθ SφSη) sin(ξ2 − ξ1);

n3 �
√

3

2
[C2

θC
2
φ − (SθCη + Cθ SφSη)2];

n4 �√
3CθCφ(Sθ Sη − CθCφCη) cos ξ1;

n5 � − √
3CθCφ(Sθ Sη − CθCφCη) sin ξ1;

n6 � − √
3(SθCη + Cθ SφSη)(Sθ Sη − CθCφCη) cos ξ2;

n7 �√
3(SθCη + Cθ SφSη)(Sθ Sη − CθCφCη) sin ξ2;

n8 �1

2
[C2

θC
2
φ + (SθCη + Cθ SφSη)2 − 2(Sθ Sη − CθCφCη)2]. (62)

The result shows that the time evolved electron flavour neutrino state lies on the S7 sphere in the eight dimensional real vector spaces.
Not all the operators on the unit-sphere are pure state, so the star product condition n̂ � n̂ � n̂ (see Eq. 50) imposes three constraints
on the unit vector n̂(θ , φ, η, ξ1, ξ2) (see Eq. 61) and therefore reduces the number of arbitrary parameters for the neutrino states.
The three constraints give us three orthonormal components of n̂(θ , φ, η, ξ1, ξ2). In the following table, we list the three constraints
and their corresponding orthonormal unit vectors.

These orthonormal states also satisfies the condition [30]

|< ψ |ψ ′ > |2� tr (ρρ′) � 1

3
(1 + 2n̂.n̂′),

0 ≤ tr (ρρ′) ≤ 1 ⇐⇒ 0 ≤ cos−1(n̂.n̂′) ≤ 2π

3
. (63)

We find that the angle formed between any two unit vectors (n̂1, n̂2, n̂3) is 2π
3 , since cos−1(n̂1.n̂2) � cos−1(n̂1.n̂3) � cos−1(n̂2.n̂3) �

cos−1( −1
2 ) � 2π

3 . Identifying the three orthonormal basis of qutrit as the mass eigenstates of neutrinos (see Eq. 54), Eq. (63) shows
that the pure state |νe(θ , φ, η, ξ1, ξ2〉 (see Eq. 58) in an orthonormal basis (|ν1〉, |ν2〉, |ν3〉) has unit vectors (n̂1, n̂2, n̂3) that lie in a
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Fig. 1 In a the equi-mixing curves of E(ρed ) in the n3 and n8 plane is shown using the current experimental bounds of the 3σ range of neutrino parameters
[37]. b shows the equi-mixing curves of E(ρed ) in the n3 and n8 plane inside the qutrit triangle

Fig. 2 The equi-mixing curves of
E(ρed ) is shown in the n3 and n8
plane when θ and η are vary from
0 to π/2

plane at the vertices of an equilateral triangle which we term as a “qutrit triangle”. If one takes the three canonical basis vectors of
H3 as usual, the three vertices of an equilateral triangle are

(n3, n8)A �
(√

3

2
,

1

2

)
−→ (1, 0, 0)T � |1〉 � |ν1〉; (64)

(n3, n8)B �
(

−
√

3

2
,

1

2

)
−→ (0, 1, 0)T � |2〉 � |ν2〉; (65)

(n3, n8)C � (0, − 1) −→ (0, 0, 1)T � |3〉 � |ν3〉; (66)

which are identified with the generalized W-states of neutrinos [12]. Thus, we generalize the concept of tripartite mode entanglement
by considering neutrinos as qutrits.
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The diagonal density matrix in the orthonormal basis is the triangle operator, or interior [2, 33]. We map the neutrino state density
matrix ρe

3×3 of SU(3) space directly to the λ3 and λ8 basis (two diagonal Gell-Mann matrices) to construct a mixed state density
matrix ρe

d (3×3). Thus, the density matrix ρe
3×3 of Eq. (60) is now reduced to a mixed state as

ρe
d (3×3) � 1

3
(I +

√
3(n3λ3 + n8λ8))

