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A B S T R A C T

In this paper, we implement a generalised pseudo-Newtonian potential to study the off-equatorial orbits
inclined at a certain angle with the equatorial plane around Schwarzschild and Kerr-like compact object
primaries surrounded by a dipolar halo of matter. The chaotic dynamics of the orbits are detailed for both non-
relativistic and special-relativistic test particles. The dependence of the degree of chaos on the Kerr parameter
𝑎 and the inclination angle 𝑖 is established individually using widely used indicators, such as the Poincaré
Maps and the Maximum Lyapunov Exponents. Although the orbits’ chaoticity has a positive correlation with
𝑖, the growth in the chaotic behaviour is not systematic. There is a threshold value of the inclination angle
𝑖c, after which the degree of chaos sharply increases. On the other hand, the chaoticity of the inclined orbits
anti-correlates with 𝑎 throughout its entire range. However, the negative correlation is systematic at lower
values of the inclination angle. At higher values of 𝑖, the degree of chaos increases rapidly below a threshold
value of the Kerr parameter, 𝑎c. Above this threshold value, the correlation becomes weak. Furthermore, we
establish a qualitative correlation between the threshold values and the overall chaoticity of the system. The
studies performed with different orbital parameters and several initial conditions reveal the intricate nature
of the system.
1. Introduction

In the last two decades, the study of the dynamics of orbits around
a single BH [4–6] or a BH binary [7–9] has become very popular.
With the instrumental development of the detection and measuring
techniques, it is already established that most of the galaxies consist
of supermassive BHs at their galactic centres [10,11]. In almost all
cases, the BHs are usually surrounded by a hollow spherical halo of
matter and large accretion disks around them [12,13]. Any particle
travelling within the disk region or the corona will be influenced by
both the central BH and the halo around it, and both of them need to
be considered while looking for the locus of the particle. This is where
the Core-Shell Model comes into the picture while modelling systems
like these [14]. Not only the stand-alone BHs or neutron stars with
accretion disks around them but even the galaxies can be modelled
using the core–shell scheme because of the observational evidence
of their structures which consist of huge rings and shells around the
supermassive BHs located at their individual galactic centres [15–20].

In the present work, we are focusing on the two-body system, where
one of them is a nonrotating or a rotating COP surrounded by a hollow
halo of matter, and the other one is a test particle with a unit mass.
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While studying the dynamics of the orbit of the test particle around
the COP, the phenomenon of chaos naturally comes into the picture.
Several works have already been done on the chaotic behaviour of the
orbits under the influence of the fully relativistic gravitational field of
a BH-halo system [14,21–29]. Incorporating the charge into the system
also brings out interesting results where the charged test particle is
influenced by the gravitational field as well as the magnetic force of
the central BH along with its magnetosphere [30–34]. The spin of the
COP plays an essential role in the orbital dynamics around it. As most
of the BHs are rotating in nature [35–43], we are more interested in
studying the chaotic dynamics of the orbits around a Kerr-like BH, or
a COP in general.

While many research groups encounter the problem of accretion
dynamics with a fully relativistic approach, it is very intensive and com-
putationally demanding to simulate these systems exactly. Therefore,
we will follow a beyond-Newtonian approach or a pseudo-Keplerian
formalism, where a Newtonian-like potential is designed in such a
way that it mimics the actual potential by sustaining the essential
aspects of the spacetime around the COP within a feasible limit of error.
Indeed, the mimicking potential, known as the PNP, will not precisely
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Acronyms

ABN Artemova-Björnsson-Novikov pseudo-potential
in Artemova et al. [1]

BH Black Hole
COP Compact Object Primary
GM Ghosh-Mukhopadhyay pseudo-potential in

Ghosh and Mukhopadhyay [2]
GMf Ghosh-Mukhopadhyay pseudo-potential after

fitting with the function 𝑉GMf
GMS Ghosh-Mukhopadhyay pseudo-potential for

Schwarzschild-like geometry with 𝑎 = 0
ISCO Innermost Stable Circular Orbit
MLE Maximum Lyapunov Exponent
PNP Pseudo-Newtonian Potential
PW Paczynsky-Wiita pseudo-potential in Paczyn-

sky and Wiita [3]

eproduce the fully relativistic scenario because of the nonlinearity in
pacetime close to the event horizon. Nevertheless, it reproduces space-
ime far from the event horizon with a high degree of accuracy as the
elativistic nonlinearity weakens in this region. Furthermore, it simpli-
ies the calculation and the computation significantly. Such a PNP was
irst developed by Paczynsky and Wiita [3] (PW PNP), which is applica-
le for the orbits on or near the equatorial plane of a Schwarzschild-like
OP. After the successful implementation of this PNP, many pseudo-
otentials were introduced for both Schwarzschild and Kerr-type COPs,
ach with different sets of advantages and drawbacks [44–50]. Till now,
ne of the most popular and widely implemented PNPs for a Kerr-like
OP is the one developed in Artemova et al. [1] (ABN PNP). However,
ll of the mentioned PNPs apply to the orbits near the equatorial
lane. Even if they are prescribed for thick accretion disks, they do
ot include the inclination of the orbit in their models. For this reason,
ardly any study has been done on the chaotic behaviour of inclined
rbits in a pseudo-Newtonian framework. Nonetheless, a few studies
ave been performed on the dynamics of the off-equatorial orbits in a
ully relativistic formalism [51–53]. However, the chaotic nature of the
quatorial orbits and their correlation with the rotation parameter has
een widely studied using the previously available PNPs [4,54–58].

The potential developed in Ghosh and Mukhopadhyay [2] (GM
NP) allows us to look for the chaotic dynamics of the off-equatorial
rbits inclined at a certain angle 𝑖 with the equatorial plane. The
eneralised PNP is useful to study the accretion dynamics around
otating and nonrotating BHs in the off-equatorial planes [59]. The
ector potential, derived from the generalised pseudo-Keplerian gravi-
ational force prescribed in [2], is also suitable for the hydrodynamical
ccretion studies of thick accretion disks [60]. Besides its applicability
ver a wide range of inclination angles (0◦ ≤ 𝑖 ≤ 30◦), the potential
s valid for the entire range of the rotation parameter of the COP
−1 ≤ 𝑎 < 1). As the PNP is directly developed from the spacetime
etric, it reproduces the values of the radius of marginally bound orbit
mb, and the efficiency of unit mass at marginally stable orbit 𝐸ms with
inimal error, and the radius of the ISCO, 𝑅ISCO, with no error at all.
his helps us implement this PNP to look at how the chaoticity of the
ff-equatorial orbits depends on the entire range of the Kerr parameter
nd the angle of inclination. The PNP sustains the frame-dragging
ffect [58,61], an important characteristic of the Kerr geometry, which
s a direct consequence of the Lense-Thirring Precession of the orbits
round a Kerr-like COP [62].

