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Abstract
Let D be the ring of S-integers in a global field and ̂D its profinite completion.Given X ⊆ Dn,

we consider its closure ̂X ⊆ ̂Dn and ask what can be learned from ̂X about the “size” of X .

In particular, we ask when the density of X is equal to the Haar measure of ̂X . We provide a
general definition of density which encompasses the most commonly used ones. Using it we
give a necessary and sufficient condition for the equality between density and measure which
subsumes a criterion due to Poonen and Stoll. We also show how Ekedahl’s sieve fits into
our setting and find conditions ensuring that ̂X can be written as a product of local closures.
In another direction, we extend the Davenport–Erdős theorem to every D as above and offer
a new interpretation of it as a “density=measure” result. Our point of view also provides a
simple proof that in any D the set of elements divisible by at most k distinct primes has
density 0 for any k ∈ N. Finally, we show that the closure of the set of prime elements of D
is the union of the group of units of ̂D with a negligible part.
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1 Introduction

1.1 Motivation

One of the most basic questions in number theory is to find out how big are certain interesting
subsets of N, the set of natural numbers.

It is obvious that finite sets must be very small; moreover, one can give a quantitative
assessment of the size of a finite X ⊂ N just by computing its cardinality. For an infinite X

123



Densities on Dedekind domains, completions and Haar measure Page 3 of 52 21

the traditional approach is to use some form of density, most often the asymptotic one

das(X) := lim
r→∞

|X ∩ [0, r ]|
r

,

but many other definitions of density have found their use in number theory. Intuitively, a
density should behave similarly to a measure (see for example the discussion in [53, III.1])
and, starting at least with [10], much research has gone into fitting densities into a measure
theory framework (we mention [23], as well as the notion of density measure developed in
papers like [37, 54]).

One can also observe that densities are usually defined exploiting the canonical injection
N ↪→ R and that R is not the only topological space with nice properties into which one
could embed N. Number theorists know that R is just one of many completions of Q; and
the principle that “all places were created with equal rights” suggests of looking instead at
the embedding of N intôZ 	∏Zp, the profinite completion of Z. As a compact group,̂Z is
endowedwith a Haarmeasureμ and it is easy to see that if X is an arithmetic progression then
its asymptotic density is exactly μ(̂X), where ̂X is the closure of X in̂Z. This fact has been
noticed by many people and the idea of evaluating the size of a general X ⊆ Z by computing
μ(̂X) is natural enough that it was independently developed by severalmathematicians. It was
already implicitly behind Buck’s paper [10] (even if, as far as we can judge, most likely Buck
did not know about̂Z); and it arose again in works by Novoselov [41], Ekedahl [19], Poonen
and Stoll [48], Kubota and Sugita [31]—apparently all unaware of their predecessors (the
partial exception is [48], whose authors learned of [19] just after completing their own paper).
In particular, [31, 41] were motivated by the fact that ̂Z can be thought of as a probability
space: we recommend [29, 30] for a survey of different approaches to probabilistic number
theory by compactifications of N.

Introducing ̂Z makes it quite straightforward to extend the same approach to the setting
of number fields or, more generally, global fields (i.e., finite extensions of either Q or Fp(t)).
Throughout this paper the expression global Dedekind domain will be used as a shortening
for the ring of S-integers of a global field: that is, D is a global Dedekind domain if its fraction
field F is a global field and there is a non-empty finite set S of places of F (containing the
archimedean ones in the characteristic 0 case) such that

D = {x ∈ F | vν(x) � 0 ∀ ν /∈ S},
where vν is the valuation attached to ν.

For the rest of this introduction, let D be a global Dedekind domain. Then D can be
embedded in its profinite ring completion ̂D—a compact topological ring endowed with a
Haar measure μ (the construction of ̂D and μ will be recalled in Sects. 2 and 4 respectively).
Moreover, the classical notion of asymptotic density of subsets of N can be extended (in
many different ways) to subsets of Dn . So, letting ̂X denote the closure in ̂Dn of X ⊆ Dn,

one can ask about the comparison between μ(̂X) and the value at X of a given density on
Dn . More generally, one might ask what can be learned about X by looking at ̂X . Giving
some answers to these questions is the main goal of this paper.

1.2 Our results

Assume that X is closed with respect to the topology induced by the embedding D ↪→ ̂D.

Then X = Dn ∩ ̂X , so that X and ̂X are as close as possible. Our basic philosophy is that in
this case finding out ̂X is the best way of assessing how large is X .
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This is trivial when X is finite (since then X = ̂X ). If X is infinite, a first natural question
is whether one has

μ(̂X) = d(X) (1)

for some given density d. As mentioned before, there are many different possible definitions
of density on Dn, so in Sect. 4.2.1 we list some hypotheses that d should satisfy for the
comparison to make sense.

Equality (1) holds trivially when ̂X is compact and open (Lemma 4.6) or, with little more
work, when its boundary has measure 0 (Lemma 4.16). These cases can be treated by Buck’s
measure theory, as done in [10] and the papers inspired by it, like [34] or [22] (we shall
briefly summarise the main ideas in Sect. 4.3.1; see also Remark 4.18 and Corollary 4.22).
On the other hand, we shall see that the approach of [10] cannot be applied to evaluate, for
example, the size of the set of square-free integers—whose density 6

π2 is exactly what one

would expect from (1).1

We have results in three directions.

1.2.1 Sets of multiples and the Davenport–Erdős theorem

As far as we know, the first proof of a version of (1) covering a vast generality of non-trivial
cases was obtained by Davenport and Erdős in [15], where they showed that sets of multiples
have a logarithmic density. A set of multiples U is basically a union of ideals, so taking the
complement in Z of this union one gets a closed set X and the computation in [15] yields
exactly (1).

In Theorem 5.17 we extend this result to any global Dedekind domain D. Our proof
follows quite closely the one in [15], where the main tool is the analytic density dan, which
we define in Sect. 5.1.2 for subsets not of D, but of I(D) (the set of non-zero ideals of
our ring). In Sect. 2.2.3, we show how to densely embed I(D) into a compact topological
space S(D), whose elements we call supernatural ideals (since they generalize the notion of
supernatural numbers). There is a natural surjection ρ of ̂D onto S(D) and the measure μ

can be push-forwarded to a measure ρ∗μ on S(D).As for the set to be considered, we take as
U a union of open ideals in ̂D and then we have to distinguish between Y (the complement
of U in ̂D) and X (the complement of U in D): the examples in Remark 5.14 show that in
general one should expect ̂X to be properly contained in Ŷ = Y . The version of (1) that we
obtain in Theorem 5.17 is ρ∗μ(Y ) = dan(ρ(Y )).

When U is a union of pairwise coprime ideals “with enough divisors” we can prove
̂X = Y (Proposition 5.16) and in Theorem 6.17 we show that under this hypothesis one has
the equality of μ(̂X) with the asymptotic density of X (defined in Sect. 4.3.2).

In our discussion of sets of multiples, we also prove that the set of integers divisible by at
most k distinct primes has density 0 for every k ∈ N. Actually, with our approach it is quite
easy to show that the analogous statement holds in any global Dedekind domain and for every
density satisfying the conditions in Sect. 4.2.1 (see Proposition 5.9 and Corollary 5.10).

1 The heuristics for computing the density of square-free integers is based on the fact that in an interval of length
x for every prime p there are about (1 − p−2)x numbers which are not divisible by p2. The decomposition
̂Z = ∏Zp (see Theorem 2.1 for a more precise statement) implies that the measure of square-free elements
in̂Z is

∏

p(1 − p−2).
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1.2.2 The local-to-global approach: Eulerian sets

The papers [19, 48] brought forward a decisive progress in establishing new cases of (1).
Ekedahl proved that (1) is true if X consists of the points inZ

n which stay away from an affine
closed scheme Z when reduced modulo p, as p varies over all primes [19, Theorem 1.2].2

Poonen and Stoll in [48, Lemma 1] isolated a sufficient (but maybe not necessary) criterion
for (1) to hold; this criterion (proved in [49, Lemma 20]) can also be used to simplify the
proof of Ekedahl’s theorem. Such results were later improved and extended bymany authors:
we cite, with no claim of exhaustiveness, [3, 4, 8, 14, 39].

All these works take a local-to-global approach. Unique factorization yields a canonical
isomorphism ̂Z 	 ∏p Zp (and, more generally, ̂D 	 ∏p

̂Dp, where p varies among all

non-zero prime ideals of D and ̂Dp denotes the completion in the p-adic topology). In [19,
48] and the literature following them, the idea is to start with a family of measurable subsets
Up ⊆ ̂Dn

p and prove an equality of the form
∏

p

μp(Up) = d(X), (2)

where μp is the Haar measure on ̂Dn
p and

X = Dn ∩
∏

Up. (3)

We will show in Proposition 6.4 how in many important cases (2) implies

̂X =
∏

Up (4)

and hence (1).
In Theorem 4.19 we give a necessary and sufficient condition for (1) which refines and

extends the Poonen–Stoll criterion (in Proposition 6.18 we explain how to derive the latter
from the former). Our result is valid for every global Dedekind domain and for every density
as in Sect. 4.2.1. The proof of Theorem 4.19 is not too different from those of extensions
of [49, Lemma 20] already in the literature (like [8, Lemma 3.1], [39, Theorem 2.1] or [14,
Proposition 3.2]), but it might have some advantages in terms of generality and simplicity.
In particular we do not require that X is defined by local conditions at primes p.

We say that X is Eulerian if it satisfies (4) (Definition 6.1, generalized to sets of Eulerian
type inDefinition 6.13). This notion can be seen as a somewhatmore simple-minded extension
of strong approximation: see Sect. 6.1.2 for a brief discussion on how they relate. Eulerian
sets are the ones for which it is easiest to compute μ(̂X) and to our knowledge they cover
most of the examples where (1) is known to be true. In Sect. 6 we discuss some conditions
which ensure that a set is Eulerian without passing through (2): for example, images of
polynomials, tuples with a fixed greatest common divisor and k-free numbers form Eulerian
sets (Proposition 6.6, Corollary 6.11 and Corollary 6.15 respectively).We conclude the paper
with some questions (yet too speculative for the name of conjecture) about what sets could
be Eulerian and whether this can entail anything about their density.

We would like to note that in our work the emphasis is somehow shifted with respect
to previous research: one could say that we take a “global-to-local” approach, in the sense
that our interest is in ̂X , pertaining to the global object X rather than to the local conditions

2 In the same paper, there is also the claim that any open subset of ̂Zn has density equal to its measure [19,
Proposition 2.2]. Unfortunately this statement and its consequence [19, Theorem 2.3] are wrong, as we are
going to discuss in Sect. 4.4.3.
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∏

Up. Even when X is defined by (3), there is no need for equality (4) to be true (just think
of the case D = Z, Up = Z

∗
p for all p) and finding out the difference between its two sides

can be of some interest.
We also note that, letting X(p) be the closure of X in ̂Dn

p, one can think of the set-theoretic
difference

∏

X(p) − ̂X

as a way of measuring the failure of the Hasse principle.

Remarks 1.1 1. For simplicity, in this paper we only work in the affine setting: that is, we
only consider subsets of Dn . It would be interesting to extend our approach to subsets of
the projective space P

n(F) (where F is the fraction field of D) as in [8, §3.2].
2. Obviously our method fails to see local conditions determined by places of S—for the

most trivial example, just note that N and Z have the same closure ̂Z, but are easy to
distinguish via the order relation in R. We don’t think of this as a serious shortcoming,
in the sense that if one has to add finitely many conditions from places in S, it is usually
not too hard to dispose of them by other techniques after dealing with the infinitely many
coming from primes of D.

1.2.3 Sets of measure 0 and the closure of primes

Equality (1) is always true when μ(̂X) = 0 (Corollary 4.14). However, sets of density 0 can
still be quite large and assessing their size in a more precise way can be of great interest: for a
typical example it is enough to think ofP, the prime numbers in N. Because of compactness,
an infinite X ⊆ Dn has always accumulation points in ̂Dn, so there is hope of learning
something from ̂X even when μ(̂X) = 0. This hope is confirmed in the case of P: it turns
out that ̂P contains ̂Z∗, the group of units of ̂Z, and that this inclusion is equivalent to
the existence of infinitely many primes in arithmetic progressions. (As far as we know, this
observation was first made by Lubotzky—see e.g. [36, page 476].)

We generalize this to any global Dedekind domain D in Theorem 3.2. More precisely,
we consider the sets Irr(D), consisting of those irreducible elements of D which generate
a prime ideal, and ̂D∗, the group of units of ̂D (not to be confused with its subgroup ̂D∗,
which is the closure of D∗ in ̂D). We prove that the closure of Irr(D) in ̂D is the disjoint
union of ̂D∗ and a much smaller piece (the meaning of “much smaller” will be explained
in Sect. 3.1.2). As one could expect, the main tool for the proof is a weak version of the
Chebotarev density theorem (Theorem 3.5).

Theorem 3.2 suggests that the method of checking closures in ̂D can also be applied to
study, for example, regularity in the distribution of primes. We will not pursue the matter
further in this paper3 and will be content to use this result just as a tool to determine ̂X in
some other cases (Proposition 5.16). But we want to emphasize that Theorem 3.2 gives a
convincing argument in favour of our point: if X is a closed subset of D (or, at least, not too
far from being closed), then what one can learn about X from ̂X goes well beyond equality
(1).

3 Interested readers can find some more considerations on this in [35, §3.3.2]. An extensive discussion of this
topic is in preparation (joint work with F. M. Saettone).
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1.3 Structure of this paper

The contents of Sects. 3, 5 and 6 have already been discussed in enough detail. Here we just
want to add a few more words about the rest of the paper, in order to put it better in context
and to help readers find their way through it.

In Sect. 2 we set down the notation and establish a number of facts about ̂D which we are
going to use later. None of these results is new and all of them are well known to experts,
who are advised to read just the parts needed to familiarize with our notations.

Section 4 is dedicated to the comparison between the Haar measure on ̂D and a general
notion of density on D. We introduce both notions from scratch. There is not much to say
on the measure and here we just remark that putting together Example 4.3 and Theorem 3.2
one gets an interpretation of the value at 1 of the Dedekind zeta function as the inverse of the
Haar measure of the closure of Irr(D).

As for densities, in the literature one can find a vast number of different definitions over
N—see for example [26] or [53, Chapter III.1] for gentle introductions. For the more general
situation we are interested in, the literature is less huge, but still quite big and we make
no attempt to survey it, just citing on occasion a few relevant papers. In the case of N, a
general definition of density was proposed in [23] and systems of axioms are discussed in
[21, 26] and (quite exhaustively) in [32]; the latter paper, which also considers the case of Z,

fits reasonably well with our needs (see Remark 4.4). In Sect. 4.2.1 we will give a working
definition of a density on Dn, but readers should be aware that our goal is simply to isolate
the properties it should satisfy for comparison with the Haar measure on ̂Dn . A number of
examples of such densities will be discussed in full detail in the companion paper [18]; in the
present work, Sects. 4.3.1–4.3.3, we just quickly touch upon some cases that will be needed
later.

Finally,wepoint out that oftenweworkwith aDedekinddomain Dwhich is not necessarily
global. We always ask that D is countable and ̂D is compact (Assumption 2.9), but these two
conditions do not imply that the fraction field is global (Remark 2.10). It is not clear to us if
these more relaxed hypotheses can be of much interest; however proofs are not burdened by
such generalization and one can gain some conceptual clarity.4 Wewill always state explicitly
when we require D to be a global Dedekind domain.

Style and readership

The subject of densities in N and its extensions to integers in number fields are of interest
to a large number of mathematicians other than algebraic number theorists, so we thought it
convenient to offermore explanations and proofs (especially in Sect. 2), in the hope ofmaking
our work accessible to a wider audience. As a consequence, algebraic number theorists might
get bored by details on obvious facts, while readers with a different background might find
our explanations too terse: we apologize to both groups.

4 One could easily work in greater generality: see [22] for an extension to any projective limit of compact
rings or groups.
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2 Notations and some prerequisites

2.1 Basic notations and conventions

Throughout the paper, D is a Dedekind domain and F is its field of fractions. (The definition
of Dedekind domain that we use is as in [1, Chapter 9]—in particular, the Krull dimension
must be 1, so D cannot be a field.) Ideals in D will be usually denoted by German letters; in
particular, pwill always mean a non-zero prime ideal of D. When F is a global field, we will
write Fν for the completion at a place ν and prime ideals of D will often be tacitly identified
with the corresponding place.