� 1

3

⎛
⎝1 +

√
3n3 + n8 0 0
0 1 − √

3n3 + n8 0
0 0 1 − 2n8

⎞
⎠, (67)

where x1 � 1
3 (1 +

√
3n3 + n8), x2 � 1

3 (1 − √
3n3 + n8), and x3 � 1

3 (1 − 2n8) are three eigenvalues of ρe
d (3×3) in terms of n3 and

n8. The value of n3 and n8 are given in Eq. (62). We calculate the entropy of mixing of the mixed state ρe
d (3×3) by using the formula

[33]:

E(ρe
d (3×3)) � −x1log3(x1) − x2log3(x2) − x3log3(x3). (68)

In Fig. 1(a and b), we plot the equi-mixing curves of E(ρe
d ) in the n3 and n8 plane. We vary θ ≡ θ12 and η ≡ θ23 over 3σ range

of current experimental bounds [37], we find that neutrinos are inside qutrit triangle for the range of entropy of mixing E(ρe
d )

approximately between 0.62 to 0.74. In Fig. 2, we vary θ and η from 0 to π/2, and we see that this put the constraints on θ12 and
θ23 to be greater than 23 degrees for physical result.

Furthermore, the SU(2) Poincaré sphere representation for two-flavour neutrino oscillations can be deduced from the three-flavour
Poincaré sphere in SU(3) by imposing the conditions

tanθ23 tanθ12 � sinθ13. (69)

In the limit when the mixing between 2 and 3 (49 degrees), and 1 and 2 (33.44 degrees) is greater than the mixing between 1 and 3,
θ13 ≈ 0 (8.57 degrees, sinθ13 ≈ 0.15). We set θ13 ≈ 0, so that Eq. (58) |νe(θ , φ, η, ξ1, ξ2)〉 can be reduced to

|νe(θ , ξ1, ξ2)〉 �
⎛
⎝ eiξ1 cosθ

−eiξ2 sinθ

0

⎞
⎠. (70)

where 0 ≤ θ ≤ π
2 , 0 ≤ ξ1, ξ2 < 2π . We calculate the density matrix ρe

3×3 � |νe(θ , ξ1, ξ2)〉 〈νe(θ , ξ1, ξ2)| of the above reduced
state |νe(θ , ξ1, ξ2)〉 and use it in Eq. (51). We find that the unit vector n̂ in eight-dimensional real vector space now reduces to only
four non-vanishing components

n1 � −
√

3

2
sin2θcos(ξ2 − ξ1); n2 �

√
3

2
sin2θsin(ξ2 − ξ1); n3 �

√
3

2
cos2θ ; n8 � 1

2
, (71)

else all are zero, i.e. n4 � n5 � n6 � n7 � 0. Hence, when there is a hierarchy of mixing between the three states 1, 2 and 3 with
the third state almost decoupled (small mixing angle), we retrieve the SU(2) Poincaré sphere from the SU(3) Poincaré sphere.

So far, we have considered the Poincare′ sphere representation of a time evolved electron-neutrino flavour state. For completeness,
we give the Poincare′ sphere representation of a time evolved muon-neutrino flavour state. The state

∣∣νμ(t)
〉
(see Eq. 56) parametrized

by θ , φ, η, ξ1, ξ2 in the qutrit basis can be written as∣∣νμ(θ , φ, η, ξ1, ξ2)
〉 � eiξ1 SθCφ |1〉 + eiξ2 (CθCη − Sθ SφSη)|2〉 + (−Cθ Sη − Sθ SφCη)|3〉, (72)

and its density matrix ρ
μ
3×3 � ∣∣νμ(θ , φ, η, ξ1, ξ2)

〉〈
νμ(θ , φ, η, ξ1, ξ2)

