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and give if and only if conditions for heavy separability of the 
second kind for functors forgetting either the comodule action 
or the module action.
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1. Introduction

The purpose of this paper is to introduce the notion of heavily separable functors 
of the second kind and study it in three different contexts. The categorical notion of 
a separable functor was first given by Năstăsescu, Van den Bergh, and Van Oystaeyen 
in [28]. A functor F : C −→ D is said to be separable if the natural transformation on 
morphism sets induced by F can be split by a natural transformation P . This definition is 
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constructed so that separable morphisms of rings correspond to the restriction of scalars 
being separable in the sense of [28]. Therefore, the study of separable functors is closely 
tied to that of adjoint pairs. In [29], Rafael gave conditions in terms of the unit and 
counit of an adjunction (F, G) for the functors F or G to be separable.

In this paper, we bring together two important refinements of the notion of separa-
ble functor that have appeared in the literature. In [2], Ardizzoni and Menini introduced 
heavily separable functors, i.e., separable functors F such that the splitting natural trans-
formation P is compatible with compositions in D in a certain manner (see also Ardizzoni 
and Menini [1], [3]). On the other hand, suppose that we have functors F : C −→ D and 
I : C −→ X . Then, the functor F is said to be I-separable if the natural transformation 
on morphism spaces induced by F is split up to the natural transformation induced by 
I. This is known as separability of the second kind, which was introduced by Caenepeel 
and Militaru [19]. We combine these ideas to consider functors F : C −→ D which are 
heavily I-separable, where I is a functor I : C −→ X (see Definition 2.1).

Let (F : C −→ D, G : D −→ C) be an adjoint pair. Let η : 1C −→ GF be the unit and 
let ε : FG −→ 1D be the counit of this adjunction. We obtain a Rafael type theorem 
which shows that for any I : C −→ X , the left adjoint F is heavily I-separable if and 
only if there is a natural transformation γ : IGF −→ I such that

γ ◦ Iη = id γ ◦ (γGF ) = γ ◦ (IGεF ) (1.1)

Similarly, for any J : D −→ Y, the right adjoint G is heavily J-separable if and only if 
there is a natural transformation δ : J −→ JFG such that

Jε ◦ δ = id (δFG) ◦ δ = (JFηG) ◦ δ (1.2)

We first apply our results to modules over preadditive categories. Following the philos-
ophy of Mitchell [27], a small preadditive category R behaves like a ring with several 
objects. The category MR of right R-modules consists of additive functors Rop −→ Ab
taking values in the category of abelian groups. If φ : R −→ S is an additive functor, 
there is an adjoint pair (φ∗, φ∗) where φ∗ : MR −→ MS is the extension of scalars, and 
φ∗ : MS −→ MR is the restriction of scalars. We then consider morphisms of small 
preadditive categories

Q
ψ−→ R

φ−→ S
ξ←− T (1.3)

and give if and only if conditions for φ∗ to be heavily ψ∗-separable, as well as if and 
only if conditions for φ∗ to be heavily ξ∗-separable. These extend the fact that for a 
morphism ϕ : R −→ S of rings, the restriction of scalars ϕ∗ is separable if and only if S
is separable as an R-algebra in the classical sense (see [28, Proposition 1.3]). Further, the 
extension of scalars ϕ∗ is separable if and only if ϕ splits as a morphism of R-bimodules 
(see [28, Proposition 1.3]). For the case of ordinary rings, separability of the second kind 
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has been studied by Caenepeel and Militaru [19, § 4] for the functors between module 
categories arising from (1.3). Our results also extend the study of heavily separable ring 
homomorphisms and heavy separability idempotents from Ardizzoni and Menini [2].

Next, we consider the context of monads and comonads. We know that if (F : C −→
D, G : D −→ C) is an adjoint pair of functors, the composition GF is canonically 
equipped with the structure of a monad T on C. Dually, FG can be equipped with the 
structure of a comonad S on D. In fact, one can turn around this point of view. By fixing 
a category C and a monad T on C, one can look at the family of T-adjunctions, i.e., 
adjoint pairs (F : C −→ D, G : D −→ C) whose associated monad is T. If I : C −→ X
is any functor and (F, G), (F ′, G′) are T-adjunctions, we show that the left adjoint F
is heavily I-separable if and only if so is F ′. This means that for a given monad T, we 
can ask if the family of T-adjunctions as a whole, is heavily I-separable. A dual result 
holds for comonads. These results are motivated by the work of Mesablishvili [26] with 
I-separability and families of adjunctions associated to a given monad or comonad. For 
more on separability conditions and how they relate to monads and comonads, we also 
refer the reader to Chen [21].

Now suppose that (L, R) is an adjunction such that the left adjoint L can be equipped 
with the structure of a comonad L on C. Then, we know (see [6, § 2.6]) that the right 
adjoint R can be equipped with the structure of a monad R. We show that the functor 
FL taking objects of C to free L-coalgebras is heavily separable if and only if so is 
the functor FR taking objects of C to free R-algebras. Combining with the results of 
Ardizzoni and Menini [2], this has two applications. First, we show that for any coring 
C, the free C-contramodule functor is heavily separable if and only if C has an invariant 
grouplike element. Secondly, a ring homomorphism R −→ S is heavily separable if and 
only if the free contramodule functor for the Sweedler coring S⊗RS is heavily separable.

Finally, we study the context of entwined modules. This is one of the original contexts 
studied by Caenepeel and Militaru while introducing separability of the second kind in 
[19]. We recall that an entwining structure consists of an algebra A and a coalgebra C
bound together by a morphism ψ : C⊗A −→ A ⊗C so that the datum (A, C, ψ) behaves 
like a bialgebra. Entwining structures were introduced by Brzeziński and Majid [7] in 
order to study noncommutative principal bundles. The category MC

A(ψ) of entwined 
modules, i.e., modules over the datum (A, C, ψ) is a generalization of several concepts 
in the literature such as relative Hopf modules, Doi-Hopf modules and Yetter-Drinfeld 
modules (see, for intance, [8], [9], [11], [13], [14], [15], [16], [18], [20], [25]). The structure 
of the category MC

A(ψ) can be studied by means of two adjoint pairs (UC , FC) and 
(FA, UA)

MA

UC

←−−−−−−−−−−−−−−−−−−−−−−→
FC

M(ψ)CA M(ψ)CA
FA←−−−−−−−−−−−−−−−−−−−−−−→
UA

MC (1.4)

where UC is the functor that forgets the C-coaction and UA is the functor that forgets 
the A-action. The separability of the functors in (1.4) is a topic that has been widely 
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studied in the literature (see, for instance, [4], [5], [10], [13], [14], [17], [25]). In this paper, 
we develop if and only if conditions for the functor UC to be heavily UA-separable, as 
well as for the functor UA to be heavily UC-separable. The former case is related to 
morphisms θ : C ⊗ C −→ A satisfying certain conditions, while the latter is related to 
certain kinds of morphisms ζ : C −→ A ⊗A.

2. Heavily I-separable functors and a Rafael type theorem

Throughout this paper, if C, C′ are categories, we denote by [C, C′] the category of 
functors from C to C′. We begin by introducing the following definition.

Definition 2.1. Let F : C −→ D and I : C −→ X be functors. We say that F : C −→ D
is heavily I-separable if there exists a natural transormation P : D(F (__), F (__)) −→
X (I(__), I(__)) in [Cop × C, Set] that satisfies the following conditions:

(a) The following diagram commutes for any objects a, b ∈ C

C(a, b) D(F (a), F (b))

X (I(a), I(b))

Fa,b

Ia,b
Pa,b

(2.1)

(b) P is compatible with compositions, i.e., for any a, b, c ∈ C, we have

D(Fa, Fb) ×D(Fb, Fc) X (Ia, Ib) ×X (Ib, Ic)

D(Fa, Fc) X (Ia, Ic)

Pa,b×Pb,c

◦ ◦

Pa,c

(2.2)

If I = 1C , then Definition 2.1 reduces to the notion of heavy separability due to 
Ardizzoni and Menini [2]. In general, given composable functors C F−→ D G−→ E , it may 
be easily verified that: (1) if F is heavily I-separable and G is heavily separable, then 
GF is heavily I-separable, and (2) if GF is heavily I-separable, then so is F .

Lemma 2.2. A heavily separable functor G : C −→ D is heavily I-separable for any I :
C −→ X . Additionally, if I is fully faithful, any heavily I-separable functor G : C −→ D
is also heavily separable.

Proof. Since the identity functor 1C is heavily I-separable, it follows from the obser-
vations above that any heavily separable functor is also heavily I-separable. The last 
statement follows from the fact that when I is fully faithful, we have X (I(__), I(__)) ∼=
C(__, __). �
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Our main result in this section is a Rafael type theorem for heavily I-separable func-
tors.