In Sect. 2.2.1 we will endow D with a topology; the expression “closed subset of D”
will always be used in reference to this topology. Also, finite sets will always have the
discrete topology; products, quotients and limits of topological spaces will always be given
the corresponding topology.

On various occasions we are going to take infinite sums or products over some countable
set of indexes J . Usually we do not choose an ordering on J : the sum or product is meant to
be taken as a limit with respect to the cofinite filter on J .

The cardinality of a set X will be denoted by |X | and we shall write X − Y for the set-
theoretic difference. Usually we will not distinguish between canonical isomorphisms and
equalities.

See also Sect. 2.2.5 for more notations.

2.2 The rinĝD

Let D be a Dedekind domain. We will denote the set of all non-zero ideals of D by I(D)

and the subset of non-zero prime ideals by P(D). For p ∈ P(D), let vp : I(D) → N be the
corresponding valuation, so that for a ∈ I(D) we have the prime factorization

∏

p p
vp(a).

2.2.1 Inverse limits

We define

̂D := lim←− D/a (5)

where the limit is taken over all the non-zero ideals of D.Webriefly recallwhat thismeans (for
a more complete discussion, see e.g. [1, Chapter 10]). For every a ∈ I(D) let πa : D → D/a

be the reduction modulo a. There is a natural ring homomorphism

D ↪−→
∏

a∈I(D)

D/a

given by the product of all the maps πa. (Injectivity follows from ∩I(D)a = {0}.)
Every quotient D/a is given the discrete topology, making their product a Hausdorff topolog-
ical space.5 Then ̂D is defined as the closure of the image of D in

∏

D/a.The ring operations
are defined componentwise on the product and they are continuouswith respect to the product
topology: as a consequence, ̂D is a topological ring. Each πa extends by continuity to a ring

5 The topology is not strictly necessary for the construction of ̂D, but it is convenient for us to have it from
the start.
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homomorphism π̂a : ̂D � D/a. A base of open sets of ̂D is provided by

{π̂−1
a (x) | a ∈ I(D), x ∈ D/a}. (6)

By construction there is a canonical injection of D into ̂D and in the following wewill always
think of D as a (dense) subring of ̂D.

For every prime ideal p in D, we also have the p-adic completion

̂Dp := lim←− D/pn

obtained by the same construction as in (5) with I(D) replaced by the set of powers of p. It
is well-known that for any p �= 0 the ring ̂Dp is a complete discrete valuation domain.

Theorem 2.1 There is a canonical isomorphism of topological rings

̂D 	
∏

p∈P(D)

̂Dp, (7)

where the product runs over all non-zero prime ideals of D.

Sketch of proof If m divides n as ideals of D, we get a diagram

D/n
∼−−−−→ ∏

p D/pvp(n)

⏐

⏐

�

⏐

⏐

�

D/m
∼−−−−→ ∏

p D/pvp(m)

(8)

where the horizontal maps are the isomorphisms from the Chinese Remainder Theorem
and the vertical maps are induced by the inclusion n ⊂ m. Diagram (8) commutes and
one concludes by taking the inverse limit on both sides. (This works by general abstract
nonsense.) ��

In particular, (7) implies that for every p there is a canonical projection π̂p∞ : ̂D → ̂Dp.

We denote its kernel by p∞. One can easily observe p∞ = ∩np
n
̂D, which justifies the

notation. Actually, for every p, the ring ̂Dp is endowed with a discrete valuation, which,
composing with π̂p∞ , yields a valuation

vp : ̂D −→ N ∪ {∞}.
The ideal p∞ consists exactly of those x ∈ ̂D such that vp(x) = ∞. Note also that the
canonical injection of D into ̂Dp factors via the map π̂p∞ .

2.2.2 Closed ideals of̂D

For any ideal I ⊂ ̂D, the quotient ̂D/I inherits the topology from ̂D. By well-known
properties of topological groups, ̂D/I is Hausdorff if and only if I is closed: therefore in the
following we shall only consider closed ideals.

Lemma 2.2 An ideal of ̂D is closed if and only if it is principal.

Proof We first prove that principal ideals are closed, by showing that they have open com-
plement. Let x, y ∈ ̂D and assume y /∈ x̂D. Then there is some prime ideal p such that
vp(y) < vp(x). This implies that x̂D is contained in the kernel of

π̂pvp(y)+1 : ̂D −→ D/pvp(y)+1
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and y is not. By definition of the topology, the image is discrete and the map is continuous:
hence the complement of ker(π̂pvp(y)+1) is an open neighbourhood of y.

As for the converse, we start with the observation that by (7) one can express x ∈ ̂D as
x = (xp)p, with xp ∈ ̂Dp. For any subset S of P(D), let eS = (eS,p)p be defined by

eS,p :=
{

1 if p ∈ S;
0 if p /∈ S.

Then eŜD is a subring of ̂D, isomorphic to
∏

p∈S ̂Dp.
Also, for every non-zero prime p choose ũp ∈ D satisfying vp(ũp) = 1 and put up :=

e{p}ũp. The subring e{p}̂D is a discrete valuation domain having up as a uniformizer.
Let I be any ideal of ̂D. By the above, e{p} I is a principal ideal and we have e{p} I =

u
vp(I )
p

̂D for some vp(I ) ∈ N∪{∞}. If S is any finite set of non-zero primes, then the equality

eS =
∑

p∈S
e{p}

implies

eS I =
∑

p∈S
e{p} I = aS,I ̂D,

with aS,I =∑ u
vp(I )
p . Moreover, aS,I ∈ I , since eS · I ⊆ I .

Let aI ∈ ̂D be the point corresponding to (ũ
vp(I )
p )p in the isomorphism (7). The inequality

vp(x) � vp(I ) = vp(aI )

holds for every x ∈ I and every p, proving the inclusion I ⊆ aI ̂D.

Moreover aI is an accumulation point of the set {aS,I } (where S varies among all finite
subsets of non-zero primes). Indeed, let U be any open neighbourhood of aI . Without loss
of generality, we can assume U = ∏pUp, where each Up is open in ̂Dp and Up = ̂Dp for
every p outside of a finite set T ; but then aS,I ∈ U if T ⊆ S. If I is closed this yields aI ∈ I
and hence aI ̂D ⊆ I . In the general case, one gets the equality ̂I = aI ̂D. ��

Remark 2.3 It might be worth observing that the key idea behind the proof of Lemma 2.2 is
the equality 1 = limS eS (where the limit is taken with respect to the cofinite filter).

Example 2.4 Weprovide an example of non-closed ideal of ̂D (suggested by [45, Theorem1]).
Recall the isomorphism of topological rings (7) and consider the set

I = {(xp)p ∈ ̂D | xp = 0 for all but finitely many p}.
It is immediate to check that I is an ideal. By definition of the product topology, any open
subset of ̂Dmust contain a productU =∏pUp,where everyUp is open in ̂Dp andUp = ̂Dp

for almost all p. Hence U ∩ I �= ∅, proving that I is dense. Thus this ideal can be closed
only if I = ̂D and clearly this is not the case if P(D) is infinite. On the other hand, if D has
only finitely many prime ideals, then one can take S = P(D) in the proof of Lemma 2.2 to
show that every ideal of ̂D is principal (and hence closed).
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2.2.3 Supernatural ideals

Definition 2.5 Let S(D) be the set of all closed ideals of ̂D. We will call its elements the
supernatural ideals of D.

Remark 2.6 Elements of S(Z) are usually known as supernatural numbers: they can be
described as formal products σ =∏p pep ,where the product is taken over all prime numbers
and the exponents are allowed to take any value in N ∪ {∞}. (Note that one can have ep �= 0
for infinitely many p.)

For a general D, it follows from the proof of Lemma 2.2 that we can similarly write
elements in S(D) as σ =∏p p

ep , letting p vary in P(D). In the case σ = p∞, the map

π̂σ : ̂D → ̂D/σ is exactly the projection π̂p∞ : ̂D → ̂Dp that was described before.

The set of ideals of D can be embedded in S(D) by a �→ â = âD. To lighten notation,
in the following we will think of I(D) as a subset of S(D). Hence we shall often identify
a ∈ I(D) with â ∈ S(D) as points in the space of supernatural ideals. (Of course we will
distinguish between a and â as subsets of ̂D).

By Lemma 2.2, the map

ρ : ̂D −→ S(D), (9)

x �→ x̂D, is surjective. Thus the setS(D) inherits a topology as a quotient of ̂D.The notation

lim
σ→0

(10)

will be used to mean that the limit is taken as σ converges to 0 in S(D). (By a slight abuse of
notation, we write 0 to denote both the zero element in the ring D and its image via ρ.) We
remark that this topology makes I(D) a dense subset of S(D): actually, density can already
be achieved just taking principal ideals, since D − {0} is dense in ̂D.

Moreover, S(D) inherits a monoid structure from the product in ̂D, making I(D) (with
the usual product of ideals) a submonoid. There is also an order relation on S(D), defined
by

σ � τ ⇐⇒ σ |τ ⇐⇒ τ ̂D ⊆ σ

(following the usual convention for the order induced by divisibility of ideals in D).

Example 2.7 In the case D = Z, the setN of natural numbers is a subset (in the obvious way)
of the set of supernatural numbers S(Z). A basis of neighbourhoods of 0 in the topological
ring ̂Z is given by the set of ideals {âZ}a∈N: that is, n gets closer and closer to 0 as it has
more and more divisors. So, if (xn) is a sequence taking values in a topological space X , the
equality

lim
n→0

xn = y

means that for every neighbourhood U of y there is an a ∈ N such that xn ∈ U if n ∈ âZ
(equivalently, since both a and n are in N, if a divides n).

The valuation maps {vp} descend in an obvious way to S(D), by vp(
∏

qeq) = ep. We
also define the support of σ ∈ S(D) as

supp(σ ) := {p | vp(σ ) > 0}
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and the functions ω,	 : S(D) → N ∪ {∞},
ω(σ ) := | supp(σ )| (11)

and

	(σ) :=
∑

p

vp(σ ), (12)

which generalize the homonymous functions from elementary number theory. It might be
worth to note the equality

I(D) = {σ ∈ S(D) | 	(σ) < ∞}.
Remark 2.8 Give to N the discrete topology and let N̄ := N ∪ {∞} be its Alexandroff
compactification. Remark 2.6 can be reformulated as saying that the valuation maps {vp}
induce a bijection σ �→ (

vp(σ )
)

p
from S(D) to N̄

P(D) = ∏p∈P(D) N̄. One can check that

this map is actually a homeomorphism (where N̄
P(D) has the product topology).

In the case D = Z, this is the approach to supernatural numbers taken in the (very
readable) paper [46]. Note also that supernatural numbers are a compactification of N (as
emphasized in [46]) and that the latter is in natural bijection with the set of ideals ofZ.Under
Assumption 2.9 below, S(D) is compact and we will think of it as a compactification of
I(D).

2.2.4 Compactness of̂D

From now on, we shall assume the following hypothesis.

Assumption 2.9 (A1) D is countable;

(A2) all non-zero ideals of D have finite index.

From condition (A2) it follows that ̂D is a compact topological ring. As for (A1), it implies
that the set of all ideals of D is also countable, because every ideal in a Dedekind domain can
be generated by two elements. In particular also the set of prime ideals of D is countable. (In
the following, we shall usually assume that D has infinitely many prime ideals.)

The two conditions together imply that ̂D is a second-countable topological space (that
is, it has a countable base). Indeed, cosets of ideals of D induce a base for the topology on
̂D, as expressed in (6).

Remark 2.10 It is well-known that Assumption 2.9 holds when D is a global Dedekind
domain or a localization of such, but it is interesting to note that the converse is false: there
are countable, residually finite Dedekind domains whose fraction field is not global. A nice
(although non constructive) example is provided by [24, Theorem on page 114]. This result
implies that there exists a ring D containingZ[x] (where x is a transcendental indeterminate)
and having Q(x) as field of quotients, which is a Dedekind domain and satisfies (A2) (as for
(A1), it is obvious since Q(x) is countable).

For future reference, we recall some results about open ideals of ̂D.

Lemma 2.11 An ideal of ̂D has finite index if and only if it is open.
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Proof Since ̂D is a topological ring, the map x �→ x + a is a homeomorphism for every
a ∈ ̂D. Thus if an ideal I is open then so are all its cosets. Hence ̂D/I is a discrete compact
topological space, which must be finite.

Vice versa, if I is an ideal of ̂D of finite index, then the natural map D → ̂D/I must have
a non-trivial kernel a, because D is infinite. Since I is an ideal of ̂D and a ⊂ I , also the open
ideal â = âD must be in I . Being a union of open cosets of â, I must be open. ��
Lemma 2.12 Every open ideal of ̂D is the completion of an ideal of D with the same index.

Proof Let I be an open ideal of ̂D. Then I is closed, since all its cosets are open. The set
D ∩ I is an ideal of D and it is dense in I (because D is dense in ̂D and I is open). Finally,
we get D/(I ∩ D) 	 ̂D/I observing that the image of D in ̂D/I is dense. ��
Lemma 2.13 A subset of ̂D is both open and closed if and only if it is a finite union of cosets
of some open ideal â.

Proof AssumeC ⊂ ̂D is both open and closed. Being open, it is a union of subsets of the base
(6). Being closed, it is also compact and thus a finite union is enough. If C = ∪n

i=1π̂
−1
ai

(xi ),
then one can take a = ∩ai to get C = π̂−1

a (A) for some A ⊆ D/a. ��
Remark 2.14 Under Assumption 2.9, it is possible to define a metric on D so that ̂D is
the completion with respect to it. We mention this because some readers might feel more
comfortable thinking of ̂D as a metric space. However the topological structure is sufficient
for the goals of this paper and it provides more straightforward arguments than those we
would get from imposing a distance.

2.2.5 Some notations

The following notations shall be used throughout this paper:

• for σ ∈ S(D) and n any positive integer,

π̂σ : ̂Dn −→ (̂D/σ)n

is the natural projection;
• for σ ∈ S(D) and X ⊆ ̂Dn,

Xσ := π̂−1
σ

(

π̂σ (X)
)

, (13)

where π̂σ (X) is the closure of π̂σ (X) in (̂D/σ)n (with respect to the quotient topology);
• ̂X is the closure of X ⊆ ̂Dn

• for I any ideal of ̂D, its index is denoted

‖I‖ := |̂D/I | ∈ N ∪ {∞} (14)

and given a ∈ ̂D we use the shortening ‖a‖ for ‖âD‖;
• ̂D∗ is the group of units of ̂D (not to be confused with ̂D∗, the closure of D∗ in ̂D).

In the case of an ideal a of D, it is easy to check that one has â = âD;moreover the equality

D/a = ̂D/ â

holds for every a ∈ I(D). Because of the embedding I(D) ↪→ S(D), we write π̂a for π̂â

and we have Xa = π̂−1
a (π̂a(X)).

We shall occasionally use πa to abbreviate π̂a|Dn .
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Example 2.15 Readers might attain a better grasp on these objects by observing that if n = 1
then Xa ∩ D is simply a disjoint union of cosets of a. In the D = Z, n = 1 case, this is a
union of arithmetic progressions. When X = {x} is a singleton, we have

Xa =
∏

p

(x + âDn
p) =

∏

p|a
(x + pvp(a)

̂Dn
p) ×

∏

p�a

̂Dn
p

for any n and any a. Another example which is useful to have in mind is the following: fix a
prime p and let X(p) denote the closure of X in ̂Dn

p. Then

Xp∞ = π̂−1
p∞
(

X(p)
) = X(p) ×

∏

q�=p

D̂n
q (15)

because ker(π̂p∞) = {0} ×∏ D̂n
q.

Remark 2.16 By Lemmata 2.11 and 2.12, we obtain ‖I‖ = ∞ unless I = â for some
a ∈ I(D), in which case

‖̂a‖ = |̂D/ â| = |D/a|.
Note also that the divisibility relation σ |τ implies Xτ ⊆ Xσ for every X ⊆ ̂Dn .

2.2.6 Closures in̂Dn

Let n be a positive integer. From now on we shall consider subsets of Dn and ̂Dn . Note that
the family (6) provides a base for the product topology on ̂Dn for every n (with the obvious
change, with respect to (6), of the domain of π̂a from ̂D to ̂Dn).

Lemma 2.17 Let T be a subset of S(D). Then for every subset X of ̂Dn, we have

̂X =
⋂

σ∈T
Xσ (16)

if 0 is an accumulation point of T .

Proof By definition each Xσ is a closed set containing X . Hence ̂X is contained in the
intersection on the right-hand side of (16).