∣∣ is

ρ
μ
3×3 �

⎛
⎝ S2

θC
2
φ e−i(ξ2−ξ1)SθCφ(Cθ Sη − Sθ SφSη) eiξ1 SθCφ(−Cθ Sη − Sθ SφSη)

ei(ξ2−ξ1)SθCφ(Cθ Sη − Sθ SφSη) (Cθ Sη − Sθ SφSη)2 eiξ2 (Cθ Sη − Sθ SφSη)(−Cθ Sη − Sθ SφSη)
e−iξ1 SθCφ(−Cθ Sη − Sθ SφSη) e−iξ2 (−Cθ Sη − Sθ SφSη)(Cθ Sη − Sθ SφSη) (−Cθ Sη − Sθ SφSη)2

⎞
⎠.

(73)

The density matrix ρ
μ
3×3 can be expanded in the Gell-Mann basis as

ρ
μ
3×3 � 1

3
(I +

√
3n̂′.�λ), (74)

and by using Eq. (73) in Eq. (51), we get the components of the unit vector n̂′(θ , φ, η, ξ1, ξ2) as

n′
1 �√

3SθCφ(Cθ Sη − Sθ SφSη) cos(ξ2 − ξ1);

n′
2 �√

3SθCφ(Cθ Sη − Sθ SφSη) sin(ξ2 − ξ1);

n′
3 �

√
3

2
[S2

θC
2
φ − (Cθ Sη − Sθ SφSη)2];
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n′
4 �√

3SθCφ(−Cθ Sη − Sθ SφSη) cos ξ1;

n′
5 � − √

3SθCφ(−Cθ Sη − Sθ SφSη) sin ξ1;

n′
6 �√

3(Cθ Sη − Sθ SφSη)(−Cθ Sη − Sθ SφSη) cos ξ2;

n′
7 � − √

3(Cθ Sη − Sθ SφSη)(−Cθ Sη − Sθ SφSη) sin ξ2;

n′
8 �1

2
[S2

θC
2
φ + (Cθ Sη − Sθ SφSη)2 − 2(Cθ Sη − Sθ SφSη)2]. (75)

5 Two qutrits flavour neutrino states and generalized concurrence

In general, any two qutrits state is defined as the tensor product of two three-dimensional Hilbert spaces, i.e. H3 ⊗H3. This section
represents a two-qutrit density matrix of the neutrino system based on Gell-Mann matrix tensor products, with the coefficients
constituting a generalized matrix analogous to a two-qubit Bloch vector of neutrinos.

According to Eqs. (52, 53 and 54), in the three neutrino system, in general the time evolved neutrino flavour states in qutrit basis
(|1〉, |2〉, |3〉) for the two different sub-system A and B can be represented as (A, B � e, μ, τ ):

|νA(θ , φ, η, ξ1, ξ2)〉 � α1|1〉 + α2|2〉 + α3|3〉
|νB (θ , φ, η, ξ1, ξ2))〉 � α′

1|1〉 + α′
2|2〉 + α′

3|3〉 (76)

where |νA(θ , φ, η, ξ1, ξ2)〉 ∈ H3
A and |νB (θ , φ, η, ξ1, ξ2)〉 ∈ H3

B , and |α1|2+|α2|2+|α3|2� 1 and |α′
1|2+|α′

2|2+|α′
3|2� 1.

We express the two qutrits time evolved flavour neutrino state as |νAB (θ , φ, η, ξ1, ξ2)〉 � |νA(θ , φ, η, ξ1, ξ2)〉 ⊗
|νB (θ , φ, η, ξ1, ξ2))〉, and find its the density matrix in the two qutrit standard basis {|11〉, |12〉, |13〉, |21〉, |22〉, |23〉, |31〉,
|32〉, |33〉} ∈ H3

