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1 Introduction

Transition amplitudes give us information about whether a particular transition is allowed. A
change of endpoints (also known as boundary) will affect the transition amplitude. Methods of
quantum field theory (QFT) developed over the decades allow us to compute such transition
amplitudes systematically, which can be matched with relevant experiments for verification.
In fact, several experimental verifications of Standard Model predictions further strengthen
our reliability on QFT and methods used to formulate it. Path integral is one way to reliably
study QFT and compute transition amplitudes systematically.
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However, to properly define path integral in QFT one needs to address the issue of
infinities that arise while computing transition amplitudes. These are taken care of by proper
regularization and renormalization.1 Besides these, one still has to specify an integration
contour as the standard Lorentzian path integrals are highly oscillatory and not absolutely
convergent. In standard flat spacetime QFT (non-gravitational) this is achieved by Wick
rotation: a process of going from real-time to imaginary time. This transforms the original
flat spacetime Lorentzian path integral into a convergent Euclidean path integral.

These successes are hard to replicate when gravity is involved, where besides dealing
with issues of divergences, renormalizability and gauge-fixing, one also has to address the
issue of the contour of integration. For the gravitational system, this need not be standard
Wick-rotation! Moreover, Euclidean gravitational path integral suffers from the conformal
factor problem (the path integral over the conformal factor is unbounded from below [1]),
motivating to study the gravitational path integral directly in the Lorentzian signature.
A gravitational path integral with metric as the degree of freedom, on a manifold with
boundaries can be written as

G =
∫
M+∂M

Dgµνe
iS[gµν ]/ℏ , (1.1)

where gµν is the metric and S[gµν ] is the corresponding action. The path integral is defined
on manifold M with boundary ∂M. This abstract mathematical expression represents
summation over all possible metrics with specified boundary conditions, where each geometry
comes with a corresponding ‘weight-factor’.

The gravitational action that we will focus on in this paper is given by following (see [2, 3]
for earlier works investigating the path integral of such gravitational theories)

S = 1
16πG

∫
dDx

√
−g
[
−2Λ +R+ α

(
RµνρσR

µνρσ − 4RµνR
µν +R2

)]
. (1.2)

This is the Gauss-Bonnet gravity action where G is the Newton’s gravitational constant, Λ is
the cosmological constant term, α is the Gauss-Bonnet (GB) coupling and D is spacetime
dimensionality. The mass dimensions of various couplings are: [G] = M2−D, [Λ] = M2

and [α] = M−2.
The action in eq. (1.2) falls in the class of lovelock gravity theories [4–6], and is a sub-class

of higher-derivative gravity. In this, the dynamical evolution equation of the metric field
remains second order in time always. Interestingly, the GB term also arises in the low-energy
effective action of the heterotic string theory with α > 0 [7–9]. It should also be emphasized
that for the first time, the GB-coupling α has received observational constraints [10]. These
constraints arise from the analysis of the gravitational wave (GW) data of the event GW150914
which also offered the first observational confirmation of the area theorem [11].

Our interest in this paper is to study the path integral given in the eq. (1.1) for the
gravitational action specified by eq. (1.2), and to analyze the effects of the boundary conditions
on the transition amplitude (see [12–14, 25, 26] for the role played by boundary terms). We
start by considering a spatially homogeneous and isotropic metric in D spacetime dimensions.

1In gauge theories, one also has to do gauge-fixing to prevent over-counting of gauge degree of freedom and
also suitably introduce relevant ghosts which ensures the gauge-fixing process is systematically done.
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It is the FLRW metric in arbitrary spacetime dimension with dimensionality D. In polar
coordinates {tp, r, θ, · · · } it is given by

ds2 = −N2
p (tp)dt2p + a2(tp)

[
dr2

1− kr2 + r2dΩ2
D−2

]
. (1.3)

It has two unknown time-dependent functions: lapse Np(tp) and scale-factor a(tp), k = (0,±1)
is the curvature, and dΩD−2 is the metric for the unit sphere in D − 2 spatial dimensions.
This is the mini-superspace approximation of the metric. In this approximation, though
we don’t have gravitational waves we still retain diffeomorphism invariance of the time
co-ordinate tp and the dynamical scale-factor a(tp). This simple setting is enough to highlight
the importance of boundary conditions and/or Gauss-Bonnet gravitational terms that might
become relevant at the boundary.

The Feynman path integral with reduced degree of freedom becomes

G[Bdf ,Bdi] =
∫ Bdf

Bdi

DNpDπDa(tp)DpDCDP̄ exp
[
i

ℏ

∫ 1

0
dtp

(
N ′

pπ + a′p+ C′P̄ −NpH
)]
,

(1.4)
where beside the integration over the scale-factor a(tp), lapse Np(tp) and the Fermionic
ghost C, we also have an integration over their corresponding conjugate momenta given by
p, π, and P̄ respectively. (′) here denotes derivative with respect to tp, while the time tp
co-ordinate is chosen to range from 0 ≤ tp ≤ 1. Bdi and Bdf refers to the field configuration
at initial (tp = 0) and final (tp = 1) boundaries respectively. The Hamiltonian constraint
H consists of two parts

H = Hgrav[a, p] +Hgh[N, π, C, P̄ ] , (1.5)

where Hgrav refers to the Hamiltonian for the gravitational action and the Batalin-Fradkin-
Vilkovisky (BFV) [15] ghost Hamiltonian is denoted by Hgh.2 Although the degrees of
freedom are quite reduced in mini-superspace approximation, the theory still retains time
reparametrization invariance which need to be gauge-fixed (we choose proper-time gauge
N ′

p = 0). For more elaborate discussion on BFV quantization process and ghost see [16–18].
Most of the path integral in eq. (1.4) in the mini-superspace approximation can be

performed exactly (the path integral over ghosts (C and P̄ ) and the conjugate momenta (π
and p)) leaving behind the following path integral

G[Bdf ,Bdi] =
∫ ∞

0+
dNp

∫ Bdf

Bdi

Da(tp) eiS[a,Np]/ℏ . (1.6)

The path integral
∫
Da(tp) eiS[a,Np]/ℏ gives the transition amplitude for the Universe to evolve

from one boundary configuration to another in the proper time Np, while the lapse integration
2The BFV ghost is a generalization of the standard Fadeev-Popov ghost based on BRST symmetry.

Usual gauge theories constraint algebra forms a Lie algebra. However, for gravitational systems respecting
diffeomorphism invariance the constraint algebra doesn’t close, requiring BFV quantization. In mini-superspace
approximation, although the algebra trivially closes as there is only one constraint (Hamiltonian H) but still,
BFV quantization is preferable.
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implies that one needs to consider paths of every proper duration 0 < Np <∞. This choice
leads to causal evolution from one boundary configuration Bdi to another Bdf [19].

The purpose of this paper is to study the path integral in eq. (1.6) for the gravitational
action given in eq. (1.2) focusing mainly on the case of Robin boundary condition (RBC)
imposed at the initial boundary. Imposing RBC at the initial time is like specifying a
combination of field and its corresponding conjugate momenta. This is a broad class of
RBC. In this paper, we focus on a subclass where RBC is imposed as a linear combination
of field and its conjugate momenta. This translates into a one-parameter family of all
allowed possible boundary conditions for a given specific value of the combination of field
and its conjugate momenta. Such a boundary condition interpolates between Dirichlet BC
and Neumann BC. Past studies dealing with Dirichlet BC showed that imposition of DBC
at initial times leads to unsuppressed behavior of the gravitational fluctuations in the no-
boundary proposal of the Universe [20–24], which, with the DBC, corresponds to defining
path-integral starting with zero size (see [34] for review on the no-boundary proposal). This
study motivates one to investigate the situation in the case of Neumann and Robin BC
at the initial boundary, besides also indicating that Dirichlet BC is perhaps not the right
boundary condition for gravity [25, 26].

Neumann boundary condition (NBC) has been studied in [2, 3, 30–32, 35] using Picard-
Lefschetz methods, where it was seen that gravitational fluctuations are well-behaved in the
no-boundary proposal of the Universe, which for Neumann BC is defined as the path-integral
over regular geometries. Exact computations are done for the NBC case for the Gauss-Bonnet
gravity further showed some surprises mentioned in [3]. For Einstein-Hilbert gravity, Robin
boundary condition has been studied using the Picard-Lefschetz methods [30, 33, 35–37].
These perturbative studies showed that fluctuations are well-behaved for the no-boundary
proposal of the Universe.

In this paper, we take a fresh look at the implications of imposing RBC at the initial
time and studying the path integral for the Gauss-Bonnet gravity. We study the Gauss-
Bonnet gravity path integral using both perturbative and non-perturbative methods to gain
a proper understanding of the effects of RBCs on the behavior of the transition amplitude.
In the process, we also construct the suitable surface term for the Robin case needed for the
Gauss-Bonnet gravity to have a consistent variational problem. We use time-slicing method
of evaluating the gravitational path integral to compute the transition amplitude exactly.
This is then compared with the results obtained via Picard-Lefschetz (PL) methods to gain a
better understanding of the role played by saddle point geometries which could be complex.

PL methodology generalizes the notion of ‘Wick-rotation’ by adapting it to tackle highly
oscillatory integral in a systematic manner.3 By providing a framework that takes into account
contributions from all the possibly relevant complex saddle points of the path integral, this
framework uniquely determines contours of integration along which the oscillatory integrals
(like the ones appearing in eq. (1.6)) becomes well-behaved. Such contours termed Lefschetz
thimbles constitute the generalized Wick-rotated contour. In the context of Lorentzian

3Some studies involving Wick-rotation in curved spacetime have been initiated in [38–41]. However, more
work needs to be done on this.
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quantum cosmology, these methods have been extensively used to analyze the nature of path
integral [20, 21, 24, 27–29] and the role played by boundaries [2, 3, 30, 31, 33].4

PL-methods being inherently based on saddle-point approximation, fall short of analyzing
situations dealing with degenerate case i.e. when saddles become degenerate. In such cases,
one has to go beyond saddle-point approximation, as the approximation breaks down in
such limiting cases. Non-perturbative and exact results whenever available become useful in
investigating these situations. This was particularly noticed in the study of gravitational path
integral for the NBC case [3], where it was seen that our Universe undergoes a transition
from an Euclidean to a Lorentzian signature as the size of the Universe increases. However,
saddle-point analysis broke down at the turning point, a clear understanding of which came
from the exact results. In the RBC case, it is expected that a similar situation could arise.
It is therefore, best to approach the investigations of the gravitational path integral in the
RBC case via both perturbative and non-perturbative manner.

The outline of the paper is as follows: section 1 gives introduction and motivation to
the problem being studied. Section 2 studies path integral of a particle in potential in one
dimension potential with various boundary conditions. This not only helps us understand
path integrals with non-trivial boundary conditions but also give rise to relations between
them, which becomes useful later in the paper. Section 3 discusses the mini-superspace
approximation and writes the gravitational action in the mini-superspace approximation.
Section 4 studies the variational problem and computes the surface terms that are needed
to have a consistent variational problem. Section 5 studies the transition amplitude for the
NBC and RBC case, and compute the exact expression for it by exploiting the results of
section 2. Section 6 studies the classical limit (ℏ → 0) of the exact transition amplitude
which shows the boundary configuration giving a dominant contribution in the path integral.
Section 7 does the Picard-Lefschetz analysis of the contour integral. We conclude the paper
in section 8 along with an outlook.

2 One-dimensional quantum mechanics

Before we proceed further with our study of gravitational path integral, we do a quick review
of the path integral of one particle system to which our gravitational path integral reduces
in the mini-superspace approximation.

We look at the path integral of one-particle system whose initial and final boundary
conditions are specified. As the dynamical equation of motion involves two-derivatives of
time, it needs only two boundary conditions. In the following, we will consider the cases
where the final is always Dirichlet boundary condition and initial could be either Dirichlet or
Neumann or Robin boundary condition. We will study a free-particle system and particle
living in a linear potential which is of relevance to our studies in quantum cosmology.