Vice versa, let z ∈ ̂Dn be in the complement of ̂X . By definition of the topology on
̂Dn, there is an ideal a of D such that (z + âDn) ∩ ̂X = ∅—that is, π̂a(z) /∈ π̂a(X). The
assumption on T implies that there is some σ ∈ T such that σ ⊆ â. Hence π̂σ (z) /∈ π̂σ (X),

so z /∈ Xσ . This shows that z is not in the right-hand side of (16). ��
Remarks 2.18 1. Recall that ideals of D form a dense subset of S(D). Therefore in

Lemma 2.17 one can take T = I(D) to get ̂X = ∩Xa.

2. From Assumption 2.9 we get that S(D) is second-countable. In particular, 0 has a count-
able neighbourhood basis: it follows that for any T having 0 as an accumulation point
there is a countable set T ′ ⊆ T having the same property.

The following immediate consequence of Lemma 2.17 provides an easy way of checking
if a set is dense.

Corollary 2.19 A subset X of ̂Dn is dense if there is some T ⊆ S(D) having 0 as an accu-
mulation point and such that Xσ = ̂Dn for every σ ∈ T . Vice versa, if X is dense then
Xσ = ̂Dn for every σ ∈ S(D).

For example, a subset of N is dense in̂Z if and only if it surjects onto Z/nZ for every n.
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3 The closure of prime irreducibles

In this section we assume that D is a global Dedekind domain.
Let Irr(D) denote the set of the prime elements of D, i.e., those irreducible elements

which generate a prime ideal: that is,

Irr(D) := {x ∈ D | 	(x̂D) = 1
}

where 	, as defined in (12), is the function counting prime divisors of a supernatural ideal
(with multiplicity). Note that one can write

Irr(D) =
⊔

p∈P(D)

Irr(p), (17)

where Irr(p) := {p ∈ D | pD = p} is empty if p is not principal. We will compute the
closure of Irr(D) in ̂D.

Remark 3.1 For a general Dedekind domain, the set Irr(D) might be empty, even when
Assumption 2.9 holds: actually, as shown in [13, Example 1-5], one can start with any D and
localize it so to kill all principal prime ideals and preserve the class group.

Let ̂D∗ denote the closure of D∗ in ̂D. We shall need

̂D∗ Irr(D) = {ux | u ∈ ̂D∗, x ∈ Irr(D)}.
Theorem 3.2 If D is a global Dedekind domain, then

Îrr(D) = ̂D∗ � ̂D∗ Irr(D). (18)

Proof The right-hand side of (18) is indeed a disjoint union, because one has

	(x̂D) =
{

0 if x ∈ ̂D∗

1 if x ∈ ̂D∗ Irr(D).

The easy part of proving (18) is to show the inclusions

̂D∗ Irr(D) ⊆ Îrr(D) ⊆ ̂D∗ ∪ ̂D∗ Irr(D),

which amount to the statements

Irr1: every element in ̂D∗ Irr(D) − Irr(D) is a limit point of Irr(D);
Irr2: Irr(D) has no accumulation point outside ̂D∗ ∪ ̂D∗ Irr(D).

The claim Irr1 is obvious: if Irr(p) is not empty then it is a D∗-orbit and (17) shows that
̂D∗ Irr(D) is the union of the closures of these orbits.

As for Irr2, we show that x ∈ ̂D − ̂D∗ can be an accumulation point of Irr(D) only if it
is in̂D∗ Irr(D). If 	(x̂D) > 1, then there are two prime ideals p and q (possibly equal) such
that x ∈ pq̂D; but then pq̂D is a neighbourhood of x and clearly it cannot contain any element
of Irr(D). So we can assume 	(x̂D) = 1. In this case x̂D = p̂ for some p ∈ P(D), which
implies that p̂ is a neighbourhood of x . If p is not principal then p̂ has empty intersection
with Irr(D). Therefore x can be an accumulation point of Irr(D) only if p̂ = p̂D for some
p ∈ Irr(D). But then p̂∩ Irr(D) = D∗ p, so if x is an accumulation point it must be in ̂D∗ p,
which is the closure of D∗ p.

123



21 Page 16 of 52 L. Demangos, I. Longhi

The hard part is to show that every unit of ̂D is a limit of prime irreducibles. In Lemma 3.6
below, we will prove that for any a ∈ I(D) we have (D/a)∗ ⊆ πa

(

Irr(D)
)

. This is enough,
because ̂D∗ = lim←−(D/a)∗ yields π̂a(̂D∗) = (D/a)∗ and, by Lemma 2.17,

Îrr(D) =
⋂

a∈I(D)

Irr(D)a =
⋂

a∈I(D)

π̂−1
a

(

πa(Irr(D))
)

.

��
Remark 3.3 In the case D = Z, letting P ⊂ N denote the set of prime numbers, it is
straightforward (using just the definition of the topology on̂Z) to see that the claim̂Z∗ ⊆ ̂P
is equivalent to Dirichlet’s theorem on primes in arithmetic progressions.

Our next goal is to prove the equality
⋃

p/∈supp(a)

πa

(

Irr(p)
) = (D/a)∗. (19)

As suggested by Remark 3.3, the main tool will be a generalization of Dirichlet’s result. For
lack of a convenient reference, we shall sketch a proof of it in Theorem 3.5, after having first
recalled some facts about ideles.

3.1 A reminder on ideles

By a canonical identification, we can think of P(D) as a subset of V(F), the set of all places
of F . Also, let SD be the complement of P(D) in V(F). The idele group of F is defined as

IF := lim−→
S

∏

p/∈S
̂D∗
p ×
∏

v∈S
F∗

v = lim−→
S

IS,

where the limit is taken over all finite subsets S ⊂ V(F) containing SD . Each IS is given
the product topology: hence if S ⊆ T the map IS ↪→ IT in the direct system is an open
embedding.There is an obvious injection of IF into

∏

v∈V(F) F
∗
v (not preserving the topology)

and in the following we will use it to describe a generic idele as x = (xv)v∈V(F).

We will need certain subgroups of IF . First of all, F∗ will be thought of as a discrete
subgroup of IF via the diagonal embedding: the idele class group is the quotient IF/F∗.

For any place v of F, let ιv : F∗
v ↪→ IF be the map which sends x ∈ F∗

v in the idele having
component x at v and 1 otherwise: that is,

(ιv(x))w :=
{

1 if v �= w;
x if v = w.

By (7), the product of the maps ιp|̂D∗
p
for all p ∈ P(D) defines an embedding ιD : ̂D∗ ↪→ IF .

The maps vp extend to IF in the obvious way. Since F∗ ∩ ιD(̂D∗) = {1}, the homomorphism
ιD induces an injection

ῑD : ̂D∗ ↪−→ IF/F∗.

Another subgroup of IF that we are going to use is

F∗∞ :=
∏

v∈SD
ιv(F

∗
v )
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together with the injection ι∞ : F∗ ↪→ F∗∞ defined as the product of ιv|F∗ for all v ∈ SD .
Finally, we consider the subgroups ιD(Ua), where a ∈ I(D) and

Ua := {x ∈ ̂D∗ | x ≡ 1 mod â} = (1 + âD) ∩ ̂D∗.

We want to assess the image of ̂D∗ in the quotient group IF/F∗F∗∞ιD(Ua).

Lemma 3.4 For any a ∈ I(D), we have

ιD(̂D∗) ∩ F∗F∗∞ιD(Ua) = ιD(D∗Ua). (20)

Proof Assume ιD(x) = ay ιD(u) with x ∈ ̂D∗, a ∈ F∗, y ∈ F∗∞ and u ∈ Ua. Comparing
components at places in SD yields y = ι∞(a−1) and computing valuations one gets vp(a) = 0
for every p ∈ P(D). Therefore a is in D∗ and x = au because ιD is injective.

Vice versa, given a ∈ D∗ and u ∈ Ua, it is clear that ιD(au) = aι∞(a−1)ιD(u) ∈
F∗F∗∞ιD(Ua). ��

Equality (20) shows that ιD induces an injection ̂D∗/D∗Ua ↪−→ IF/F∗F∗∞ιD(Ua). By
(7) we can write

Ua =
∏

p∈supp(a)

(1 + pvp(a)
̂Dp) ×

∏

p/∈supp(a)

̂D∗
p

which shows that there is an exact sequence

0 −−−−→ Ua −−−−→ ̂D∗ π̂a−−−−→ (D/a)∗ −−−−→ 0.

Hence there is a surjection

ψa : (D/a)∗ −→→ ̂D∗/D∗Ua (21)

with kernel πa(D∗).
Let φa : IF/F∗ � IF/F∗F∗∞ιD(Ua) be the quotient map. Summarizing, we have a

commutative diagram

̂D∗ ῑD−−−−→ IF/F∗
⏐

⏐

�
ψa◦π̂a

⏐

⏐

�
φa

1 −−−−→ ̂D∗/D∗Ua
via ιD−−−−→ IF/F∗F∗∞ιD(Ua) −−−−→ IF/F∗F∗∞ιD(̂D∗) −−−−→ 1

(22)

where the second line is exact and verticalmaps are surjective. Let Cl(D) be the class group of
D.Considering the map which sends x ∈ IF/F∗∞ to

∏

p p
vp(x), one obtains an isomorphism

IF/F∗F∗∞ιD(̂D∗) 	 Cl(D). (23)

3.1.1 Conclusion of the proof of Theorem 3.2

For every p ∈ P(D), choose a uniformizer tp ∈ Fp and define a map ιP : P(D) → IF by
p �→ ιp(tp).

Theorem 3.5 The composition β = φa ◦ ιP is surjective.
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Sketch of proof To lighten notation, let G denote the group IF/F∗F∗∞ιD(Ua) and G∨ its
dual. Note that G is finite, by (21) and (23). To each χ ∈ G∨, attach an L-function

L(χ, s) =
∏

p∈P(D),p�a

(

1 − χ(β(p))

‖p‖s
)−1

.

It is well-known that all the functions L(χ, s) are meromorphic, with a pole in s = 1 if χ is
trivial and neither poles nor zeroes in 1 otherwise (see e.g. [55, VII, §5, Corollary 2 and page
293, note P.126]). From here one can reason as in [52, VI, §4, proof of Theorem 2]. Namely,
let Pg(D) be the set of those p such that β(p) = g. One concludes noticing that

∑

p∈Pg(D)

1

‖p‖s = 1

|G|
∑

χ∈G∨
χ(g−1)

∑

p∈P(D)

χ(β(p))

‖p‖s ∼ log
∏

χ∈G∨
L(χ, s)

(where ∼ refers to the asymptotic behaviour as s approaches 1) implies the divergence of the
leftmost sum in s = 1. Therefore Pg(D) is non-empty. ��

Lemma 3.6 Equality (19) is true for every a ∈ I(D).

Proof Let p be a principal prime and up any element in Irr(p). It is obvious that p /∈ supp(a)
implies πa(up) ∈ (D/a)∗.

In order to prove the other inclusion, take w ∈ (D/a)∗ and recall the surjection ψa from
(21). By diagram (22) and Theorem 3.5, there is some prime p outside supp(a) such that

ψa(w) = φa

(

ιP (p)
)−1

.

(The reason for taking the inverse will soon be clear.) Comparing the lower line of (22) with
(23) shows that p is a principal ideal: let up ∈ F be a generator. We can think of up as an
idele via the diagonal embedding of F∗ into IF ; moreover, since F is a subfield of each Fv,

we can consider the ideles ιv(up) for every v. In particular, let tp := ιp(up). Note that the
idele

xp := u−1
p

∏

v|∞
ιv(up) = u−1

p ι∞(up)

belongs to F∗F∗∞, which implies

φa(tp) = φa(tpxp). (24)

Furthermore tpxp = ιD(zp) for some zp ∈ ̂D∗, because the idele tpxp has components

(tpxp)v =
{

1 if v ∈ SD ∪ {p}
u−1
p if v /∈ SD ∪ {p} (25)

and vq(up) = 0 for each q ∈ P(D)−{p}. The image in (D/a)∗ only depends on the residue
class at primes in supp(a) and thus (25) yields πa(up) = π̂a(z

−1
p ). Therefore we obtain

ψa

(

πa(up)
) = ψa

(

π̂a(z
−1
p )
) by (22)= φa

(

t−1
p x−1

p

) by (24)= ψa(w).

This implies w ∈ πa(D∗up), because the kernel of ψa is πa(D∗). The observation D∗up =
Irr(p) concludes the proof. ��
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3.1.2 The closure of D∗

Theorem 3.2 expresses the closure of Irr(D) as a disjoint union of two pieces, ̂D∗ and
̂D∗ Irr(D). If D∗ is finite, then ̂D∗ Irr(D) = Irr(D) is countable and hence it is much
“smaller” (in an obvious sense) than the uncountable set ̂D∗. We are going to show that this
is always the case, for any global Dedekind domain D.

Proposition 3.7 If D is a global Dedekind domain, then |̂D∗/̂D∗| = ∞.

Proof Let Fp := ̂Dp/p denote the residue field of p ∈ P(D). For every integer n > 1, put

Pn(D) := {p ∈ P(D) | n divides |F∗
p|
}

and (F∗
p)

n := {xn | x ∈ F
∗
p}. If p ∈ Pn(D) then the quotient F

∗
p/(F

∗
p)

n is a cyclic group of
order n. The quotient homomorphism ̂D∗

p → F
∗
p/(F

∗
p)

n is onto for every p and thus, by (7),
we obtain a surjection

ϕn : ̂D∗ −→→
∏

p∈Pn(D)

F
∗
p/(F

∗
p)

n .

ByDirichlet’s unit theorem (in its S-units version) D∗ is a finitely generated group of rank
|SD| − 1 and with cyclic torsion: hence ϕn(D∗) is at most a product of |SD| cyclic groups of
order n and therefore

|ϕn(D
∗)| � n|SD |.

The imageϕn(D∗) is dense inϕn(̂D∗) and, being finite, it is closed: henceϕn(̂D∗) = ϕn(D∗).
On the other hand, if Pn(D) is infinite then ϕn(̂D∗) is uncountable: in this case,

|̂D∗/̂D∗| � |ϕn(̂D
∗)/ϕn(̂D∗)| = ∞.

Thus we just need to show that Pn(D) is infinite for at least one n. Let char(F) denote
the characteristic of F . The set P2(D) is infinite if char(F) �= 2. If char(F) = 2, let F be
the constant field of F . If |F| > 2, then one can take n = |F∗| since F ⊆ Fp for every p. The
reasoning becomes more sophisticated if F = F2—for example, one can show that P3(D)

is infinite by proving that there are infinitely many primes of D which split in the constant
field extension K = FF4. As well known, this can be seen by observing that the Dedekind
zeta function ζK (s) has a pole in s = 1, but the product

∏

(1− ‖p‖−s)−1 over places p of K
which are inert in K/F converges (because so does the sum

∑ ‖p‖−s over the same set of
places). ��

Restricting the topology of ̂D makes ̂D∗ a compact topological group (this is the same
topology on ̂D∗ as induced by the embedding in IF ). In particular, ̂D∗ has its own Haar
measure μ

̂D∗ , normalized so to have total mass 1.

Corollary 3.8 The set ̂D∗ has empty interior in the topology of ̂D∗ and μ
̂D∗(̂D∗) = 0.

Proof The Haar measure of a closed subgroup is the inverse of its index; moreover every
open subset has positive measure. Thus the first statement follows from the second, which in
turn is immediate from Proposition 3.7. ��

By (17), the set ̂D∗ Irr(D) is the disjoint union of countably many copies of ̂D∗. Putting
together Theorem 3.2 and Corollary 3.8, one can say that the “bulk” of Irr(D) is somehow
measured by ̂D∗. We hope to show in future work how this can be used to study the relative
density of subsets of the primes.
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Remark 3.9 It is straightforward to check that one has D∩̂D∗ Irr(D) = Irr(D) and D∩̂D∗ =
D∗.HenceTheorem3.2 implies that Irr(D) is not a closed subset ofD in the induced topology:
its closure is exactly Irr(D) � D∗ (and the closure of P in Z is P � {±1}). Corollary 3.8
shows that the part D∗ can be considered negligible.

4 Measure and density

In this section D is any Dedekind domain satisfying Assumption 2.9.