As mentioned earlier, we have used the core–shell model in the
resent work because it closely resembles the realistic picture of an
ctual astrophysical BH [14]. We have used a dipolar perturbative term
ignifying the hollow halo of matter around the COP. As opposed to
2

Fig. 1. Different dynamical parameters of an off-equatorial orbit around a COP. The
inclined plane consists of a circular orbit along which the test particle rotates. The
orbit is inclined at an angle 𝑖 with the symmetry axis of the COP (the 𝑧-axis) and its
equatorial plane. The rotation parameter of the COP is 𝑎. 𝐿 denotes the total angular
momentum of the test particle, and its direction is along the rotating axis of the inclined
orbit.

the quadrupolar term used in this regard [58], the dipolar term will be
predominant when the halo is somewhat asymmetrically placed about
the equatorial plane of the COP, even if it is axially symmetric about
the rotations axis of the system. The asymmetric mass distribution of
the halo about the equatorial plane is more practical [63]. The dipolar
term, corresponding to this asymmetric halo, has been used several
times in literature [4,54].

In the current piece of work, we have implemented the GM PNP
to study the off-equatorial orbits around a Schwarzschild and a Kerr-
like COP. The paper is organised as follows. In Section 2, we briefly
describe the PNPs and a numerical scheme to study the off-equatorial
orbits. We have also presented the required equations of motion for
both non-relativistic and special relativistic test particles. In Section 3,
we study the stability of both circular and generic orbits. In the case
of the latter, we use the previously developed equations of motion to
study the chaotic dynamics of the orbits by generating the Poincaré
Maps of sections of their phase-space trajectories. Through the analysis,
we establish a correlation of the degree of chaos with the inclination
angle 𝑖 of the orbit and the Kerr parameter 𝑎 of the COP in a qualitative
manner. In Section 4, we quantify the chaoticity using MLE, one of
the widely used chaotic indicators implemented in this context. We
implement them to corroborate the previously obtained qualitative
results and to analyse the chaotic correlations in more depth. Finally,
in Section 5, we conclude our findings and discuss the future directions
of our research.

2. Formulation of the pseudo-Newtonian potentials and the equa-
tions of motion

We begin our study by providing a mathematical description of
the PNPs, along with the necessary equations of motion to study the
system’s orbital dynamics. For the special case of equatorial orbits, we
compare the effective potential consisting of GM PNP with that of ABN
PNP, another well-established PNP widely used in this regard.
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2.1. Pseudo-Newtonian potential

If a particle of unit mass is accreting around a rotating COP of mass
𝑀BH and angular momentum 𝐽𝜙 on a plane inclined at an angle 𝑖 with
the equatorial plane of the COP (Fig. 1), the generalised gravitational
force on the particle, as prescribed in Ghosh and Mukhopadhyay [2],
can be mimicked by the expression

𝐹GM𝑟 =
22 sec2 𝑖

[

𝑎
√

2𝑟3∕2 {𝛥 + 2𝑟 (𝑟 − 1)} + 𝑟𝛥
√

{

 + 𝑟4 − 𝑎2(𝛥 + 𝑟2 − 3𝑟)
}

cos 2𝑖 sec2 𝑖
]2

(1)

where  = 𝑎4 + 𝑟4 +2𝑎2𝑟(𝑟−2) and 𝛥 = 𝑟2 + 𝑎2 −2𝑟. The Kerr parameter
𝑎 = 𝐽𝜙∕𝑀BH denotes the rotation parameter of the COP, such that
𝑎 ∈ [−1, 1). Here, 𝑟 is the radial distance of the rotating particle from the
origin in the spherical polar coordinate (𝑟, 𝜃, 𝜙). The gravitational force
on the particles, given in Eq. (1), can be applied successfully by taking
the value of 𝑖 in the range 𝑖 ∈ [0◦, 30◦] while keeping the error within
a reasonable limit, and maintaining a resemblance with the actual
physical scenario [2]. The corresponding pseudo-Kerr potential 𝑉GM,
for particular values of 𝑎 and 𝑖, can be evaluated from the generalised
force using the relation

𝑉GM(𝑟, 𝑎, 𝑖) = −∫

∞

𝑟
𝐹GM𝑟(𝑟′, 𝑎, 𝑖)𝑑𝑟′ (2)

For Schwarzschild-like COPs, the value of 𝑎 becomes 0. Thus, by
putting 𝑎 = 0 in Eq. (2), we get the PNP for the inclined orbits around
a Schwarzschild-like COP, which is given by

𝑉GMS(𝑟) = −
sec(2𝑖)
𝑟 − 2

(3)

t should be mentioned that throughout the work, the velocities have
een scaled by 𝑐, the speed of light in vacuum, and the distances are
caled by 𝑟g = 𝐺𝑀BH∕𝑐2, where 𝐺 is the gravitational constant. We
ave scaled all the parameters such that 𝐺 =𝑀BH = 𝑐 = 1.

The potential, given in Eq. (3), is strikingly similar to the PNP
resented in Paczynsky and Wiita [3]. By putting 𝑖 = 0, 𝑉GMS gets equal
o the PW potential. The fact that 𝑉GM comes down to the PW PNP for
= 𝑖 = 0 signifies the generic nature of the GM PNP. Similarly, if we

ut 𝑖 = 0 but 𝑎 ≠ 0, we get the PNP for the orbits on the equatorial
lane in the Kerr geometry.

The analytically closed form of the generalised PNP 𝑉GM, however,
s complicated to derive by a straightforward integration, as per the
xpression given in Eq. (2), because of the complex mathematical
orm of the gravitational force, given in Eq. (1). Therefore, we take

numerical approach where we integrate the generalised force 𝐹GM𝑟
umerically for several values of 𝑟 and fit the data with a fitting
unction of the form

GMf(𝑟) = −
exp

(

𝛾1
(𝑟−𝛾2)𝛾3

+ 𝛾4
)

(𝑟 − 𝛾2)𝛾5
(4)

where 𝛾1, 𝛾2, 𝛾3, 𝛾4, and 𝛾5 are fitting parameters. It is evident that
the potential 𝑉GMf is spherically symmetric, similar to the potential
𝑉GM. The fitting function asymptotically approaches zero when the
test particle moves towards infinity

(

𝑉GMf → 0, when 𝑟→ ∞
)

. Also, it
ends to infinity when the test particle approaches the event horizon at
he radial distance 𝑟 = 𝛾2𝑟g

(

𝑉GMf → −∞, when 𝑟→ 𝛾2
)

. Moreover, the
unction 𝑉GMf fits with the PNP 𝑉GM efficiently with a minimal relative
rror, keeping the radii of the ISCO 𝑅ISCO, and the marginally bound
rbit 𝑅mb to be almost same as that in the Kerr geometry. These facts
atisfy the conditions of a PNP, and it leads us to implement 𝑉GMf, given
n Eq. (4), as a suitable fitting function. For particular values of 𝑎 and
, the fitting parameters are evaluated so that 𝑉GMf fits with 𝑉GM, and
fter that we can use the fitting function as an independent PNP.

As there is azimuthal symmetry in the orbital motion of the particle
3

evolving around a COP, it is convenient to write Eq. (4) in the
ylindrical polar coordinates (𝜌, 𝜙, 𝑧) as

GMf(𝜌, 𝑧) = −

exp

(

𝛾1
(
√

𝜌2+𝑧2−𝛾2
)𝛾3 + 𝛾4

)

(

√

𝜌2 + 𝑧2 − 𝛾2
)𝛾5

(5)

The absence of any 𝜙 term in the potential signifies the azimuthal sym-
metry. Section 3.2.2 presents more details about the fitting function.