Theorem 2.3. Let (F : C −→ D, G : D −→ C) be an adjoint pair, having unit η : 1C −→
GF and counit ε : FG −→ 1D. Let I : C −→ X and J : D −→ Y be functors. Then, we 
have
(1) The left adjoint F is heavily I-separable if and only if there is a natural transformation 
γ : IGF −→ I such that γ ◦ Iη = id and

γ ◦ (γGF ) = γ ◦ (IGεF ) (2.3)

(2) The right adjoint G is heavily J-separable if and only if there is a natural transfor-
mation δ : J −→ JFG such that Jε ◦ δ = id and

(δFG) ◦ δ = (JFηG) ◦ δ (2.4)

Proof. We only prove (1). Suppose first that there is a natural transformation γ :
IGF −→ I such that γ ◦ Iη = id and γ ◦ (γGF ) = γ ◦ (IGεF ). For any (a, b) ∈ Cop × C, 
we set

Pa,b : D(Fa, Fb) −→ X (Ia, Ib) h �→ γb ◦ I(G(h) ◦ ηa) (2.5)

It follows from the naturality of γ and η that P : D(F (__), F (__)) −→ X (I(__),
I(__)) is a natural transformation. Further, for any f ∈ C(a, b), using the naturality of 
γ and the fact that γ ◦ Iη = id, we have

Pa,b ◦ Fa,b(f) = Pa,b(F (f)) = γb ◦ I(GF (f) ◦ ηa) = γb ◦ I(GF (f)) ◦ I(ηa)
= I(f) ◦ γa ◦ I(ηa) = Ia,b(f)

(2.6)

Now, let f ∈ D(Fa, Fb) and g ∈ D(Fb, Fc). Then, we have

Pa,c(g ◦ f) = γc ◦ IG(g ◦ f) ◦ I(ηa)
= γc ◦ IG(g) ◦ IG(εFb ◦ F (ηb)) ◦ IG(f) ◦ I(ηa) [using εF ◦ Fη = 1F ]

= γc ◦ IG(g ◦ εFb) ◦ IGF (ηb) ◦ IG(f) ◦ I(ηa)
= γc ◦ IG(εFc ◦ FG(g)) ◦ IGF (ηb) ◦ IG(f) ◦ I(ηa) [using naturality of ε]

= γc ◦ γGFc ◦ IGFG(g) ◦ IGF (ηb) ◦ IG(f) ◦ I(ηa)
[using γ ◦ (γGF ) = γ ◦ (IGεF )]

(2.7)

Applying the naturality of γ to the morphism b 
G(g)◦ηb−−−−−→ GFc in C gives the commutative 

square
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IGFb Ib

IGFGFc IGFc

γb

IGFG(g)◦IGF (ηb) IG(g)◦I(ηb)

γGFc

(2.8)

Using (2.8), the expression in (2.7) now becomes

Pa,c(g ◦ f) = γc ◦ IG(g) ◦ I(ηb) ◦ γb ◦ IG(f) ◦ I(ηa) = Pb,c(g) ◦ Pa,b(f) (2.9)

From (2.6) and (2.9), it follows that F is heavily I-separable.
Conversely, let F be heavily I-separable. Then, we have a natural transformation 

P : D(F (__), F (__)) −→ X (I(__), I(__)) satisfying the conditions in Definition 2.1. 
We define γ : IGF −→ I by setting

γa = PGFa,a(εFa) : IGFa −→ Ia (2.10)

for each a ∈ C. The naturality of γ follows from that of P and ε. Applying the naturality 

of P to the morphism (GFa, a) ((ηa)op,1a)−−−−−−−→ (a, a) in Cop × C, we have the commutative 
diagram:

D(FGFa, Fa) X (IGFa, Ia)

D(Fa, Fa) X (Ia, Ia)

PGFa,a

D(F (ηa)op,1Fa) X (I(ηa)op,1Ia)

Pa,a

(2.11)

and the identity εF ◦ Fη = 1F , we have

γa ◦ (Iη)a = PGFa,a(εFa) ◦ I(ηa) = Pa,a(εFa ◦ F (ηa)) = Pa,a(1Fa)

= Pa,a(Fa,a(1a)) = Ia,a(1a) = 1Ia
(2.12)

This shows that γ ◦ Iη = id. Now let x, y ∈ C and f ∈ D(Fx, Fy). Applying the 

naturality of P to the morphism (GFy, y) ((G(f)◦ηx)op,1y)−−−−−−−−−−−→ (x, y) in Cop × C, we obtain 
the commutative diagram

D(FGFy, Fy) X (IGFy, Iy)

D(Fx, Fy) X (Ix, Iy)

PGFy,y

D((FG(f)◦F (ηx))op,1Fy) X ((IG(f)◦I(ηx))op,1Iy)

Px,y

(2.13)

Using (2.13), the naturality of ε and that εF ◦ Fη = id, we get
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γy ◦ IG(f) ◦ (Iη)x = PGFy,y(εFy) ◦ IG(f) ◦ I(ηx)
= Px,y(εFy ◦ FG(f) ◦ F (ηx)) = Px,y(f ◦ εFx ◦ F (ηx)) = Px,y(f)

(2.14)
Finally, for any a ∈ C, we have

(γ ◦ IGεF )a = γa ◦ (IGεF )a = γa ◦ IG(εFa)

= γa ◦ IG(εFa) ◦ I(G(εFGFa) ◦ ηGFGFa) [using Gε ◦ ηG = id]

= γa ◦ IG(εFa ◦ εFGFa) ◦ I(ηGFGFa)

= PGFGFa,a(εFa ◦ εFGFa) [using (2.14)]

= PGFa,a(εFa) ◦ PGFGFa,GFa(εFGFa) [using condition (2.2)]

= γa ◦ γGFa = (γ ◦ γGF )a

(2.15)

so that γ ◦ (γGF ) = γ ◦ (IGεF ). This proves the result. �
3. Functors between module categories

For a small preadditive category R, let MR (respectively, RM) denote the category 
of right (respectively, left) R-modules, which consists of additive functors Rop −→ Ab
(respectively, R −→ Ab) (see Mitchell [27]). In particular, for every object a ∈ R, 
Ha := R(__, a) and aH := R(a, __) are right and left R-modules respectively. Given a 
right R-module M and a left R-module N, the tensor product M ⊗R N is defined (see 
for instance, [23, § 2.2]) by the coend

M⊗R N :=
a∈R∫

M(a) ⊗Z N(a) =
⊕

a∈Ob(R)

(M(a) ⊗Z N(a)) /T (3.1)

where T is the subgroup generated by elements of the form M(r)(x) ⊗y−x ⊗N(r)(y), r ∈
R(a, b), x ∈ M(b), y ∈ N(a).

Given two small preadditive categories R and S, their tensor product R ⊗ S is the 
preadditive category with Ob(R ⊗ S) = Ob(R) × Ob(S) and R⊗ S((a, b), (a′, b′)) =
R(a, a′) ⊗Z S(b, b′) for any (a, b), (a′, b′) ∈ Ob(R) × Ob(S). Further, an (R, S)-bimodule 
is simply a left Sop ⊗ R-module. For a functor φ : R −→ S between small preadditive 
categories, the restriction of scalars φ∗ : MS −→ MR has a left adjoint

φ∗ : MR −→ MS M �→ M⊗R S(__, φ(__)) (3.2)

given by the extension of scalars. The unit η and counit ε of this adjunction are given 
by
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η =
(
ηM =

(
(ηM)a : M(a) −→ M⊗R S(φ(a), φ(__)),m �→ m⊗ 1φ(a)

)
a∈Ob(R)

)
M∈MR

ε =
(
εN = ((εN)b : (N ◦ φ) ⊗R S(b, φ(__)) −→ N(b), n⊗ f �→ N(f)(n))b∈S

)
N∈MS

(3.3)
We now fix morphisms of small preadditive categories

Q
ψ−→ R

φ−→ S
ξ←− T (3.4)

In this section, we will study conditions for the functors φ∗ and φ∗ to be heavily separable 
with respect to a restriction of scalars. We first consider the heavy ψ∗-separability of φ∗. 
We note that φ induces a morphism φψ(__),__ : R(ψ(__), __) −→ S(φ(ψ(__)), φ(__))
of (R, Q)-bimodules.