4.1 Themeasure

Since ̂D is a compact topological ring, there is a Haar measure μ on it, normalized so to
have μ(̂D) = 1. By definition μ is invariant under translation by any element of ̂D, hence
all cosets of an ideal have the same measure and it follows that for any ideal I of ̂D, one has

μ(I ) = 1

|̂D/I | = 1

‖I‖ . (26)

Here and in the following, we use the convention 1
∞ = 0. By Lemma 2.11, μ(I ) �= 0 if and

only if I is open (that is, if I is the completion of a non-trivial ideal of D).
Multiplication by a ∈ ̂D changes the Haar measure by a scalar multiple and thus (26)

implies

μ(aX) = 1

‖a‖ · μ(X) (27)

for every measurable X ⊆ ̂D.

By a slight abuse of notation, in the following we shall also denote by μ the measure on
̂Dn induced by the measure on ̂D. Reasoning as above, we get

μ(âDn) = 1

‖a‖n (28)

for every a ∈ I(D).

Lemma 4.1 For every X ⊆ ̂Dn and T ⊆ S(D) having 0 as a limit point,

μ(̂X) = lim
σ→0

μ(Xσ ), (29)

where the limit is taken letting σ vary in T .

Proof One has μ(̂X) � μ(Xσ ) for every σ, because ̂X ⊆ Xσ holds by definition. The
equality (29) is then obvious from (16) and Remark 2.18.2. ��

In Lemma 4.1 one can take a subset of I(D) as T . Since π̂a(X) is a finite set for every
a ∈ I(D), Eq. (29) becomes

μ(̂X) = lim
a→0

μ(Xa) = lim
a→0

|π̂a(X)|
‖a‖n . (30)

(One can observe that [43, Theorem 1] is just a special case of this.) As the next result shows,
there are other interesting choices for T .
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Corollary 4.2 For any p, let Cp ⊆ ̂Dn
p be a closed set and put C =∏p Cp. Then

μ(C) =
∏

p∈P(D)

μp(Cp),

where μp denotes the Haar measure on ̂Dn
p (normalized so to have μp(̂Dn

p) = 1).

Note that C is closed (and therefore measurable) because each Cp is compact. Since all
factors take value in [0, 1], the (possibly) infinite product on the right obviously has a limit.

Proof For S a finite set of non-zero primes, put σS :=∏p∈S p∞. Then

CσS =
∏

p∈S
Cp ×

∏

p/∈S
̂Dn
p

and, by Fubini’s theorem, μ(CσS ) = ∏p∈S μp(Cp). Let T = {σS}S, where S varies among
all finite sets of non-zero primes. Then T is a subset of S(D) having 0 as a limit point and
one can apply Lemma 4.1 to conclude. ��
Example 4.3 Corollary 4.2 applies to the group of units of ̂D, since ̂D∗ = ∏ ̂D∗

p by (7).
For computing μ(̂D∗), it is convenient to introduce ζD, the Dedekind zeta function of D,

formally defined by the usual Euler product

ζD(s) :=
∏

p∈P(D)

(

1 − 1

‖p‖s
)−1

. (31)

(Of course there is no reason for the product in (31) to converge for any s ∈ R without some
stronger hypothesis on D, like it being a global Dedekind domain.)

One has ̂D∗
p = ̂Dp − p̂Dp and hence μp(̂D∗

p) = μp(̂Dp) − μp(p̂Dp). Therefore

μ(̂D∗) =
∏

p

μp(̂D
∗
p) =

∏

p

(

1 − 1

‖p‖
)

= 1

ζD(1)
.

In particular, μ(̂D∗) = 0 if and only if ζD diverges in 1.
In the case D = Z, one can use this reasoning for the fun observation that Euler’s

celebrated proof of the existence of infinitelymany prime numbers is equivalent to computing
μ(̂Z∗) = 0.

4.2 Densities

We denote the power set of Dn by 2D
n
.

4.2.1 Definition of density

By a density d on Dn, we mean the datum of two functions

d+, d− : 2Dn −→ [0, 1]
(called respectively upper and lower density) satisfying the properties (Dn1)–(Dn7) listed
below. If d+(X) = d−(X), we denote this common value by d(X) and we say that X has
density d(X). The requirements are the following (with X and Y varying among all subsets
of Dn):
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(Dn1) d−(Dn) = 1;
(Dn2) d−(X) � d+(X);
(Dn3) X ⊆ Y implies d∗(X) � d∗(Y ), with ∗ ∈ {+,−};
(Dn4) if Dn is the disjoint union of X and Y , then d+(X) + d−(Y ) = 1;
(Dn5) if X and Y are disjoint, then

d+(X ∪ Y ) � d+(X) + d+(Y ) (32)

and

d−(X ∪ Y ) � d−(X) + d−(Y ); (33)

(Dn6) for every b ∈ Dn, one has

d∗(X + b) = d∗(X),

with ∗ ∈ {+,−} and X + b := {x + b | x ∈ X};
(Dn7) for every ideal a of D, one has

d+(aDn) = d−(aDn) = 1

‖a‖n .

Remark 4.4 In the case D = Z, the conditions above are almost equivalent to the axioms
(F1)–(F5) proposed by Leonetti and Tringali in [32]. The difference is (33), which (as proved
in [32, Example 7]) is not a consequence of those axioms: we postulate it in order to have
equality (34) below, which will play a crucial role in the proof of Theorem 4.19. For a more
precise comparison between our conditions and [32], see [18].

Lemma 4.5 Assume d+ and d− satisfy conditions (Dn4) and (Dn5). If Y ⊆ Dn has a density,
then the equality

d−(X) = d(Y ) − d+(Y − X) (34)

holds for every X ⊆ Y .

Proof Let X be a subset of Y and Z the complement of Y in Dn . Then the disjoint union
Z ∪ X is the complement of Y − X and it follows

d+(Y − X)
by (Dn4)= 1 − d−(Z ∪ X)

by (33)
� 1 − d−(Z) − d−(X) = d+(Y ) − d−(X),

that is, d+(Y − X) + d−(X) � d+(Y ).

On the other hand, the complement of X is Z ∪ (Y − X) and thus

d−(X)
by (Dn4)= 1 − d+(Z ∪ (Y − X))

by (33)
� 1 − d+(Z) − d+(Y − X) = d−(Y ) − d+(Y − X),

that is, d+(Y − X) + d−(X) � d−(Y ).

Therefore, if the density of Y exists then one has d(Y ) = d−(X) + d+(Y − X). ��

4.2.2 Densities on̂Dn

Let d = (d+, d−) be a density on Dn . We extend the functions d+ and d− (and hence the
notion of density) to the power set of ̂Dn, by putting d∗(X) := d∗(X ∩Dn) for any X ⊆ ̂Dn .
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Lemma 4.6 Assume d = (d+, d−) is a density on Dn . Then for every X ⊆ ̂Dn and every
a ∈ I(D), the density of Xa exists and it satisfies

d(Xa) = μ(Xa) = |π̂a(X)|
‖a‖n . (35)

Proof Recall that Xa is a finite union of disjoint cosets of âDn . By (Dn7) and (28), we
see that d(âDn) exists and is equal to μ(âDn). The Haar measure is translation-invariant
by definition and (Dn6) shows that so is the density. Finally, μ is additive on finite disjoint
unions and (Dn5) implies that the same applies to d, if d+ and d− coincide for each set in
the union. ��
Remark 4.7 Lemma 4.6 is the only reason why we postulated conditions (Dn6) and (Dn7).
So they could be replaced by a request that (35) holds for every X and a. (Actually, if this
happens then it is obvious that (Dn7) and at least a weak form of (Dn6) must be true.)

4.3 Examples of densities

We shall quickly discuss a few instances of pairs (d+, d−) as in Sect. 4.2.1. For more
(including generalizations to global Dedekind domains of the most commonly used densities
over N) see [18].

4.3.1 Buck density

Let D0 ⊂ 2D
n
consist of the subsets of the form Dn ∩ C where C ⊆ ̂Dn is compact open:

then D0 is a subalgebra of 2D
n
. By Lemma 2.13, one has

D0 = {π−1
a (A) | a ∈ I(D) and A ⊆ (D/a)n

}

.

Thus the density of B ∈ D0 is fixed by Lemma 4.6 independently of the choice of d
(as long as (Dn1)–(Dn7) hold). We shall denote this value by d(B). Following [10] (and
simplifying the treatment along the lines of [34, §4]), one can define the Buck density of
X ⊆ Dn by

d+
Bk(X) := inf

{

d(B) | B ∈ D0 and X ⊆ B
}

and

d−
Bk(X) := sup

{

d(B) | B ∈ D0 and X ⊇ B
}

.

Readers can check that dBk satisfies conditions (Dn1)–(Dn7). More interestingly, Lemma 4.6
and formula (30) show that the equality

d+
Bk(X) = μ(̂X) (36)

is true for every X ∈ 2D
n
.

Buck’s original goal was to define an algebra of measurable subsets of N. Following the
approach in [10] (and generalized for example in [22, 34]), let X be a subset of Dn and
Y = Dn − X its complement. We say that X is Buck-measurable if d+

Bk(X) + d+
Bk(Y ) = 1;

equivalently, X is Buck-measurable if d+
Bk(X) = d−

Bk(X). It is not hard to check that Buck-
measurable sets form a subalgebra DBk of 2D

n
and that d+

Bk is a finitely additive measure on
DBk; moreover, DBk is the Carathéodory closure of D0 with respect to d+

Bk.
6

6 This means that it is the largest subalgebra A ⊆ 2D
n
such that for every X ∈ A and every ε > 0 one can

find A, B ∈ D0 satisfying A ⊆ X ⊆ B and d+
Bk(B − A) < ε.
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Remarks 4.8 1. For X ⊆ N, equality (36) appeared already in [44, Theorem 1]; this equality
is also the main result in [42] (which mentions it as already known to Mauclaire, with a
different proof in [38]).

2. The definition of Buck density works for any D as in Assumption 2.9 and can be extended
to more general rings (see e.g. [22]). All other definitions of densities we are aware of
assume that D is a global Dedekind domain (with the set S of places of F not corre-
sponding to prime ideals of D playing a vital role in the constructions).

4.3.2 Asymptotic densities

When D is the ring of S-integers in a global field F, there is a natural embedding of it as a
lattice in

FS :=
∏

v∈S
Fv.

For every v ∈ S, let | · |v be a normalized valuation on Fv (in the sense of [11, §7 and §11]):
i.e., | · |v is the standard absolute value if Fv 	 R, its square if Fv 	 C and is defined by
|t |v = q−1 if Fv is non-archimedean, its residue field has q elements and t is a uniformizer.
In the following, we shall say that r ∈ F∗ is sufficiently large if minv∈S{|r |v} � 0 and
r → ∞ will be a shortening for

min
v∈S {|r |v} → ∞. (37)

Let B ⊂ Fn
S be any set with the following properties:

(B1) there is a positive constant c ∈ R such that, as,

|Dn ∩ r B| = c
∏

v∈S
|r |nv + o

(

∏

v∈S
|r |nv
)

(38)

where r varies in F∗ and the small-o notation refers to the growth of r , in the sense of
(37);

(B2) for r varying in F∗ and any fixed b ∈ Dn, the chain of inclusions

r1B ⊆ r B ∩ (−b + r B) ⊆ r B ∪ (−b + r B) ⊆ r2B (39)

can be achieved with r1, r2 ∈ F∗ which both satisfy |r |v − |ri |v = o(|r |v) for every
v ∈ S.

Then the asymptotic density with respect to B is defined by

d+
B,as(X) := lim sup

r→∞
|X ∩ r B|
|Dn ∩ r B| and d−

B,as(X) := lim inf
r→∞

|X ∩ r B|
|Dn ∩ r B| , (40)

where the limit is taken as r varies in F∗.

Proposition 4.9 If (B1) and (B2) hold, the pair (d+
B,as, d

−
B,as) of (40) satisfies conditions

(Dn1)–(Dn7).

Proof It is straightforward to obtain (Dn1)–(Dn5) from (40). As for the last two conditions,
they follow from (38) and respectively

|(b + X) ∩ r B)| − |X ∩ r B| = o

(

∏

v∈S
|r |nv
)

(41)
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and

|aDn ∩ r B| = |Dn ∩ r B|
‖a‖n + o

(

∏

v∈S
|r |nv
)

. (42)

In order to check (41), note that its left-hand side is bounded by the number of points of Dn

contained in the symmetric difference r B�(−b + r B). Together with (39), this yields the
chain of inequalities

|(b + X) ∩ r B)| − |X ∩ r B| � |Dn ∩ (r B�(−b + r B))| � |Dn ∩ r2B| − |Dn ∩ r1B|,
where the magnitude of the last term is controlled by conditions (B1) and (B2).

Finally, if a = aD is principal then (42) is an immediate consequence of (38) together
with the obvious bijection between aDn ∩ r B and Dn ∩ a−1r B. In the general case, just
fix a ∈ a: then aDn can be written as a finite union of cosets of the form aDn + b and one
obtains (42) by applying (41) to each of them. ��
Remark 4.10 Let μS be a Haar measure on Fn

S . The normalized valuations | · |v are defined
so that one has

μS(r A) = μS(A) ·
∏

v∈S
|r |nv

for any measurable set A ⊆ Fn
S and r ∈ F∗. Thus (38) just says that the number of Dn-points

in B is proportional to its volume.

Sets satisfying conditions (B1) and (B2) can be obtained by standard techniques of geom-
etry of numbers. For example, fix a norm νv on Fn

v for every v ∈ S and let Bv ⊂ Fn
v be the

closed unit ball with respect to νv : then

B :=
∏

v∈S
Bv ⊂ Fn

S

enjoys the desiredproperties.We refer to [18] for a detailed proof, aswell as for alternative def-
initions of asymptotic densities. (Some special cases can be found in [17, Proposition 2.11].)

4.3.3 Analytic density

Here we just consider the setting n = 1.
We assume that F is a global field and that D∗ is finite: by Dirichlet’s unit theorem this

happens exactly when D is the ring of S-integers with |S| = 1 (in the number field case, this
means that F is either Q or a quadratic imaginary extension of Q). For s positive real the
series

ζ ∗
X (s) :=

∑

k∈X−{0}

1

‖k‖s

is dominated by |D∗|·ζF (s) (the Dedekind zeta function) and therefore it converges for every
s > 1. Moreover, a standard argument shows that ζ ∗

D has a pole in s = 1.
The analytic (or Dirichlet) density dan∗ is defined by taking

d+
an∗(X) := lim sup

s→1

ζ ∗
X (s)

ζ ∗
D(s)

and d−
an∗(X) := lim inf

s→1

ζ ∗
X (s)

ζ ∗
D(s)

. (43)

It is not hard to check that conditions (Dn1)–(Dn7) are satisfied.
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Remark 4.11 We will define a quite different notion of analytic density in Sect. 5.

4.4 Density andmeasure

Throughout the rest of this section, we assume that we are given a density d on Dn in the
sense of Sect. 4.2.1: that is, there are two functions d+, d− satisfying all the conditions
(Dn1)–(Dn7).

Lemma 4.12 Let T be a subset of S(D) having 0 as an accumulation point and X a subset
of ̂Dn . Assume that for every σ ∈ T the density of Xσ exists and satisfies d(Xσ ) = μ(Xσ ).

Then one has the inequality

d+(X) � μ(̂X). (44)

Proof The tautological inclusion X ⊆ Xσ implies d+(X) � d+(Xσ ) = d(Xσ ) for every
σ ∈ T and hence

d+(X) � lim sup
σ→0, σ∈T

d(Xσ ) = lim sup
σ→0, σ∈T

μ(Xσ ) = μ(̂X)

where the last equality follows from Lemma 4.1. ��
Corollary 4.13 The inequality (44) holds for every X ⊆ ̂Dn .

Proof By Remark 2.18.1 we can take T = I(D). Then Lemma 4.6 ensures that Lemma 4.12
can be applied for every X ⊆ ̂Dn . ��

It might be worth stating explicitly the following obvious consequence of Corollary 4.13.

Corollary 4.14 For any X ⊆ ̂Dn, if μ(̂X) = 0 then also d(X) = 0.

Remarks 4.15 Versions of inequality (44) and Corollary 4.13 have been discovered many
times—see for example [40, Theorem 3], [34, Remark (iv) on page 201], [19, Lemma 1.1]
and [32, Theorem 3].

1. The inequality proved by Ekedahl in [19, Lemma 1.1] can be written as d(�) � μ(�),

where � ⊆ ̂Zn is any measurable set (and d an asymptotic density). However, the
condition of measurability is too weak: for example, N is a measurable subset of ̂Z,

with μ(N) = 0 (since it is countable) and its density is 1 (counting as in [19]). The
first statement of Ekedahl’s proof shows that the number A = lim

M→∞ cM/(M !)n given as
μ(�) is really μ(̂�).