4Earlier work using complex analysis methods to analyze Euclidean gravitational path integral was done
in [42, 43]. Exploration of boundary effects in the Euclidean quantum cosmology was done in tunnelling
proposal [44–46] and no-boundary proposal [42, 43, 47]. Furthermore, the choice of a contour of integration
via usage of complex analysis methods was also done in [48–50].
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Our purpose is to compute the following path integral

Ḡ[Bdf ,Bdi] =
∫ Bdf

Bdi
Dq(t) eiStot[q]/ℏ , (2.1)

where Stot[q] is the action for the one particle system

Stot[q] = S[q] + Sbd =
∫ 1

0
dt
[
m

2 q̇
2 − V (q)

]
+ Sbd , (2.2)

m is a t-independent parameter, ‘dot’ denotes t-derivative, V (q) is the potential, Sbd is the
surface term added to have a consistent variational problem.5 The ‘bar’ over G in eq. (2.1) is
added to prevent confusion later on with gravitational transition amplitude.

The path integral in eq. (2.2) can be computed by time-slicing method (first principles).
The only subtlety arises at the end points around which the computation has to be done
with care. To achieve this, we approach the problem in the Hamiltonian language as it
is easier to incorporate the boundary conditions. The classical Hamiltonian for the above
system is given by

H(p, q) = pq̇ − L(q, q̇) = p2

2m + V (q) , (2.3)

where p = mq̇. The quantum transition amplitude from one state to another in the Hamilto-
nian picture (which is equivalent to computing the above path integral) is given by,〈

Bdf , t = 1
∣∣Bdi, t = 0

〉
=
〈
Bdf

∣∣e−iH(p̂,q̂)/ℏ∣∣Bdi
〉
. (2.4)

Here we have lifted p and q to operators p̂ and q̂ respectively, which then obey the com-
mutation relation [

q̂, p̂
]
= iℏ . (2.5)

It should be mentioned that the effect of surface terms Sbd gets taken care in the Hamiltonian
style of doing the computation from one boundary state to another. The Hamiltonian follows
from the Lagrangian by Legendre transform.

2.1 Dirichlet boundary condition at t = 0

Let’s first consider the case of a free particle where V (q) = 0. The quantum Hamiltonian
is given by

Hfree =
p̂2

2m . (2.6)

One is interested in computing the transition amplitude from one state to another. However,
these states are given by specifying the initial and final position: q(t = 1) = qf and
q(t = 0) = qi. The path integral in eq. (2.1) becomes

Ḡfree
DBC(qf , qi) =

〈
qf

∣∣e−iHfree/ℏ∣∣qi
〉
, (2.7)

5Variation of the action with respect to q(t) to first order leads to terms proportional to δq(t) and its
derivatives. This will give rise to the equation of motion for q(t) (terms proportional to δq(t)), while any
residual term will either vanish due to choice of boundary condition or has to be canceled by a suitable
addition of a surface term.
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This can be evaluated from first principles by the time-slicing method, which discretizes the
problem. Breaking the time-length into M segments gives the time duration of each segment
to be ϵ = 1/M . This means that q(t) :⇒ q0 = qi, q1, q2, · · · , qk, ·, qM−1, qM = qf , with the
end points q0 = qi and qM = qf are fixed. This implies that we can write the transition
amplitude given in eq. (2.7) in the following discretized form

Ḡfree
DBC(qf , qi) = lim

M→∞,ϵ→0

(M−1∏
k=1

∫ ∞

−∞
dqk

)
⟨qM

∣∣UM,M−1
∣∣qM−1⟩⟨qM−1

∣∣UM−1,M−2
∣∣qM−2⟩ · · ·

×⟨qk

∣∣Uk,k−1
∣∣qk−1⟩ · · · ⟨q2

∣∣U2,1
∣∣q1⟩⟨q1

∣∣U1,0
∣∣q0⟩ , (2.8)

where
Uk,k−1 = e−iHfreeϵ/ℏ. (2.9)

Consider the following matrix element ⟨qk

∣∣e−iHfreeϵ/ℏ∣∣qk−1⟩. In this, one can plug completeness-
relation in momentum space and perform the momentum integral

⟨qk

∣∣e−iHfreeϵ/ℏ∣∣qk−1⟩=
∫ ∞

−∞

dpk

2πℏ⟨qk

∣∣e−iHfreeϵ/ℏ∣∣pk⟩⟨pk

∣∣qk−1⟩ , (2.10)

=
∫ ∞

−∞

dpk

2πℏe
−iϵp2

k/(2mℏ)+ipk(qk−qk−1)/ℏ =
√

m

2πiϵℏe
im(qk−qk−1)2/(2ϵℏ),

where we performed the Gaussian integral in pk to obtain the last expression. Eventually,
we are left with the following expression for Ḡfree

DBC

Ḡfree
DBC(qf , qi) = lim

M→∞,ϵ→0

(M−1∏
k=1

∫ ∞

−∞
dqk

)(
m

2πiϵℏ

)M/2
exp

[
im

2ϵℏ

M∑
k=1

(qk − qk−1)2
]
. (2.11)

The series of Gaussian q-integrals can be carried out one-by-one starting from q1 till we reach
integration over qM−1 which is the final integration that one has to perform. This will lead
to the following expression for Ḡfree

DBC(qf , t = 1; qi, t = 0)

Ḡfree
DBC(qf , t = 1; qi, t = 0) =

√
m

2πiℏe
im(qf−qi)2/2ℏ , (2.12)

where we have used Mϵ = 1, when taking the limit M → ∞ and ϵ→ 0. In the case interaction
term V (q) is present, then eq. (2.11) gets modified into the following

ḠDBC(qf , qi) = lim
M→∞,ϵ→0

(M−1∏
k=1

∫ ∞

−∞
dqk

)(
m

2πiϵℏ

)M/2

× exp
[
im

2ϵℏ

M∑
k=1

(qk − qk−1)2 − iϵ

ℏ
V (qk−1)

]
. (2.13)

This is nothing but a discretized version of the path integral given in eq. (2.1) where
q̇k = (qk − qk−1)/ϵ. However, for a generic potential V (q) this can’t be computed exactly. In
the case for linear potential V (q) = λq (which will also appear in quantum cosmology, as
we will later see), one can easily compute the above-discretized version of the path integral

– 7 –
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exactly. The end result after the q-integrations is the following,

ḠDBC(qf , qi) =
√

m

2πiℏ exp
[
i

ℏ

{
m(qf − qi)2

2 − λ(qf + qi)
2 − λ2

24m

}]
,

= Ḡfree
DBC(qf , qi) e−iλ{λ+12m(qf +qi)}/(24mℏ) . (2.14)

Notice the quadratic structure of the λ-dependent terms. The part coming from interaction
vanishes for two values of λ: λ = 0 (free theory) and λ = −12m(qf + qi) (interacting).

2.2 Neumann boundary condition at t = 0

The path integral for the Neumann boundary condition is easier to deal with when handled
in the Hamiltonian framework. The quantity we are interested in computing is

ḠNBC(qf , t = 1; pi, t = 0) = ⟨qf

∣∣e−iH/ℏ∣∣pi⟩ , (2.15)

where at the initial time, we fix the momentum. We note that the initial momentum state
can be written as the following

∣∣pi⟩ =
∫ ∞

−∞
dq0 e

ipiq0/ℏ ∣∣q0⟩ . (2.16)

This allows one to express ḠNBC as a Fourier transform of another transition amplitude

ḠNBC(qf , t = 1; pi, t = 0) =
∫ ∞

−∞
dq0 e

ipiq0/ℏ ⟨qf

∣∣e−iH/ℏ∣∣q0⟩
ḠDBC(qf ,t=1;q0,t=0)

. (2.17)

This shows that ḠNBC(qf , t = 1; pi, t = 0) is related to ḠDBC(qf , t = 1; q0, t = 0) by a Fourier
transform thereby implying that one can be obtained from another by transformation (if
ḠNBC(qf , t = 1; pi, t = 0) is known then ḠDBC(qf , t = 1; q0, t = 0) can be obtained from it by
an inverse Fourier transform). In the present situation as we have already worked out the
transition amplitude ḠDBC(qf , t = 1; q0, t = 0), the above Fourier transform can be used to
compute the expression for the Neumann transition amplitude. This is given by

Ḡfree
NBC(qf , t = 1; pi, t = 0) = ei(piqf−p2

i /2m)/ℏ . (2.18)

Similarly, one can exploit the above technique to work out the path integral for a particle
in the linear-potential with Neumann boundary condition at the initial time. Here if we
plug eq. (2.13) on the r.h.s. of eq. (2.17) and writing qi → q0, then on integration with
respect to q0 we get the ḠNBC(qf , pi).

ḠNBC(qf , pi) = exp
[
i

ℏ

{
piqf − p2

i

2m − λ (λ− 3pi + 6mqf )
6m

}]
,

= Ḡfree
NBC(qf , pi)× e−iλ(λ−3pi+6mqf)/(6mℏ) . (2.19)

The interaction dependent term is quadratic in λ and vanishes for two values of λ: λ = 0
and λ = 3(pi − 2mqf ).

– 8 –
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2.3 Robin boundary condition at t = 0

Now we are interested in computing the path integral for the case when Robin boundary
condition (RBC) is specified at the initial time t = 0. An RBC at t = 0 means that a given
linear combination of position and momentum is fixed at that time.

The boundary value problem we are interested in is the following

Bdf : q(t = 1) = qf and Bdi : pi + β qi = Pi , (2.20)

where qi ≡ q(t = 0) and pi ≡ p(t = 0). The path integral we are interested in computing is

ḠRBC(qf , t = 1; pi + β qi, t = 0) = ⟨qf

∣∣e−iH/ℏ∣∣pi + β qi⟩ . (2.21)

An interesting way to evaluate this is to do a canonical transformation and define a new
momentum variable P and position variable Q as

P (t) = p(t) + βq(t) and Q(t) = q(t) . (2.22)

Under this transformation, the commutation relation is preserved, i.e.,

[Q̂, P̂ ] = [q̂, P̂ ] = [q̂, p̂+ βq̂] = iℏ . (2.23)

This also means that the Jacobian of transformation is unity. However, in terms of new
variables, the Hamiltonian acquires a new form H(p̂, q̂) = H(P̂ − βQ̂, Q̂) ≡ Hβ(P̂ , Q̂) (where
subscript ‘β’ symbolizes β-dependence of the Hamiltonian). In terms of new variables, our
transition amplitude acquires the following form

ḠRBC(qf , t = 1; pi + β qi, t = 0) = ḠNBC(Qf , t = 1;Pi, t = 0) = ⟨Qf

∣∣e−iHβ/ℏ∣∣Pi⟩ . (2.24)

In terms of new variables the Robin boundary condition problem transforms into an NBC
problem. One can write the initial state as follows∣∣Pi⟩ =

∫ ∞

−∞
dQ0 e

iPiQ0/ℏ ∣∣Q0⟩ . (2.25)

This means that for the Robin boundary condition the path integral becomes the following

ḠRBC(qf , t = 1; pi + β qi, t = 0) =
∫ ∞

−∞
dQ0 e

iPiQ0/ℏ ⟨Qf

∣∣e−iHβ(P̂ ,Q̂)/ℏ∣∣Q0⟩

Ḡβ
DBC(Qf ,t=1;Q0,t=0)

. (2.26)

The object of interest here is ⟨Qf

∣∣e−iHβ(P̂ ,Q̂)/ℏ∣∣Q0⟩ which is the DBC path integral for the
transformed Hamiltonian Hβ(P,Q). It should be pointed out that this process of evaluating
RBC path integrals remain valid even for interacting theories, but to gain clarity on the
methods, we first consider free theory. The free Hamiltonian H free

β is given by

H free
β (P̂ , Q̂) = (P̂ − βQ̂)2

2m = P̂ 2

2m + β2Q̂2

2m − β

2m(Q̂P̂ + P̂ Q̂) , (2.27)

and in transformed variables the boundary conditions become

Q(t = 1) = Qf = qf and P (t = 0) = Pi . (2.28)
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Therefore, our original interests in computing path integral with RBC shifts to computing
path integral in new variables but with NBC. However, the Hamiltonian in new variables
is different which means that one needs to be careful while computing path integral via
time-slicing method. We are interested in computing something like eq. (2.8) with the
Hamiltonian given in eq. (2.27). Let us consider the following matrix

⟨Qk+1
∣∣Uk+1,k

∣∣Qk⟩ =
∫ ∞

−∞

dPk

2πℏ ⟨Qk+1
∣∣e−iϵHfree

β (P̂ ,Q̂)/ℏ∣∣Pk⟩⟨Pk

∣∣Qk⟩ ,

=
(

m

2πiϵℏ

)1/2
eβϵ/2m exp

[
i

ℏ

{
m(Qk+1 −Qk)2

2ϵ + βQk+1(Qk+1 −Qk)
}]
.