Lemma 3.1. There is a one one correspondence between natural transformations γ :
ψ∗φ∗φ

∗ −→ ψ∗ such that γ ◦ ψ∗η = id and morphisms α : S (φ(ψ(__)), φ(__)) −→
R (ψ(__),__) of (R, Q)-bimodules such that α ◦ φψ(__),__ = id given by,

γ �→ α :=
(
α(a,b) := (γHb

)a : Hb ⊗R S (φ(ψ(a)), φ(__))
∼= S (φ(ψ(a)), φ(b)) −→ R (ψ(a), b)

)
(a,b)∈Qop⊗R

α �→ γ :=
(
γM :=

(
(γM)a : M⊗R S (φ(ψ(a)), φ(__)) −→ M(ψ(a)),m⊗ f

�→ M (α(f)) (m)
)
a∈Q

)
M∈MR

(3.5)

Proof. Let γ : ψ∗φ∗φ∗ −→ ψ∗ be a natural transformation satisfying γ ◦ ψ∗η = id. 
We first verify that the corresponding α, as defined in (3.5), is a morphism of (R, Q)-
bimodules. We consider fop ⊗ g ∈ Qop ⊗ R((a, b), (a′, b′)). The natural transformation γ
gives us the commutative square:

S(φ(ψ(__)), φ(b)) S(φ(ψ(__)), φ(b′))

R(ψ(__), b) R(ψ(__), b′)

Hφ(g)(φ◦ψ)

γHb
γH

b′

Hgψ

(3.6)

Evaluating (3.6) at a ∈ Qop and applying the naturality of γHb′ to the morphism f ∈
Q(a′, a), we have the following commutative diagram:

S(φ(ψ(a)), φ(b)) S(φ(ψ(a)), φ(b′)) S(φ(ψ(a′)), φ(b′))

R(ψ(a), b) R(ψ(a), b′) R(ψ(a′), b′)

φ(g)◦__

(
γHb

)
a

__◦φ(ψ(f))

(
γH

b′

)
a

(
γH

b′

)
a′

g◦__ __◦ψ(f)

(3.7)
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Therefore, for any h ∈ S (φ(ψ(a)), φ(b)),

g ◦ α(a,b)(h) ◦ ψ(f) = g ◦ (γHb
)a (h) ◦ ψ(f) =

(
γHb′

)
a′ (φ(g) ◦ h ◦ φ(ψ(f)))

= α(a′,b′)(φ(g) ◦ h ◦ φ(ψ(f)))

This shows that α is a morphism of (R, Q)-bimodules. Also, since γ ◦ψ∗η = id, hence for 
any a ∈ Q, b ∈ R, and r ∈ R(ψ(a), b),

r = (γHb
)a

((
(ψ∗η)Hb

)
a
(r)

)
= α(a,b)

(
(ηHb

)ψ(a) (r)
)

= α(a,b)(φ(r))

= α(a,b)

((
φψ(__),__

)
(a,b) (r)

)
Therefore, α ◦ φψ(__),__ = id.

Conversely, let α : S (φ(ψ(__)), φ(__)) −→ R (ψ(__),__) be a morphism of (R, Q)-
bimodules such that α ◦ φψ(__),__ = id. We consider the corresponding γ as defined in 
(3.5). We note that for M ∈ MR, a ∈ Q, the well-definedness of (γM)a follows from the 
universal property of the coend (3.1). It may be verified that γ is a natural transforma-
tion. Also, for any M ∈ MR, a ∈ Q, m ∈ M(ψ(a)),

(γM)a
(
((ψ∗η)M)a (m)

)
= (γM)a

(
(ηM)ψ(a) (m)

)
= (γM)a

(
m⊗ 1φ(ψ(a))

)
= M

(
α(a,ψ(a))

(
1φ(ψ(a))

))
(m)

= M
(
1ψ(a)

)
(m) = m

Thus, γ ◦ ψ∗η = id. It may also be verified that the two assignments γ �→ α and α �→ γ

are mutual inverses. �
Theorem 3.2. φ∗ is heavily ψ∗-separable if and only if there is a morphism α :
S (φ(ψ(__)), φ(__)) −→ R (ψ(__),__) of (R, Q)-bimodules such that

(1) α ◦ φψ(__),__ = id and
(2) For every a ∈ Q, b, c ∈ R, and every f ∈ S (φ(ψ(a)), φ(b)) , g ∈ S (φ(b), φ(c))

αa,c(g ◦ f) = αa,c (g ◦ φ (αa,b(f)))

Proof. By Theorem 2.3, φ∗ is heavily ψ∗-separable if and only if there is a natural 
transformation γ : ψ∗φ∗φ

∗ −→ ψ∗ such that γ ◦ ψ∗η = id and γ ◦ γφ∗φ
∗ = γ ◦ ψ∗φ∗εφ

∗. 
By Lemma 3.1, there is a one one correspondence between natural transformations γ :
ψ∗φ∗φ∗ −→ ψ∗ such that γ ◦ ψ∗η = id and morphisms α : S (φ(ψ(__)), φ(__)) −→
R (ψ(__),__) of (R, Q)-bimodules such that α ◦ φψ(__),__ = id, given by (3.5).

Additionally, we see that, for M ∈ MR, a ∈ Q, b, c ∈ R, f ∈ S (φ(ψ(a)), φ(b)) , g ∈
S (φ(b), φ(c)) , m ∈ M(c)
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γ ◦ γφ∗φ
∗ = γ ◦ ψ∗φ∗εφ

∗

⇔ (γM)a ◦ ((γφ∗φ∗)M)
a

= (γM)a ◦ ((ψ∗φ∗εφ∗)M)
a

⇔ (γM)a ◦
(
γM⊗RS(φ(__),φ(__))

)
a

= (γM)a ◦
(
εM⊗RS(__,φ(__))

)
φ(ψ(a))

⇔ (γM)a
((
γM⊗RS(φ(__),φ(__))

)
a
((m⊗ g) ⊗ f)

)
= (γM)a((

εM⊗RS(__,φ(__))
)
φ(ψ(a)) ((m⊗ g) ⊗ f)

)
⇔ (γM)a

((
(M⊗R S (φ(__), φ(__)))

(
α(a,b)(f)

))
(m⊗ g)

)
= (γM)a

(((M⊗R S (__, φ(__))) (f)) (m⊗ g))
⇔ (γM)a

(
m⊗

(
g ◦ φ

(
α(a,b)(f)

)))
= (γM)a (m⊗ (g ◦ f))

⇔ M
(
α(a,c)

(
g ◦ φ

(
α(a,b)(f)

)))
(m) = M

(
α(a,c)(g ◦ f)

)
(m)

⇔ α(a,c)
(
g ◦ φ

(
α(a,b)(f)

))
= α(a,c)(g ◦ f)

The last line follows by taking M = Hc and m = 1c. The result is now clear. �
Our next result deals with the heavy ξ∗-separability of the restriction of scalars φ∗ :

MS −→ MR.

Lemma 3.3. There is a one one correspondence between natural transformations δ :
ξ∗ −→ ξ∗φ

∗φ∗ such that ξ∗ε ◦δ = id and collections Γ =
{

Γa :=
∑

b∈Ob(R)

(∑
i f

ab
i ⊗gabi

)
∈ S(φ(__), ξ(a)) ⊗R S(ξ(a), φ(__)) : a ∈ T

}
of elements given by finite sums such that

∑
b∈Ob(R)

(∑
i

(
ξ(t) ◦ f cb

i

)
⊗ gcbi

)
=

∑
b∈Ob(R)

(∑
i

fab
i ⊗

(
gabi ◦ ξ(t)

))

for every t ∈ T(c, a), a, c ∈ Ob(T)

(3.8)

and

∑
b∈Ob(R)

(∑
i

fab
i ◦ gabi

)
= 1ξ(a) for all a ∈ T (3.9)

The one one correspondence is given by:

δ �→ Γ :=
{

Γa :=
(
δHξ(a)

)
a
(1ξ(a)) : a ∈ T

}
Γ �→ δ :=

(
δN :=

(
(δN)a : n �→

∑
b∈Ob(R)

(∑
i N

(
fab
i

)
(n) ⊗ gabi

))
a∈T

)
N∈MS

(3.10)

Proof. Suppose that δ : ξ∗ −→ ξ∗φ
∗φ∗ is a natural transformation such that ξ∗ε ◦ δ =

id. We consider the corresponding collection Γ :=
{

Γa :=
∑

b∈Ob(R)
(∑

i f
ab
i ⊗ gabi

)
=(

δHξ(a)

)
a
(1ξ(a)) : a ∈ T

}
, defined by (3.10). Let t ∈ T(c, a). Considering Hξ(t) : Hξ(c) −→

Hξ(a) in MS, the natural transformation δ gives the commutative square:
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S(ξ(__), ξ(c)) S(ξ(__), ξ(a))

S(φ(__), ξ(c)) ⊗R S(ξ(__), φ(__)) S(φ(__), ξ(a)) ⊗R S(ξ(__), φ(__))

Hξ(t)ξ

δHξ(c) δHξ(a)

Hξ(t)φ ⊗R id

(3.11)
Evaluating (3.11) at c ∈ T and applying the naturality of δHξ(a) to the morphism top ∈
Top(a, c), we have the following commutative diagram:

S(ξ(c), ξ(c)) S(ξ(c), ξ(a)) S(ξ(a), ξ(a))

S(φ(__), ξ(c)) ⊗R S(ξ(c), φ(__)) S(φ(__), ξ(a)) ⊗R S(ξ(c), φ(__)) S(φ(__), ξ(a)) ⊗R S(ξ(a), φ(__))

ξ(t) ◦ __

(
δHξ(c)

)
c

(
δHξ(a)

)
c

__ ◦ ξ(t)

(
δHξ(a)