As the GM PNP is generic in nature, it is worthwhile to ask how
this potential will behave for the orbits on the equatorial plane around
a rotating COP (𝑖 = 0 but 𝑎 ≠ 0) and how this potential differs from
any other PNP which is being applied in this scenario. We consider the
well-known ABN PNP to draw a comparison with GMf PNP for 𝑖 = 0.

The ABN PNP, after integrating the free-fall acceleration prescribed
in Artemova et al. [1], comes out to be

𝑉ABN(𝑟) = − 1
𝑟1(𝛽 − 1)

[

𝑟𝛽−1

(𝑟 − 𝑟1)𝛽−1
− 1

]

(6)

Here, 𝑟1 represents the radius of the event horizon, given as follows.

𝑟1 = 1 +
√

1 − 𝑎2 (7)

The value of 𝛽 is given by

𝛽 =
𝑟in
𝑟1

− 1 (8)

where 𝑟in is the radius of ISCO such that

𝑟in = 3 +𝑍2 ∓
√

(3 −𝑍1)(3 +𝑍1 + 2𝑍2) (9)

The values of the parameters 𝑍1 and 𝑍2 are defined as

𝑍1 = 1 + (1 − 𝑎2)1∕3
[

(1 + 𝑎)1∕3 + (1 − 𝑎)1∕3
]

and 𝑍2 =
√

3𝑎2 +𝑍2
1 (10)

The negative and positive signs in Eq. (9) signify the co-rotating (𝑎 > 0)
nd counter-rotating (𝑎 < 0) COPs, respectively.

Along with the monopole term represented by any of the PNPs,
hich is conservative, we use a dipolar, non-central, perturbative term,
hich is introduced to simulate a halo far from the central object. The
istribution of the halo is such that it is axially symmetric about the
otating axis of the COP. If the halo is also symmetric about the equa-
orial plane, the first non-central, contributing term in the potential will
e quadrupolar in nature [14,58]. However, we consider the halo to be
symmetrically placed about the equatorial plane, somewhat deformed
n the polar regions [63]. In this case, the non-central, leading term will
e dipolar, which can be represented with a potential

dip = 𝑟𝑃1(cos 𝜃) = 𝑧 (11)

ere,  is the dipole coefficient, 𝑃𝑛(𝑥) is the Legendre polynomial of
egree 𝑛, cos 𝜃 = 𝑧∕𝑟, and 𝑟2 = 𝜌2 + 𝑧2. The value of  will depend
n the asymmetry in the mass distribution of the halo, and it will
e small for any practical system [4,14]. Therefore, the net potential
hat the particle experiences while revolving around a COP surrounded
y an asymmetrically distributed halo can be represented by a linear
uperposition of the potentials, i.e.,

g(𝜌, 𝑧) = 𝑉PNP(𝜌, 𝑧) + 𝜓dip (12)

he pseudo-potential term 𝑉PNP in Eq. (12) will be replaced by either
f the monopole terms, which is 𝑉GM, 𝑉GMS, 𝑉GMf, or 𝑉ABN, depending
n the nature of the COP under consideration. The linear nature of the
ewtonian framework allows the superposition of the potentials, in this
ase [58].

The orbit of the test particle, with specific angular momentum 𝐿,
s inclined with respect to the equatorial plane with an inclination
ngle 𝑖, and it is precessing about the spinning axis of the COP. This
henomenon is known as the Lense-Thirring Precession [62]. The 𝑧-
omponent of the angular momentum 𝐿𝑧 is conserved due to the
zimuthal symmetry of the orbit. The locus of the particle will not
lways make an angle 𝑖 with the equatorial plane. Still, the plane of
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orbital precession will always be inclined at 𝑖 with the spinning axis of
the COP (Fig. 1). Therefore, 𝐿𝑧 = 𝐿 cos 𝑖, which implies that 𝐿 is also
conserved [2].

The motion of the orbiting particle in the 𝜙 direction will induce a
centrifugal force on it along the radial direction. This can be taken into

account by adding a term
(

𝐿2

2𝜌2

)

with the potential 𝛷g(𝜌, 𝑧) in Eq. (12).

Hence, the following expression can describe the effective potential in
Kerr geometry.

𝑉eff(𝜌, 𝑧)||𝑎≠0 = −

exp

(

𝛾1
(
√

𝜌2+𝑧2−𝛾2
)𝛾3 + 𝛾4

)

(

√

𝜌2 + 𝑧2 − 𝛾2
)𝛾5

+𝑧 + 𝐿2

2𝜌2
(13)

The net potential for an off-equatorial orbit in Schwarzschild geometry
(𝑎 = 0) is more straightforward. We can use the potential given
in Eq. (3) and write down the net effective potential as follows.

𝑉eff(𝜌, 𝑧)||𝑎=0 = −
sec(2𝑖)

√

𝜌2 + 𝑧2 − 2
+𝑧 + 𝐿2

2𝜌2
(14)

The dynamics of the test particle will be governed by these effective
potentials, the choice of which depends on the type of COP it is rotating
around.

2.2. Equations of motion

We move on to formulating the equations of motion for our system.
The equations of motion of the test particle can be derived from the
non-dimensional Hamiltonian [58,64], given by

𝐻 = 1
2

(

𝑝2𝜌 + 𝑝
2
𝑧

)

+ 𝑉eff(𝜌, 𝑧) (15)

where 𝑉eff can be replaced by either the potential given in Eq. (13) for
a Kerr-like COP or the one given in Eq. (14) for a Schwarzschild-like
COP. Thus, the equations of motion can be formulated as follows.

̇ = 𝑝𝜌 (16a)

̇𝜌 = −
𝜕𝑉eff
𝜕𝜌

= −
𝜕𝛷g

𝜕𝜌
+ 𝐿2

𝜌3
(16b)

̇ = 𝑝𝑧 (16c)

𝑝𝑧 = −
𝜕𝑉eff
𝜕𝑧

= −
𝜕𝛷g

𝜕𝑧
(16d)

Here, there is no special relativistic correction as the particle’s speed is
assumed to be much less than 𝑐. The energy of the test particle is given
by 𝐸 =

√

1 + 2𝐸mech, where

mech = 1
2

(

𝑝2𝜌 + 𝑝
2
𝑧

)

+𝛷g(𝜌, 𝑧) +
𝐿2

2𝜌2
(17)

Therefore, the conservation equation can be written as

𝐸2 − 𝑝2𝜌 − 𝑝
2
𝑧 − 2𝛷g −

𝐿2

𝜌2
= 1 (18)

rom Eq. (18), it can be concluded that the motion of the test particle
ill be restricted by 𝐸2−2𝛷g−

𝐿2

𝜌2
−1 ≥ 0, which is a direct consequence

of the conservation of energy and angular momentum.
However, if the speed of the particle is comparable to the speed

of light, special relativistic corrections to the equations in (16a)–(16d)
have to be performed [4,54]. We consider the non-dimensional La-
grangian of the relativistic particle  = −1

𝛾
− 𝛷g, where the term 𝛾

s given by

= 1
√

1 −
(

𝜌̇2 + 𝜌2𝜙̇2 + 𝑧̇2
)

The energy of the particle will be 𝐸 = 𝛾 + 𝛷g, and the angular
momentum of the particle will be 𝐿 = 𝜕 = 𝛾𝜌2𝜙̇. The Lagrange’s
4

𝜕𝜙̇
equations for 𝜌 and 𝑧 can be found as
(

𝛷g − 𝐸
)