2. As shown in [32, Theorem 3], the proof of Corollary 4.13 does not really require
the full strength of properties (Dn1)–(Dn7); actually, it is enough that the Leonetti–
Tringali axioms (F1), (F3) and (F6) hold. In [32], pairs (d+, d−) satisfying these weaker
conditions are called quasi-densities. Corollary 4.14 can be strengthened to “quasi-
densities”—see [33, Theorem 2.4].

Let ∂Z denote the boundary of Z ⊆ ̂Dn .

Lemma 4.16 Let X be a subset of ̂Dn and assume μ(∂̂X) = 0. Then the density of the set ̂X
exists and it is equal to μ(̂X).
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Proof Put W = ̂Dn − ̂X , so to have ∂̂X = ̂X ∩ ̂W . The obvious equality

μ(̂X) + μ(̂W ) = μ(̂X ∪ ̂W ) + μ(̂X ∩ ̂W )

and the hypothesisμ(̂X∩̂W ) = 0 implyμ(̂X)+μ(̂W ) = 1.Moreover, d−(̂X)+d+(W ) = 1,
by (Dn4). The claim follows from the chain of inequalities

μ(̂X)
by (44)

� d+(̂X) � d−(̂X) = 1 − d+(W )
by (44)

� 1 − μ(̂W ) = μ(̂X).

��
Proposition 4.17 Let X be a subset of Dn and put Y = Dn − X . Assume μ(̂X ∩ ̂Y ) = 0.
Then the density of the set X exists and it is equal to μ(̂X).

Proof Let W be as in the proof of Lemma 4.16 and put V = W ∩ Dn . We have ̂W = ̂V
because W is open and Dn is dense; moreover V ⊆ Y yields ̂W ⊆ ̂Y . Hence μ(∂̂X) = 0
and ̂X has density μ(̂X), by Lemma 4.16. By Corollary 4.14, the inclusion ̂X ∩ Y ⊆ ̂X ∩ ̂Y
yields d(̂X ∩ Y ) = 0. Therefore

d(̂X) = d(̂X ∩ Dn)
by (34)= d(̂X ∩ Y ) + d(X) = d(X).

��
Remark 4.18 As above, assume Dn = X � Y . Then ̂Dn = ̂X ∪ ̂Y and hence we have

μ(̂X) + μ(̂Y ) = μ(̂X ∪ ̂Y ) + μ(̂X ∩ ̂Y ) = 1 + μ(̂X ∩ ̂Y ). (45)

Remembering Sect. 4.3.1, it is straightforward to see from (45) that X is Buck-measurable
if and only if μ(̂X ∩ ̂Y ) = 0. Therefore Proposition 4.17 proves that the density exists for
every Buck-measurable set, whatever choice of d has been made, as long as (Dn1)–(Dn7)
hold. One can easily check that the Buck algebraDBk is the maximal subalgebra of 2D

n
such

that for any of its elements the density exists and it equals the Haar measure of the closure.
Furthermore the inclusion ∂̂X ⊆ ̂X ∩ ̂Y (which becomes an equality if X is closed, i.e.,

if X = ̂X ∩ Dn) shows that the condition μ(∂̂X) = 0 is necessary (and sufficient, if X is
closed) in order to have X Buck-measurable. This explains why Buck’s theory cannot be
used to study the density, for example, of the set X of square-free integers in Z (or in N), as
we mentioned in the introduction. Such an X is indeed closed in Z (respectively N), but ̂X
has empty interior (as we shall see as a consequence of Corollary 5.13), so that ∂̂X = ̂X;
and one finds μ(̂X) > 0.

Theorem 4.19 Let T be a subset of S(D) having 0 as an accumulation point and X a subset
of Dn . Assume that for every σ ∈ T the density of Xσ exists and satisfies d(Xσ ) = μ(Xσ ).

Then the equality

lim
σ→0

d+(Xσ − X) = 0 (46)

holds if and only if d(X) exists and it satisfies d(X) = μ(̂X).

Proof By Lemma 4.12, the inequality (44) holds and we just need to prove that (46) is
equivalent to d−(X) = μ(̂X). For this, it is enough to note that

d−(X)
by (34)= d(Xσ ) − d+(Xσ − X) = μ(Xσ ) − d+(Xσ − X)
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is true for every σ ∈ T . Therefore (29) implies

lim
σ→0

d+(Xσ − X) = lim
σ→0

(

μ(Xσ ) − d−(X)
) = μ(̂X) − d−(X).

��

4.4.1 Close pairs of sets

Let X�Y denote the symmetric difference of X , Y ∈ 2D
n
. The following is essentially a

restatement of [32, Proposition 1(i)]; we include a proof for the convenience of the reader.

Lemma 4.20 Let d be a density on Dn . If d+(X�Y ) = 0 then one has d+(X) = d+(Y ) and
d−(X) = d−(Y ).

Proof By X ∪ Y = (X ∩ Y ) � (X�Y ) and (Dn3), (Dn5) one gets

d+(X ∩ Y ) � d+(X ∪ Y ) � d+(X ∩ Y ) + d+(X�Y ).

Since X and Y are both intermediate between X∩Y and X∪Y , it follows that d+(X�Y ) = 0
implies d+(X) = d+(Y ). As for the second equality, use

(Dn − X)�(Dn − Y ) = X�Y

and d−(X) = d+(Dn − X). ��
Let X̂�Y denote the closure of the symmetric difference X�Y . We say that X and Y are

close if μ(X̂�Y ) = 0.

Proposition 4.21 If two subsets X , Y of Dn are close, then the equalities d±(X) = d±(Y )

hold for any choice of d. Moreover, μ(̂X) = μ(̂Y ).

Proof The first statement is immediate from Corollary 4.14 and Lemma 4.20. As for the
second one, it follows from the inclusion

̂X�̂Y ⊆ X̂�Y

which is proved by an elementary reasoning. ��
We say that X ⊆ Dn is almost closed if it is close to its closure ̂X ∩ Dn .

Corollary 4.22 A subset X of Dn is Buck-measurable if and only if it is almost closed and
μ(∂̂X) = 0.

Proof Put Z := ̂X ∩ Dn and W := X�Z = Z − X .

Sufficiency: since Z is closed, it follows by Remark 4.18 that it is Buck-measurable if
μ(∂̂Z) = 0, which holds because ̂Z = ̂X , and then Proposition 4.21 implies that any set
close to Z is also Buck-measurable.

Necessity: it was proved in Remark 4.18 that if X is Buck-measurable one must have
μ(∂̂X) = 0. As for being close to its closure, (36) yields

d+
Bk(X) = μ(̂X) = μ(̂Z) = dBk(Z)

and hence, by (34),

dBk(Z) = d−
Bk(X) + d+

Bk(W ) = d−
Bk(X) + μ(̂W ),

proving that X is not Buck-measurable if μ(̂W ) > 0. ��
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4.4.2 The role of closed sets

Even if not strictly necessary, when comparing d(X) andμ(̂X) it is convenient to assume that
X is a closed (or at least almost closed) subset of Dn . On the one hand, if d(X) = μ(̂X) is
true for X then it is true also for its closure. This is immediate from the chain of inequalities

μ(̂X) � d+(̂X) � d−(̂X) � d−(X),

which holds for every X ⊆ Dn because of (Dn2), (Dn3) and Corollary 4.13 and shows that
d(X) = μ(̂X) implies d(X) = d(̂X ∩ Dn).

On the other hand, if X is far from being closed then there is no reason to expect equality
between density and measure. In particular, if X is dense in ̂Dn the density can be anything.
We give a few examples with D = Z and n = 1.

(1) Let Y be the set of square-free integers and X its complement. It is not hard to see that
X is dense in̂Z (we will prove later a slightly more general result—see Corollary 5.13).
The equality das(X) = 1 − 6

π2 is a classical result.
(2) Let X be the set of all positive integers having first digit 1 in their decimal expansion.

Then ̂X = ̂Z, so μ(̂X) = 1, while X has no asymptotic density and its logarithmic
density exists and is strictly smaller than 1 (more precisely, in N one has d−

as(X) = 1
9 ,

d+
as(X) = 5

9 and dlog(X) = log 2
log 10 , as explained in [53, pages 415 and 417]).

(3) It is easy to find a dense set X with das(X) = 0.The simplest andmost classical example,
often mentioned in the literature, is probably X = {n! + n | n ∈ N}.

It would be interesting to have an example of a closed X ⊆ Dn and a density d such that
d(X) exists and it is different from μ(̂X) (equivalently, the limit in (46) is not 0). By results
of Davenport–Erdős [15] and Besicovitch [2], one can obtain an example of a closed X ⊆ Z

such that μ(̂X) = dlog(X) = d+
as(X) > d−

as(X). See Remark 5.18.1 below.

4.4.3 Some counterexamples

The first one implies that [19, Proposition 2.2] is wrong. Since the latter plays a key role in
the proof of [19, Theorem 2.3], one should expect that also this second claim is false, as we
will show.
1. There is no need for an open subset of ̂D to have a density equal to its measure. By
Assumption 2.9, we can write D = {xn}n∈N. For a given ε in the open interval (0, 1), choose
a ∈ D such that

∞
∑

n=1

1

|D/aD|n < ε

and, for every n ∈ N − {0}, let Un be the coset xn + an̂D. Put U = ⋃n Un . Then U is an
open subset of ̂D with measure

μ(U ) �
∑

μ(Un) =
∑ 1

|D/aD|n < ε.

On the other hand, d(U ) = d(U ∩ D) = d(D) = 1 for every choice of d.

2. A counterexample to [19, Theorem 2.3]. Let Y be the closed subscheme of the affine plane
on Z corresponding to the point (0, 0). Then the set

W :=
⋂

p∈P(Z)−{2}
π̂−1
pZ

(F2
p − Y (Fp))
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consists of all pairs (a, b) ∈ ̂Z2 having greatest common divisor a power of 2 (including 20).
It is well-known (and can be proved for example by [19, Theorem 1.2]) that the asymptotic
density of W exists, with value

d as(W ) =
∏

p �=2

(

1 − 1

p2

)

=
(

1 − 1

4

)−1

· 1

ζ(2)
= 8

π2 .

Then, according to [19, Theorem 2.3], for any open subset T of Z
2
2 of Haar measure t the set

XT := W ∩ π̂−1
2∞ (T )

should have density 8
π2 t . However one can reason as in counterexample 1 and take T con-

taining Z
2 with t < 1 to obtain a contradiction, since for such a T one has

XT ∩ Z
2 = W ∩ Z

2

and hence das(XT ) = 8
π2 > 8

π2 t .
With a little more effort, a construction similar to the one used in counterexample 3 below

can be used to show that it is also possible to choose T so that XT has no asymptotic density.
3. There is no reason to expect that open or closed subsets of Dn have a density. We give
an example (based of an idea of Bary-Soroker) with d = dan, the analytic density in N

(since the existence of dan implies that the asymptotic density exists as well—see e.g. [53,
Theorems III.1.2 and III.1.3]; we work in N rather than Z because it simplifies notations
without affecting the argument).

Let A ⊆ N be any set which has no analytic density (that is, the ratio ζA(s)/ζ(s) diverges
in 1, with ζA(s) :=∑a∈A a

−s), so that we can find m ∈ N satisfying

1

m − 1
< d+

an(A) − d−
an(A).

For simplicity we assume 0 /∈ A. Then

U = {a + jma | a ∈ A, j ∈ N} = N ∩
⋃

a∈A

(a + ma
Z)

is a proper open subset of N (in the topology induced by the dense embedding N ↪→ ̂Z). One
computes

ζU (s) :=
∑

k∈U

1

ks
=
∑

a∈A

∞
∑

j=0

1

(a + jma)s
� ζA(s) +

∞
∑

j=1

∑

a∈A

1

( jma)s

� ζA(s) +
∞
∑

j=1

1

j s

∞
∑

n=1

1

(ms)n
= ζA(s) + 1

ms − 1
ζ(s).

Dividing by ζ(s) and taking the limit as s goes to 1 we obtain

d−
an(U ) � d−

an(A) + 1

m − 1
< d+

an(A) � d+
an(U ),

proving that U has no density. Therefore the closed set X = N −U has no density too.

5 Densities onS(D) and the Davenport–Erdős theorem

In this section we assume that D is global (that is, it is the ring of S-integers in a global field).
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5.1 Densities on the set of ideals

The general definition of density in Sect. 4.2.1 has a straightforward adaptation to the set of
ideals of D. Namely, a density d on I(D) is the datum of two functions

d+, d− : 2I(D) −→ [0, 1]
satisfying the following properties:

(DnI1)–(DnI5) same as (Dn1)–(Dn5), just replacing subsets of Dn with subsets of I(D);
(DnI7) for every ideal a of D, one has

d+(aI(D)
) = d−(aI(D)) = 1

‖a‖ ,

where aI(D) := {b ∈ I(D) : b ⊆ a}.
We do not ask for an analogue of (Dn6), for the obvious reason that the additive group D
does not act on the multiplicative monoid I(D).

We saw in Sect. 2.2.3 that one can think of I(D) as a dense subset of the topological
space S(D). As before, we keep the convention of using German letters for ideals in I(D)

and Greek letters for generic supernatural ideals. As in Sect. 4.2.2, any density d on I(D) is
extended to S(D) by d∗(X ) := d∗(X ∩ I(D)).

5.1.1 The map� and push-forward densities

Recall the map ρ : ̂D −→ S(D) defined in (9).

Lemma 5.1 The map ρ is open.

Proof For any x ∈ ̂D one has x̂D = {z ∈ ̂D | vp(z) � vp(x) ∀ p ∈ P(D)}. Hence
ρ(x) = ρ(y) ⇐⇒ x̂D = ŷD ⇐⇒ vp(x) = vp(y) ∀ p ∈ P(D) ⇐⇒ ∃ u ∈ ̂D∗ : x = uy.

(For the last implication, use the fact that if vp(x) = vp(y) = ∞ then the components of x
and y in p are both 0.) Thus for any X ⊆ ̂D we get

ρ−1(ρ(X)) = ̂D∗X := {ux | u ∈ ̂D∗, x ∈ X}. (47)

Multiplication by a unit induces a homeomorphism of ̂D in itself: hence if X is open then so
is ̂D∗X = ∪u∈̂D∗uX . ��
Remark 5.2 The proof of Lemma 5.1 also shows that ρ identifies S(D) with ̂D/̂D∗.

Any density d = (d+, d−) on D induces a density ρ∗d = (ρ∗d+, ρ∗d−) on I(D) by

ρ∗d±(X ) := d±(ρ−1(X )).

It is immediate to check that if (Dn1)–(Dn5) hold for d then (DnI1)–(DnI5) are inherited
by ρ∗d. The same applies to (DnI7), because

b ∈ aI(D) ⇐⇒ b ⊆ a ⇐⇒̂b ⊆ â ⇐⇒̂b = âD for some a ∈ â

(by Lemma 2.2) proves the equality

aI(D) = ρ(̂a) ∩ I(D) (48)

and Remark 5.2 implies ρ−1(ρ(̂a)) = â, yielding ρ∗d(aI(D)) = d (̂a) = d(a) = μ(̂a) by
(Dn7).
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Remark 5.3 The set aI(D) is contained in ρ(̂a), but not in ρ(a) (unless D has class number
one). It is important to note that, because of the existence of ideals which are not principal,
when working with densities on I(D) we should expect d±(ρ(X)) �= d±(ρ(̂X)) even when
X is closed in D (that is, X = D ∩ ̂X ).

5.1.2 Analytic density for a general D

As implicit in Sect. 4.3.3, the analytic density on N does not have an obvious generalization
to D when there are infinitely many units: this is because the zeta function is an efficient
tool to count ideals rather than elements. On the other hand, we are going to see that the
construction in Sect. 4.3.3 works nicely as a density on I(D).

For any X ⊆ S(D), define

ζX (s) :=
∑

n∈X∩I(D)

1

‖n‖s . (49)

In particular, if D is the ring of integers of a number field then ζI(D) is the same as the
usual Dedekind zeta function. Our hypothesis that D is a global Dedekind domain ensures
that ζX (s) always converges, absolutely and uniformly on compact subsets of the complex
half-plane Re(s) > 1, for every X .