)
a

Hξ(t)φ ⊗R id id ⊗R ξ(t)Hφ

(3.12)
where ξ(t)H : ξ(a)H −→ ξ(c)H is the morphism induced by t ∈ T(c, a). The two commu-
tative squares in (3.12) give

∑
b∈Ob(R)

(∑
i

(
ξ(t) ◦ f cb

i

)
⊗ gcbi

)
=

(
Hξ(t)φ⊗R id

) ((
δHξ(c)

)
c

(
1ξ(c)

))
=

(
δHξ(a)

)
c
(ξ(t))

=
(
id⊗R ξ(t)Hφ

) ((
δHξ(a)

)
a

(
1ξ(a)

))
=

∑
b∈Ob(R)

(∑
i

fab
i ⊗

(
gabi ◦ ξ(t)

))

Hence, Γ satisfies condition (3.8). Further, since ξ∗ε ◦ δ = id, hence for any a ∈ T,

1ξ(a) =
(
(ξ∗ε)Hξ(a)

)
a

((
δHξ(a)

)
a

(
1ξ(a)

))
=

(
εHξ(a)

)
ξ(a)

⎛⎝ ∑
b∈Ob(R)

(∑
i

fab
i ⊗ gabi

)⎞⎠
=

∑
b∈Ob(R)

(∑
i

Hξ(a)
(
gabi

) (
fab
i

))
=

∑
b∈Ob(R)

(∑
i

fab
i ◦ gabi

)

Thus, Γ satisfies condition (3.9).

Conversely, let Γ = {Γa : a ∈ T} be a collection satisfying conditions (3.8) and (3.9). It 
may be checked that the corresponding δ, as defined in (3.10), is a natural transformation 
ξ∗ −→ ξ∗φ∗φ∗. Also, for any N ∈ MS, a ∈ T, n ∈ N(ξ(a)),
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((ξ∗ε)N)a ((δN)a (n)) = (εN)ξ(a)

⎛⎝ ∑
b∈Ob(R)

(∑
i

N
(
fab
i

)
(n) ⊗ gabi

)⎞⎠
=

∑
b∈Ob(R)

(∑
i

N
(
gabi

) (
N
(
fab
i

)
(n)

))

=
∑

b∈Ob(R)

(∑
i

N
(
fab
i ◦ gabi

)
(n)

)

= N

⎛⎝ ∑
b∈Ob(R)

(∑
i

fab
i ◦ gabi

)⎞⎠ (n) = N
(
1ξ(a)

)
(n) = n

Thus, ξ∗ε ◦ δ = id. It may be verified that the assignments δ �→ Γ and Γ �→ δ are mutual 
inverses. �
Theorem 3.4. φ∗ is heavily ξ∗-separable if and only if there is a collection of elements 
given by finite sums

Γ =

⎧⎨⎩Γa :=
∑

b∈Ob(R)

(∑
i

fab
i ⊗ gabi

)
∈ S (φ(__), ξ(a)) ⊗R S (ξ(a), φ(__)) : a ∈ T

⎫⎬⎭
which satisfies the following conditions:

∑
b∈Ob(R)

(∑
i

(
ξ(t) ◦ f cb

i

)
⊗ gcbi

)
=

∑
b∈Ob(R)

(∑
i

fab
i ⊗

(
gabi ◦ ξ(t)

))

for every t ∈ T(c, a)

(3.13)

∑
b∈Ob(R)

(∑
i

fab
i ◦ gabi

)
= 1ξ(a) for all a ∈ T (3.14)

∑
d∈Ob(R)

⎛⎝∑
k

⎛⎝ ∑
b∈Ob(R)

(∑
i

fab
i ⊗

(
gabi ◦ fad

k

))⎞⎠⊗ gadk

⎞⎠
=

∑
b∈Ob(R)

(∑
i

(
fab
i ⊗ 1φ(b)

)
⊗ gabi

)
for all a ∈ T

(3.15)

Proof. By Theorem 2.3, φ∗ is heavily ξ∗-separable if and only if there is a natural trans-
formation δ : ξ∗ −→ ξ∗φ

∗φ∗ such that ξ∗ε ◦ δ = id and δφ∗φ∗ ◦ δ = ξ∗φ
∗ηφ∗ ◦ δ. 

By Lemma 3.3, there is a one one correspondence given by (3.10), between natural 
transformations δ : ξ∗ −→ ξ∗φ∗φ∗ such that ξ∗ε ◦ δ = id and collections Γ =

{
Γa :=∑

b∈Ob(R)

(∑
i f

ab
i ⊗ gabi

)
∈ S(φ(__), ξ(a)) ⊗R S(ξ(a), φ(__)) : a ∈ T

}
which satisfy 

conditions (3.13) and (3.14).
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Additionally, we see that for N ∈ MS, a ∈ T, n ∈ N(ξ(a)),

δφ∗φ∗ ◦ δ = ξ∗φ∗ηφ∗ ◦ δ
⇔

(
((δφ∗φ∗)N)a ◦ (δN)a

)
(n) =

(
((ξ∗φ∗ηφ∗)N)a ◦ (δN)a

)
(n)

⇔ ((δφ∗φ∗)N)a
(∑

b∈Ob(R)
(∑

i N
(
fab
i

)
(n) ⊗ gabi

))
= ((ξ∗φ∗ηφ∗)N)a

(∑
b∈Ob(R)

(∑
i N

(
fab
i

)
(n) ⊗ gabi

))
⇔

(
δ(N◦φ)⊗RS(__,φ(__))

)
a

(∑
b∈Ob(R)

(∑
i N

(
fab
i

)
(n) ⊗ gabi

))
=

(
ηN◦φ ⊗R 1S(ξ(a),φ(__))

) (∑
b∈Ob(R)

(∑
i N

(
fab
i

)
(n) ⊗ gabi

))
⇔

∑
d∈Ob(R)

(∑
k ((N ◦ φ) ⊗R S (__, φ(__)))

(
fad
k

) (∑
b∈Ob(R)(∑

i N
(
fab
i

)
(n) ⊗ gabi

))
⊗ gadk

)
=

∑
b∈Ob(R)

(∑
i

(
N
(
fab
i

)
(n) ⊗ 1φ(b)

)
⊗ gabi

)
⇔

∑
d∈Ob(R)

(∑
k

(∑
b∈Ob(R)

(∑
i N

(
fab
i

)
(n) ⊗

(
gabi ◦ fad

k

)))
⊗ gadk

)
=

∑
b∈Ob(R)

(∑
i

(
N
(
fab
i

)
(n) ⊗ 1φ(b)

)
⊗ gabi

)
⇔

∑
d∈Ob(R)

(∑
k

(∑
b∈Ob(R)

(∑
i f

ab
i ⊗

(
gabi ◦ fad

k

)))
⊗ gadk

)
=

∑
b∈Ob(R)

(∑
i

(
fab
i ⊗ 1φ(b)

)
⊗ gabi

)
The last line follows by taking N = Hξ(a) and n = 1ξ(a). The result is now clear. �

We now assume that the preadditive categories R, S, Q and T each have a single 
object, i.e., they are rings R, S, Q and T respectively. It follows that the morphisms 
Q 

ψ−→ R
φ−→ S

ξ←− T are ring homomorphisms.

Corollary 3.5. φ∗ is heavily ψ∗-separable if and only if there exists a morphism α : S −→
R of right Q-modules such that: (i) α ◦ φ = 1R and (ii) α(s1 · α(s2)) = α(s1s2) for all 
s1, s2 ∈ S.

Proof. The (R, Q)-bimodule map φψ(__),__ : R(ψ(__), __) −→ S(φ(ψ(__)), φ(__))
is simply φ : R −→ S. By Theorem 3.2, φ∗ is heavily ψ∗-separable if and only if there 
is a morphism α : S −→ R of (R, Q)-bimodules such that α ◦ φ = 1R and α(s1s2) =
α(s1φ(α(s2))) = α(s1.α(s2)) for all s1, s2 ∈ S.

Also, if α : S −→ R is a morphism of right Q-modules satisfying (i) and (ii), we see 
that

α(r · s) = α(φ(r)s) = α(φ(r) · α(s)) = α(φ(r)φ(α(s))) = α(φ(rα(s))) = rα(s) (3.16)

for all r ∈ R, s ∈ S, i.e., it is also left R-linear. The result is now clear. �
Corollary 3.6. φ∗ is heavily ψ∗-separable if and only if there exists a morphism α : S −→
R of right Q-modules such that α ◦ φ = 1R and ker(α) is a left ideal of S.
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Proof. If α : S −→ R satisfies (i) and (ii) in Corollary 3.5, then for any s1 ∈ S, s2 ∈
ker(α), α(s1s2) = α(s1 ·α(s2)) = 0 so that ker(α) is a left ideal of S. Conversely, suppose 
that α : S −→ R is right Q-linear with α ◦ φ = 1R and such that ker(α) is a left ideal of 
S. Then for any s1, s2 ∈ S, we note that

s2−φ(α(s2)) ∈ ker(α) ⇒ s1(s2−φ(α(s2))) ∈ ker(α) ⇒ α(s1(s2−φ(α(s2)))) = 0 (3.17)

This proves the result. �
Corollary 3.7. If ψ : Q −→ R is an epimorphism of rings, then φ∗ is heavily ψ∗-separable 
if and only if there is a ring homomorphism α : S −→ R satisfying α ◦ φ = 1R.