𝜌̈ =
𝜕𝛷g

𝜕𝜌
(

1 − 𝜌̇2
)

−
𝜕𝛷g

𝜕𝑧
𝜌̇𝑧̇ − 𝐿2

(𝐸 −𝛷g)𝜌3
(19a)

(

𝛷g − 𝐸
)

𝑧̈ =
𝜕𝛷g

𝜕𝑧
(

1 − 𝑧̇2
)

−
𝜕𝛷g

𝜕𝜌
𝜌̇𝑧̇ (19b)

As we have considered the test particle of unit mass, we can write 𝜌̇ = 𝑝𝜌
and 𝑧̇ = 𝑝𝑧. Thus, the relativistic equations of motion turn out to be

̇ = 𝑝𝜌 (20a)

̇𝜌 =
1

𝛷g − 𝐸

[

𝜕𝛷g

𝜕𝜌

(

1 − 𝑝2𝜌
)

−
𝜕𝛷g

𝜕𝑧
𝑝𝑧𝑝𝜌 −

𝐿2

(𝐸 −𝛷g)𝜌3

]

(20b)

̇ = 𝑝𝑧 (20c)

𝑝𝑧 =
1

𝛷g − 𝐸

[ 𝜕𝛷g

𝜕𝑧
(

1 − 𝑝2𝑧
)

−
𝜕𝛷g

𝜕𝜌
𝑝𝑧𝑝𝜌

]

(20d)

From the expressions of energy 𝐸 and angular momentum 𝐿, along with
the relation 𝑢𝜇𝑢𝜇 = 1, the conservation equation can be evaluated as

𝑝2𝜌 + 𝑝
2
𝑧 +

𝐿2

(𝐸 −𝛷g)2𝜌2
+ 1

(𝐸 −𝛷g)2
= 1 (21)

imilar to the non-relativistic case, the motion of the relativistic test
article will be restricted within the region governed by 1− 𝐿2

(𝐸 −𝛷g)2𝜌2

− 1
(𝐸 −𝛷g)2

≥ 0.

It is worth mentioning that similar to the velocities and distances,
ll the terms signifying the physical quantities have been scaled to
ake them non-dimensional. The time 𝑡 has been scaled as 𝑐𝑡∕𝑟g, the
omentum 𝑝 has been scaled as 𝑝∕(𝜇𝑐), and the angular momentum
as been scaled as 𝐿∕(𝜇𝑐𝑟g), where 𝜇 is the mass of the test particle
aken to be unity in our analysis.

The energy conservation equations, given in Eq. (18) for non-
elativistic case and Eq. (21) for relativistic case, converts the 4-
imensional phase space consisting of (𝜌, 𝑝𝜌, 𝑧, 𝑝𝑧) into an effective
-dimensional hypersurface consisting of (𝜌, 𝑝𝜌, 𝑧). The value of 𝑝𝑧 is
ound to satisfy Eq. (18) or Eq. (21) for a particular set of the values
f (𝜌, 𝑝𝜌, 𝑧). This provides comprehensibility in analysing the system and
lso gives the advantage of minimising errors in numerical calculations.

.3. Comparison between GMf PNP and ABN PNP for equatorial orbits

Before implementing the GMf PNP in studying the off-equatorial
rbits, it is essential to consider the PNP for the equatorial orbits by
utting the inclination angle 𝑖 = 0◦. In this context, we compare
he two pseudo-potentials, namely the GMf PNP and the ABN PNP,
nd investigate which is more appropriate for sustaining the essential
spects of general relativity. Both potentials reproduce the radii of the
SCO to be the same as that in the fully relativistic case. Both of them
eproduce the values of the radii of marginally bound orbits (𝑅mb)
nd the energy of unit mass at the marginally stable orbits (𝐸ms) with
imilar accuracy. The margin of dissimilarity being significantly less,
oth the PNPs can be implemented efficiently to study the accretion
ynamics of equatorial disks. However, the simpler mathematical form
f ABN PNP makes it more comprehensive and convenient to imple-
ent in complicated mathematical problems, for example, the Hill
roblem [61]. For off-equatorial orbits, the GM PNP is possibly one of
he mandatory choices despite having a complex mathematical form.

If we find out the differences between the two PNPs at higher
adial distances far from the event horizon, we can see a trend in
heir behaviour, which has a correlation with the rotation parameter
. Let us consider the effective potential 𝑉 (𝑟) consisting of the GMf
NP 𝑉GMf(𝑟), or the ABN PNP 𝑉ABN(𝑟), along with the centrifugal
ontribution

(

𝐿2

2𝑟2

)

. At 𝑎 = 0, which represents a Schwarzschild-like

COP, both the PNPs come down to the PW PNP. That is why both
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Fig. 2. Comparison between the GMf PNP
(

𝑉 (𝑟) = 𝑉GMf(𝑟) + 𝐿2∕2𝑟2
)

and ABN PNP
(

𝑉 (𝑟) = 𝑉ABN(𝑟) + 𝐿2∕2𝑟2
)

, for 𝑧 = 0, 𝐿 = 4.2, and different values of the Kerr parameter 𝑎.
ABN PNP and GMf PNP are equal to each other for 𝑎 = 0. For 𝑎 > 0,
which represents a co-rotating Kerr-like COP, the effective potential
consisting of the ABN PNP is more than that of the GMf PNP (Figs. 2(a)–
2(b)). For 𝑎 < 0, which represents a counter-rotating Kerr-like COP,
the situation is opposite (Figs. 2(c)–2(d)). In this case, the effective
potential consisting of the ABN PNP is less compared to that of the
GMf PNP. This impacts the chaotic behaviour of the equatorial orbits
in a certain way, which has been studied in Section 3.2.2.

3. Stability of orbits and visualisation of chaos

In this section, we analyse the dynamical behaviours of the orbits
around Schwarzschild or Kerr-like COP. We begin with the special case
of stable circular orbits. Thereafter, we move on to the behaviours
of generic orbits, where the coexistence of order and chaos occurs
naturally. We look for the transitions from order to chaos and establish
how the chaoticity correlates with the orbital parameters qualitatively
using the Poincaré sections of the orbits.

3.1. Dynamical analysis of circular orbits

A circular orbit essentially satisfies the relations 𝑟̇ = 0 and 𝑝̇𝑟 = 0. As
the gravitational force corresponding to the PNPs is central in nature,
we can expect stable circular orbits to exist around the COPs. However,
the dipolar perturbation term in Eq. (12) restricts the stable circular
orbits to exist on any plane other than the equatorial plane where the
dipolar term vanishes as 𝑧 = 0. In the off-equatorial planes, the dipolar
term disrupts the spherical symmetry of the system. However, we
are also interested in considering the off-equatorial planes. Therefore,
we suppress the dipolar term for the time being by putting  = 0
in Eq. (12).
5

For an orbit around a COP with specific values of 𝑎 and 𝑖 to be
circular, the relation

𝜕𝑉eff
𝜕𝑟

= 0 is required to be satisfied. For it to be
stable, the extremum has to be a minimum. Therefore, the condition
for an orbit to be a stable circular orbit turns out to be

𝜕𝑉eff
𝜕𝑟

= 0, and
𝜕2𝑉eff
𝜕𝑟2

≥ 0 (22)

Instead of the inequality, if we equate the second relation in Eq. (22)
with 0 and solve the equations simultaneously, the solution essentially
gives the radius of the ISCO for given values of 𝑎 and 𝑖 [65].