(2.29)

This means that

Ḡfree
RBC(Qf , t = 1;Pi, t = 0) = lim

M→∞,ϵ→0

(
M−1∏
k=0

∫ ∞

−∞
dQk

(
m

2πiϵℏ

)1/2
eβϵ/2m

)

×eiPiQ0/ℏeiβ(Q2
M−Q2

0)/(2ℏ)eim
∑M−1

k=0 (Qk+1−Qk)2/(2ϵℏ) . (2.30)

The term in the exponent β(Q2
M −Q2

0)/2 is obtained by noticing that β
∑

k Qk+1(Qk+1 −Qk)
is actually a discretized version of β

∫ 1
0 dtQQ̇, which can be written as a total derivative

(β/2)
∫ 1

0 dtdQ2/dt. This eventually gives a simplified expression for the Robin-boundary
condition transition amplitude.

Ḡfree
RBC(Qf , t = 1;Pi, t = 0) =

∫ ∞

−∞
dQ0 e

iPiQ0/ℏeiβ(Q2
M−Q2

0)/(2ℏ) Ḡfree
DBC[QM , t = 1;Q0, t = 0] .

(2.31)
This can be easily computed after plugging the value of Ḡfree

DBC from eq. (2.12) which gives

Ḡfree
RBC(Qf , t = 1;Pi, t = 0) =

√
m

m− β
exp

[
i

2ℏ

{
βQ2

f −
βmQ2

f + P 2
i − 2mPiQf

m− β

}]
, (2.32)

which in limit β → 0 reproduces the expression for the Neumann boundary condition result
given. in eq. (2.18).

In the case when interactions are present, the modified Hamiltonian gets amended by
potential term V (Q)

Hβ(P̂ , Q̂) = (P̂ − βQ̂)2

2m + V (Q̂) . (2.33)

Then following the same steps as above one arrives at an analogous expression for
⟨Qk+1

∣∣Uk+1,k

∣∣Qk⟩ which is given by

⟨Qk+1
∣∣Uk+1,k

∣∣Qk⟩ =
(

m

2πiϵℏ

)1/2
e

βϵ
2m exp

[
i

ℏ

{
m(Qk+1 −Qk)2

2ϵ

+βQk+1(Qk+1 −Qk)− ϵV (Qk)
}]

. (2.34)
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Once again the term β
∑

k Qk+1(Qk+1 − Qk) is discretized version of β
∫ 1

0 dtQQ̇ and can
be written as a total derivative (β/2)

∫ 1
0 dtdQ2/dt. Then the expression for the ḠRBC with

the potential is given by

ḠRBC(Qf , t = 1;Pi, t = 0)

= lim
M→∞,ϵ→0

(
M−1∏
k=0

∫ ∞

−∞
dQk

(
m

2πiϵℏ

)1/2
eβϵ/2m

)

× exp
[
i

ℏ

{
PiQ0 +

β(Q2
M −Q2

0)
2 + m

2ϵ

M−1∑
k=0

(Qk+1 −Qk)2 − ϵ
M−1∑
k=0

V (Qk)
}]

,

=
∫ ∞

−∞
dQ0 e

iPiQ0/ℏeiβ(Q2
M−Q2

0)/(2ℏ) ḠDBC[QM , t = 1;Q0, t = 0] . (2.35)

It should be highlighted that this last line is valid for any arbitrary potential V (Q). For the
case of linear potential one can plug the expression for ḠDBC[QM , t = 1;Q0, t = 0] from the
eq. (2.13) in the above to obtain ḠRBC(qf , t = 1; pi + β qi, t = 0)

ḠRBC(Qf , t = 1;Pi, t = 0) = Ḡfree
RBC(Qf , t = 1;Pi, t = 0)

× exp
[
iλ {βqf + (Pi − 2mqf )}

2(m− β)ℏ − iλ2(4m− β)
24m(m− β)ℏ

]
. (2.36)

Notice that in the limit β → 0 this RBC expression goes to the NBC expression given in
eq. (2.19). The full Robin path integral for interacting theory is a product of Robin path
integral for free theory and a coupling dependent piece.

The expression given in eq. (2.35) can be converted into a relation between ḠRBC(Qf , t =
1;Pi, t = 0) and ḠNBC(qf , t = 1; pi, t = 0) by exploiting the inverse Fourier transform. After
a bit of algebra and computation of Q0-Gaussian integral, it is seen that

ḠRBC(Qf , t = 1;Pi, t = 0) =

√√√√eiβQ2
f

iβ

∫ ∞

−∞

dp̃√
2πℏ

e
i

(Pi−p̃)2
2βℏ ḠNBC(qf , t = 1; p̃, t = 0) , (2.37)

where Pi = pi + β qi. This is an exact relation connecting the two quantities. In the following,
we will use this relation to compute the exact expression of gravitational path integral
in mini-superspace approximation for Robin BC and investigate it in detail to study the
implications of Robin BC on the evolution of the Universe.

3 Mini-superspace action

We start by considering the FLRW metric given in eq. (1.3) which is conformally-flat and
hence has a vanishing Weyl-tensor (Cµνρσ = 0). For a generic d-dimensional FLRW metric
the non-zero entries of the Riemann tensor are [51–53]

R0i0j = −
(
a′′

a
−
a′N ′

p

aNp

)
gij ,

Rijkl =
(
k

a2 + a′2

N2
pa

2

)
(gikgjl − gilgjk) . (3.1)
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Here gij is the spatial part of the FLRW metric while (′) denotes the derivative with respect
to tp. The non-zero components of Ricci-tensor are

R00 = −(D − 1)
(
a′′

a
−
a′N ′

p

aNp

)
,

Rij =
[
(D − 2)(kN2

p + a′2)
N2

pa
2 +

a′′Np − a′N ′
p

aN3
p

]
gij , (3.2)

while the Ricci-scalar for FLRW is given by

R = 2(D − 1)
[
a′′Np − a′N ′

p

aN3
p

+
(D − 2)(kN2

p + a′2)
2N2

pa
2

]
. (3.3)

Weyl-flat metrics also have a wonderful property that allows one to express the Riemann
tensor in terms of Ricci-tensor and Ricci scalar as follows

Rµνρσ = Rµρgνσ −Rµσgνρ +Rνσgµρ −Rνρgµσ

D − 2 − R(gµρgνσ − gµσgνρ)
(D − 1)(D − 2) . (3.4)

This furthermore helps one to express the square of Riemann-tensor as a linear combination
of Ricci-tensor-square and Ricci-scalar-square. This is given by

RµνρσR
µνρσ = 4

D − 2RµνR
µν − 2R2

(D − 1)(D − 2) . (3.5)

This identity is often used to simplify the expression for the Gauss-Bonnet gravity action
for the case of Weyl-flat metrics.∫

dDx
√
−g

(
RµνρσR

µνρσ − 4RµνR
µν +R2

)
= D − 3
D − 2

∫
dDx

√
−g

(
−4RµνR

µν + DR2

D − 1

)
. (3.6)

On plugging the FLRW metric of eq. (1.3) in the gravitational action stated in eq. (1.2), we
get an action for scale-factor a(tp) and lapse Np(tp) in D-dimensions

S[a,Np] =
VD−1
16πG

∫
dtp

[
aD−3

N2
p

{
(D − 1)(D − 2)kN3

p − 2Λa2N3
p − 2(D − 1)aa′N ′

p

+(D−1)(D−2)a′2Np + 2(D−1)Npaa
′′
}
+ (D−1)(D−2)(D−3)α

{
aD−5(D − 4)

N3
p

×(kN2
p + a′2)2 + 4aD−4 d

dtp

(
ka′

Np
+ a′3

3N3
p

)}]
. (3.7)

VD−1 here refers to the volume of the D−1 dimensional spatial hyper-surface which is given by,

VD−1 = Γ(1/2)
Γ(D/2)

(
π

k

)(D−1)/2
. (3.8)
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In four spacetime dimensions (D = 4) the terms proportional to α (Gauss-Bonnet coupling
parameter) becomes a total time derivative. In D = 4 the mini-superspace gravitational
action then becomes the following

S[a,Np] =
V3

16πG

∫
dtp

[
6kaNp−2Λa3Np−

6a2a′N ′
p

Np
+6aa′2

Np
+6a′′a2

Np
+24α d

dtp

(
ka′

Np
+ a′3

3N3
p

)]
.

(3.9)
At this point, one can introduce rescaling of lapse Np and scale factor to bring out a more
appealing form of the mini-superspace action by doing the following transformation

Np(tp)dtp = N(t)
a(t) dt , q(t) = a2(t) . (3.10)

This co-ordinate transformation re-expresses our original FLRW metric in eq. (1.3) in a
different form.

ds2 = − N2

q(t)dt
2 + q(t)

[
dr2

1− kr2 + r2dΩ2
D−2

]
. (3.11)

Notice also that in the new coordinate frame, the new ‘time’ is denoted by t. Under this
transformation, the original gravitational action in D = 4 given in eq. (3.9) acquires the
following simple form

S[q,N ] = V3
16πG

∫ 1

0
dt
[
(6k − 2Λq)N + 3q̇2

2N + 3q ddt

(
q̇

N

)
+ 24α d

dt

(
kq̇

2N + q̇3

24N3

)]
. (3.12)

Here (̇) represent time t derivative. Note that the GB-term is a total time derivative.
Integration by parts of the terms in the action re-expresses the action in a more recognizable
form along with some surface terms.

S[q,N ] = V3
16πG

∫ 1

0
dt
[
(6k − 2Λq)N − 3q̇2

2N

]
+ V3

16πG

[
3qf q̇f

N
− 3qiq̇i

N

+24α
(
kq̇f

2N + q̇f
3

24N3 − kq̇i

2N − q̇i
3

24N3

)]
. (3.13)

The surface terms consist of two parts: one coming from EH-part of gravitational action
while the other is from GB sector. The bulk term is like an action of a one-particle system in
a linear potential. From now onwards we will work with the convention that V3 = 8πG, and
in the rest of the paper we will study the path integral of this action.

4 Action variation and boundary terms

We start by constructing the variational problem by considering the variation of the action
in eq. (3.12) with respect to q(t). This will not only yield terms that will eventually lead
to the equation of motion but also generate a collection of boundary terms.
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In the rest of the paper, we will work with the ADM gauge Ṅ = 0, which implies
setting N(t) = Nc (constant). To set up the variational problem consistently and avoid
missing of any terms we write

q(t) = q̄(t) + ϵδq(t) , (4.1)

where q̄(t) is some background q(t) and δq(t) is the fluctuation around this. The parameter ϵ
is used to keep track of the order of fluctuation terms. On plugging this in the action given
in eq. (3.12) and on expanding it to first order in ϵ, we notice that the terms proportional
to ϵ are given by following

δS = ϵ

2

∫ 1

0
dt
[(

−2ΛNc +
3¨̄q
Nc

)
δq + 3

Nc

d
dt (q̄δq̇) + 24α d

dt

{(
k

2Nc
+

˙̄q2

8N3
c

)
δq̇

}]
. (4.2)

We also notice that in the above expression, there are two total time-derivative pieces which
contribute at the boundaries. These boundary pieces need to be canceled appropriately by
supplementing the action with suitable surface terms in order to have a consistent boundary
value problem for a particular choice of boundary condition. The terms proportional to δq
on the other hand will lead to the equation of motion if one demands that the full expression
multiplying it vanishes. This gives the dynamical equation obeyed by q̄(t)

¨̄q = 2
3ΛN

2
c . (4.3)

This process of construing surface action is based on analyzing the behavior of fluctuations
around the classical trajectory (on-shell geometries), and may sometime miss to properly
capture the features of topological effects as by definition topological terms don’t play a role
in the equation of motion. This will become more clear as we proceed further in the paper.