We shall use the shortenings ζD and ζa for ζI(D) and ζaI(D). The ratio

δ(X , s) := ζX (s)

ζD(s)
(50)

takes values in [0, 1] for every s in the real half-line (1,∞). The analytic density dan is
defined by

d+
an(X ) := lim sup

s→1
δ(X , s) and d−

an(X ) := lim inf
s→1

δ(X , s). (51)

Example 5.4 In the case D = Z, the set of ideals is canonically identified with N. Therefore
the analytic density (51) coincides with the traditional definition (as found for example in
[53, Chapter III.1.3]). We also note that one has dan = ρ∗ dan∗ when D∗ is finite (the setting
of Sect. 4.3.3) and D has class number 1. However, if D is just a global Dedekind domain,
we don’t know how to define a density on it having dan as its push-forward and we see no
reason to expect that such a density should exist.

Proposition 5.5 The analytic density dan satisfies conditions (DnI1)–(DnI5) and (DnI7).

Proof We just check (DnI7), since the rest is trivial. In order to prove that the analytic density
exists and it satisfies dan(aI(D)) = μ(̂a) for any a ∈ I(D), it is enough to show

ζa(s) = 1

‖a‖s ζD(s) for every s ∈ (1,∞).

This is immediate from (49), since

n ∈ aI(D) ⇐⇒ n ⊆ a ⇐⇒ n = an1 ⇐⇒ ‖n‖s = ‖a‖s · ‖n1‖s .
��
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5.1.3 The measure onS(D)

The Haar measure μ on ̂D is pushed forward by ρ to a measure ρ∗μ on S(D), by

ρ∗μ(X ) := μ(ρ−1(X )). (52)

Points in S(D) have measure zero with respect to ρ∗μ, as follows from Example 4.3 and
formula (27) together with (47).

Remark 5.6 Note that ρ∗μ is not a Haar measure on the monoid S(D), in the sense that it is
not invariant under the operation, as one immediately sees from

ρ∗μ
(

σ · S(D)
) = ρ∗μ(ρ(σ · ̂D)) = μ(σ) = 1

‖σ‖ �= ρ∗μ
(

S(D)
) = 1.

In high-brow terms, one could say that this is because μ (and hence ρ∗μ) comes from the
measure on the additive adele group attached to D, while a product invariant measure must
be related to the group of ideles.

5.2 “Sets of multiples”

Classically the “set of multiples” of a (possibly finite) N-valued sequence (ai ) is the set of all
the positive integers divisible by some ai : that is, a set of multiples consists of the intersection
of N − {0} with a family of ideals of Z. Note that sets of multiples are open in the topology
induced on N by ̂Z. Hence the natural analogue in our setting is the following. Let (ai )i∈N

be a sequence of ideals of D and put

Un :=
⋃

i�n

âi , U :=
⋃

i∈N

âi . (53)

The set of multiples of (ai ) is U ∩ D.

5.2.1 Primitive sequences

In the study of sets of multiples, traditionally one works just with primitive sequences, that
is, sequences (ai ) in N such that ai |a j only if i = j . It is straightforward to check that the
sequence (ai ) is primitive if and only if there is no i satisfying aiZ ⊆ ∪ j �=i a jZ. Therefore
the requirement that a sequence is primitive eliminates redundancy in constructing the set of
multiples.

Lemma 5.7 Assume that the class group of D is not trivial. Then there is an ideal a0 and a
set J ⊂ I(D) such that

a0 ⊆
⋃

b∈J
b (54)

and no divisibility relation holds between any two distinct elements of J ∪ {a0}.
Proof Choose p, q ∈ P(D) with p principal and q not (this is always possible thanks to
Chebotarev). Then one can take a0 = pq and

J = {p2, q2} ∪ (P(D) − {p, q}).
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Indeed, any two elements in J are coprime and none of them divides a0, nor can be divided
by it. As for (54), we show that every x ∈ a0 belongs to an ideal in J . Since a0 is not
principal, one has xD = pqc for some proper ideal c. If r is any prime which divides c, then
one of r, pr, qr is in J and all of them contain x . ��

We say that a sequence of ideals (ai ) in I(D) is primitive if there is no index i such
that ai ⊆ ∪ j �=ia j . Lemma 5.7 proves that primitivity cannot be expressed by a divisibility
condition on ideals of D when the class group is not trivial.

Remark 5.8 Since every closed ideal in ̂D is principal, the inclusion and divisibility conditions
coincide for completed ideals:

âi ⊆ ∪ j �=i â j ⇐⇒ ∃ j �= i such that â j |̂ai ⇐⇒ ∃ j �= i such that a j |ai .
This also shows that âi ⊆ ∪ j �=i â j implies ai ⊆ ∪ j �=ia j , while there is no reason for the
converse to be true if the sequence is infinite: just take a0 and J as in Lemma 5.7 to get an
example where â0 � ∪̂b in spite of (54).

5.2.2 An application

The fact that “sets of multiples” are open allows to give an easy answer to a question asked
in [33]. Recall the function ω : S(D) → N̄ defined in (11).

Proposition 5.9 Fix k ∈ N and put Zk := {x ∈ D | ω(xD) = k}. Then μ(̂Zk) = 0.

Proof Consider T := {a ∈ I(D) | ω(a) > k}. Then U := ∪a∈T â is open and hence so is
its image ρ(U ) in S(D). Thus

K := S(D) − ρ(U )

is a closed set. Note that σ ∈ ρ(U ) implies ω(σ) > k, by the trivial inequality

ω(̂a) � ω(ρ(a)) ∀ a ∈ â.

On the other hand assume ω(σ) > k with σ = x̂D. Then x ∈ p̂i for distinct primes
p1, . . . , pk+1. Since the ideal a =∏k+1

i=1 pi is in T , we obtain

σ = ρ(x) ∈ ρ(̂a) ⊆ ρ(U ).

This proves the equality

K = {σ ∈ S(D) | ω(σ) � k}. (55)

From (55) it is easy to see that K is countable. Thus ρ−1(K) is a countable union of sub-
sets which, by (47), all have the form âD∗. Therefore, by (27) and Example 4.3, we get
μ(ρ−1(K)) = 0. The proof is concluded by the simple observation that ̂Zk is a subset of
ρ−1(K), since ρ(Zk) ⊆ K by (55) and ρ−1(K) is closed. ��
Corollary 5.10 The set {x ∈ D | ω(xD) = k} has density 0 for every k ∈ N and every
definition of density satisfying (Dn1)–(Dn7) or, more generally, the Leonetti–Tringali axioms
(F1), (F3) and (F6).

Proof Just apply Proposition 5.9 together with Corollary 4.13 and Remark 4.15.2. ��
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In the case D = Z, this strengthens [9, Theorem 3] (which proves that each Zk has
uniform density 0) and provides an affirmative answer to [33, Question 5.2]. All the main
ideas for this special case were discussed in a S.U.R.F. project at XJTLU in summer 2016
and already appeared in [51]. Our result also shows that composite integers have density 1
in any global Dedekind domain, since, by definition, x composite means ω(x) > 1. This
improves on [34, Example 4.6], where it was observed that the upper Buck density of the set
of all composite algebraic integers in a number field is 1.

Remark 5.11 Corollary 5.10 can be interpreted as stating that the probability that an integer
n is divisible by k different primes is 0. Taking the sum over all k ∈ N, one obtains the
apparently paradoxical result

Prob
(

ω(n) < ∞) ?=
∑

k∈N

Prob
(

ω(n) = k) = 0. (56)

The definition of probability implicit on the right-hand side of (56) is

Prob
(

x ∈ X
) := μ(̂X)

and this makes clear where the mistake lies: the dubious equality in (56) is false because
the closure of a union is not the union of the closures. The explanation of the paradox is
completed observing that the set {z ∈ ̂Z | ω(ẑZ) = ∞} has measure 1, but its complement
is dense (it contains the non-negative integers).

5.2.3 The closure of U

For a ∈ I(D), we will write supp(a) to denote its support (that is, the set of primes dividing
a).

Lemma 5.12 Take U = ∪i âi as in (53). Then U is dense in ̂D if and only if for every finite
S ⊂ P(D) there is an index i such that supp(ai ) ∩ S = ∅.

Proof We are going to prove that U is not dense if and only if there is a finite S0 such that
for every i one has supp(ai ) ∩ S0 �= ∅.

• If U is not dense, then there are x ∈ ̂D and b ∈ I(D) such that

(x +̂b) ∩ âi = ∅ ∀ i ∈ N.

This implieŝb + âi �= ̂D, which is equivalent to supp(b) ∩ supp(ai ) �= ∅. One can take
S0 = supp(b).

• Assume S0 exists. Then

U ⊆
⋃

p∈S0
U (p), where U (p) :=

⋃

ai⊆p

âi .

Clearly U (p) ⊆ p̂ and so the closure of ∪p∈S0U (p) is contained in ∪p∈S0 p̂ (since S0 is
finite). Hence U cannot be dense. ��

Corollary 5.13 Let Q be any infinite subset of P(D) and p �→ kp any function Q → N. The
set

{x ∈ ̂D | vp(x) < kp for every prime p ∈ Q} (57)

has empty interior.
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Proof It is enough to observe that the set in (57) is the complement of U = ∪p∈Qpkp and
apply Lemma 5.12. (Note that U = D if kp = 0 for some p.) ��

In particular, this applies when there is a fixed k � 2 such that kp = k for every p; in this
case, elements in the set in (57) are usually called k-free.

5.2.4 The complements of U

We consider a sequence (ai )i∈N and Un,U as in (53). Let

Xn := D −Un, X := D −U and Y := ̂D −U .

Note that the definition yields

Y = {y ∈ ̂D | ∀ i ∃ p such that vp(y) < vp(ai )
}

. (58)

Recalling that completions of ideals are both closed and open, one immediately sees that so
are all Un, and hence ̂Xn = ̂D −Un; moreover U is open and Y = ∩̂Xn . It is also clear that
Y contains ̂X and it is natural to ask what is their difference.

Remark 5.14 The inclusion ̂X ⊆ Y can be strict. For a simple example, take D = Z and let
{ai } be the set of all prime ideals: then X = {±1} = ̂X �= Y = ̂Z∗.

Moreover, one can have ρ(̂X) � ρ(Y )—and hence ζρ(̂X)(s) < ζρ(Y )(s) for every s > 1.
The family of ideals {a0} ∪ J used in Lemma 5.7 provides an instance of this phenomenon:
putting

U =
⋃

J

̂b, U0 = U ∪ â0, Y = ̂D −U , X = D −U and Y0 = ̂D −U0,

then Remark 5.8 shows a0 ∈ ρ(U0) − ρ(U ), while inclusion (54) yields D ∩ U = D ∩ U0

and hence X = Y ∩ D = Y0 ∩ D. Thus ̂X is a subset of Y0 and a0 ∈ ρ(Y ) − ρ(̂X).

Lemma 5.15 Assume D has class number 1. Then Y = ̂X̂D∗.

Proof By (47), it is enough to prove ρ(Y ) = ρ(̂X).

Choose an increasing sequence (Sn)n∈N of finite subsets of P(D), so that ∪n Sn = P(D).

Fix y ∈ Y and, for every n ∈ N and p ∈ P(D), define

en(p) :=

⎧

⎪

⎨

⎪

⎩

0 if p /∈ Sn
vp(y) if p ∈ Sn and vp(y) �= ∞
n if p ∈ Sn and vp(y) = ∞

(59)

and consider the ideals

cn :=
∏

p

pen(p) ∈ I(D). (60)

The hypothesis on the class number implies that for every n the ideal cn is principal: let
xn ∈ D be a generator. One has vp(xn) = en(p) � vp(y) for every n and p by construction
and (58) then shows that each xn is in X = Y ∩ D. Moreover vp(y) = lim en(p) holds for
every p and by Remark 2.8 this is equivalent to lim ρ(xn) = ρ(y). This proves ρ(y) ∈ ρ(̂X)

and hence ρ(Y ) = ρ(̂X). ��
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The examples in Remark 5.14 prove that the class number 1 hypothesis in Lemma 5.15
is necessary and suggest that one cannot hope for much more than this without stronger
conditions either on D (see points 1 and 3 of Remark 5.18 for the case D = Z) or on the
sequence (ai ). Theorem 3.2 allows to prove the equality ̂X = Y in many cases. We give an
example.

Proposition 5.16 Assume that the ideals ai are pairwise coprime and satisfy 	(ai ) > 1 for
almost every i . Then ̂X = Y .

The proof is in two steps: first we show Y = ̂D∗
̂X using the hypotheses on (ai ) to

approximate any element in ρ(Y ) by a sequence of principal ideals with generators in X;
then we prove ̂D∗

̂X = ̂X by means of Theorem 3.2.

Proof Define Sn := ∪i�n supp(ai ). For simplicity of exposition we start making the addi-
tional assumption ∪n Sn = P(D).

Fix y ∈ Y and define en(p) and cn as in (59) and (60). The reasoning in the proof of
Lemma 5.15 shows that the sequence cn converges to ρ(y) in S(D). For every n, choose a
prime ideal qn such that cnqn is principal and qn /∈ Sn ∪ {q0, . . . , qn−1}. From (58) we get

ρ(Y ) = {σ ∈ S(D) | ∀ i ∃ p such that vp(σ ) < vp(ai )
}

.

By construction we have

vp(cnqn) =
{

vp(cn) � vp(y) if p ∈ Sn;
vp(qn) � 1 if p /∈ Sn .

Thefirst inequality shows cnqn /∈ ρ(̂ai ) for i � n.The second inequality implies cnqn /∈ ρ(̂ai )

for i > n � 0, because cn is not a multiple of ai and 	(ai ) > 1 = 	(qn). Therefore
cnqn ∈ ρ(Y ) for n � 0. Since the ideals qn are pairwise distinct, we get

lim
n→∞ vp(cnqn) = lim

n→∞ vp(cn) = vp(y) ∀ p ∈ P(D)

and hence ρ(y) = limn cnqn .
Let xn ∈ D be a generator of cnqn, so that ρ(xn) = cnqn . Then xn ∈ X for n � 0 and the

compactness of ̂D ensures that (xn) has a limit x (restricting, if needed, to a subsequence).
Continuity yields ρ(x) = ρ(y) and hence there is some u ∈ ̂D∗ such that xu = y.

For every n, let i(n) be the smallest index such that qn divides ai(n) and put

Tn = Sn ∪ supp(ai(n)).

By Theorem 3.2, one can find a sequence (rn) in Irr(D) such that

rn − u ∈
∏

p∈Tn
pn .

Then (rn) converges to u and rn ∈ Irr(D) − Tn . The latter condition ensures xnrn ∈ X for
n � 0, as one can see by the same reasoning used for checking cnqn ∈ ρ(Y ). Therefore
y = lim xnrn ∈ ̂X .

Finally, we observe that one can dispense with the assumption ∪n Sn = P(D)without any
loss of generality. Indeed, having prime ideals outside ∪n Sn just provides more elbow room
in the choice of qn and rn . ��
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5.3 The Davenport–Erdos theorem

The notation is the same as in Sect. 5.2.4: we fix a sequence of ideals (ai ) and by taking
their complements we obtain sets Xn, ̂Xn, X , Y . The goal is to compare analytic density and
measure, as defined in (51) and (52), for ̂Xn := ρ(̂Xn), ̂X := ρ(̂X) and Y := ρ(Y ). We also
fix an asymptotic density das on D (as in Sect. 4.3.2).

The sets ̂Xn and Y are invariant under the action of ̂D∗ and therefore their measures in ̂D
coincide with those of ̂Xn and Y in S(D). The inclusion-exclusion principle yields

μ(̂Xn) =
∑

k�n

(−1)k
∑

J⊆{0,...,n}
|J |=k

μ

⎛

⎝

⋂

j∈J

â j

⎞

⎠ . (61)

Since (DnI7) and Lemma 4.6 can be applied to each summand in (61), the equality

das(Xn) = μ(̂Xn) = dan(̂Xn) (62)

holds for every n. It is natural to ask what happens when n goes to infinity. The sets ̂Xn form
a decreasing nested sequence with intersection Y : therefore μ(̂Xn) converges to μ(Y ) and
one has dan(̂Xn) � d+

an(Y) for every n, yielding

μ(Y ) = lim
n→∞ μ(̂Xn) � d+

an(Y). (63)

Theorem 5.17 (Davenport–Erdős) The analytic density of Y exists for every sequence (ai )

and it satisfies dan(Y) = μ(Y ) = ρ∗μ(Y).

Davenport and Erdős gave two proofs of this result, in [15, 16], for the case D = Z. Our
version extends it to any global Dedekind domain and every sequence of ideals, without any
of the additional hypotheses on either D or (ai ) we needed in Sect. 5.2.4. We shall prove the
theorem in Sect. 5.3.2, following quite closely the reasoning of [15].