Proof. By [2, Proposition 3.1], φ∗ is heavily separable if and only if it is a split 
monomorphism of rings. Since ψ is an epimorphism of rings, the restriction of scalars 
ψ∗ : MR −→ MQ is fully faithful (see [30, Proposition XI.1.2]). The result now follows 
from Lemma 2.2. �
Remark 3.8.

1. We give an example to show that heavy separability of the second kind need not 
imply heavy separability. For this, we consider the ring map φ : C −→ M2(R)

given by φ(a + ib) =
(
a −b
b a

)
for a + ib ∈ C. Since M2(R) is a simple ring, any 

unital ring homomorphism M2(R) −→ C would be injective, which is a contradiction 
since C is an integral domain while M2(R) is not. Thus, there are no unital ring 
homomorphisms of M2(R) into C. Using [2, Proposition 3.1], it follows that φ∗ is 
not heavily separable.
We now consider the inclusion R i−→ C. We note that the map α : M2(R) −→ C

given by α
(
a b
c d

)
= d − ib is right R-linear and satisfies α ◦ φ = 1C. Further, the 

kernel of α is 
{(

a 0
c 0

)
: a, c ∈ R

}
which is a left ideal of M2(R). It follows from 

Corollary 3.6 that φ∗ is heavily i∗-separable.
2. Let R be a commutative ring and S be an R-algebra, given by the canonical ring 

map φ : R −→ S (so that φ(R) ⊆ Z(S)). If φ∗ is not heavily separable, then φ∗ is not 
heavily ψ∗-separable for any ring map ψ : Q −→ R. Otherwise there exists a right 
Q-linear map α : S −→ R satisfying conditions (i) and (ii) of Corollary 3.5. From 
(3.16), we see that α is also left R-linear. Using the fact that R is commutative and 
φ(R) ⊆ Z(S), we have for any s1, s2 ∈ S

α(s1s2) = α(s1 · α(s2)) = α(s1φ(α(s2))) = α(φ(α(s2))s1) = α(α(s2) · s1)

= α(s2)α(s1) = α(s1)α(s2)
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Then α is a ring homomorphism satisfying α ◦ φ = 1R. It follows that φ∗ is heavily 
separable, which is a contradiction. This applies in particular to the inclusion i :
R ↪→ C, since i is not left invertible in the category of rings (as there are no unital 
ring maps from C to R).

Finally, we consider a situation in the context of rings where the restriction of scalars 
φ∗ is heavily ξ∗-separable.

Corollary 3.9. φ∗ is heavily ξ∗-separable if and only if there exists an element 
∑

i ai⊗bi ∈
S ⊗R S such that ∑

i

tai ⊗ bi =
∑
i

ai ⊗ bit, for all t ∈ T (3.18)

∑
i

aibi = 1 (3.19)

∑
i,k

ai ⊗ biak ⊗ bk =
∑
i

ai ⊗ 1 ⊗ bi (3.20)

Proof. Since T, R and S are one-object categories, by Theorem 3.4, φ∗ is heavily 
ξ∗-separable if and only if there is an element 

∑
i ai ⊗ bi ∈ S (φ(__), ξ(a)) ⊗R

S (ξ(a), φ(__)) = S ⊗R S satisfying conditions (3.18), (3.19) and such that

∑
i,k

ai ⊗ biak ⊗ bk =
∑
k

(∑
i

(ai ⊗ biak) ⊗ bk

)
=

∑
i

ai ⊗ 1 ⊗ bi

The result is now clear. �
4. Free functors associated to monads and comonads

Suppose that (F : C −→ D, G : D −→ C) is an adjunction with unit η : 1C −→ GF and 
counit ε : FG −→ 1D. We recall that the monad defined by the adjunction is the triple 
T = (GF, GεF, η) where GεF : GFGF −→ GF is the multiplication and η is the unit. 
Dually, the adjunction gives a comonad S = (FG, FηG, ε) where FηG : FG −→ FGFG

is the comultiplication and ε is the counit. Given a monad T on C, any adjunction that 
determines the monad T is known as a T-adjunction (see [26, § 3]). Similarly, one talks 
about S-adjunctions where S is a comonad.

Proposition 4.1. Suppose that (F : C −→ D, G : D −→ C) is an adjoint pair, having 
unit η and counit ε. Let I : C −→ X be a functor. Let T be the monad defined by the 
adjunction. Then, the following are equivalent:

(1) The functor F is heavily I-separable
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(2) For any T-adjunction (F ′ : C −→ D′, G′ : D′ −→ C), the functor F ′ is heavily 
I-separable.

Proof. We only need to show that (1) ⇒ (2). By Theorem 2.3, there is a natural trans-
formation γ : IGF −→ I such that

γ ◦ Iη = id and γ ◦ (γGF ) = γ ◦ (IGεF )

Let η′ be the unit and ε′ be the counit of the adjunction (F ′, G′). Since (F ′, G′) is 
a T-adjunction, the monad (G′F ′, G′ε′F ′, η′) deteremined by the adjunction is T =
(GF, GεF, η). Thus, the natural transformation γ : IG′F ′ = IGF −→ I satisfies

γ ◦ Iη′ = γ ◦ Iη = id and γ ◦ (γG′F ′) = γ ◦ (γGF ) = γ ◦ (IGεF ) = γ ◦ (IG′ε′F ′)

Hence, F ′ is heavily I-separable. �
Let T = (T, μ, ι) be a monad on a category C. We recall that the Eilenberg-Moore 

category of T-algebras is the category CT whose objects are pairs (x, h : Tx −→ x) such 
that h ◦T (h) = h ◦μx and h ◦ιx = 1x. The forgetful functor UT : CT −→ C is right adjoint 
to the free functor FT : C −→ CT, x �→ (Tx, μx). We note that the monad defined by 
the adjunction (FT, UT) is T. Similarly, for a comonad S, there is an Eilenberg-Moore 
category CS of S-coalgebras, with cofree coalgebra functor FS : C −→ CS and forgetful 
functor US : CS −→ C, which gives an adjunction (US, FS).

Lemma 4.2. ([24, Proposition 2.1.]) Let (F1 : C −→ D, G1 : D −→ C) (resp. (F2 : C −→
D, G2 : D −→ C)) be an adjoint pair with unit η1 (resp. η2) and counit ε1 (resp. ε2). 
Then, there is a bijection

[C,D](F1, F2)
∼−→ [D, C](G2, G1) α �→ α := G1ε2 ◦G1αG2 ◦ η1G2

with inverse

[D, C](G2, G1)
∼−→ [C,D](F1, F2) β �→ β̂ := ε1F2 ◦ F1βF2 ◦ F1η2

Further, if (F : D −→ E , G : E −→ D) is an adjoint pair, then for any natural transfor-
mation α : F1 −→ F2, we have Fα = αG. Similarly, if (F ′ : B −→ C, G′ : C −→ B) is an 
adjoint pair, then for any natural transformation α′ : F1 −→ F2, we have α′F ′ = G′α′.

Given an adjunction (L, R) with endofunctors L, R on C, we know from [22, Section 
3] that L can be equipped with a comonad structure L = (L, Δ, ε) if and only if R can be 
equipped with a monad structure R = (R, μ, ι). In this setup, it has been shown in [6, §
2.10] that the free L-coalgebra functor FL is separable if and only if the free R-algebra 
functor FR is separable. We extend this result in the context of heavy separability of the 
second kind.
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Theorem 4.3. Let (L : C −→ C, R : C −→ C) be an adjoint pair of functors. Suppose that 
L := (L, Δ, ε) is a comonad with corresponding monad structure R := (R, μ := Δ, ι :=
ε) on R. Let (I : C −→ C, J : C −→ C) be any adjoint pair such that I commutes with 
the comonad structure on L, i.e.

IL = LI, IΔ = ΔI, Iε = εI (4.1)

Then,
(1) FL is I-separable if and only if FR is J-separable.
(2) If I or J is full, then FL is heavily I-separable if and only if FR is heavily J-

separable.
(3) Let (P : C −→ A, Q′ : A −→ C) be an adjunction with associated monad R and 

let (P ′ : B −→ C, Q : C −→ B) be an adjunction with associated comonad L. If I or J is 
full, then Q is heavily I-separable if and only if P is heavily J-separable.

Proof. Let UL : CL −→ C and UR : CR −→ C be the forgetful functors. 
Let (ηL, εL) and (ηR, εR) be the (unit, counit) of the adjunctions (UL, FL) and 
(FR, UR), respectively. The comonad determined by the adjunction (UL, FL) is 
(ULFL, ULηLFL, εL) = (L, Δ, ε) = L. The monad determined by the adjunction 
(FR, UR) is (URFR, URεRFR, ηR) = (R, μ, ι) = R.