The second-order ODE given in eq. (4.3) is easy to solve and its general solution is given by

q̄(t) = ΛN2
c

3 t2 + c1t+ c2 . (4.4)

The constants c1,2 are determined by requiring the solution to satisfy the boundary conditions.
The total-derivative terms in eq. (4.2) lead to a collection of boundary terms

Sbdy = ϵ

2

[
3
Nc

(q̄fδq̇f − q̄iδq̇i) + 24α
{(

kδq̇f

2Nc
+

˙̄q2
fδq̇f

8N3
c

)
−
(
kδq̇i

2Nc
+

˙̄q2
i δq̇i

8N3
c

)}]
, (4.5)

where
q̄i = q̄(t = 0) , q̄f = q̄(t = 1) , ˙̄qi = ˙̄q(t = 0) , ˙̄qf = ˙̄q(t = 1) . (4.6)

Note that the boundary terms are function of q̄(i,f) and ˙̄q(i,f) which are on-shell quantities.
These are different from q(i,f) and q̇(i,f) which also includes boundary values of the off-
shell trajectories. The bulk action given in eq. (3.13) is used to determine the momentum
conjugate to the field q(t)

π = ∂L
∂q̇

= − 3q̇
2Nc

. (4.7)
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In terms of conjugate momentum the boundary terms can be expressed as follows

Sbdy = −ϵ
[
(q̄fδπf − q̄iδπi) + 4α

{(
kδπf +

π̄2
fδπf

9

)
−
(
kδπi +

π̄2
i δπi

9

)}]
. (4.8)

For the consistent variational problem these terms either have to be appropriately canceled
by supplementing the original action given in eq. (3.12) with suitable surface terms or they
vanish identically for the choice of boundary conditions.

In the following, we will always impose Dirichlet boundary condition at t = 1, while at
t = 0 we will either have Neumann or Robin boundary conditions (as imposing Dirichlet at
t = 0 leads to unsuppressed perturbations, so it won’t be addressed [20, 21]). However, as
the path integral in two cases (NBC and RBC) are related by eq. (2.37) therefore one can
first compute the path integral in NBC case and use the relation in eq. (2.37) to compute
the results for the Robin BC.

4.1 Neumann Boundary condition (NBC) at t = 0

Imposing Neumann boundary condition [25, 33] at t = 0 and a Dirichlet boundary condition
at t = 1 gives a consistent variational problem. This means that the initial momentum πi

and final position qf of all the trajectories are fixed. This will mean

πi & qf = fixed ⇒ δπi = 0 & δqf = 0 . (4.9)

Such a boundary condition imposition also has an additional merit that they lead to a
well-behaved path integral where the perturbations are suppressed [2, 30–32]. For this case,
the boundary terms given in eq. (4.8) arising during the variation of action will reduce
to the following

Sbdy

∣∣∣∣
NBC

= −ϵ
[
q̄fδπf + 4α

(
kδπf +

π̄2
fδπf

9

)]
. (4.10)

These residual boundary terms which don’t vanish after imposing boundary condition need
to be canceled by a suitable addition of surface terms so that the variational problem is
consistent. It is seen that if one adds the following terms at the boundary

Ssurface

∣∣∣∣
NBC

= 1
2

[
−3qf q̇f

Nc
− 24α

(
kq̇f

2Nc
+

q̇3
f

24N3
c

)]
= qfπf + 4α

(
kπf +

π3
f

27

)
, (4.11)

then its variation (as suggested in eq. (4.1) will precisely cancel the terms given in eq. (4.10).
The first term in eq. (4.11) is a Gibbon-Hawking-York (GHY)-term and the second one is
a Chern-Simon like term at the final boundary.

The constants c1,2 that appear in the solution to the equation of motion eq. (4.4) can
now be determined for the choice of boundary conditions. This will imply

q̄(t) = ΛN2
c

3 (t2 − 1)− 2Ncπi

3 (t− 1) + qf , (4.12)
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where ‘bar’ over q is added as it is the solution to equation of motion. In this setting at
t = 0, we notice that the on-shell value of qi is given by

q̄i = qf + 2Ncπi

3 − ΛN2
c

3 . (4.13)

For off-shell trajectories, qi can be anything as that is not fixed at t = 0. The surface terms
obtained in eq. (4.11) when added to the action in eq. (3.13) leads to the full action of
the system. This is given by

Stot[q,Nc] =
1
2

∫ 1

0
dt
[
(6k − 2Λq)Nc −

3q̇2

2Nc

]
+ qiπi + 4α

(
kπi +

π3
i

27

)
, (4.14)

Furthermore, on substituting the solution to the equation of motion eq. (4.12) and using
eq. (4.13) in the above, we will obtain the on-shell action which is given by

Son−shell
tot [q̄, Nc] =

Λ2

9 N
3
c − Λπi

3 N2
c +

(
3k − Λqf + π2

i

3

)
Nc + qfπi + 4α

(
kπi +

π3
i

27

)
. (4.15)

This is also the action for the lapse Nc. Compare this action with the action computed when
Dirichlet boundary condition is imposed at t = 0 [2, 20, 21, 24, 30–32] and notice the lack
of singularity at Nc = 0. The lack of singularity at Nc = 0 can be physically understood as
in the NBC path integral we sum over all possible transitions from qi (fixed πi) to fixed qf .
This will also include the transition from qf to qf which can occur instantaneously i.e. with
Nc = 0. Thereby implying that there is nothing singular happening at Nc = 0.

4.2 Robin boundary condition (RBC) at t = 0

We now consider the situation when we have Robin boundary condition at t = 0 and Dirichlet
boundary condition imposed at t = 1. An example of imposing Robin BC is fixing the Hubble
parameter at a given time in the cosmological evolution. This boundary value problem poses
a consistent variational problem. In this case, we fix a linear combination of the initial
scale factor qi and the corresponding initial conjugate momentum πi, while the final scale
factor qf is fixed at t = 1. This means

πi + βqi = Pi = fixed & qf = fixed ⇒ δPi = 0 & δqf = 0 . (4.16)

For these boundary conditions, it has also been noted that perturbations are suppressed
and in path integral their effects are bounded [2, 30–32]. For the boundary conditions
mentioned in eq. (4.16), the boundary terms generated during the variation of action given
in eq. (4.8) reduces to the following

Sbdy

∣∣∣∣
RBC

= −ϵ
[
q̄fδπf +βq̄iδqi+4α

{
kδπf +

π̄2
fδπf

9 + β

(
kδqi +

(P̄i − βq̄i)2δqi

9

)}]
. (4.17)

For the consistent variational problem, these terms need to be removed by supplementing
the original gravity action with suitable surface terms. The additional suitable surface terms

– 16 –



J
H
E
P
0
1
(
2
0
2
4
)
1
2
4

when varied will precisely cancel the above terms leading to a consistent variational problem.
It is seen that if one adds the following terms at the boundary

Ssurface

∣∣∣∣
RBC

= qfπf + 4α
(
kπf +

π3
f

27

)
+ β

2 (q
2
f + q2

i )

+4αβ
[
kqi +

qi

9

(
P 2

i − βPiqi +
β2q2

i

3

)]
, (4.18)

Here the first two terms are the same as for the NBC case, while the rest of the terms
arise due to the imposition of RBC at t = 0. In the limit of β → 0 these terms will vanish
and we get back the surface terms for the NBC which gives us a check of consistency. The
variation of term βq2

f/2 is although zero (due to imposition of DBC at t = 1), however
its addition facilitates comparison with the results given in section 2.3. The surface term
βq2

i /2 in eq. (4.18) comes due to the RBC at t = 0 from the Einstein-Hilbert part of the
gravitational action and was known from before [33], The term proportional to αβ is new
and corresponds to surface terms that need to be added for the Gauss-Bonnet gravity part.

The surface terms obtained in eq. (4.18) when added to the action in eq. (3.13) leads
to the full action of the system. This is given by

Stot[q,Nc] =
1
2

∫ 1

0
dt
[
(6k − 2Λq)Nc −

3q̇2

2Nc

]
+ qiPi +

β

2 (q
2
f − q2

i ) + 4α
(
kPi +

P 3
i

27

)
. (4.19)

Comparing this action with the action for the NBC case given in eq. (4.14), we get in
the limit β → 0

Stot

∣∣∣∣
RBC

β→0===⇒ Stot

∣∣∣∣
NBC

, (4.20)

as Pi → πi. It should be mentioned that these boundary terms (which are called canonical
boundary terms) don’t have a covariant expression (at least so far, it is not known) [30, 33].
As gravity is a covariant theory, one would expect the boundary action to be correspondingly
covariant. Indeed there exist other covariant boundary terms in literature satisfying the
variational problem, which have been studied in [26, 37, 58]. These have been investigated in
the mini-superspace path integral under certain situations in [30]. However, the canonical
terms when viewed from the quantum mechanical perspective [33] have an interpretation of
a complex coherent state, which becomes a plane wave in the limit β → 0. Do note that
such boundary terms also arise when one studies the one-dimensional quantum mechanical
problem of a particle in an arbitrary potential with RBC as shown in section 2.3. We will
discuss more on the choice of β and the usefulness of these boundary terms in section 6.3.

The constants c1,2 that appear in the solution to the equation of motion given in eq. (4.4)
can now be determined for the case of RBC. This will imply

q̄(t) = ΛN2
c

3 t2 + Pi

β
+
(
1 + 3

2βNc

)−1 (
t+ 3

2βNc

)(
qf − Pi

β
− ΛN2

c

3

)
, (4.21)

where ‘bar’ over q indicates the solution of the equation of motion. Setting t = 0 in this
gives the on-shell value of the qi which is given by

q̄i =
Pi

β
+
( 3
3 + 2βNc

)(
qf − Pi

β
− ΛN2

c

3

)
. (4.22)
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Off-shell qi could be anything as it is not fixed by the boundary condition imposed in RBC.
The on-shell action can be computed by substituting the solution of the equation of motion
and q̄i into the action for RBC given in eq. (4.19). This is given by

Son−shell
tot [q̄, Nc] =

1
18(3 + 2Ncβ)

[
βΛ2N4

c + 6Λ2N3
c +N2

c {108βk − 18Λ(Pi + βqf )}

+18Nc

{
9k + P 2

i + qf

(
β2qf − 3Λ

)}
+ 54Piqf

]
+ 4α

(
kPi +

P 3
i

27

)
. (4.23)

This is the action for the lapse Nc in the case of RBC at t = 0 and DBC at t = 1. In the
limit β → 0, this reduces to the NBC on-shell action given in eq. (4.15).

5 Transition amplitude

We now move forward to compute the transition amplitude from one 3-geometry to another
(for both NBC and RBC case). The quantity that is of relevance here in the mini-superspace
approximation is as follows (see [20, 48] for the Euclidean gravitational path integral in
mini-superspace approximation)

G[Bdf ,Bdi] =
∫ ∞

0+
dNc

∫ Bdf

Bdi

Dq(t) exp
(
i

ℏ
Stot[q,Nc]

)
, (5.1)

where Bdi and Bdf are the initial and final boundary configurations respectively, and Stot
refers to the mini-superspace action, which for the NBC case is given by eq. (4.14). We will
first compute the expression for GNBC[Bdf ,Bdi] using eq. (5.1) and (2.19). We will then use
the relation given in eq. (2.37) to compute the expression for GRBC[Bdf ,Bdi].

5.1 NBC at t = 0

To compute the expression for the transition amplitude in the case of Neumann boundary
condition we make use of the results given in. eq. (2.19). However, to make this connection we
first compare the one-particle action written in eq. (2.2) with the mini-superspace action for
the NBC case given in eq. (4.14). This shows that the following substitution needs to be made

m→ − 3
2Nc

, V (q) = λq → ΛNcq ⇒ λ→ ΛNc , pi → πi . (5.2)

At this point, we are interested in computing

∫ Bdf

Bdi

Dq(t) exp
(
i

ℏ
Stot[q,Nc]

)
=exp

[
i

ℏ

{
3kNc + 4α

(
kπi +

π3
i

27

)}]

×
∫ Bdf

Bdi

Dq(t) exp
[
i

2ℏ

∫ 1

0
dt
{
−2ΛqNc −

3q̇2

2Nc

}
+ i

ℏ
qiπi

]
.