In Fig. 3, we study how the radii of ISCOs vary with the rotation
parameter of the COP 𝑎 and the inclination of the orbit 𝑖. At first, we
observe that the change in 𝑅ISCO with respect to the Kerr parameter
𝑎 is significant for any angle of inclination, be it 𝑖 = 0◦, or 𝑖 = 30◦

(Fig. 3(a)). For the equatorial orbits with 𝑖 = 0◦, the radii change from
9𝑟g to ≈ 1𝑟g in the span of 𝑎 ∈ [−1, 1). The change in 𝑅ISCO with respect
to 𝑎 for ABN PNP is precisely the same as that for GMf PNP. The value
of 𝑅ISCO is almost linearly decreasing for most of the range of 𝑎, except
for the orbits around the maximally co-rotating COPs (when 𝑎→ 1), in
which case the change in 𝑅ISCO is more drastic. For 𝑖 = 30◦, the value
of 𝑅ISCO varies in a similar way with 𝑎, although it changes from 7.76𝑟g
to ≈ 2.5𝑟g in the span of 𝑎 ∈ [−1, 1). For 𝑎 = 0, there is no change in the
radius of ISCO as the inclination angle varies, and it remains unchanged
at 𝑅ISCO = 6𝑟g. The result is expected for the Schwarzschild-like COP,
as there is no rotation axis to identify the equatorial plane. Hence, all
the planes are equivalent, and there is no special plane to impose larger
or smaller stability on the circular orbits.

In Fig. 3(b), we can see the dependence of 𝑅ISCO on the inclination
angle 𝑖 for both co-rotating (𝑎 > 0) and counter-rotating (𝑎 < 0) COPs.
In both cases, the change in the value of 𝑅ISCO in the range 𝑖 ∈ [0◦, 30◦]
is small. For the orbits around the counter-rotating COP, the value
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Fig. 3. Correlations of the radii of ISCOs
(

𝑅ISCO
)

with the Kerr parameter 𝑎 and the inclination angle 𝑖. The orbits are governed by the GMf PNP.
of 𝑅ISCO decreases monotonically with 𝑖. On the contrary, it increases
monotonically with the inclination angle for the orbits around the co-
rotating COPs. The radii change more rapidly at the higher values of 𝑖
than at its lower values.

With the above analysis, we get a picture of the stable circular orbits
in our system, including their dependence on the Kerr parameter 𝑎 and
inclination angle 𝑖. We observed that the radii of ISCOs are significantly
more influenced by 𝑎 than by 𝑖. For orbits around counter-rotating
COPs, 𝑅ISCO decreases with 𝑖. On the other hand, it increases with 𝑖
for the orbits around the co-rotating COPs. For the Schwarzschild-like
COP (𝑎 = 0), 𝑅ISCO does not change with 𝑖. However, generic orbits are
much more complicated and nuanced, requiring more detailed analysis
and special tools to study their stability.

3.2. Dynamical analysis of generic orbits

We move on to the analysis of the generic orbits. We implement
the method of Poincaré Map of the sections of phase space to visualise
the change in chaos and order in the system qualitatively. In this
method, instead of looking at the entire three-dimensional hypersurface
(𝜌, 𝑝𝜌, 𝑧), we look at a two-dimensional cross-section of the phase space,
which consists of the points of intersection of the trajectories on a
fixed plane (such as 𝑧 = 0) while moving in a particular direction
along the trajectory [66]. The periodic orbits give rise to one or more
isolated points on the sectional map, whereas the chaotic orbits give
rise to a sea of scattered points [66,67]. There can be other stable
orbits, quasi-periodic regular orbits, which form systematic patterns
in the map corresponding to the concentric Kolmogorov–Arnold–Moser
(KAM) tori.

In this paper, we have plotted the Poincaré sections on the 𝑧 = 0
plane, while the orbits are moving out of the plane along their trajec-
tories in the phase space. For a particular set of orbital parameters,
the initial conditions, i.e., the coordinates 𝜌(𝑡 = 0), 𝑧(𝑡 = 0) and the
momentum 𝑝𝜌(𝑡 = 0), are varied, and the value of 𝑝𝑧(𝑡 = 0) > 0 is
evaluated from the conservation equation (18) for non-relativistic test
particles and conservation equation (21) for relativistic test particles.
We have studied the dependence of chaos on a particular parameter
through a comparative study of the Poincaré maps by varying that
parameter while keeping the rest fixed.

3.2.1. Nonrotating compact object primaries
As the gravitational force, given in Eq. (1), is generic in nature,

we can put 𝑎 = 0 in the expression and study the off-equatorial orbits
around a static and stationary COP. We have implemented the effective
potential consisting of GMS PNP, as given in Eq. (14), and worked
out the equations of motion as per the equations given in (16a)–(16d)
6

which does not consider any relativistic correction. We have varied the
inclination angle 𝑖 and generated the Poincaré Maps for each of the
angles. We have shown the maps for 𝑖 = 13◦, and 15◦ by keeping the
total energy 𝐸, total angular momentum 𝐿, and dipole coefficient 
unchanged (Figs. 4(a)–4(b)). Evidently, the Poincaré Map of the phase
space for 𝑖 = 15◦ consists of a more chaotic region than that for 𝑖 = 13◦,
in which case most of the orbits are regular in nature. We have also
shown the cross-sectional maps for 𝑖 = 28◦, and 30◦ by increasing the
angular momentum and decreasing the total energy in order to suppress
the chaos for convenience in visualisation (Figs. 4(c)–4(d)). We can
observe more chaotic regions on the map for 𝑖 = 30◦ compared to that
for 𝑖 = 28◦. Therefore, this provides qualitative evidence that the degree
of chaos has a positive correlation with the angle of inclination 𝑖 of the
orbit.

To incorporate the relativistic corrections into the equations, we
have derived the equations of motion using equations given in (20a)–
(20d). We solved these equations too, to get the Poincaré Maps corre-
sponding to the phase spaces of the orbits of relativistic test-particle
and studied the trend of the degree of chaos with the inclination angle
𝑖 (Figs. 4(e)–4(f)). Similar to the non-relativistic case, we have kept
the parameters 𝐸, 𝐿, and  to be constant. We can observe the exact
similar behaviour of the orbits, as we have seen in the non-relativistic
case. The phase space becomes more chaotic when the inclination
angle 𝑖 increases from 13◦ to 15◦. The only difference is that we
have used a smaller value of 𝐸 and a higher value of 𝐿 to suppress
the nonlinearity of the relativistic equations of motion (20a)–(20d) in
comparison to the corresponding non-relativistic case (Figs. 4(a)–4(b)).
This is a consequence of the fact that the special-relativistic phase-space
trajectories are more chaotic than the corresponding non-relativistic
counterparts, which is well-established in the literature [4,54].