A ⊗ H3
B as

ρAB
9×9 � ρA

3×3 ⊗ ρB
3×3 � |νAB (θ , φ, η, ξ1, ξ2)〉〈νAB (θ , φ, η, ξ1, ξ2)|

�
⎛
⎝|α1|2 α1α

∗
2 α1α

∗
3

α2α
∗
1 |α2|2 α2α

∗
3

α3α
∗
1 α3α

∗
2 |α3|2

⎞
⎠ ⊗

⎛
⎝ |α′

1|2 α′
1α

′
2
∗

α′
1α

′∗
3

α′
2α

′∗
1 |α′

2|2 α′
2α

′∗
3

α′
3α

′∗
1 α′

3α
′∗
2 |α′

3|2

⎞
⎠ � (...)9X9 (77)

where ρA
3×3 � |νA(θ , φ, η, ξ1, ξ2)〉 〈νA(θ , φ, η, ξ1, ξ2)| and

ρB
3×3 � |νB (θ , φ, η, ξ1, ξ2)〉 〈νB (θ , φ, η, ξ1, ξ2)| are the density matrix of two sub-systems A and B, respectively. Also, α∗

1 , α∗
2 ,

α∗
3 and α′∗

1, α′∗
2, α′∗

3 are complex conjugate of α1, α2, α3 and α′
1, α′

2, α′
3, respectively.

Alternatively, the density matrix in Eq. (77) can be expanded uniquely as

ρAB
9×9 � 1

3

(
I +

√
3n̂.�λA

)
⊗ 1

3

(
I +

√
3n̂′.�λB

)

� 1

9

⎛
⎝I ⊗ I +

√
3˘A.n̂ ⊗ I +

√
3I ⊗ ˘B .n̂′ +

3

2

8∑
i , j�1

ci jλ
A
i ⊗ λB

j

⎞
⎠. (78)

The (real) expansion coefficients in Eq. (78) are given by

ni �
√

3

2
tr

(
ρAB

9×9λi ⊗ I
)

,

n′
j �

√
3

2
tr

(
ρAB

9×9 I ⊗ λ j

)
,

ci j � 3

2
tr (ρAB

9×9λi ⊗ λ j ), (79)

where ni and n j are components of unit vector n̂ and n̂′ of the two sub-systems: ρA
3×3 and ρB

3×3 and i , j � 1, ..., 8. The coefficients
ci j form a 8 × 8 correlation matrix R. The two qutrit density matrix shown in Eq. (78) can be also cast into the form as

ρAB
9×9 � ρA

3×3 ⊗ ρB
3×3 �

(
1

3
cαλα

)
⊗

(
1

3
cβλβ

)
� 1

9
cαβλα ⊗ λβ , (80)

where the expansion coefficients are given by

cαβ � 9

4
tr (ρAB

9×9λα ⊗ λβ ). (81)
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α, β � 0, ..., 8 and normalization requires that c00 � 3
2 . Thus, Eq. (81) form a generalized matrix GM which is split into four

components: a scalar of 3
2 , two eight-dimensional vectors, and a 8 × 8 correlation matrix R. We write

GM �

⎡
⎢⎢⎢⎢⎣

3
2 c01 ..... c08

c10 c11 ..... c18

: : ..... :
: : ..... :
c80 c81 ..... c88

⎤
⎥⎥⎥⎥⎦, (82)

where ni � ci0 and n′
j � c0 j (i , j � 1, ..., 8) are the components of local unit Bloch vectors n̂ and n̂′, respectively of the two single

qutrit sub-systems (ρA
3×3 and ρB

3×3), and ci j (i , j � 1, ..., 8) are the matrix elements of correlation matrix R. Therefore, according to
the above Eq. (82), all possible combination of neutrinos two qutrits density matrix like ρee

9×9 � ρe
3×3 ⊗ρe

3×3, ρeμ
9×9 � ρe

3×3 ⊗ρ
μ
3×3,

ρ
μμ
9×9 � ρ

μ
3×3 ⊗ ρ

μ
3×3, ρ

μe
9×9 � ρ

μ
3×3 ⊗ ρe

3×3, etc., resembles a separable state.
In general, the entanglement measure generalized concurrence for the two qutrits mixed state density matrix ρ9×9 is defined as