(5.3)

This second line can be computed by exploiting the results given in eq. (2.19) and making
use of the substitutions mentioned in eq. (5.2). Note that the presence of term qiπi with an
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integration over the initial qi leads to Fourier transform as expected in the NBC case. This
gives the following expression for the Neumann boundary condition∫ Bdf

Bdi

Dq(t) exp
(
i

ℏ
Stot[q,Nc]

)
= exp

(
i

ℏ
Son−shell

tot [q̄, Nc]
)

= exp
[
i

ℏ

{
3kNc + 4α

(
kπi +

π3
i

27

)}]
ḠNBC[qf , t = 1;πi, t = 0] , (5.4)

where Son−shell
tot [q̄, Nc] is given in eq. (4.15) and ḠNBC[qf , t = 1;πi, t = 0] is. given by

ḠNBC[qf , t = 1;πi, t = 0] = exp
[
i

ℏ

{
Λ2N3

c

9 − ΛπiN
2
c

3 +
(
π2

i

3 − Λqf

)
Nc + πiqf

}]
. (5.5)

Notice that eq. (5.4) this differs from the result obtained in [3] by a numerical prefactor.
This difference in normalization is attributed to different styles of doing computation of path
integral involving zeta-functions. The process of computing path integral via time-slicing
is more reliable and correctly fixes the normalization.

Note Son−shell
tot [q̄, Nc] doesn’t become singular at Nc = 0 and computation of the path

integral over q(t) doesn’t give rise to additional functional dependence on Nc which can be
singular. This allows us to extend the limits of Nc-integration all the way upto −∞. This
means that the transition amplitude is given by

GNBC[Bdf ,Bdi] =
1
2

∫ ∞

−∞
dNc exp

(
i

ℏ
Son−shell

tot [q̄, Nc]
)
, (5.6)

where Son−shell
tot [q̄, Nc] is given in eq. (4.15).

To deal with the lapse integration in the NBC case we first make a change of variables.
This is done by shifting the lapse Nc by a constant

Nc = N̄ + πi

Λ ⇒ dNc → dN̄ . (5.7)

This change of variable correspondingly implies that the action for the lapse Son−shell
tot [q̄, Nc]

becomes the following

Son−shell
tot [q̄, N̄ ] = Λ2

9 N̄
3 + (3k − Λqf )N̄ +

( 3
Λ + 4α

)(
kπi +

π3
i

27

)
. (5.8)

An interesting outcome of this is that after the change of variables the πi (initial momentum)
dependence only appears in the constant term. After the change of variables, the transition
amplitude is given by

G[Bdf ,Bdi] =
1
2 exp

[
i

ℏ

( 3
Λ + 4α

)(
kπi +

π3
i

27

)]∫ ∞

−∞
dN̄ exp

[
i

ℏ

{
Λ2

9 N̄
3 + (3k − Λqf )N̄

}]
=Ψ1(πi)Ψ2(qf ) , (5.9)

where

Ψ1(πi) =
1
2 exp

[
i

ℏ

( 3
Λ + 4α

)(
kπi +

π3
i

27

)]
, (5.10)

Ψ2(qf ) =
∫ ∞

−∞
dN̄ exp

[
i

ℏ

{
Λ2

9 N̄
3 + (3k − Λqf )N̄

}]
. (5.11)
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The transition amplitude for the Neumann BC at t = 0 and Dirichlet BC at the t = 1 is a
product of two parts: Ψ1(πi)Ψ2(qf ). Ψ1(πi) is entirely dependent on initial momentum πi

and other Ψ2(qf ) is function of qf is related to the final size of the Universe. The dependence
on two boundaries gets separated, a factorization also noticed in [31] (and also in [3]) where
the authors studied the Wheeler-DeWitt (WdW) equation in mini-superspace approximation
of Einstein-Hilbert gravity.

5.2 RBC at t = 0

We now come to the task of computing eq. (5.1) for the case of RBC at t = 0, where Stot[q,Nc]
for the RBC case is given in eq. (4.19). This mini-superspace RBC action can be compared
with the quantum mechanical RBC problem discussed in subsection 2.3. This comparison
leads to the substitution mentioned in eq. (5.2). At this point, we are interested in computing∫ Bdf

Bdi

Dq(t) exp
(
i

ℏ
Stot[q,Nc]

)
= exp

[
i

ℏ

{
3kNc + 4α

(
kPi +

P 3
i

27

)}]

×
∫ Bdf

Bdi

Dq(t) exp
[
i

2ℏ

∫ 1

0
dt
{
−2ΛqNc −

3q̇2

2Nc

}
+ i

ℏ
qiPi +

β

2ℏ(q
2
f − q2

i )
]

= exp
[
i

ℏ

{
3kNc + 4α

(
kPi +

P 3
i

27

)}]
ḠRBC[qf , t = 1;Pi, t = 0] , (5.12)

where

ḠRBC[qf , t = 1;Pi, t = 0] = N
∫ Bdf

Bdi

Dq(t) exp
[
i

2ℏ

∫ 1

0
dt
{
−2ΛqNc −

3q̇2

2Nc

}

+ i

ℏ
qiPi +

β(q2
f − q2

i )
2ℏ

]
. (5.13)

It is noted that the expression for ḠRBC[qf , t = 1;Pi, t = 0] is exactly referring to the RBC
path integral in terms of DBC path integral with the substitution given in eq. (5.2). Except
that N has been added to get rid of eiβq2

f /2ℏ due to requirement of classicality, where in a WKB
sense, the amplitude is expected to become more classical as the Universe expands [20, 30].
However, using eq. (2.37) one can express ḠRBC[qf , t = 1;Pi, t = 0] in terms of ḠNBC via
the integral transform. This means we have∫ Bdf

Bdi

Dq(t) exp
(
i

ℏ
Stot[q,Nc]

)
= exp

[
i

ℏ

{
3kNc + 4α

(
kPi +

P 3
i

27

)}]
(5.14)

×
(2πℏ
iβ

)1/2∫ ∞

−∞

dp̃
2πℏe

i(Pi−p̃)2/2ℏβḠNBC[qf , t = 1; p̃, t = 0] .

The full path integral in the RBC case also involves integration over lapse Nc with limits
(0,∞). This means

G[Bdf ,Bdi] =
(2πℏ
iβ

)1/2
exp

[
4iα
ℏ

(
kPi +

P 3
i

27

)]∫ ∞

−∞

dp̃
2πℏe

i(Pi−p̃)2/2ℏβ

×
∫ ∞

0+
dNc exp

(3kNci

ℏ

)
ḠNBC[qf , t = 1; p̃, t = 0] . (5.15)
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As the Nc integrand is not singular at Nc = 0 so one can extend the integration limit all the
way up to −∞. The Nc-integration thereafter becomes similar to the integral studied in the
case of NBC except the lack of Gauss-Bonnet term dependent on α. This means one can write∫ ∞

0+
dNc exp

(3kNci

ℏ

)
ḠNBC[qf , t = 1; p̃, t = 0] = Ψ1(p̃)

∣∣∣∣
α=0

×Ψ2(qf ) , (5.16)

where Ψ1 and Ψ2 are given in eq. (5.10) and (5.11) respectively. Here again, as the integrand
doesn’t have Nc = 0 singularity, the integral can be extended all to way to −∞ and including
an extra 1/2 factor which is absorbed in the definition of Ψ1. The leftover integral is the
integral over p̃. This integral can be cast into a more familiar form by re-definition of p̃ as

p̃→ p̄− 3Λ
2β . (5.17)

Such a transformation allows us to rewrite the p̃ integral as an Airy integral. This is given by∫ ∞

−∞

dp̃
2πℏe

i(Pi−p̃)2/2ℏβΨ1(p̃)
∣∣∣∣
α=0

= 1
2 exp

[
i
(
−18kβ2 + 2P 2

i β
2 + 6PiβΛ + 3Λ2)

4ℏβ3

]
Φ(Pi, β) .

(5.18)
where

Φ(Pi, β) =
∫ ∞

−∞

dp̄
2πℏ exp

[
i

ℏ

{
p̄3

9Λ +
(3k
Λ − Pi

β
− 3Λ

4β2

)
p̄

}]
. (5.19)

Putting all the pieces together give

G[Bdf ,Bdi] =
1
2

(2πℏ
iβ

)1/2
exp

[
4iα
ℏ

(
kPi +

P 3
i

27

)]
exp

[
i
(
−18kβ2 + 2P 2

i β
2 + 6PiβΛ + 3Λ2)

4ℏβ3

]
×Φ(Pi, β) Ψ2(qf ) . (5.20)

It is noticed that for the RBC case too the transition amplitude gets factorized in two
parts: one dependent on the final boundary and one dependent on the initial boundary.
In the next sub-section, we will compute these integrals in terms of Airy functions. It is
expected that the RBC transition amplitude will be a product of two Airy functions along
with exponential prefactors.

In order to see the β → 0 limit clearly it is more cleaner to write the β-dependent
terms in eq. (5.14) as follows(2πℏ

iβ

)1/2
ei(Pi−p̃)2/2ℏβ =

∫ ∞

−∞
dξ exp

[
− iβ2ℏξ

2 + i

ℏ
(Pi − p̃)ξ

]
. (5.21)

In this way, the limit β → 0 gives a δ-function δ(Pi − p̃). This limit is more harder to
see from the end result of transition amplitude as one has to work with asymptotic forms
of the Airy-functions.

5.3 Airy function

In this sub-section, we will compute the integrals Ψ2(qf ) and Φ(Pi, β) given in eq. (5.11)
and (5.19) respectively. It should be noted that these functions can be identified with the
Airy-integrals. These integrals are sensitive to the contour of integration. In the case of
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Airy-integrals, the regions of convergence are within the following phase angles θ ≡ arg(N̄):
0 ≤ θ ≤ π/3 (region 1), 2π/3 ≤ θ ≤ π (region 0), and 4π/3 ≤ θ ≤ 5π/3 (region 2). One
can define the following contours: C0 the contour running from region 0 to region 1, C1 the
contour running from region 1 to region 2, and C2 the contour running from region 2 to region
0. By making use of the above contours of integration one can define the following integrals

Ai(z) = 1
2π

∫
C0

dx exp
[
i

(
x3

3 + zx

)]
, (5.22)

Bi(z) = i

2π

∫
C2−C1

dx exp
[
i

(
x3

3 + zx

)]
. (5.23)

Ψ2(qf ) can be computed as discussed in detail in the paper [3]. It is given by

Ψ2(qf ) =
√
3
( 3ℏ
Λ2

)1/3
Ai

(√
3

ℏΛ

)2/3

(3k − Λqf )

 , (5.24)

The computation for Φ(Pi, β) can be done in an analogous manner. It is given by,

Φ(Pi, β) =
(3Λ
ℏ2

)1/3
Ai

[(3Λ
ℏ2

)1/3 (3k
Λ − Pi

β
− 3Λ

4β2

)]
. (5.25)

Putting these expressions together gives the exact expression for the transition amplitude
for the NBC and RBC case. These are given by,

GNBC[Bdi,Bdf ] =
√
3
2

( 3ℏ
Λ2

) 1
3
exp

[
i

ℏ

( 3
Λ + 4α

)(
kπi +

π3
i

27

)]

×Ai
[( 3

ℏ2Λ2

) 1
3
(3k − Λqf )

]
, (5.26)

GRBC[Bdi,Bdf ] =
√

3πℏ
2iβ exp

[
4iα
ℏ

(
kPi +

P 3
i

27

)]
exp

[
i
(
−18kβ2 + 2P 2

i β
2 + 6PiβΛ + 3Λ2)

4ℏβ3

]

×
( 9
Λℏ

)1
3
Ai

[( 3
ℏ2Λ2

)1
3
(3k − Λqf )

]
Ai

[(3Λ
ℏ2

)1
3
(3k
Λ − Pi

β
− 3Λ

4β2

)]
. (5.27)

This is an exact result for the case when NBC and RBC are imposed at initial time t =
0 respectively. Notice also the correction coming from the Gauss-Bonnet sector of the
gravitational action which appears as an exponential prefactor. It is also crucial to notice
that this GB correction doesn’t appear in the Airy functions which only depend on the
boundary conditions.