3.2.2. Rotating compact object primaries
After considering the Schwarzschild geometry, we move on to the

Kerr geometry, where the Kerr parameter 𝑎 is non-zero. In this case, for
particular values of 𝑎 and 𝑖, we first evaluate the PNP 𝑉GM from Eq. (2)
for several values of 𝑟, using the generalised force 𝐹GM𝑟 given in Eq. (1).
After that, we take the natural log of the potential values to fit the data
with the logarithmic form of the fitting function in Eq. (4), which is
given by

ln
(

−𝑉GMf(𝑟)
)

=
(

𝛾1
(𝑟 − 𝛾2)𝛾3

+ 𝛾4

)

− 𝛾5 ln
(

𝑟 − 𝛾2
)

(23)

This allows us to fit the curve more conveniently with minimal error
and evaluate the fitting parameters. After we estimate the values of
the fitting parameters, we can use them in Eq. (13) to get the overall
potential consisting of the GMf PNP term for particular values of 𝑎
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Fig. 4. Poincaré maps on the cross-sectional plane 𝑧 = 0 for the orbits governed by GMS PNP around nonrotating COPs (𝑎 = 0). The inclination angle 𝑖 is varied. The parameters
are (a)–(b) 𝐸 = 0.976, 𝐿 = 4.20,  = 2 × 10−4, (c)–(d) 𝐸 = 0.968, 𝐿 = 5.85,  = 2 × 10−4, and (e)–(f) 𝐸 = 0.974, 𝐿 = 4.60,  = 2 × 10−4.
and 𝑖, along with the dipolar perturbation term and the centrifugal
contribution as well. Thereafter, we implement this potential in the
Eqs. (16a)–(16d) and Eqs. (20a)–(20d) to get the equations of motion
for non-relativistic and relativistic cases, respectively.

We can verify the quality of fitting of GMf PNP with GM PNP by
doing some comparisons between them, or the derived quantities from
both of them (Fig. 5). In Figs. 5(a) and 5(b), we show how GMf PNP
fits with GM PNP for 𝑎 = ±0.8 and 𝑖 = 20◦. For convenience, we
have shown fewer points of GM PNP in the figures. Otherwise, we use
a large number of points for efficient fitting while performing actual
calculations. In Figs. 5(c) and 5(d), we look for the variation in specific
energy as a function of the radial distance 𝑟, given by the relation

𝐸 = 𝑟 𝑑𝑉PNP + 𝑉 (24)
7

2 𝑑𝑟 PNP
for the circular orbits governed by GM PNP and GMf PNP. We compare
the results for several values of 𝑎 and 𝑖, some of which are presented
here in these figures. We also compare the contours of constant po-
tential values for GM PNP and GMf PNP with 𝑎 = −0.8, shown in
Figs. 5(e) and 5(f) respectively. The studies are similar and at par with
those performed in [2]. The minute differences between the two PNPs
in these studies establish the quality of fitting and the effectiveness of
the fitting function.

We have already compared the effective potentials consisting of the
GMf PNP with that of the ABN PNP in Section 2.3. Now, we must
compare the Poincaré Maps generated using the two potentials (Fig. 6).
Apparently, we are considering the orbits on the equatorial plane in this
case (𝑖 = 0◦). We can observe the usual frame-dragging effect for GMf
PNP (Figs. 6(a) and 6(b)). The chaotic nature of the orbits for 𝑎 = −0.2



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 179 (2024) 114410S. Das and S. Roychowdhury
Fig. 5. Comparison between GM PNP and GMf PNP. (a),(b) Fitting the GM PNP 𝑉GM with the GMf PNP 𝑉GMf; (c),(d) Variation of the specific energy of circular orbits with the
radial distance 𝑟 for 𝑎 = ±0.8 and different inclination angles for both GM PNP and GMf PNP; (e),(f) Contours of constant potentials with GM PNP and GMf PNP for 𝑎 = −0.8,
consisting of solid lines corresponding to 𝑉PNP = 0.045, 0.06, 0.075,… , 0.15, dot-dashed lines to 𝑉PNP = 0.2, 0.4, 0.6..., 1, and dashed lines to 𝑉PNP = 2, 4, 6,… , 10.
is significantly higher than that for 𝑎 = 0.2. The frame-dragging effect is
also evident in the Poincaré Maps corresponding to the orbits derived
from ABN PNP (Figs. 6(c) and 6(d)). The number of regular orbits has
decreased significantly in the map for 𝑎 = −0.2 compared to that for
𝑎 = 0.2. However, it is to be noted that the degree of chaos in the
map for 𝑎 = 0.2 evaluated from GMf PNP (Fig. 6(a)) is more than that
derived from ABN PNP (Fig. 6(c)). On the contrary, the chaotic nature
of the orbits in the map for 𝑎 = −0.2 evaluated from GMf PNP (Fig. 6(b))
is less compared to that derived from ABN PNP (Fig. 6(d)). This is
the consequence of the result that we presented in Section 2.3, where
we made a comparison between the two PNPs (Fig. 2). The relative
shift in the local minima of the effective potentials affects the chaotic
behaviour of the orbits in the way we can see in Fig. 6.
8

To observe how the chaoticity of the inclined orbits changes with
the rotation of the COP, we studied the chaotic nature of the orbits for
the whole range of the Kerr parameter (−1 ≤ 𝑎 < 1). First, we consider
the orbits with a relatively smaller value of inclination (𝑖 = 10◦), along
with particular values of dipole coefficient , energy 𝐸, and angular
momentum 𝐿. We observe that the orbits around the counter-rotating
COPs (such as Fig. 7(a)) are more chaotic than that around the co-
rotating ones (such as Fig. 7(b)). For any negative value of 𝑎, we
have examined the Poincaré Map plot for the corresponding positive
value of 𝑎. The former is apparently more chaotic than the latter for
all the cases. This occurs because of the usual frame-dragging effect.
We have studied the gradual change in the chaoticity from 𝑎 = −1
to 𝑎 ≈ +1. The systematic suppression of chaos with respect to the
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Fig. 6. Poincaré maps on the cross-sectional plane 𝑧 = 0 for the orbits following GMf PNP and ABN PNP with 𝑎 = ±0.2, 𝑖 = 0◦,  = 3 × 10−4, 𝐸 = 0.975, and 𝐿 = 4.16. The plots
are evaluated without considering any special relativistic corrections.
Kerr parameter is evident. We can consider a higher inclination such
as 𝑖 = 25◦, and look for how the chaoticity changes for different values
of 𝑎. We get to observe a similar trend in this case as well. However,
the change in chaoticity is more for the higher value of the inclination
angle, when the Kerr parameter changes from 𝑎 = −0.6 (Fig. 7(c))
to 𝑎 = 0.6 (Fig. 7(d)). For the relativistic test particle, the region of
chaos decreases significantly when the Kerr parameter changes from
𝑎 = −0.15 (Fig. 7(e)) to 𝑎 = 0.15 (Fig. 7(f)). From this, we can say that
the degree of chaos has a negative correlation with the Kerr parameter
𝑎 for any given inclination angle. However, quantitative analysis in
Section 4 will reveal more details and intricacies, where a significantly
larger number of initial conditions can be considered and examined for
the entire range of 𝑎.