[11]

C3(ρ9×9) � max{0, 2μ1 −
9∑

i�1

μi }, (83)

where the μi (with i=1,2,...,9) are the square roots of the eigenvalues of the non-Hermitian matrix ρ9×9ρ̃9×9 in decreasing order.
ρ̃9×9 is the spin-flip density matrix

ρ̃9×9 � (O3 ⊗ O3)ρ∗
9×9(O3 ⊗ O3), (84)

with ρ∗
9×9 being the complex conjugate of ρ9×9 and O3 is the transformation matrix for qutrits

O3 �
⎛
⎝ 0 − i i

i 0 − i
−i i 0

⎞
⎠. (85)

Here, O3 ⊗O3 is analogous to the σy ⊗σy in the two-qubit system (see Eq. 26). We find that the generalized concurrence for possible
combination of two qutrits separable state density matrix is zero, i.e. C3(ρee

9×9) � C3(ρeμ
9×9) � C3(ρμμ

9×9) � C3(ρμe
9×9) � ... � 0.

Furthermore, to investigate two qutrits entanglement in neutrino oscillations, we study two-flavour neutrino oscillations in the
bipartite qutrit system and quantify the generalized concurrence. We map the neutrino flavour state at t=0 to bipartite qutrit states
as |νe〉 � |1〉 ⊗ |2〉 and

∣∣νμ

〉 � |2〉 ⊗ |1〉. Then using Eq. (36), the normalized time evolved electron flavour neutrino state in linear
superposition of bipartite qutrit neutrino flavour basis is

|νe(θ , φ)〉 f � (cos2θ + sin2θe−iφ)|12〉 + sinθcosθ (1 − e−iφ)|21〉 (86)

and its density matrix ρe
f 9×9

� |νe(θ , φ)〉 f f 〈νe(θ , φ)| in the two qutrit standard basis {|11〉, |12〉, |13〉, |21〉, |22〉, |23〉, |31〉, |32〉,
|33〉} is

ρe
f 9×9

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 |a1|2 0 a1b∗

1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 a∗

1b1 0 |b1|2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(87)

where a1 � (cos2θ + sin2θe−iφ), and b1 � sinθcosθ (1 − e−iφ) are the coefficients of bipartite qutrit flavor basis |νe〉 and
∣∣νμ

〉
,

respectively, and a∗
1 , b∗

2 are complex conjugate of a1 and b1, respectively.

Using Eq. (87) in Eq. (84), we construct the spin-flip density matrix ρ̃e
f 9×9

� (O3 ⊗ O3)ρ∗
f
e
9×9

(O3 ⊗ O3). We find that only

one of the square root of eigenvalues of the matrix ρe
f 9×9

ρ̃e
f 9×9

is non-zero, i.e. μ1 � 4cosθsinθ (cos2θ − sin2θ )sin2 φ
2 . Thus using

Eq. (83), the generalized concurrence of the time evolved electron flavour neutrino state |νe(θ , φ)〉 f in the bipartite qutrit system is
quantified as

C3(ρe
f 9×9

) � 4cosθsinθ (cos2θ − sin2θ )sin2 φ

2
. (88)
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Fig. 3 The violet band shows the
νe concurrence C(ρef 4×4

) (Red,

solid line) in the bipartite qubit
system and the pink band shows
the generalized concurrence
C3(ρef 9×9

) (Blue, dash dotted

line) in the bipartite qutrit system.
Both entanglement measures are
compared with the orange band
which shows the νe probability
Pe→e (Green, dashed line) and
with the green band which shows
the Pe→μ probability (Black,
dash dotted line), using the current
experimental bounds of the 3σ

range of neutrino parameters [37]

In Fig.(3), the generalized concurrence C(ρe
f 9×9

) (see Eq. 88) of the time evolved electron flavour neutrino state in the bipartite

qutrit system is compared with the concurrence C(ρe
f 4×4

) (see Eq. 40) in the bipartite qubit system. Thus, the nonzero value of the
generalized concurrence shows that in the two neutrino system, the time evolved neutrino flavour state is a bipartite qutrit entangled
state. Therefore, the plot results warrant a study of two qutrits entanglement in the three-flavour neutrino oscillation.