6 ℏ → 0 limit

In this section, we will study the ℏ → 0 limit of the exact wave-function computed in the
previous section. It is relevant to look at this as in the ℏ → 0 limit the exact computation
should reproduce known features and should agree with the results coming from saddle-point
approximation which will be discussed in more detail in section 7. The ℏ → 0 limit also
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highlights the configuration space which gives the dominant contribution in the path integral.
This ultimately translates into preferable values for the initial boundary parameters. One
can then do the saddle point analysis for these values of initial parameters which gives the
dominant contribution in the path integral.

We will start by analyzing the nature of the contribution coming from the Gauss-Bonnet
sector and the constraints that come from it in the limit ℏ → 0.

6.1 Gauss-Bonnet contribution

The first thing we will focus on is the exponential prefactor that includes the effects coming
from the Gauss-Bonnet sector. This prefactor is the same in both NBC and RBC cases
(Pi → πi in limit β → 0). This prefactor is the following

exp
[
4iα
ℏ

(
kPi +

P 3
i

27

)]
= eiA(Pi)/ℏ , (6.1)

where A(Pi) is given by

A(Pi) = 4α
(
kPi +

P 3
i

27

)
. (6.2)

In the limit ℏ → 0 the dominant contribution comes from configuration which extremizes
A(Pi), which corresponds to the

A′(Pi) = 0 ⇒ Pi = ±3i
√
k . (6.3)

In the limit β → 0 this corresponds to πi = ±3i
√
k! Note that πi = −3i

√
k also corresponds

to the required value of the initial momentum for regular geometries with well-behaved
perturbations in the case of Hartle-Hawking (HH) wave-function for the NBC [3] (3i

√
k

corresponds to Vilenkin, where perturbations are unstable). These two signs of Pi (or, πi)
correspond to two different orientations of wick rotations.

It should be emphasised that the ℏ → 0 limit imposes classicalization when the quantum
system starts behaving classically. This same end state where the system behaves like a
classical system can also be achieved when ℏ is not small, but the Gauss-Bonnet coupling is
large. In this situation, when the Gauss-Bonnet coupling α is large, the dominant contribution
comes from the configuration whose Pi lies around Pi = ±3i

√
k. However, this situation

is entirely quantum in nature, as ℏ is not small while the system acquires the end state
of “classicality” in the limit of large Gauss-Bonnet coupling. This can happen in the very
early stages of the Universe.

Let us consider the rotated Pi = iy, which is like considering an Euclideanised version
action A. Then we have the Euclidean action AE(y) given by

AE(y) = 4α
(
ky − y3

27

)
, eiA(Pi)/ℏ ⇒ e−AE(y)/ℏ . (6.4)

On extremization of Euclidean action AE(y) it is seen that for α > 0 the point y = −3
√
k

corresponds to a stable saddle point and leads to an exponential with a positive argument
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Figure 1. Plot of Euclidean action AE given in eq. (6.4) vs y. The two saddle points are depicted by
green and red squares. For α > 0: green one corresponds to Pi = −3i

√
k (stable) while the red one

corresponds to Pi = 3i
√
k (unstable). Interestingly, P = −3i

√
k is also the value for which geometry

become regularised at t = 0 and perturbations are well-behaved.

(Hartle-Hawking) while y = 3
√
k correspond to unstable saddle point leading to exponential

with a negative argument (Vilenkin Tunneling). The plot of AE(y) vs y is shown in figure 1.
Coincidently, as was also mentioned in [3, 30] Pi = −3i

√
k also correspond to initial condition

for which geometry becomes regularised at t = 0 and perturbations are well-behaved within
a certain regime of β, as discussed in subsequent sections.

6.2 Choice of β

The next question that one needs to address is that for the given Pi = −3i
√
k (as required

by stability), what are the allowed possibilities for the β in the case of RBC transition
amplitude. This issue doesn’t arise in the case of NBC as β = 0 for the NBC transition
amplitude. To analyze the constraints (allowed values) that get imposed on β from the
ℏ → 0 limit, it is sufficient to study the nature of RBC wave-function at t = 0 for the
fixed allowed value of Pi = −3i

√
k.

We start by considering the ℏ → 0 limit of Φ(Pi, β) which for Pi = −3i
√
k can be

written as

Φ(−3i
√
k, β) = (3Λℏ)1/3Ai

[(
9
√
Λ

ℏ

)2/3
√ k

Λ + i
√
Λ

2β

2]
. (6.5)

For imaginary β the argument of Airy-function is always positive for Λ > 0. This observation
allows us to obtain easily the ℏ → 0 limit by exploiting the asymptotic structure of the
Airy-functions with positive arguments

Φ
(
−3i

√
k, β

)∣∣∣∣
ℏ→0

∼ (3Λℏ)
1
3 exp

[
−6

√
Λ

ℏ

∣∣∣∣∣
√
k

Λ + i
√
Λ

2β

∣∣∣∣∣
3 ]

= (3Λℏ)
1
3 exp

[
−B1(β)

ℏ

]
, (6.6)

where

B1(β) = 6
√
Λ
∣∣∣∣∣
√
k

Λ + i
√
Λ

2β

∣∣∣∣∣
3

, (6.7)
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and the ∼ sign implies that we are ignoring the numerical prefactor arising from the asymptotic
form of Airy’s function, which is not relevant for the following discussion. From the asymptotic
structure, one could see that in limit ℏ → 0 the dominant contribution comes from those
configurations for which B′

1(β) = 0. This means we have

B′
1(β) = 18

√
Λ

√ k

Λ + i
√
Λ

2β

2(
−i

√
Λ

2β2

)
= 0 . (6.8)

This means that the dominant contribution comes from configuration when β lies around
βdom = −iΛ/2

√
k (we don’t consider the β → ∞ case).

We next consider the exponential prefactor independent of α for Pi = −3i
√
k. This

means that we have to investigate

exp

 i
(
3Λ2 − 18iβΛ

√
k − 36kβ2

)
4ℏβ3

 = exp
(
iB2(β)

ℏ

)
, (6.9)

where

B2(β) =

(
3Λ2 − 18iβΛ

√
k − 36kβ2

)
4β3 . (6.10)

Once again in the ℏ → 0 limit the dominant contribution comes from those configurations
for which β lies around the extrema given by B′

2(β) = 0. This given βdom = −iΛ/2
√
k same

as before. This eventually give rise to two cases: iβ < iβdom and iβ > iβdom (note β and
βdom are imaginary). To study these cases carefully let us write

β = − iΛx
2
√
k
= βdomx where x ≥ 0 . (6.11)

This gives

B1(β) = 6k
3/2

Λ

∣∣∣∣1− 1
x

∣∣∣∣3 , B2(β) = −6ik3/2 (3x2 − 3x+ 1
)

x3Λ . (6.12)

At this point, it is worthwhile to note that according to the above analysis, purely (negative)
imaginary initial momentum automatically enforces that the physically interesting range
of β has to lie also in the purely (negative) imaginary direction. Imaginary β reminds the
quantum nature of the initial condition. In the subsequent analysis, we will identify the
specific sub-region that is physically relevant to our paper. Now, we consider cases when
x ≤ 1 and x > 1, respectively.

6.2.1 0 ≤ x ≤ 1

In this case, we will have

exp
(
−B1(β)

ℏ

)
exp

(
iB2(β)

ℏ

)
= exp

[6k3/2

ℏΛ

]
. (6.13)
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This can be combined with the exponential prefactor coming from the Gauss-Bonnet sector
of gravity (α-dependent part) which for Pi = −3i

√
k is given by exp(8k3/2α/ℏ). Combining

the two exponential prefactors gives the following

exp
(
6k3/2

ℏΛ̄

)
where, Λ̄ = Λ/ (1 + 4αΛ/3) . (6.14)

This is precisely the Hartle-Hawking state with positive weighting. We note that the Gauss-
Bonnet modification doesn’t prevent the no-boundary Universe solution to exist whose
contribution appears as a multiplicative factor (exponential weight). This higher-derivative
gravity correction (which, although is topological) further supports the findings in the
paper [59], where the authors found the no-boundary Universe even after the inclusion of
generic higher-derivative terms. The topological nature of Gauss-Bonnet gravity, however
allow us to go beyond the perturbative analysis done in [59]. It is worth emphasizing that
the exponential prefactor is independent of β. The positive exponent says that lower Λ is
more favorable, i.e., low values of potential are preferred. The analysis also includes the case
β = 0 i.e., Neumann BC. For a special value of α = −3/4Λ, this HH-factor becomes unity.

6.2.2 x > 1

In this case, we will have

exp
(
−B1(β)

ℏ

)
exp

(
iB2(β)

ℏ

)
= exp

[6k3/2

ℏΛ

(
−1 + 6

x
− 6
x2 + 2

x3

)]
. (6.15)

This exponential factor has to be multiplied by the contribution coming from the Gauss-
Bonnet sector e8k3/2α/ℏ to get the full overall exponential prefactor. In the large x→ ∞ limit,
we get inverse Hartle-Hawking. This configuration represents the tunneling geometry, and
perturbations are unstable [21]. However, for other values of x > 1, the nature of exponential
depend on the behavior of the functional form of x. Let us call this function

f(x) = −1 + 6
x
− 6
x2 + 2

x3 . (6.16)

We notice that f(1) = 1 and f(∞) = −1. It should be mentioned that f ′(x) = −6(x −
1)2/x4 < 0 for all values x except x = 1 and x = ∞. This means f(x) is a monotonically
decreasing function of x within the range between 1 and −1. At some point

x0 = 2 + 21/3 + 22/3 , (6.17)

the function f(x) changes sign and becomes negative for x > x0 while it remains positive
for 1 < x < x0 (although it is not equal to 1, thereby implying that it doesn’t have the
actual Hartle-Hawking factor 6k3/2/ℏΛ̄ as in eq. (6.14)).

6.3 Interpretation

Before proceeding further, let us mention a possible interpretation of the Robin boundary
condition in the context of no boundary proposal that is immediate from the above choice of
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β (purely imaginary). In this case, one can interpret the boundary terms as being complex
coherent state i.e.,

exp
[
i

(
−βq

2
i

2 + Piqi

)]
for, β=−i|β|−−−−−−−→ exp

[
−|β|q2

i

2 + iPiqi

]
. (6.18)

This is a Gaussian state with an imaginary momentum Pi, peak at qi = 0 and uncertainty
determined by β(Λ) [30]. It describes a state with shared uncertainty between the scale
factor and the momentum of the universe. In β → 0, this state becomes a plane wave,
which is a momentum eigenstate. Taking this as an initial state for the Robin boundary
condition [30, 33], one can express the final state as a path-integral in the following manner

Ψ[qf , β, Pi] =
∫
dNDq dqie

iSDD[qf ,N,q]/ℏ ψ0[Pi, β], ψ0[Pi, β] ∝ e
i

(
−

βq2
i

2 +Piqi

)
, (6.19)

where SDD is action with imposition of Dirichlet BC at the two endpoints. In the limit
|β| → ∞, e−iβq2

i /2 → δ(qi). This is a sharp imposition of the boundary condition qi = 0, which
is the Dirichlet condition. The other limit |β| → 0 gives Neumann BC. Finite values of β act
as a kind of ‘regulator’ embedding a regularized version of δ-function in the path-integral.
In a sense, RBC is a regularised DBC. This is also compatible with quantum uncertainty
principle in the sense knowing the qi arbitrarily accurate would render the initial momentum
completely undetermined. Also, quantum uncertainty doesn’t allow to determine the initial
size with arbitrary accuracy [33]. In a way, studying Robin BC is the most appropriate
scenario due to its compatibility with the quantum uncertainty principle and the regularized
way of introducing Dirichlet BC overcoming technical complications associated with dealing
with path integrals involving δ-function.

7 Saddle-point approximation

The analysis of ℏ → 0 has shown us that certain initial configurations are favorable and
give the dominant contribution in the path integral. The ℏ → 0 limit of the Gauss-Bonnet
contribution shows that the dominant contribution comes from Pi = ±3i

√
k. Of which only

the Pi = −3i
√
k correspond to a stable configuration. Coincidentally, this is also the same

required value of Pi which leads to stable well-behaved fluctuations in the Hartle-Hawking
no-boundary proposal of the Universe [2, 3, 30–33]. In a sense, the Gauss-Bonnet presence
favors the stable Hartle-Hawking no-boundary Universe.