(1) Since I commutes with L, Δ and ε, it follows that J commutes with R, μ and 
ι. By Lemma 4.2, there is a one-one correspondence between natural transformations 
δ : I −→ IULFL = IL = LI such that Iε ◦ δ = IεL ◦ δ = id and natural transformations 
γ = δ : JR = JURFR −→ J such that γ ◦ ιJ = γ ◦ Jι = γ ◦ JηR = id. The result now 
follows from [19, Theorem 2.7].

(2) Suppose for instance that I is full. By Theorem 2.3, FL is heavily I-separable if and 
only if there exists δ : I −→ IULFL such that IεL◦δ = id and IULηLFL◦δ = δULFL◦δ. 
Similarly, FR is heavily J-separable if and only if there exists γ : JURFR −→ J such 
that γ ◦ JηR = id and γ ◦ γURFR = γ ◦ JURεRFR. We set γ := δ. Proceeding as in the 
proof of (1), it remains to show that

IULηLFL ◦ δ = IΔ ◦ δ = δL ◦ δ = δULFL ◦ δ
⇔ γ ◦ γURFR = γ ◦ γR = γ ◦ Jμ = γ ◦ JURεRFR

(4.2)

We first show that Lδ ◦ δ = δL ◦ δ (this makes sense since IL = LI by assumption). Let 
a ∈ C. Since I is full, we may choose f ∈ C(a, La) such that I(f) = δa : Ia −→ ILa. By 
the naturality of δ : I −→ IL = LI applied to the morphism f : a −→ La, it follows 
that LI(f) ◦ δa = δLa ◦ I(f), i.e., L(δa) ◦ δa = (δL)a ◦ δa. Since a is an arbitrary object 
in C, hence Lδ ◦ δ = δL ◦ δ.

Now, suppose that IΔ ◦ δ = δL ◦ δ. Hence, ΔI ◦ δ = IΔ ◦ δ = δL ◦ δ = Lδ ◦ δ. By 
Lemma 4.2, we now have
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γ ◦ Jμ = δ ◦ ΔI = ΔI ◦ δ = Lδ ◦ δ = δ ◦ Lδ = γ ◦ γR

The converse follows similarly.
(3) By Proposition 4.1, P is heavily J-separable if and only if FR is heavily J-

separable. By (2), the heavy J-separability of FR is equivalent to the heavy I-separability 
of FL. By the dual of Proposition 4.1, the result follows. �
Corollary 4.4. If L � R : C −→ C is an adjoint pair with L = (L, Δ, ε) being a comonad 
and R = (R, μ, ι) being the corresponding monad, then

(1) FL is heavily separable if and only if FR is heavily separable.
(2) For any adjunction P � Q : C −→ C with associated comonad L = (L, Δ, ε) and 

monad R = (R, μ, ι), Q is heavily separable if and only if P is heavily separable.

Proof. The result is clear by taking I = J = 1C in Theorem 4.3. �
We now consider an application. Let A be a ring and let MA denote the category of 

right A-modules. We recall (see, for instance, [12, § 17]) that an A-coring C = (C, ΔC :
C −→ C⊗AC, εC : C −→ A) is a comonoid in the monoidal category of (A, A)-bimodules. 
We consider the adjoint pair

MA

__ ⊗A C←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
HomA(C,__)

MA (4.3)

It is clear that the left adjoint __ ⊗A C carries the canonical structure of a comonad 
L on MA, with comultiplication and counit induced by ΔC and εC respectively. By 
Lemma 4.2, its right adjoint HomA(C, __) carries the structure of a monad R with 
multiplication and unit given by

HomA(C,HomA(C,__)) ∼−→ HomA(C ⊗A C,__) HomA(ΔC ,__)−−−−−−−−−−→ HomA(C,__)
1MA

∼−→ HomA(A,__) HomA(εC ,__)−−−−−−−−−→ HomA(C,__)
(4.4)

The Eilenberg-Moore category ML
A of L is the category MC of right-C-comodules. The 

free L-coalgebra functor FL : MA −→ ML
A = MC is the induction functor M �→

(M ⊗A C, 1M ⊗A ΔC). We also recall (see for instance, [6, § 4.4]) that an object of 
the Eilenberg-Moore category MA,R of R-algebras is called a C-contramodule. The free 
R-algebra functor FR : MA −→ MA,R, M �→ (HomA(C, M), HomA(ΔC , M)) is called 
the free C-contramodule functor.

Proposition 4.5. The following statements are equivalent:
(1) The free C-contramodule functor FR is heavily separable.
(2) The induction functor FL is heavily separable.
(3) The coring C has an invariant grouplike element, that is, an element x ∈ C such 
that ax = xa for all a ∈ A and such that εC(x) = 1 and ΔC(x) = x ⊗ x.
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Proof. (1) ⇔ (2) By Corollary 4.4, the result is clear.
(2) ⇔ (3) This is [2, Theorem 2.8]. �

Let R −→ S be a ring map. We recall that S ⊗R S is an S-coring (known as the 
Sweedler coring, see for instance, [2, § 3]), with comultiplication S⊗RS −→ (S⊗RS) ⊗S

(S ⊗R S) ∼= S ⊗R S ⊗R S given by s1 ⊗ s2 �→ s1 ⊗ 1 ⊗ s2. The counit S ⊗R S −→ S is 
given by s1 ⊗ s2 �→ s1s2.

Corollary 4.6. The following are equivalent for a ring homomorphism R −→ S:
(1) The restriction of scalars functor MS −→ MR is heavily separable.
(2) The free-S ⊗R S-contramodule functor associated to the Sweedler coring S ⊗R S is 
heavily separable.

Proof. By [2, § 3], the restriction of scalars functor is heavily separable if and only if 
the Sweedler coring S ⊗R S has an invariant grouplike element. By Proposition 4.5, the 
result is clear. �
5. Functors associated to entwined modules

Let k be a commutative ring. In this section, all tensor products are taken over k. For a 
k-module M , we denote by lM and rM , the canonical isomorphisms lM : k⊗M

∼=−→ M and 
rM : M ⊗ k

∼=−→ M respectively. We shall use the Sweedler notation for comultiplications 
and coactions throughout.

We recall (see for instance, [19, § 1]) that a (right-right) entwining structure is a triple 
(A, C, ψ) where (A, ∇A : A ⊗ A −→ A, iA : k −→ A) is a k-algebra, (C, ΔC : C −→
C ⊗ C, εC : C −→ k) is a k-coalgebra and ψ : C ⊗ A −→ A ⊗ C, c ⊗ a �→ aψ ⊗ cψ

(summation understood) is a k-linear map satisfying the following conditions:

ψ ◦ (1C ⊗∇A) = (∇A ⊗ 1C) ◦ (1A ⊗ ψ) ◦ (ψ ⊗ 1A) (5.1)
ψ ◦ (1C ⊗ iA) ◦ rC−1 = (iA ⊗ 1C) ◦ lC−1 (5.2)

(1A ⊗ ΔC) ◦ ψ = (ψ ⊗ 1C) ◦ (1C ⊗ ψ) ◦ (ΔC ⊗ 1A) (5.3)
rA ◦ (1A ⊗ εC) ◦ ψ = lA ◦ (εC ⊗ 1A) (5.4)

Further, an (A, C, ψ)-entwined module is a triple (M, ρM , ρM ) consisting of a k-module 
M , a right A-action ρM : M ⊗ A −→ M and a right C-coaction ρM : M −→ M ⊗ C on 
M such that

ρM ◦ ρM = (ρM ⊗ 1C) ◦ (1M ⊗ ψ) ◦ (ρM ⊗ 1A) (5.5)

The category of (A, C, ψ)-entwined modules with A-linear, C-colinear maps is denoted 
by M(ψ)CA. There are canonical adjunctions (UC , FC) and (FA, UA) given by (see, for 
instance, [19, § 1]):
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MA

UC

←−−−−−−−−−−−−−−−−−−−−−−→
FC

M(ψ)CA M(ψ)CA
FA←−−−−−−−−−−−−−−−−−−−−−−→
UA

MC (5.6)

where UC and UA are the functors forgetting the C-coaction and the A-action respec-
tively and

FC : MA −→ M(ψ)CA
(M,ρM ) �→ (M ⊗ C, ρM⊗C = (ρM ⊗ 1C) ◦ (1M ⊗ ψ), ρM⊗C = 1M ⊗ ΔC)

FA : MC −→ M(ψ)CA
(M,ρM ) �→ (M ⊗A, ρM⊗A = 1M ⊗∇A, ρM⊗A = (1M ⊗ ψ) ◦ (ρM ⊗ 1A))

(5.7)

The unit η and counit ε of the adjunction (UC , FC) are given by:

η(M,ρM ,ρM ) = ρM for all (M,ρM , ρM ) ∈ M(ψ)CA
ε(N,ρN ) = rN ◦ (1N ⊗ εC) for all (N, ρN ) ∈ MA

(5.8)

The unit η′ and counit ε′ of the adjunction (FA, UA) are given by:

η′(N,ρN ) = (1N ⊗ iA) ◦ r−1
N for all (N, ρN ) ∈ MC

ε′(M,ρM ,ρM ) = ρM for all (M,ρM , ρM ) ∈ M(ψ)CA
(5.9)

We now study equivalent conditions for the heavy UA-separability of the functor UC . 
We begin by setting Σ := Nat(UAF

CUCFCUC , UA). Let Ω be the set of all k-linear 
maps T : C ⊗ C ⊗ C −→ A satisfying the following condition

ψ◦(1C⊗T )◦(ΔC⊗1C⊗1C) = (T ⊗1C)◦(1C⊗1C⊗ΔC) : C⊗C⊗C −→ A⊗C (5.10)

Lemma 5.1. The map α : Σ −→ Ω given by,

α(Φ) = T := rA ◦ (1A ⊗ εC) ◦ ΦFC(A,∇A) ◦ (iA ⊗ 1C⊗C⊗C) ◦ l−1
C⊗C⊗C (5.11)

is a bijection with inverse β : Ω −→ Σ given by,

β(T ) = Φ :=
(
Φ(M,ρM ,ρM ) := ρM ◦ (1M ⊗ T ) ◦ (ρM ⊗ 1C⊗C)

)
(M,ρM ,ρM )∈M(ψ)CA

(5.12)

Proof. For Φ ∈ Σ, let us show that T = α(Φ) as defined in (5.11) is an element of 
Ω. We set Φ := ΦFC(A,∇A) and Φ := ΦFA(C,ΔC). It follows from (5.1) and (5.3) that 
ψ : FA(C, ΔC) −→ FC(A, ∇A) is a morphism in M(ψ)CA. The naturality of Φ and (5.4)
give the commutative diagram:
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C ⊗A⊗ C ⊗ C C ⊗A A

A⊗ C ⊗ C ⊗ C A⊗ C A

Φ

ψ⊗1C⊗C

lA◦(εC⊗1A)

ψ 1A

Φ rA◦(1A⊗εC)

(5.13)

We set λ := lA ◦ (εC ⊗ 1A) ◦ Φ and λ := rA ◦ (1A ⊗ εC) ◦ Φ. Then, for all x, y, z ∈ C,

T (x⊗ y ⊗ z) = λ(1 ⊗ x⊗ y ⊗ z)

= (rA ◦ (1A ⊗ εC) ◦ Φ)(ψ(x⊗ 1) ⊗ y ⊗ z) [using (5.2)]

= λ(x⊗ 1 ⊗ y ⊗ z) [using diagram (5.13)]

(5.14)

We note that ΔC induces natural left C-coactions on UAF
CUCFCUC(C ⊗A), UA(C ⊗

A) ∈ MC . Further, Φ : C ⊗ A ⊗ C ⊗ C −→ C ⊗ A is left and right C-colinear. The left 
C-colinearity of Φ gives us the commutative diagram

C ⊗A⊗ C ⊗ C C ⊗A

C ⊗ C ⊗A⊗ C ⊗ C C ⊗ C ⊗A C ⊗A

Φ

ΔC⊗1A⊗C⊗C
1C⊗1AΔC⊗1A

1C⊗Φ (rC◦(1C⊗εC))⊗1A

(5.15)

The commutativity of (5.15) implies that for all x, y, z ∈ C

Φ(x⊗ 1 ⊗ y ⊗ z)

= ((rC ◦ (1C ⊗ εC)) ⊗ 1A)(1C ⊗ Φ)(ΔC ⊗ 1A⊗C⊗C)(x⊗ 1 ⊗ y ⊗ z)

= (rC ⊗ 1A)(x[1] ⊗ (εC ⊗ 1A)(Φ(x[2] ⊗ 1 ⊗ y ⊗ z)))

= (1C ⊗ lA)(x[1] ⊗ l−1
A (λ(x[2] ⊗ 1 ⊗ y ⊗ z))) [using rC ⊗ 1A = 1C ⊗ lA]

= x[1] ⊗ T (x[2] ⊗ y ⊗ z) [using (5.14)]

(5.16)

Again, the right-C-colinearity of Φ, (5.3) and (5.4) give the commutative diagram

C ⊗A⊗ C ⊗ C C ⊗A

C ⊗A⊗ C ⊗ C ⊗ C C ⊗A⊗ C A⊗ C

Φ

1C⊗A⊗C⊗ΔC

ψ
(1C⊗ψ)◦(ΔC⊗1A)

Φ⊗1C (lA◦(εC⊗1A))⊗1C

(5.17)
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Thus, for all x, y, z ∈ C,

ψ(Φ(x⊗ 1 ⊗ y ⊗ z)) = ((lA ◦ (εC ⊗ 1A)) ⊗ 1C) (Φ(x⊗ 1 ⊗ y ⊗ z[1]) ⊗ z[2])

= λ(x⊗ 1 ⊗ y ⊗ z[1]) ⊗ z[2]

= T (x⊗ y ⊗ z[1]) ⊗ z[2] [using (5.14)]

(5.18)

Combining (5.16) and (5.18), we have for x, y, z ∈ C,

ψ(x[1] ⊗ T (x[2] ⊗ y ⊗ z)) = ψ(Φ(x⊗ 1 ⊗ y ⊗ z)) = T (x⊗ y ⊗ z[1]) ⊗ z[2]

It follows that T satisfies the condition in (5.10), i.e., T ∈ Ω.
Conversely, given T ∈ Ω, let Φ = β(T ) as defined in (5.12). Using the commutativity 

of diagram (5.10), we may check that for each (M, ρM , ρM ) ∈ M(ψ)CA, Φ(M,ρM ,ρM ) is 
a morphism in MC . Further, for any morphism f : (M, ρM , ρM ) −→ (N, ρN , ρN ) in 
M(ψ)CA, we have for all m ∈ M and x, y ∈ C,

ΦN (f(m) ⊗ x⊗ y)

= ρN ◦ (1N ⊗ T ) ◦ (ρN ⊗ 1C⊗C)(f(m) ⊗ x⊗ y)

= ρN ◦ (1N ⊗ T )(f(m)[0] ⊗ f(m)[1] ⊗ x⊗ y)

= ρN ◦ (1N ⊗ T )(f(m[0]) ⊗m[1] ⊗ x⊗ y) [using the right-C-colinearity of f ]

= f(m[0])T (m[1] ⊗ x⊗ y)

= f(m[0]T (m[1] ⊗ x⊗ y)) [using the right-A-linearity of f ]

= f(ΦM (m⊗ x⊗ y))

so that ΦN ◦ (f ⊗ 1C⊗C) = f ◦ ΦM . Thus, Φ ∈ Σ = Nat(UAF
CUCFCUC , UA). It may 

be verified that α and β are inverses. �
Theorem 5.2. The functor UC is heavily UA-separable if and only if there exists a k-linear 
map θ : C ⊗ C −→ A such that for all x, y, z ∈ C

θ(x⊗ y[1]) ⊗ y[2] = θ(x[2] ⊗ y)ψ ⊗ xψ
[1] (5.19)

θ ◦ ΔC = iA ◦ εC (5.20)
θ(y ⊗ z[1])ψ.θ(xψ ⊗ z[2][1]) ⊗ z[2][2] = εC(y)θ(x⊗ z[1]) ⊗ z[2] (5.21)

Proof. By Theorem 2.3, UC is heavily UA-separable if and only if there is a natural 
transformation γ : UAF

CUC −→ UA such that γ ◦ UAη = id and γ ◦ (γFCUC) =
γ ◦ (UAF

CεUC). From the proof of [19, Proposition 4.12], there is a bijection between 
the set Γ of natural transformations γ : UAF

CUC −→ UA satisfying γ ◦ UA(η) = id and 
the set Θ of k-linear maps θ : C ⊗C −→ A satisfying conditions (5.19) and (5.20) given 
by,
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γ �→ θ := rA ◦ (1A ⊗ εC) ◦ γFC(A,∇A) ◦ (iA ⊗ 1C⊗C) ◦ l−1
C⊗C

θ �→ γ :=
(
γ(M,ρM ,ρM ) = ρM ◦ (1M ⊗ θ) ◦ (ρM ⊗ 1C)

)
(M,ρM ,ρM )∈M(ψ)CA

(5.22)

Thus, we only need to show that γ ∈ Γ satisfies γ ◦ (γFCUC) = γ ◦ (UAF
CεUC) if and 

only if the corresponding θ ∈ Θ satisfies condition (5.21).
We fix γ ∈ Γ and the corresponding element θ ∈ Θ. Let Φ1 = γ ◦ (γFCUC) and 

Φ2 = γ ◦(UAF
CεUC). Since Φ1, Φ2 ∈ Σ, it follows by Lemma 5.1 that there are elements 