Remarks 5.18 1. In (62) we also inserted an asymptotic density. At this stage we cannot
say anything about d±

as(X) in full generality. However, in the case D = Z the chain of
inequalities

d−
as(W ) � d−

log(W ) � d+
log(W ) � d+

as(W ) (64)

holds for every W ⊆ Z; moreover, the logarithmic density dlog(W ) exists if and only
if so does dan(W ) and when this happens they are equal (see e.g. [53, III.1, Theorems
1.2 and 1.3]). Because of class number 1, the functions ζX and ζY are the same and
Theorem 5.17 leads to

μ(̂X) � μ(Y ) = dan(Y ) = dan(X)
by (64)

� d+
as(X) � μ(̂X),

proving

d+
as(X) = μ(̂X) = μ(Y ).

This is the best possible result, since Besicovitch in [2] gave an example of a set of
multiples for which the asymptotic density does not exist.

2. PutX = ρ(X). If D has class number 1, thenY∩I(D) = X ∩I(D) implies the equality
dan(X ) = dan(Y). When the class group of D is not trivial, one has to look at ̂X (since
X contains only principal ideals): in this case we do not know if ̂X has analytic density
and, if yes, whether it is the same as the one of Y.
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3. The equality μ(̂X) = μ(̂D∗
̂X) holds for D = Z, thanks to comparison with d+

as, as seen
above. It is not clear whether it is always true with a general D, or even just in the case
of class number 1. The stronger equality μ(Y ) = μ(̂X) holds in all the examples of
Remark 5.14, because in all of them we have μ(Y ) = 0. It would be interesting to have
an example with μ(Y ) �= μ(̂X).

4. In the case D = Z, it is proved in [20, Theorem 3] that das(X) exists when | supp(ai +a j )|
is bounded. This result might be extendable to our setting: Theorem 6.17 is a first step
in this direction.

5. Classically, the Davenport–Erdős theorem is expressed looking atU (the set of multiples)
rather than Y or X and it is usually formulated as the equality dlog(U ) = μ(U ). We
considered the complements of U because in our setting it is interesting to ask the finer
question of determining the closure in ̂D of a subset of D, rather than just its density.
However, our final result is aboutY, a subset ofS(D).One could perhaps try and adapt the
reasoning in [16] in order to compute dlog(X) (the logarithmic density on D, as defined
in [18]). A proof along the lines of [16] appeared in [28], for a logarithmic density defined
on I(OK ) (the ring of integers of a number field).

5.3.1 Some formulae

Before proving Theorem 5.17, we collect some analogues of well-known formulae from
analytic number theory. The proofs are standard exercises and are left to the reader. First of
all, from (49) one obtains

d

ds
ζZ (s) =

∑

n∈Z

d

ds

1

‖n‖s = −
∑

n∈Z

log ‖n‖
‖n‖s (65)

for every Z ⊆ I(D). Also, we define the von Mangoldt function on I(D) by

�D(n) =
{

log ‖p‖ if n = pr for some r ∈ N;
0 if n is not a prime power.

As in the classical case, unique factorization (of ideals) immediately implies

log ‖n‖ =
∑

d|n
�D(d) (66)

and, with slightly more effort,

dlog ζD(s) = −
∑

n

�D(n)

‖n‖s (67)

where dlog denotes the logarithmic derivative (that is, the operator sending a meromorphic
function f to f ′

f ).

5.3.2 Proof of the Davenport–Erdős theorem

We start with the analogue of [15, Lemma 1].

Lemma 5.19 For every n, the ratio δ(̂Xn, s) of (50) extends to an increasing continuous
function on [1,∞).
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Proof For a general Z ⊆ S(D), it is clear from (50) and (51) that δ(Z, s) is continuous on
(1,∞) and can be continuously extended to 1 if and only if dan(Z) exists. We have already
seen that this is the case for our sets ̂Xn .

In order to prove monotonicity, put Un := ρ(Un) and observe that one has

δ(̂Xn, s) = 1 − δ(Un, s),

because ̂Xn and Un are both compact open and S(D) is their disjoint union (both statements
follow from Remark 5.2, using the fact that Un and ̂Xn are both compact open and ̂D∗-
invariant). We shall show that the derivative d

ds δ(Un, s) is non-positive for every s > 1.
Since δ(Un, s) > 0 is obviously true, it is enough to show

0 � dlog(δ(Un, s)) = dlog ζUn (s) − dlog ζD(s),

which is clearly equivalent to

ζUn (s) · dlog ζD(s) � d

ds
ζUn (s) (68)

By (49), (65) and (67), we can rewrite (68) as

∑

n∈I(D)

1n(n)
‖n‖s ·

⎛

⎝−
∑

n∈I(D)

�D(n)

‖n‖s

⎞

⎠ � −
∑

n∈I(D)

1n(n) log ‖n‖
‖n‖s

where 1n is the characteristic function of Un . The last inequality follows if we can prove

1n(n) log(‖n‖) �
∑

d|n
1n(d)�D(nd−1). (69)

If 1n(n) = 1, then (69) is immediate from (66). In the other case, (48) shows that an ideal is
in Un if and only if it is a multiple of some ai ,with i � n: hence 1n(n) = 0 implies 1n(d) = 0
for every d dividing n and (69) reduces to 0 = 0. ��
Proof (Proof of Theorem 5.17) By equality (62) and Lemma 5.19 it follows

δ(̂Xn, s) � δ(̂Xn, 1) = dan(̂Xn) = μ(̂Xn) � μ(Y ). (70)

Moreover we have

lim
n→∞ ζ

̂Xn
(s) = ζY (s) ∀ s ∈ (1,∞)

because ∩n ̂Xn = Y. Therefore as n varies the functions δ(̂Xn, s) converge pointwise to
δ(Y, s) on (1,∞) and (70) yields

δ(Y, s) � μ(Y )

for every s ∈ (1,∞), which implies d−
an(Y) � μ(Y ). Now use (63). ��

6 Eulerian sets

In this section D is any Dedekind domain satisfying Assumption 2.9 and d is a density on
Dn such that (Dn1)–(Dn7) hold.
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6.1 Eulerian sets

Definition 6.1 Let X be a subset of ̂Dn .

(1) For any prime ideal p of D, we write X(p) to denote the closure of π̂p∞(X) in ̂Dn
p.

(2) We say that X ⊆ Dn is Eulerian if

̂X =
∏

p

X(p)

in the identification ̂D =∏ ̂Dp induced by (7).
(3) We say that X is openly Eulerian if it is Eulerian and each X(p) is open.

Example 6.2 Ideals of D provide obvious examples of openly Eulerian sets. More generally,
given X ⊆ ̂Dn and a ∈ I(D) the set Xa is openly Eulerian if and only if π̂a(X) can be
written as a product in the decomposition

(̂D/̂a)n 	
∏

p|a
(̂D/̂pvp(a))n

induced by the Chinese Remainder Theorem.

Letμp denote theHaarmeasure on ̂Dn
p (normalized so to haveμp(̂Dn

p) = 1). Corollary 4.2
yields

μ

(

∏

p

X(p)

)

=
∏

p

μp(X(p)).

Lemma 6.3 The inequality

d+(X) �
∏

p

μp(X(p)) (71)

holds for every X ⊆ Dn and every density satisfying (Dn1)–(Dn7).

Proof For any X one has
∏

p X(p) =⋂p Xp∞ , because, by (15),

Xp∞ = X(p) ×
∏

q�=p

̂Dn
q.

Thus the inclusion ̂X ⊆∏ X(p) is always true and (71) follows by Corollary 4.13. ��
Proposition 6.4 Assume ̂X is contained in a set C =∏p Cp, where every Cp ⊆ ̂Dn

p is open

and
∏

μp(Cp) > 0. Then d+(X) � μ(C) implies ̂X = C and X(p) = Cp for every p.

Proof Assume ̂X �= C . Then there is an open set U such that ̂X ⊆ C − U and U ∩ C �= ∅.

Since (6) is a base for the topology, there is no loss of generality in assuming U = π̂−1
a (x)

for some a ∈ I(D) and some x = πa(x̃) ∈ (D/a)n, that is, U = ∏p(x̃ + âDn
p). One has

âDn
p = ̂Dn

p unless p|a and thus

U ∩ C =
∏

p|a
Bp ×

∏

p�a

Cp,
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where Bp = Cp ∩ (x̃ + âDn
p) is an open subset of ̂Dp. Hence

μ(U ∩ C) =
∏

p|a
μp(Bp) ·

∏

p�a

μp(Cp) > 0,

because μp(Bp) > 0 for each of the finitely many p dividing a. But then one gets a contra-
diction from

μ(̂X)
by (44)

� d+(X) � μ(C) > μ(C −U ) � μ(̂X).

Finally, ̂X = C implies X(p) = π̂p∞(̂X) = π̂p∞(C) = Cp. ��

Corollary 6.5 Assume every X(p) is open and
∏

μp(X(p)) > 0. Then X is openly Eulerian
if (71) is an equality.

Proof Apply Proposition 6.4 with Cp = X(p). ��

6.1.1 Eulerianity and polynomial maps

Polynomial maps are well-behaved with regard to Eulerianity.

Proposition 6.6 For any f ∈ D[x1, . . . , xn] and X ⊆ Dn, one has:
(a) if X is Eulerian, then so is f (X);
(b) if f (X) is Eulerian and ̂X is the closure of f −1

(

f (X)
)

, then X is Eulerian.

Proof Polynomial maps commute with ring homomorphisms: hence, by (7), we have

f

(

∏

p

Ap

)

=
∏

p

f (Ap) and f −1

(

∏

p

Bp

)

=
∏

p

f −1(Bp) (72)

for all Ap ⊆ ̂Dn
p, Bp ⊆ ̂Dp. Besides, the map induced by f is continuous on ̂Dn and on

each ̂Dn
p.

(a) Since X is dense in X(p) and X(p) is compact, continuity implies that the closure of
f (X) in ̂Dp is exactly f (X(p)). Replacing ̂Dp with ̂D, the same reasoning shows that
f (̂X) is the closure of f (X) in ̂D. Now just apply (72) to ̂X =∏ X(p).

(b) PutY := f (X).ThenwehavêY =∏p Y (p) and ̂X = f̂ −1(Y ) = f −1(̂Y ) by hypothesis,
so (72) yields

̂X =
∏

p

f −1(Y (p))

and hence X(p) = π̂p∞(̂X) = f −1(Y (p)). ��

Remark 6.7 In general, the inverse image of an Eulerian set by a polynomial map is not
Eulerian: for a trivial example, consider f (x) = x(x − 1) and note that the set {0} is
Eulerian, but f −1({0}) is not (since it contains two points in D and infinitely many in ̂D,

because the latter is a product of the rings ̂Dp). Thus the condition on ̂X in Proposition 6.6.(b)
is somehow necessary.
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6.1.2 Eulerianity and strong approximation

We say that an affine D-scheme Z satisfies the strong approximation theorem with respect
to D if Z(D) is dense in Z(̂D) (with respect to the obvious topology as a subset of ̂Dn). For
example, the strong approximation theorem holds for the affine space A

n and for the special
linear group SLn (see [6, VII, §2, n.4]), but not for GLn .

Remark 6.8 Usually strong approximation is expressed in terms of adeles. More precisely,
let F be the fraction field of D and consider the ring of D-adeles ̂F := F ⊗D ̂D (if D is
the ring of integers of a number field, then ̂F is the usual ring of finite adeles). The more
common statement is that the strong approximation theorem is true for Z if Z(F) is dense
in Z(̂F). The sets ̂F and Z(̂F) are given the restricted product topology: it follows that
Z(̂D) is compact open in Z(̂F). In particular, any open subset U ⊆ Z(̂D) is also open in
Z(̂F) and therefore U ∩ Z(F) �= ∅ if strong approximation holds. One can conclude that
the usual version of strong approximation implies the one we have given above by observing
Z(D) = Z(̂D) ∩ Z(F).

By functoriality, the isomorphism (7) yields Z(̂D) = ∏ Z(̂Dp). If X = Z(D) for some
affine scheme Z , then X(p) = Z(̂Dp) for every p and therefore X is Eulerian if and only
if Z satisfies the strong approximation theorem. However, the notion of Eulerian allows for
more generality. For example, the set of square-free integers is Eulerian (as we shall prove
in Corollary 6.15), but as far as we know it cannot be obtained as the set of Z-points of a
scheme.

Proposition 6.9 Let G be an algebraic subgroup ofGLn satisfying the strong approximation
theorem. Let X be a subset of Dn, stable under the action of G(D). If X is contained in a
G(̂D)-orbit, then it is Eulerian.

Proof The group

GLn(̂D) = lim←−GLn(D/n)

has the inverse limit topology and therefore it is Hausdorff and compact.Moreover, the action
of GLn(̂D) on ̂Dn is continuous: it follows that for any subgroup H of GLn(̂D), the closure
of an H -orbit is the ̂H -orbit of the same element.

For H = G(D) strong approximation yields ̂H = G(̂D). The G(D)-orbit of v ∈ X
is still in X and its closure is a G(̂D)-orbit: it follows that ̂X is a G(̂D)-orbit. Finally, the
equality G(̂D) = ∏G(̂Dp) shows that a G(̂D)-orbit is a product of G(̂Dp)-orbits (hence
Eulerian). ��
Remark 6.10 In particular, Proposition 6.9 applies when X is a G(D)-orbit.

Let R be a ring. The greatest common divisor of a1, . . . , an ∈ R is the ideal generated by
these elements. In particular, we say that the n-tuple (a1, . . . , an) is coprime if the greatest
common divisor of its elements is R.

Corollary 6.11 For a ∈ I(D) and n � 2, let X ⊂ Dn be the set of all n-tuples with greatest
common divisor a. Then one has
X is Eulerian.

Proof Let Y ⊆ ̂Dn be the set of all n-tuples with greatest common divisor â. Then X =
Y ∩ Dn . Lemma 6.12 below shows that Y consists of one SLn(̂D)-orbit; in particular this
implies that Y is SLn(D)-stable, as obviously is Dn, and thus so is X . As already mentioned
strong approximation holds for SLn and so all conditions in Proposition 6.9 are satisfied. ��
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Lemma 6.12 For any n � 1, let Y be the set of all n-tuples with greatest common divisor â
in ̂Dn . Then Y consists of a single SLn(̂D)-orbit.

Proof Elements of Dn and ̂Dn will be thought of as column vectors, so that GLn acts on the
left.

By Lemma 2.2, the ideal â is principal: let a ∈ ̂D be a generator. We claim that Y is the
SLn(̂D)-orbit of the vector va with entries a, 0, . . . , 0.

For g ∈ SLn(̂D), entries of the first row form a coprime n-tuple: hence SLn(̂D) · va ⊆ Y .

For the opposite inclusion, we proceed by induction on n. The claim is trivial for n = 1.
For n � 2, assume a1, . . . , an are the entries of v ∈ Y and consider the vector w ∈ ̂Dn−1

whose entries a1, . . . , an−1 have greatest common divisor b̂D. By the induction hypothesis
there is g ∈ SLn−1(̂D) such that g · vb = w. Besides we can write b = ac1 and an = ac2
where c1, c2 are coprime. Thus there is h ∈ SL2(̂D) having c1 and c2 in the first column. By
appropriate embeddings of SLn−1 and SL2 in SLn, we can think of g and h as elements of
SLn(̂D) so to have hg−1 · va = v. ��

With no additional effort, one can give a more precise description of the sets in Corol-
lary 6.11 and Lemma 6.12. Let Y1 be the set of coprime n-tuples in ̂Dn . Then for any a ∈ ̂D
the set of n-tuples with greatest common divisor âD is aY1 (since—in the notation of the
proof above—one has va = av1). Besides v is in Y1 if and only if for every prime ideal p
there is at least one entry of v which is not in p̂D—that is,

Y1 =
∏

p∈P(D)

(

̂Dp − p̂Dp

)n
.

Thus if X ⊂ Dn is the set of all n-tuples with greatest common divisor a and a ∈ ̂D is a
generator of â, we obtain

̂X = aY1 = a
∏

p∈P(D)

(

̂Dp − p̂Dp

)n
,

which has measure

μ(̂X) = 1

‖a‖n
∏

p∈P(D)

(

1 − 1

‖p‖n
)

= 1

‖a‖n · ζD(n)
, (73)

with ζD as in (31).