In this section, we will do the saddle point analysis of the gravitational path integral in
the mini-superspace approximation. We will do this for the case of Robin boundary condition
as the case of Neumann boundary condition has been already investigated in [3]. However,
the saddle-point study of the path integral will be done in a slightly different manner. The
gravitational path integral in the mini-superspace approximation in the RBC case is given in
eq. (5.1) where the path integral over the q(t) is given in eq. (5.12). We use the methods
developed in analyzing the quantum-mechanical RBC problem to convert eq. (5.12) into
eq. (5.14), which relates the RBC path integral of q(t) to the NBC path integral of the same
gravitational theory. Doing lapse Nc integration over this gives the full transition amplitude,
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relating the RBC transition amplitude with the NBC one as given in eq. (5.15). This allows
us to write the full RBC transition amplitude as a product of two integrals after we make
use of eq. (5.16). One is integral over p̃ and other integral over N̄ , where N̄ -integral is given
by eq. (5.11). Our strategy in doing the saddle-point analysis is to analyze each of these
integrals (integral over Nc and integral over p̃) separately.

We first take a look at the integral over Nc given in eq. (5.16). If one shifts Nc as in
eq. (5.7) then this integral becomes an integral over N̄ and an exponential prefactor dependent
on p̃. The N̄ -integral depends on qf written as Ψ2(qf ). The saddle point analysis of this has
already been done in [3] and won’t be repeated here. The results from the saddle analysis
revealed an interesting feature. For all values of qf there are two saddle points, however,
for qf < 3k/Λ only one saddle point which lies on the imaginary axis is relevant, while for
qf > 3k/Λ there are two relevant saddle points lying on the real axis. This means that for
qf < 3k/Λ Universe is Euclidean as can be seen from the exponential form of the transition
amplitude indicating imaginary ‘time’, while for qf > 3k/Λ Universe is Lorentzian as is
noticed from the oscillatory nature of transition amplitude indicating real time [3].

Our task then shifts to analyzing the integral over p̃ given in eq. (5.18).∫ ∞

−∞

dp̃
2πℏe

i(Pi−p̃)2/2ℏβΨ1(p̃)
∣∣∣∣
α=0

=
∫ ∞

−∞

dp̃
2πℏe

iB(p̃)/ℏ =
∫ ∞

−∞

dp̃
2πℏe

{h(p̃)+iH(p̃)}/ℏ , (7.1)

where
B(p̃) = (Pi − p̃)2

2β + 3
Λ

(
kp̃+ p̃3

27

)
. (7.2)

and h(p̃) is the corresponding Morse-function while the H(p̃) corresponds to real part of
the B-function. By a shift of variable as stated in eq. (5.17), the p̃-integral can be cast into
an Airy integral along with an exponential prefactor, as discussed in section 5.2. Here, we
will study integral in eq. (7.1) using Picard-Lefschetz methods (see [2, 20, 54–57] for review
on Picard-Lefschtez and analytic continuation).

The saddle-points of p̃ can be obtained by computing the expression dB(p̃)/dp̃. The
saddle points are computed from the equation

dB(p̃)
dp̃ = p̃2

3Λ + p̃

β
+
(3k
Λ − Pi

β

)
= 0 . (7.3)

This is a quadratic equation in p̃ resulting in two saddle points. The discriminant ∆ of
the above quadratic equation is given by

∆ = 1
β2 − 4k

Λ2 + 4Pi

3βΛ . (7.4)

For stable configuration referring to Hartle-Hawking no-boundary Universe (Pi = −3i
√
k)

and β given by eq. (6.11), the discriminant ∆ becomes the following

∆
∣∣∣∣
Hartle−Hawking

= −4k(x− 1)2

x2Λ2 . (7.5)

For all values of x > 0, the discriminant ∆ < 0 implying that both the saddle points are
complex, which for stable Hartle-Hawking no-boundary Universe is seen to be both imaginary.
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These are given by

p̃1 = −3i
√
k , p̃2 = 3i

√
k(x− 2)
x

. (7.6)

This shows that while saddle point p̃1 remains fixed at the same position for all x, the
saddle point p̃2 moves from negative imaginary axis to positive imaginary axis as x increases.
It becomes zero for x = 2. At the saddle point p̃1, we have a vanishing initial on-shell
geometry, i.e., q̄i = 0, while at the other saddle point p̃2, we have a non-vanishing initial
geometry q̄i = 12k(x− 1)/Λx2. The ‘on-shell’ value of B(p̃) (B(p̃) computed at the saddle
points) is given by

B(p̃1) = −6ik3/2

Λ , B(p̃2) = −6ik3/2

Λ

( 2
x3 − 6

x2 + 6
x
− 1

)
. (7.7)

It should be highlighted that for stable Hartle-Hawking no-boundary Universe referring to
Pi = −3i

√
k the ‘action’ B(p̃) given in eq. (7.2) is complex. The morse function h(p̃) at

the saddle points for all values of x is given by

h(p̃1) =
6k3/2

Λ , h(p̃2) =
6k3/2

Λ

( 2
x3 − 6

x2 + 6
x
− 1

)
. (7.8)

Higher derivatives of B(p̃) with respect to p̃ at the saddle point is given by,

d2B

dp̃2

∣∣∣∣
p̃=p̃1

= −2i(x− 1)
√
k

xΛ ,
d2B

dp̃2

∣∣∣∣
p̃=p̃2

= 2i(x− 1)
√
k

xΛ ,
d3B

dp̃3

∣∣∣∣
p̃=p̃1,2

= 2
3Λ . (7.9)

One can expand the function B(p̃) around the saddle point p̃σ where σ = {1, 2}. This gives

B(p̃) = B(p̃σ) +
dB(p̃)
dp̃

∣∣∣∣
p̃σ

δp̃+ 1
2
d2B(p̃)
dp̃2

∣∣∣∣
p̃σ

(δp̃)2 + 1
6
d3B(p̃)
dp̃3

∣∣∣∣
p̃σ

(δp̃)3 , (7.10)

where δp̃ = p̃− p̃σ. The series stops at cubic order as the highest power of p̃ in B(p̃) is three.
The second variation at the saddle-point can be written as B′′(p̃σ) = rσe

iρσ , where rσ and ρσ

depends on boundary conditions. Near the saddle point the change in iH will go like

δ(iH) ∝ i
(
B′′(p̃σ)

)
(δp̃)2 ∼ v2

σe
i(π/2+2θσ+ρσ) , (7.11)

where we write δp̃ = vσe
iθσ and θσ is the direction of flow lines at the corresponding saddle

point. Given that the imaginary part H remains constant along the flow lines, so this means

θσ = (2k − 1)π
4 − ρσ

2 , (7.12)

where k ∈ Z.
For the steepest descent and ascent flow lines, their corresponding θdes/aes

σ is such that
the phase for δH correspond to ei(π/2+2θσ+ρσ) = ∓1. This implies

θdes
σ = kπ + π

4 − ρσ

2 , θaes
σ = kπ − π

4 − ρσ

2 . (7.13)

These angles can be computed numerically in our case.
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Figure 2. The gravitational path integral with the Gauss-Bonnet contribution favours Pi = −3i
√
k

as the stable configuration which also happens to correspond to Hartle-Hawking no-boundary Universe.
For this value of Pi the action for B given in eq. (7.2) is complex. This figure arises in association
with the Picard-Lefschetz analysis of the contour integral given in eq. (7.1). The red lines correspond
to the steepest descent lines (thimbles Jσ), while the thin black lines are the steepest ascent lines and
are denoted by Kσ. Here we choose parameter values: k = 1, Λ = 3, and x = 1/2. For this, the saddle
point p̃1 corresponds to blue-square, while saddle point p̃2 corresponds to blue-circle. Only the saddle
point p̃1 (blue square) is relevant. The steepest ascent lines emanating from it intersect the original
integration contour (−∞,+∞), which is shown by thick-black line. The Morse-function h is positive
for both saddle points: h(p̃1,2) > 0. The light-green region is the allowed region with h < h(p̃σ) for all
values of σ. The light-pink region (forbidden region) has h > h(p̃σ) for all σ. The intermediate region
is depicted in yellow. The boundary of these regions is depicted in brown lines. Along these lines, we
have h = h(p̃σ).

Under the saddle point approximation, the contour integral given in eq. (7.1) can be
computed using Picard-Lefschetz methods (see [2] for details of PL methodology). This gives∫ ∞

−∞

dp̃
2πℏe

iB(p̃)/ℏ =
∑

σ

nσ

2πℏe
iB(p̃σ)/ℏ

∫
Jσ

dδp̃ exp
[
i
B′′(p̃σ)

2ℏ (δp̃)2
]
,

=
∑

σ

nσ

√
1

2πℏ|B′′(p̃σ)|
eiθσeiB(p̃σ)/ℏ . (7.14)

where Jσ refers to steepest descent line and nσ is the intersection number which will take
values (0,±1) accounting for the orientation of contour over each thimble. In the following
we will be using this expression to compute the contour integral for various values of x.

7.1 0 < x < 1

For 0 < x < 1, both the saddle points p̃1 and p̃2 lie on the negative imaginary axis with
|p̃2| < |p̃1|, thereby implying that p̃2 lie below p̃1 on the negative imaginary axis.

For both the saddle points, the morse function is positive: h(p̃1,2) > 0. In figure 2, we
plot the various flow-line, saddle points, and forbidden/allowed regions. From the graph, we
notice that only the steepest ascent line from p̃1 intersects the original integration contour,
thereby making it relevant. At this saddle point, the initial geometry is observed to be
vanishing, thereby satisfying the “compactness” and “regularity” criterion of Hartle-Hawking
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Figure 3. Here we choose parameter values: k = 1, Λ = 3, and x = 4 and x = 10 respectively. For
this, the saddle point p̃2 corresponds to blue-circle, while saddle point p̃1 correspond to blue-square.
Only the saddle point p̃2 (blue square) is relevant. The Morse-function h for p̃1 is always positive,
while h(p̃2) goes from positive to negative as 1 < x <∞. The crossover happens at x = x0 given by
eq. (6.17).

no-boundary proposal. The thimbles passing through this saddle constitute the deformed
contour of integration. It should also be specified that for x < 1, the second-derivative of
B(p̃) computed at saddle point p̃1 is proportional to +i, which in saddle point approximation
gives appropriate Gaussian weight allowing to do Gaussian integration.

The Picard-Lefschetz theory then gives the following in the saddle point approximation as

∫ ∞

−∞

dp̃
2πℏe

i(Pi−p̃)2/2ℏβΨ1(p̃)
∣∣∣∣
α=0

≈

√
Λxk−1/2

4ℏπ(1− x) e
6k3/2
ℏΛ . (7.15)

This regime reproduces the same exponential factor as in Hartle-Hawking no-boundary
Universe. This regime leads to stable perturbations for the Einstein-Hilbert gravity studied
in [33]. It is expected that Gauss-Bonnet gravitational corrections which are topological in
nature in 4D won’t alter this as long as perturbations are small.

7.2 x > 1

For x > 1 both saddles still lie on the imaginary axis. However, only saddle point p̃1 remains
fixed on the negative imaginary axis for all values of x, while the saddle point p̃2 moves from
negative imaginary axis to positive imaginary axis. It crosses the origin at x = 2 in the case
of boundary condition corresponding to Hartle-Hawking no-boundary Universe.

The Morse function corresponding to saddle point p̃1 is always positive, while the Morse
function corresponding to p̃2 goes from positive to negative. The crossover takes place at
x = x0 where x0 is given in eq. (6.17). After the cross-over the overall exponential weight
becomes negative, thereby implying an inverse Hartle-Hawking regime. For x > 1, it is
seen from figure 3 that only the steepest ascent curves emanating from p̃2 intersect the
original integration contour, implying that it is the only relevant saddle point. At this saddle,
the initial geometry of the universe is non-vanishing, given by q̄i = 12k(x − 1)/Λx2. The
thimbles passing through this saddle will constitute the deformed contour of integration. The
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Figure 4. Here we choose parameter values: k = 1, Λ = 3, and x = 1. This is the degenerate
situation for which the saddle point p̃1 and p̃2 coincide. The Morse-function h is positive for both
saddle points: h(p̃1,2) = 6k3/2/Λ = 2.