After finding out the dependence of chaos on the Kerr parameter
𝑎, we studied the change in the chaotic nature of the orbits with
respect to the inclination angle 𝑖 for both non-relativistic and relativistic
particles (Fig. 8). In all cases, the chaotic behaviour of the orbits
increases with the angle of inclination 𝑖. For the non-relativistic orbits
with higher inclinations, the Poincaré Maps change drastically when
the inclination angle increases from 𝑖 = 28◦ (Fig. 8(c)) to 𝑖 = 30◦

(Fig. 8(d)). In comparison to this, the change in the nature of orbits for
smaller inclination angles is more gradual. A smaller region of order
converts into the region of chaos when the inclination angle increases
from 𝑖 = 10◦ (Fig. 8(a)) to 𝑖 = 12◦ (Fig. 8(b)). We have already
observed the change to be gradual at smaller inclination angles in Fig. 4
when we studied the Poincaré Maps corresponding to the off-equatorial
orbits around the Schwarzschild-like COPs. This phenomenon will also
be corroborated and studied in detail using the quantitative analysis
of chaos in the next section. Similar to the non-relativistic case, the
9

chaotic nature of the relativistic orbits has a positive correlation with
the inclination angle 𝑖. The Poincaré Map plot for 𝑖 = 25◦ (Fig. 8(e))
consists of regular orbits, many of which extinguish and turn into
chaotic orbits when the inclination angle increases to 𝑖 = 26◦ (Fig. 8(f)).

4. Quantification of chaos using maximum Lyapunov exponents

As we have studied the chaotic dynamics of the orbits qualitatively,
we proceed to look for a quantitative way of studying chaos. There
are many chaotic indicators available in the literature. We have used
the Lyapunov Exponent in this regard as it is easy to implement, can
efficiently distinguish between order and chaos in our system, and is
very effective in studying the chaotic correlations over a long range
of dynamical parameters. One can measure the exponential divergence
of two neighbouring orbits while their starting point is very close to
each other [68]. The number of exponents will equal the number of
dimensions of the phase space. However, in the long run (for 𝑡 →
∞), the maximum of the exponents dominates. This is known as the
MLE [4,8]. This can be calculated as

𝛬max = lim
𝑡→∞

‖𝛿𝑥(0)‖→0

(

1
𝑡
ln

‖𝛿𝑥(𝑡)‖
‖𝛿𝑥(0)‖

)

(25)

where ‖𝛿𝑥(𝑡)‖ is the norm of the deviation between the two neigh-
bouring orbits in the phase space at time 𝑡. It can be evaluated using
the Difference-Hamiltonian and the variational equations [69]. This
method is known as the variational method. Although the method is
very accurate, the calculation is intensively rigorous with the mathe-
matically complex form of GMf PNP. As an alternative, we have used
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Fig. 7. Poincaré maps on the cross-sectional plane 𝑧 = 0 for the orbits governed by GMf PNP with different values of the Kerr parameter 𝑎, and fixed values of orbital parameters,
◦ −4 ◦ −4 ◦ −4
such that (a)–(b) 𝑖 = 10 , 𝐸 = 0.976, 𝐿 = 4.90,  = 3 × 10 , (c)–(d) 𝑖 = 25 , 𝐸 = 0.9734, 𝐿 = 5.82,  = 2 × 10 , and (e)–(f) 𝑖 = 25 , 𝐸 = 0.965, 𝐿 = 5.835,  = 2 × 10 .
the two-particle method, a more convenient and less rigorous way of
calculating MLEs [8].

To achieve accurate results using the two-particle method, the initial
deviation has to be very small, and the precision of the computational
instrument has to be high. Furthermore, we need to re-normalise the
deviated orbit after every time step 𝜏 using the Gram–Schmidt renor-
malisation scheme [70] so that the MLEs do not diverge very quickly.
For a particular set of parameters, we can consider a large number of
initial conditions evenly distributed over the allowable phase space and
calculate MLEs for each of them. Thereafter, we can take the average
of all the exponents

(

𝛬av
)

and consider this as a rough quantitative
measure of the overall chaos in the system. In the present work, we
have used double precision for the computation of the MLEs. For each
initial condition, the initial deviation has been taken to be 𝛿𝑥(0) = 10−8,
and the calculation has been carried out for 𝑛 = 105 iterations with
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renormalisation time-step 𝜏 = 0.1. The threshold has been found to be
≈ 1.5 × 10−4, which means the value of 𝛬max is smaller than 1.5 × 10−4

for regular orbits and it is more than 1.5 × 10−4 for chaotic orbits.
Before proceeding further, we have checked if the aforementioned

scheme of MLE is suitable to distinguish between chaos and order
in our system. We have considered two orbits with the same orbital
parameters 𝑎 = −0.15, 𝑖 = 29◦, 𝐸 = 0.965, 𝐿 = 5.48, and  = 2 × 10−4.
The initial conditions for orbit 1 are 𝜌 = 16, 𝑝𝜌 = −0.1, 𝑧 = 0, 𝑝𝑧 > 0, and
that for orbit 2 are 𝜌 = 23.5, 𝑝𝜌 = 0.065, 𝑧 = 0, 𝑝𝑧 > 0. From the Poincaré
plot of sections (Fig. 9(a)), we can see that orbit 1 is chaotic in nature,
whereas orbit 2 is regular. We evaluated the corresponding MLEs for
these two orbits as a function of the number of iterations (Fig. 9(b)).
We can observe that the scheme can efficiently distinguish between the
two orbits for

(

log10 𝑛
)

≳ 5. At 𝑛 = 105, the value of MLE for orbit 1
is above the threshold 𝛬 = 1.5 × 10−4, and that for orbit 2 is below
max
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Fig. 8. Poincaré maps on the cross-sectional plane 𝑧 = 0 for the orbits governed by GMf PNP with different values of the inclination angle 𝑖, and fixed values of orbital parameters,
such that (a)–(b) 𝑎 = −0.15, 𝐸 = 0.976, 𝐿 = 4.22,  = 2 × 10−4, (c)–(d) 𝑎 = −0.15, 𝐸 = 0.965, 𝐿 = 5.48,  = 2 × 10−4, and (e)–(f) 𝑎 = −0.15, 𝐸 = 0.965, 𝐿 = 5.95,  = 2 × 10−4.
the threshold, which implies that orbit 1 is chaotic, whereas orbit 2
is regular. Thus, this scheme of MLE works efficiently to distinguish
between order and chaos in our system.

By implementing MLE as a quantitative indicator of chaos, we have
studied the correlation of chaos with the Kerr parameter 𝑎 of the COP
and the inclination angle 𝑖 of the orbit. First, let us consider the former.
Looking at the overall trends of MLEs, it is evident that the chaoticity
of the system has a negative correlation with the rotation parameter 𝑎
(Fig. 10). The inclined orbits are always more chaotic for the maximally
counter-rotating COPs, i.e., when the value of 𝑎 is closer to −1. For
lower values of the inclination angle, such as 𝑖 = 10◦ (Fig. 10(a)),
the degree of chaos decreases gradually with the increasing value of
𝑎. For higher angles of inclination, the correlation becomes nuanced.
It turns out that the degree of chaos weakly depends on the Kerr
11
parameter 𝑎 for most of its range. However, the chaoticity rapidly
increases below a threshold value of the rotation parameter 𝑎 = 𝑎c.
For 𝑖 = 25◦ (Fig. 10(b)), the threshold value is 𝑎c ≈ −0.85. When the
value of 𝑎 is more than 𝑎c = −0.85, the chaoticity decreases very slowly
as 𝑎 increases. But below 𝑎 = 𝑎c, the MLE increases drastically as 𝑎
decreases. We observed this qualitatively with the Poincaré Maps in
the previous section.