6 Discussion and conclusions

In this work, we use the Pauli matrices to characterize the two-flavour neutrino oscillations on the Poincaré sphere S2 � SU(2)/U(1).
It is shown that the Poincaré vector of the time evolved flavour neutrino state lies on the unit sphere in the three-dimensional real
vector space. This result helps us to characterize the two neutrino system as qubits.

In the two-qubit systems, we have shown the Poincaré sphere representation of two neutrino system. We constructed two-qubit
density matrix of neutrinos in the basis of the Dirac matrices. The coefficients of the Dirac matrices form the Bloch matrix, which
shows that the two-qubit neutrino state is a separable state. Furthermore, we map the mass eigenstates of neutrinos directly to the
bipartite qubit system, where the Bloch matrix construction show that the bipartite qubit neutrino state is an entangled state. The
quantification of entanglement measure concurrence in neutrino oscillation probabilities in the two neutrino system shows that time
evolved flavour neutrino states are bipartite qubit entangled states.

We use the Gell-Mann matrices to construct the Poincaré sphere S7 � SU(3)/U(2) in the three-flavour neutrino oscillation. The
SU(3) result allows us to identify the three neutrino system as qutrits which generalize the concept of entangled tripartite states of
neutrinos. We calculate the entropy of mixing E(ρe

d ) of the time evolved flavour neutrino mixed state in a single qutrit system using
the current experimental bound on the neutrino oscillation parameters, and we find that the equi-mixing curves of E(ρe

d ) lie inside
the qutrit triangle.

The argument for using qutrits instead of qubits in quantum entanglement for computational purposes is emphasized by the
demonstrated advantage of entangled qutrits being less affected by noise compared to entangled qubits. This is supported by
research, such as the paper referenced [38], which shows that bipartite systems of higher dimensionality, such as qutrits, exhibit
a greater resistance to noise and a maximum violation of Bell’s Inequality. Therefore, developing a theory of entanglement for
neutrinos based on qutrits is not only justified but also potentially beneficial.

In the two-qutrit system, constructing a generalized Poincaré sphere using the Gell-Mann matrix tensor products led to the
generalized Bloch matrix in the Bloch vector space of the three neutrino system. The quantification of the generalized concurrence
in the two neutrino system implies that the two-flavour neutrino oscillations are bipartite qutrit entangled states. We have compared
the generalized concurrence of the bipartite qutrit neutrinos with the concurrence of the bipartite qubit neutrino. Both measures
provide a qualitatively nonzero amount of information in the two neutrino system. In a subsequent study, we shall examine two
qutrit entanglement in the three neutrino system [39].

A quantum computer did the quantum simulation of bipartite qubit entanglement of two-flavour neutrino oscillations [26].
Recently, the simulation of the coherent collective oscillations of a system of N neutrinos in the two-flavour approximation was
examined using the IBM quantum device based on trapped-ions qubits [40]. However, new studies claim that qutrits offer a promising
path towards extending the frontier of quantum computers [41, 42]. The use of qutrits in studying N-neutrino interactions in the
astrophysical scenario could be particularly useful [43]. In future, qutrit computers can be used to delve into quantum information
studies of neutrinos and explore the intricacies of entanglement in collective three-flavour neutrino oscillations. This could provide
valuable insights into the behaviour and properties of neutrinos in astrophysical environments.
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In our paper, we associated three-flavour neutrinos to qutrit system. So, by using quantum gates and circuit given in ref. [41], one
can simulate the neutrino flavor oscillations in qutrit system, which can be used to investigate the properties of neutrinos oscillations
and their entanglement. Thus, the results of our paper lead us to a new direction of ternary computing using qutrits.
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