Picard-Lefschetz analysis then gives the following in the saddle point approximation as

∫ ∞

−∞

dp̃
2πℏe

i(Pi−p̃)2/2ℏβΨ1(p̃)
∣∣∣∣
α=0

≈

√
Λxk−1/2

4πℏ(x− 1) e
6k3/2
ℏΛ

(
2

x3 −
6

x2 + 6
x
−1
)
. (7.16)

However, the perturbations in this regime are unstable for Einstein-Hilbert gravity and the
Gauss-Bonnet is expected to not change this.

7.3 x = 1

This is the degenerate case. The discriminant ∆ = 0 for x = 1 and both saddle points coincide:
p̃1 = p̃2 = −3i

√
k, with vanishing initial geometry of the universe at the relevant saddle. In

this degenerate case both the on-shell action (B(p̃1) = B(p̃2)) and the Morse-function become
equal (h(p̃1) = h(p̃2) = 6k3/2/Λ). In this situation, the saddle-point approximation breaks
down as the second derivative B′′(p̃σ) = 0. One needs to go beyond the second order in the
series expansion in eq. (7.10). In this series, the third order term is non-zero. This situation
is depicted in figure 4. In this case, the contour integration gives the following∫ ∞

−∞

dp̃
2πℏe

i(Pi−p̃)2/2ℏβΨ1(p̃)
∣∣∣∣
α=0

≈
√
3

2πℏe
iB(p̃σ)/ℏ

∫ ∞

0
dvσe

−v3
σ/9Λℏ = (Λ/3ℏ2)1/3

Γ(2/3) e
6k3/2
ℏΛ . (7.17)

8 Conclusions and outlook

In this paper we consider the gravitational path integral of Gauss-Bonnet gravity and study
it directly in the Lorentzian signature in four spacetime dimensions. Gauss-Bonnet sector
of gravity being topological in nature in 4D doesn’t contribute to the bulk dynamics of the
field but has an active role to play at the boundaries or in situations where boundaries play
an important role. One such situation is the path integral which is sensitive to boundary
conditions. Past studies have investigated the effects of Gauss-Bonnet sector of gravity on the
transition amplitude which is given by the gravitational path integral [2, 3]. These studies
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focussed on exploring the consequence of imposing Neumann boundary condition at the initial
time. In this paper we study extensively the effects of imposing Robin boundary condition
at the initial time and investigate the role played by the Gauss-Bonnet sector of gravity
systematically in the Lorentzian gravitational path integral. We setup the platform for raising
and addressing these issues in the reduced setup of the mini-superspace approximation.

We start by first considering path integrals of a particle in one-dimensional potential
for various boundary conditions. The path integral is evaluated for three different choices of
boundary condition: Dirichlet boundary condition (DBC) at both initial and final time (fixing
position of particle at two end points), Neumann BC (fixing conjugate momenta denoted in
paper by pi) and Robin BC (fixing linear combination of conjugate momenta and position at
the initial time: pi + βqi = Pi, where β is some parameter) with Dirichlet at final time. The
transition amplitudes are shown to be inter-related with each other by integral transforms.
By exploiting these inter-relations via integral transforms one can compute the path integral
with NBC or RBC at initial time (and DBC at final time) from the path integral of DBC at
both end points. These inter-relations can be further manipulated to express the RBC path
integral as an integral transform of the NBC path integral. These results get later utilized in
the paper for the computation of gravitational path integral in the mini-superspace.

We take a fresh look at the gravitational path integral in the mini-superspace approxima-
tion in the Lorentzian signature with Robin boundary condition at the initial boundary (that
is fixing linear combination of conjugate momenta and field at the initial boundary). Past
works have shown that NBC and RBC at the initial time leads to stable Universe [2, 3, 30–33],
while DBC at initial time leads to unsuppressed perturbations [20, 21, 24]. These motivate
us to study RBC gravitational path integral more carefully for the Gauss-Bonnet gravity (the
case for Neumann BC was investigated in [3]). The transition amplitude from one 3-geometry
to another is given by a path integral over q(t) and a contour integration over lapse Nc.

The paper systematically studies the path integral in the mini-superspace approximation
for the Gauss-Bonnet gravity. The gravitational action is varied and carefully analysed to
setup a consistent variational problem with Robin BC at the initial boundary. This process
leads to dynamical equation of motion and a set of surface terms that need to be supplemented
to the action to make the gravitational system a consistent variational problem. In this
process we construct the surface term needed for the Gauss-bonnet gravity with the Robin
boundary condition. This surface action is proportional to β and smoothly reduces to the
surface term for the case of Neumann BC problem [3] in the limit of β → 0. To our knowledge
this wasn’t known in literature earlier. The path integral is then studied for the total action
which has been supplemented by these surface terms.

The path integral to be computed is given in eq. (5.1), where Stot for the NBC and RBC
case are given in eq. (4.14) and (4.19) respectively. To compute the path integral over q(t) we
make use of the results derived in one-dimensional quantum mechanical problem discussed
in section 2. In the NBC case: the lapse Nc integration and path integral over q(t) can be
performed exactly as it was also shown in [3]. The numerical prefactor has been correctly
computed as we do the computation of path integral via first principles (method of ‘time-
slicing’). In the RBC case: results of sub-section 2.3 and algebraic manipulations allow us to
reduce the problem into the product of two Airy-integrals (modulo exponential prefactors).
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One is just the lapse Nc integration and gives rise to Ψ2(qf ) (Airy-integral dependent only on
the final boundary). The other is an integration over p̃: doing a Gaussian integral transform
of Ψ1(p̃) at α = 0. With a change of integration variable, it is easy to convert this into an
Airy integral defined as Φ(Pi, β) given in eq. (5.19), and an exponential prefactor dependent
on Pi and β. All this when put together gives the exact transition amplitude in the RBC
case which is given in eq. (5.27). In the limit β → 0 this correctly reproduces the exact
NBC transition amplitude given in eq. (5.26). This exact transition amplitude for the RBC
including the Gauss-Bonnet effects is new and hasn’t been known in literature earlier.

We then consider the ℏ → 0 limit of the exact transition amplitude. This allows us to
single out and focus on configurations giving dominant contribution to the path integral. The
Gauss-Bonnet contribution which appears as an exponential prefactor only, shows that in the
ℏ → 0 limit two configurations will give dominant contribution: Pi = −3i

√
k and Pi = 3i

√
k.

The first one corresponds to stable configuration while the later is unstable. Coincidentally,
Pi = −3i

√
k also is the configuration for the Hartle-Hawking no-boundary Universe where

the perturbation are well-behaved. In a sense the Gauss-Bonnet contribution naturally picks
and favors the Hartle-Hawking no-boundary condition while the other boundary condition is
disfavoured. Same thing happens for large Gauss-Bonnet coupling with ℏ not small. In this
case, we are still in deep quantum regime however the large Gauss-Bonnet coupling favors
the Hartle-Hawking no-boundary Universe. This is truly a non-perturbative feature.

We next consider the ℏ → 0 limit of the other terms in the RBC transition amplitude for
the case of Pi = −3i

√
k (Hartle-Hawking no-boundary Universe). This allows us to find the

boundary configuration characterised by β which will give dominant contribution to the RBC
transition amplitude. It is seen that β = βdom = −iΛ/2

√
k gives the dominant contribution.

On scaling our β = βdomx we see that the domain of x gets separated into various regimes.
For x ≤ 1 we get the same Hartle-Hawking exponential prefactor e6k3/2/ℏΛ̄ where Λ̄ is given in
eq. (6.14). For 1 < x < x0 (where x0 is given in eq. (6.17)), the argument of the exponential
prefactor remains positive but monotonically decreases. At x = x0 crossover happens and the
argument becomes negative entering in inverse Hartle-Hawking regime. For x0 < x <∞, the
argument of exponential decreases but asymptotically approaches to e

−6k3/2
ℏΛ (1− 4αΛ

3 ) which is
the exponential prefactor obtained with Dirichlet boundary condition at t = 0 and is known
to be unstable as perturbations are unsuppressed [20, 21, 24]. This analysis shows that the
allowed region where we correctly reproduce the Hartle-Hawking exponential prefactor is
0 ≤ x ≤ 1. This was noticed in [30, 33] via a different route.

We then study the transition amplitude in the saddle-point approximation and make use of
Picard-Lefschetz methods to compute the contour integrals. However, we address the problem
in a different manner. Past studies in this direction applied Picard-Lefschetz methodology to
the lapse Nc-integration after the q(t) path integral has been worked out [30, 33]. Here as we
managed to express RBC transition amplitude as NBC transition amplitude via eq. (5.15), so
it gave us the flexibility of approaching the problem in another way. Instead of direct lapse
Nc integration on the full on-shell action, we do saddle point analysis of only the momentum
integration given in eq. (7.1). Saddle analysis of the Nc-integration acting only on the NBC
part was done in [3]. It showed that there are two saddle points for all values of qf . For
qf < 3k/Λ the two saddle points lie on the imaginary axis in the complex Nc plane (only one
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is relevant), while for qf > 3k/Λ the two saddles lie on real axis in the complex Nc plane (both
are relevant). As qf increases Universe undergoes a transition from Euclidean to Lorentzian
phase [3]. In this paper, we just study the p̃-integral via Picard-Lefschetz methods.

The saddle analysis of the p̃-integration shows that in the complex p̃-plane there are
always two saddle points, both lying on the imaginary p̃ axis. The saddle point p̃1 is
independent of x (remains fixed), with vanishing initial geometry, while the saddle point p̃2
varies with respect to x, with non-vanishing initial geometry, and gets pushed to infinity
(on the negative imaginary axis) as x → 0 (Neumann limit). For all values of x, only one
of the two saddle point is relevant. For 0 < x < 1 the saddle point p̃1 relevant, while the
irrelevant saddle point p̃2 lies below p̃1 on the negative imaginary axis in the complex p̃ plane
(in the limit x → 0 this saddle point is pushed to infinity and remains irrelevant). In this
regime, we get the correct Hartle-Hawking exponential prefactor e6k3/2/ℏΛ̄. For x > 1, the
saddle p̃2 becomes relevant. x = 1 is the degenerate situation when p̃1 = p̃2 (relevant) giving
e6k3/2/ℏΛ̄ (Hartle-Hawking) beside the numerical pre-factors. For 1 < x < 2 the saddle point
p̃2 still lies on the negative imaginary axis. However, for x > 2 it crosses over and lies on
the positive imaginary axis. For 1 < x < x0, the argument of the exponential prefactor
decreases in magnitude and becomes negative for x > x0. The range of x for which only
the saddle point p̃1 is relevant and produces the exact exponential prefactor e6k3/2/ℏΛ̄ of
Hartle-Hawking no-boundary Universe is 0 < x < 1.

Our investigations show the important non-trivial role played by the Gauss-Bonnet
sector of the gravitational action in favoring the initial configurations which lead to the
Hartle-Hawking no-boundary Universe. Gauss-Bonnet term arises in the low Energy-effective
action of the heterotic string theory [7–9] with α > 0. Although it is topological in nature in
four spacetime dimensions and is expected to not play any role in the dynamical evolution,
but our analysis clearly shows its contribution in the path integral. When Gauss-Bonnet term
is not ignored in path-integral studies, then for α > 0 (which is also the same sign appearing
in low energy effective action of the heterotic string theory) it naturally picks and favors
initial configurations which correspond to Hartle-Hawking no-boundary Universe. Moreover,
it is expected that Gauss-Bonnet modifications won’t alter the stability analysis done for
Einstein-Hilbert gravity [33], where the perturbative stable regime was found to be 0 ≤ x ≤ 1.
This is because Gauss-Bonnet in four spacetime dimensions is topological. Perturbative
analysis like the one done in [33] is for small perturbations which are expected to not change
the background topology, and hence will be unaffected by the Gauss-Bonnet gravity.
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