The threshold value of the rotation parameter 𝑎 = 𝑎c gets affected
by the overall chaoticity of the system. Any change in the orbital
parameters, which enhances chaoticity in the system, affects it so that
the value of 𝑎c increases. For example, for 𝑖 = 28◦ (Fig. 10(c)), the
threshold value comes out to be 𝑎c ≈ −0.45. It is more than 𝑎c ≈
−0.85, which occurs when the inclination was 𝑖 = 25◦ (Fig. 10(b)).
It is happening because the degree of chaos is enhanced when the



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 179 (2024) 114410S. Das and S. Roychowdhury
Fig. 9. Poincaré sections and corresponding MLEs (𝛬max) for the orbits with parameters 𝑎 = −0.15, 𝑖 = 29◦, 𝐸 = 0.965, 𝐿 = 5.48, and  = 2 × 10−4.
inclination angle increases from 𝑖 = 25◦ to 𝑖 = 28◦. It seems like the
system tries to sustain its stability as long as possible. However, the
enhancement of chaoticity makes the system more nonlinear, causing
the system to be stable for a shorter span of the Kerr parameter. That
is why the threshold value 𝑎 = 𝑎c increases and the system retains its
stable nature for a shorter range of 𝑎. When 𝑎 < 𝑎c, the nonlinearity
in the system gets triggered, and the MLE shows a sharp upturn as 𝑎
decreases. We observe a similar phenomenon when we increase energy
𝐸 and decrease angular momentum 𝐿 by keeping the inclination angle
fixed at 𝑖 = 25◦ (Fig. 10(d)). It causes the overall chaoticity to increase,
and the threshold value increases from 𝑎c ≈ −0.85 to 𝑎c ≈ −0.65.

On the other hand, the dependence of chaoticity on the inclination
angle 𝑖 is opposite to that for the rotation parameter 𝑎 (Fig. 11). The
degree of chaos increases in the system as the orbits become more
inclined with the rotation axis of the COP while keeping the rest of
the orbital parameters fixed. It implies that the thicker accretion disks
have more chaotic orbits than the thinner ones. However, the change
in the MLE is more rapid at the higher values of the inclination angle.
This was also observed earlier while studying the chaotic behaviour of
the orbits qualitatively using Poincaré Map plots (Fig. 8). There is a
sudden increase in the values of MLEs at some threshold value of the
inclination angle 𝑖 = 𝑖c (Fig. 11). For 𝑖 < 𝑖c, the chaoticity increases
gradually. As the value of 𝑖 crosses 𝑖c, the MLEs start increasing rapidly
until it reaches an angle, after which the growth slows down a little,
though the positive correlation still holds. This overall trend of MLEs
with respect to the inclination angle 𝑖 is very consistent, and it is true
for any given set of orbital parameters.

Now, if we compare Figs. 11(a) and 11(b), the threshold value has
come down from 𝑖c ≈ 21◦ to 𝑖c ≈ 18◦ as the dipole coefficient increases
from  = 2 × 10−4 to  = 2.2 × 10−4. These results imply that the value
of 𝑖c has an anti-correlation with the degree of chaos in the system. As
the chaoticity gets enhanced, the nonlinearity in the system increases,
and the value of 𝑖c gets lowered. The explanation of stability, in this
case, is similar to what we saw while discussing the dependence of
chaoticity on the rotation parameter for the higher values of inclination
angles. As before, it seems like the system is trying to sustain its stability
as long as possible. But the enhancement in the nonlinearity due to
any change in the orbital parameters triggers the system early at a
lower value of the inclination angle, and the chaoticity starts increasing
rapidly. Thus, the value of 𝑖c gets lowered.

5. Conclusions

In the present work, we have studied the chaotic behaviour of
the off-equatorial orbits around a pseudo-Newtonian COP using the
generalised force presented in Ghosh and Mukhopadhyay [2]. Because
12

of the complex mathematical form of the pseudo-Keplerian force, we
have prescribed a numerical method in which a fitting function is
used to generate the PNP and implement it in the analysis of orbital
dynamics. To incorporate a more realistic scenario, we have introduced
an artificial dipolar perturbative term corresponding to an asymmet-
rically placed hollow halo of matter around the COP. To study the
chaotic dynamics of the off-equatorial orbits around the COP, we have
implemented the Poincaré Maps and the MLEs as the indicators of
chaos. Where Poincaré maps help to visualise chaos qualitatively, MLEs
quantify the degree of chaos.

At first, we studied stable circular orbits and observed how their sta-
bility gets affected by the Kerr parameter 𝑎 and the angle of inclination
𝑖. We have found that the ISCOs are significantly affected by the Kerr
parameter compared to the inclination angle. Thereafter, we studied
the chaotic dynamics of the generic equatorial orbits governed by the
GMf PNP and compared them with those governed by the ABN PNP.
We saw that for the orbits around the co-rotating COPs, the GMf PNP
induces more chaos into the system. For the orbits around the counter-
rotating COPs, the effect is the opposite, i.e., the ABN PNP makes the
equatorial orbits more chaotic compared to the GMf PNP.

While studying the correlation of chaos with respect to the rotation
parameter 𝑎, we observed that the chaoticity decreases as the value
of 𝑎 increases. It is maximum for the orbits around the maximally
counter-rotating COPs. The degree of chaos for lower values of the in-
clination angles shows a consistent negative correlation with 𝑎. Hence,
the chaoticity gradually decreases as 𝑎 increases. However, for higher
orbital inclinations, the degree of chaos shows a weak dependence on
𝑎 at its higher values. Only when 𝑎 decreases below a threshold value
𝑎c, it begins to increase rapidly as 𝑎 gets lowered. The value of 𝑎c has
a positive correlation with the degree of chaos present in the system.
If the chaoticity gets enhanced because of the change of any orbital
parameters, the value of 𝑎c increases.

We have also established that the chaoticity increases as the orbits
become more inclined with the equatorial plane. This has been shown
for both Schwarzschild and Kerr-like COPs. The change in the chaotic
nature of the orbits is more rapid at higher inclination angles than the
lower ones, in which cases the changes are more gradual. The MLEs
show a sudden sharp upturn at a particular threshold value of the
inclination angle 𝑖 = 𝑖c. For orbits with inclination 𝑖 > 𝑖c, the change
in the degree of chaos is more rapid, and for 𝑖 < 𝑖c, the chaoticity
changes gradually. Therefore, we can state that for 𝑖 > 𝑖c, even a tiny
change in the inclination angle can affect the chaotic behaviour of the
orbits significantly. Furthermore, the value of 𝑖c anti-correlates with the
nonlinearity in the system. It increases when the overall degree of chaos
decreases due to any corresponding change in the orbital parameters.

In future, we would like to perform an in-depth analysis of the
dynamics of chaos in the current system using other indicators of chaos,

namely the Fast Lyapunov Index or FLI [58,71], Small Alignment Index
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Fig. 10. Maximum Lyapunov Exponent (𝛬av) as a function of Kerr Parameter 𝑎.
Fig. 11. Maximum Lyapunov Exponent (𝛬av) as a function of inclination angle 𝑖.
or SALI [72,73], and General Alignment Index or GALI [74], which
are more sensitive to chaos than MLE, making them more efficient to
distinguish between order and chaos. We would also like to implement
the PNP to study the off-axis motion of a test particle in a restricted
three-body system, where the other two bodies are pseudo-Newtonian
compact object binaries.
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