6.1.3 Complements of ideals and sets of Eulerian type

Given a partition P(D) =⊔i∈N
Ti , define

̂Di :=
∏

p∈Ti
̂Dp and π̂i :=

∏

p∈Ti
π̂p∞ , (74)

so to have π̂i : ̂D � ̂Di and ̂D 	 ∏i
̂Di . Also, for X ⊆ Dn let X(Ti ) be the closure of

π̂i (X) in ̂Dn
i .

Definition 6.13 A set X ⊆ Dn is of Eulerian type if there exists a partition of P(D) into
finite subsets Ti such that

̂X =
∏

i∈N

X(Ti ).

We say that X is of openly Eulerian type if moreover each X(Ti ) is open in ̂Dn
i .
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Proposition 6.14 Assume D is a global Dedekind domain. Let X = D−∪iai where (ai )i∈N

is a sequence of pairwise coprime ideals of D satisfying 	(ai ) > 1 for almost every i . Then:
(1) X is of openly Eulerian type;
(2) X is Eulerian if and only if each ai is a prime power.

Proof As in Sect. 5.2.4, we put Y = ̂D − ∪i âi . Also, let P0 denote the complement of
∪i supp(ai ) in P(D). We consider the partition

P(D) =
⊔

i∈N

supp(ai ) �
⊔

p∈P0

{p}

and we abbreviate X(supp(ai )) into X(ai ). Statement (1) follows by Proposition 5.16 and
the chain of inclusions

̂X ⊆
∏

i∈N

X(ai ) ×
∏

p∈P0

X(p) ⊆
∏

i∈N

(

Di − ai Di
)×
∏

p∈P0

̂Dp = Y (75)

where Di = ∏p
̂Dp with the product taken over supp(ai ). The first inclusion is straightfor-

ward by a reasoning already used in the proof of Lemma 6.3. The characterization of Y given
in (58) implies the second inclusion and the final equality.

In statement (2) the “if” part is an obvious special case of statement (1). As for the “only
if” part, one can understand why it holds by observing that if p and q are distinct primes and
̂Dpq = ̂Dp × ̂Dq then

̂Dpq − pq̂Dpq �= (̂Dp − p̂Dp) × (̂Dq − q̂Dq).

��
Corollary 6.15 The set of k-free elements of a global Dedekind domain is openly Eulerian
for any k � 2.

(The definition of k-free was given just after Corollary 5.13.)

Remark 6.16 One could get a different proof of Proposition 6.14 by computing the (asymp-
totic) density of X and then using an “Eulerian type” version of Proposition 6.4. Our proof
has the advantage of illustrating a different technique, which offers a complete description
of ̂X just by a qualitative argument.

Theorem 6.17 Let D and X be as in Proposition 6.14. Then the asymptotic density of X
exists and it satisfies

das(X) = μ(̂X) =
∏

i∈N

(

1 − 1

‖ai‖
)

.

Here das = dB,as, where B is as in Sect. 4.3.2. The choice of B has no influence on the final
result, but it is useful to fix it for the computations in the proof.

Proof We adapt a strategy used in [31, §5] to compute the density of square-free integers.
(Alternatively, one could useTheorem4.19, in the form suggested byProposition 6.18 below.)

For every i let ti ∈ ̂D be a fixed generator of the closed (hence principal) ideal âi and put

K :=
{

∏

i∈N

tnii | ni ∈ N, ni = 0 almost everywhere

}

.

Then K is countable, contains 1 and (as we will check later) it enjoys the properties:
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(K1) k̂X ∩ ĥX = ∅ for any two distinct h, k ∈ K;
(K2) D − {0} ⊆⊔k∈K k̂X .

Let K1 := K − {1}. By (K1) we can write
⋃

k∈K
k̂X = ̂X � W with W :=

⊔

k∈K1

k̂X ,

which yields

1 � μ(̂X) + μ(W ) =
∑

k∈K
μ(k̂X) =

∑

k∈K

μ(̂X)

‖k‖ . (76)

Since D − {0} has density 1, property (K2) and formula (34) imply

1 = d−
as(X) + d+

as(W ). (77)

We want to apply Fatou’s lemma on the measure space K1, with the counting measure ν.

By definition, one has
∫

K1

f dν =
∑

k∈K1

f (k)

for any integrable function f . For k ∈ K1, let Xk := k̂X ∩ D and k := k̂D ∩ D. Fix B as
in Sect. 4.3.2 and note that (38) implies the existence of positive constants c1, c2 ∈ R such
that

c1
∏

v∈S
|r |nv � |Dn ∩ r B| � c2

∏

v∈S
|r |nv (78)

for every r ∈ F∗ which is sufficiently big in the sense of (37). Then (78) and (42) imply

|Xk ∩ r B| � |k ∩ r B| � c2 + 1

‖k‖
∏

v∈S
|r |v

if r is sufficiently large. For r ∈ F∗, consider the function fr : K1 → [0, 1] defined by

fr (k) := |Xk ∩ r B|
|D ∩ r B| .

By the above (and using (78) to bound |D ∩ r B| from below) we have

fr (k) � c2 + 1

c1‖k‖ =: g(k)

and g is integrable on K1 by (76). Therefore we can use Fatou to obtain

∑

k∈K1

lim sup
r→∞

fr (k) =
∫

K1

(lim sup
r→∞

fr )dν � lim sup
r→∞

∫

K1

fr dν = lim sup
r→∞

∑

k∈K1

fr (k). (79)

The equalities

lim sup
r∈F∗

fr (k) = d+
B,as(Xk) = d+

as(Xk)

and

lim sup
r∈F∗

∑

k∈K1

fr (k) = d+
B,as(W ) = d+

as(W )
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hold by definition of asymptotic density. Moreover, we have μ(k̂X) � d+
as(k̂X) = d+

as(Xk)

for every k, by Corollary 4.13. Thus (79) yields

μ(W ) =
∑

k∈K1

μ(k̂X) �
∑

k∈K1

d+
as(Xk) � d+

as(W )

and hence

d−
as(X)

by (77)= 1 − d+
as(W ) � 1 − μ(W )

by (76)
� μ(̂X)

by (44)
� d+

as(X),

showing that X has density μ(̂X). The evaluation of this measure as a product is straightfor-
ward from the fact that all inclusions in (75) are equalities.

For checking (K1), take h = ∏ tmi
i and k = ∏ tnii , with h �= k. Then there must be an

index i0 such that ni0 �= mi0 and we can assume ni0 < mi0 without loss of generality. If (K1)
were false, one would have ky1 = hy2 for some y1, y2 ∈ ̂X . Putting ep := vp(ti0) = vp(ai0)

for every p ∈ supp(ai0), we get

vp(y1) + ni0ep = vp(ky1) = vp(hy2) = vp(y2) + mi0ep,

which yields

vp(y1) = vp(y2) + (mi0 − ni0)ep � ep.

But, as y1 /∈ âi0 , there must exist a prime p such that vp(ai0) > vp(y1), contradiction.
As for (K2), given z ∈ D − {0} we consider the ideal

ẑD =
∏

p∈P(D)

p̂vp(z).

This can be rewritten as ẑD = xk̂D, where x ∈ ̂X and k ∈ K, by rearranging the occurring
powers of the involved primes. Therefore z = xku, with x, k as before and u ∈ ̂D∗. As
xu ∈ ̂X , we conclude that (K2) holds. ��

6.2 The Poonen–Stoll condition

The following statement can be seen as a reformulation (in a more general setting) of [48,
Lemma 1], [8, Lemma 3.1], [39, Theorem 2.1] and [14, Proposition 3.4].

Proposition 6.18 Let (S j ) j∈N be an increasing sequence of finite subsets of P(D), covering
it. For every p ∈ P(D) consider a subset Up ⊆ ̂Dn

p and put X := Dn ∩ ∏Up. Let
d = (d+, d−) be any density as in Sect. 4.2.1. Assume that

(PS1) μp(∂Up) = 0 holds for every p;
(PS2) the Poonen–Stoll condition

lim
j→∞ d+

⎛

⎝

⋃

p/∈S j

(

Dn −Up

)

⎞

⎠ = 0 (80)

holds.

Then the density d(X) exists and it is equal to
∏

μp(Up).

Note that the hypothesis (PS1) implies that each Up is measurable.
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Proof The idea is to apply Theorem 4.19, taking T = {σ j } j∈N with σ j :=∏p∈S j p
∞.

PutU :=∏Up.ThenU (p) is the closure ofUp in ̂Dn
p. From hypothesis (PS1) one obtains

μp(Up) = μp(U (p)). The equality

Uσ j =
∏

p∈S j
U (p) ×

∏

p/∈S j
̂Dn
p

yields (using ∂(A × B) ⊆ (∂A × B) ∪ (A × ∂B) and ∂U (p) ⊆ ∂Up)

∂Uσ j ⊆ Wj :=
⋃

p∈S j

⎛

⎝∂ Up ×
∏

q∈S j−{p}
U (q) ×

∏

q/∈S j
D̂n
q

⎞

⎠ . (81)

By hypothesis (PS1), each term in the union on the right-hand side of (81) has measure 0.
Hence μ(Wj ) = μ(∂ Uσ j ) = 0 and Lemma 4.16 shows that d(Uσ j ) = μ(Uσ j ) holds for
every j .

For every p, let Zp = π̂−1
p∞(Up) = Up ×∏q�=p

̂Dn
q. Then U = ∩pZp and we obtain

Uσ j −U ⊆ Wj ∪ (Uσ j −
⋂

p/∈S j
Zp) = Wj ∪

⋃

p/∈S j
(Uσ j − Zp) ⊆ Wj ∪

⋃

p/∈S j
(̂Dn − Zp).

Note that Dn ∩ (̂Dn − Zp) = Dn −Up. MoreoverWj is closed and thus μ(Wj ) = 0 implies
d(Wj ) = 0. Hence

d+(Uσ j −U ) � d(Wj ) + d+
⎛

⎝

⋃

p/∈S j

(

Dn −Up

)

⎞

⎠ = d+
⎛

⎝

⋃

p/∈S j

(

Dn −Up

)

⎞

⎠

shows that (80) implies lim d+(Uσ j −U ) = 0. Therefore we can apply Theorem 4.19 to U ,

getting

d(X) = d(Dn ∩U ) = d(U ) = μ(Û ) =
∏

μ(U (p)) =
∏

μ(Up).

��
Corollary 6.19 For every p ∈ P(D) letUp ⊆ ̂Dn

p be compact open and take X := Dn∩∏Up.

If (80) holds and
∏

μp(Up) > 0 then X is openly Eulerian, with ̂X =∏pUp.

Proof If Up is compact open then ∂Up = ∅ and so (PS1) is automatically true. Now just
apply Propositions 6.18 and 6.4. ��
Remark 6.20 Consider a partitionP(D) =⊔i∈N

Ti and let ̂Di be as in (74). Proposition 6.18
is still valid (with the same proof) replacing the sets Up with Ui ⊆ ̂Dn

i . In this situation,
Corollary 6.19 yields a set of openly Eulerian type.

6.2.1 Ekedahl’s theorem

The following is a rewording of [19, Theorem 1.2].

Theorem 6.21 (Ekedahl) Let N be a positive integer and � any subset of (Z/NZ)n . Also,
let Z be a closed subscheme of the affine space A

n
Z
and put

Y := π̂−1
N (�) ∩

⋂

p�N

π̂−1
p (Fn

p − Z(Fp)).
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Then the asymptotic density of the set X := Y ∩ Z
n exists and it is equal to μ(Y ).

Ekedahl’s original proof is not easy to follow; the simplest approach to Theorem 6.21 and
its generalization to global Dedekind domains is probably to use the Poonen–Stoll strategy
in the following way.

Let Up ⊆ Zp consist of those points whose reduction modulo p is not in Z(Fp). Then
each Up is compact open and Y can be written as a product UN ×∏p�N Up, where UN is a
compact open subset of

∏

p|N Zp . With these Up and d the asymptotic density, the validity
of (80), with a precise estimate on the error term, is proved in [3, Theorem 3.3] (see also [4,
Theorem 18] for a similar result in the setting of global fields, from which one can deduce a
version of Ekedahl’s theorem with Z replaced by a global Dedekind domain D).

It is clear from the above discussion and Corollary 6.19 that the set X in Theorem 6.21 is
of openly Eulerian type.

Remark 6.22 As remarked in [14, Example 3] (and is implicit in [48, Lemma 2]), Ekedahl’s
theorem immediately yields the density of coprime pairs in Z

2. With a little more work, the
same method applies to check that sets of tuples with a fixed greatest common divisor in a
global Dedekind domain have density equal to the measure computed in (73).

6.3 Some questions

Let D be a global Dedekind domain.
When a set X ⊆ Dn is defined by local conditions (e.g., by fixing Up ⊆ ̂Dn

p for every p

and putting X := Dn ∩∏Up, as in Proposition 6.18), one often expects it has (asymptotic)
density computable by a product of local terms. If the local conditions correspond to open
sets, then Proposition 6.4 can be used to deduce that X is openly Eulerian. We provide a
typical example.

Proposition 6.23 Let D be either the ring of integers of a number field or the ring of S-
integers of a global function field,with S any finite set of places. Let f ∈ D[x] be a separable
polynomial and k � 2 an integer. In the number field case, assume also deg( f ) � k/[F : Q].
Then the set

X f ,k := {a ∈ D | f (a) is k-free}
is openly Eulerian.

Proof For every p ∈ P(D), let Up := {a ∈ ̂Dp | f (a) /∈ pk} and Vp the set of zeroes of f
in D/pk . Then X = D ∩∏Up; moreover, each Up is compact open, because it is the lift to
̂Dp of the complement Vp, and the same observation yields

μp(Up) = 1 − |Vp|
‖p‖k .

By the ideas of Proposition 6.18, it is proved in [17, Theorem 3.2 and Corollary 3.4] that the
equality

das(X f ,k) =
∏

μp(Up) (82)

holds for an asymptotic density satisfying conditions (Dn1)-(Dn7). Finally, the product on
the right of (82) is positive because k � 2 and |Vp| < deg( f ) for almost every p, by [17,
Lemma 3.1]. One concludes by Proposition 6.4. ��
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More generally, for D any global Dedekind domain and k � 2, take f ∈ D[x1, . . . , xn]
and let X f ,k consist of those a such that f (a) is k-free. Then it is conjectured

das(X f ,k)
?=
∏

p

(

1 − cp
‖p‖kn

)

, (83)

where cp is the number of zeroes of f in (D/pk)n . By the work of many mathematicians
(especially for k = 2), it is known that (83) holds in a number of cases (see for example [3–5,
25, 27, 47, 50]), but its general validity is still an open problem. On the other hand, the same
reasoning as in Proposition 6.23 yields the following result.

Theorem 6.24 Let D, f , k and X f ,k be as above. If (83) holds and the product on the right
is non-zero, the set X f ,k is openly Eulerian.

Thus the statement that X f ,k is openly Eulerian can be seen as a weak form of conjecture
(83).

One can be a bit more daring and ask:

(Q1) if Y ⊆ Dm is openly Eulerian and f : Dn → Dm is a polynomial map, is it true that
the inverse image f −1(Y ) is also openly Eulerian?

The case of X f ,k discussed above arises when the map f is given by a single polynomial
and Y is the set of k-free elements. Taking as Y a set of tuples with a fixed greatest common
divisor, one obtains more examples where a positive answer to (Q1) can be obtained joining
Proposition 6.4 with known results (like [48, Lemma 2], [47, Theorem 3.2], [7, Theorem
3.1], [12, Theorem 4.1]).

Ekedahl’s theorem suggests another set of potential candidates for being openly Eulerian,
namely sets of points whose reduction modulo pk lies out of Z(D/pk) for every p ∈ P(D),

with Z a given closed subscheme of A
n
D . In this case, a proof of Eulerianity could be inter-

preted as the weak version of a positive answer to the density question raised in [19, §1,
Remark i)].

In the examples above, we can obtain Eulerianity by knowledge of the density. It becomes
natural to ask if the opposite approach can work, that is, if a converse of Proposition 6.4 is
true.

(Q2) If X is almost closed and of openly Eulerian type, is it true that it has upper (asymptotic)
density μ(̂X) ? Or, more optimistically, that μ(̂X) is its density?

The condition that X is almost closed is needed because any dense set is openly Eulerian,
but, as we discussed in Sect. 4.4.2, its density could be everything.

Some reason of hope for the truth of (Q2) might come from Proposition 6.18: if X is
openly Eulerian and almost closed then X ∩ ̂Dn

p must be “quite big” and this can support the
intuition that the sets Dn − X(p) are small enough to make (80) true. However, the evidence
we know of appears too scarce to seriously conjecture a positive answer for question (Q2).
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