T1 = α(Φ1), T2 = α(Φ2) ∈ Ω where

Ti = rA ◦ (1A ⊗ εC) ◦ (Φi)FC(A,∇A) ◦ (iA ⊗ 1C⊗C⊗C) ◦ l−1
C⊗C⊗C , i = 1, 2 (5.23)

Computing Φ1 at FC(A, ∇A) = A ⊗C ∈ M(ψ)CA and using equation (5.22) and condition 
(5.19), it follows that

(Φ1)A⊗C = γA⊗C ◦ (γFCUC)A⊗C = γA⊗C ◦ γA⊗C⊗C

= (∇A ⊗ 1C) ◦ (1A ⊗ θ ⊗ 1C) ◦ (1A⊗C ⊗ ΔC) ◦ (∇A ⊗ 1C⊗C) ◦ (1A ⊗ ψ ⊗ 1C)

◦ (1A⊗C ⊗ θ ⊗ 1C) ◦ (1A⊗C ⊗ 1C ⊗ ΔC)

Similarly,

(Φ2)A⊗C = γA⊗C ◦ (UAF
CεUC)A⊗C = γA⊗C ◦ (εA⊗C ⊗ 1C)

= (∇A ⊗ 1C) ◦ (1A ⊗ θ ⊗ 1C) ◦ (1A⊗C ⊗ ΔC) ◦ (rA⊗C ⊗ 1C)
◦ (1A⊗C ⊗ εC ⊗ 1C)

A computation shows that for all x, y, z ∈ C,[
(Φ1)A⊗C ◦ (iA ⊗ 1C⊗C⊗C) ◦ l−1

C⊗C⊗C

]
(x⊗ y ⊗ z) = θ(y ⊗ z[1])ψ.θ(xψ ⊗ z[2][1]) ⊗ z[2][2][

(Φ2)A⊗C ◦ (iA ⊗ 1C⊗C⊗C) ◦ l−1
C⊗C⊗C

]
(x⊗ y ⊗ z) = εC(y)θ(x⊗ z[1]) ⊗ z[2]

(5.24)

which are the left-hand side and the right-hand side respectively, of equation (5.21).

Now, suppose that γ ◦ (γFCUC) = γ ◦ (UAF
CεUC). Then in particular, (Φ1)A⊗C =

(Φ2)A⊗C , so that[
(Φ1)A⊗C ◦ (iA ⊗ 1C⊗C⊗C) ◦ l−1

C⊗C⊗C

]
=

[
(Φ2)A⊗C ◦ (iA ⊗ 1C⊗C⊗C) ◦ l−1

C⊗C⊗C

]
and hence, (5.21) holds. Conversely, if θ satisfies condition (5.21), then by (5.24),

[
(Φ1)A⊗C ◦ (iA ⊗ 1C⊗C⊗C) ◦ l−1

C⊗C⊗C

]
=

[
(Φ2)A⊗C ◦ (iA ⊗ 1C⊗C⊗C) ◦ l−1

C⊗C⊗C

]
so that T1 = T2, using (5.23). Thus, α(Φ1) = T1 = T2 = α(Φ2), so that Φ1 = Φ2 since α
is injective. Hence, γ ◦ (γFCUC) = Φ1 = Φ2 = γ ◦ (UAF

CεUC). �
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We now give an example of the situation in Theorem 5.2. Let k be a commutative 
ring, G be a group and H be the Hopf algebra k[G] with comultiplication Δ : k[G] −→
k[G] ⊗k[G], counit ε : k[G] −→ k and antipode S : k[G] −→ k[G] determined respectively 
by g �→ g ⊗ g, g �→ 1 and g �→ g−1 for each g ∈ G. Considering k[G] as a right 
k[G]-comodule algebra, we have the entwining structure (k[G], k[G], ψ) given by (see for 
instance, [19, § 4])

ψ : k[G] ⊗ k[G] −→ k[G] ⊗ k[G] x⊗ y �→ y[1] ⊗ xy[2] (5.25)

The associated category of entwined modules is denoted by M(ψ)k[G]
k[G]. We now consider 

the linear map θ : k[G] ⊗ k[G] −→ k[G] determined by g ⊗ h �→ g−1h for g, h ∈ G. It 
may now be verified that θ satisfies the conditions (5.19), (5.20) and (5.21). It follows by 
Theorem 5.2 that the functor Uk[G] is heavily Uk[G]-separable.

We now come to the heavy UC-separability of UA. For a map ζ : C −→ A ⊗ A, we 
write ζ(c) = ζ1(c) ⊗ ζ2(c) (summation understood) for every c ∈ C. We begin by setting 
Π := Nat(UC , UCFAUAFAUA). Let Λ be the set of all k-linear maps S : C −→ A ⊗A ⊗A

satisfying the following condition

(∇A⊗1A⊗1A)◦ (1A⊗S)◦ψ = (1A⊗1A⊗∇A)◦ (S⊗1A) : C⊗A −→ A⊗A⊗A (5.26)

Lemma 5.3. The map α′ : Π −→ Λ given by

α′(Ψ) = S := lA⊗A⊗A ◦ (εC ⊗ 1A⊗A⊗A) ◦ ΨFA(C,ΔC) ◦ (1C ⊗ iA) ◦ r−1
C

is a bijection with inverse β′ : Λ −→ Π given by

β′(S) = Ψ :=
(
Ψ(M,ρM ,ρM ) := (ρM ⊗ 1A⊗A) ◦ (1M ⊗ S) ◦ ρM

)
(M,ρM ,ρM )∈M(ψ)CA

(5.27)

Proof. The proof is similar to that of Lemma 5.1. �

Theorem 5.4. The functor UA is heavily UC-separable if and only if there exists a k-linear 
map ζ : C −→ A ⊗A such that for all c ∈ C, a ∈ A

ζ1(c) ⊗ ζ2(c)a = aψζ
1(cψ) ⊗ ζ2(cψ) (5.28)

∇A ◦ ζ = iA ◦ εC (5.29)

εC
(
c[1][1]

)
ζ1 (c[2])ψ ⊗ ζ1 ((c[1][2])ψ)⊗ ζ2 ((c[1][2])ψ) .ζ2 (c[2])

= εC
(
c[1]

)
ζ1 (c[2])⊗ 1 ⊗ ζ2 (c[2]) (5.30)

Proof. By Theorem 2.3, UA is heavily UC-separable if and only if there is a natural 
transformation δ : UC −→ UCFAUA such that UCε′ ◦ δ = id and (δFAUA) ◦ δ =
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(UCFAη
′UA) ◦ δ. From the proof of [19, Proposition 4.13], there is a bijection between 

the set Ξ1 of natural transformations δ : UC −→ UCFAUA such that UCε′ ◦ δ = id and 
the set Ξ2 of k-linear maps ζ : C −→ A ⊗A satisfying conditions (5.28) and (5.29) given 
by,

δ �→ ζ := lA⊗A ◦ (εC ⊗ 1A⊗A) ◦ δC⊗A ◦ (1C ⊗ iA) ◦ r−1
C

ζ �→ δ :=
(
δ(M,ρM ,ρM ) = (ρM ⊗ 1A) ◦ (1M ⊗ ζ) ◦ ρM

)
(M,ρM ,ρM )∈M(ψ)CA

(5.31)

Thus, it suffices to show that δ ∈ Ξ1 satisfies (δFAUA) ◦ δ = (UCFAη
′UA) ◦ δ if and only 

if the corresponding ζ ∈ Ξ2 satisfies condition (5.30).
We fix δ ∈ Ξ1 and the corresponding ζ ∈ Ξ2. Let Ψ1 = (δFAUA) ◦ δ and Ψ2 =

(UCFAη
′UA) ◦ δ. Since Ψ1, Ψ2 ∈ Π, it follows by Lemma 5.3 that there are elements 

S1 = α′(Ψ1), S2 = α′(Ψ2) ∈ Λ where

Si = lA⊗A⊗A ◦ (εC ⊗ 1A⊗A⊗A) ◦ (Ψi)FA(C,ΔC) ◦ (1C ⊗ iA) ◦ r−1
C , i = 1, 2 (5.32)

Computing Ψ1 at FA(C) = C⊗A ∈ M(ψ)CA, using (5.31) and condition (5.28), it follows 
that

(Ψ1)C⊗A = (δFAUA)C⊗A ◦ δC⊗A = δC⊗A⊗A ◦ δC⊗A

= (1C⊗A ⊗ 1A ⊗∇A) ◦ (1C⊗A ⊗ ζ ⊗ 1A) ◦ (1C ⊗ ψ ⊗ 1A) ◦ (ΔC ⊗ 1A⊗A)

◦ (1C⊗A ⊗∇A) ◦ (1C ⊗ ζ ⊗ 1A) ◦ (ΔC ⊗ 1A)

(5.33)

Similarly,

(Ψ2)C⊗A = (UCFAη
′UA)C⊗A ◦ δC⊗A = (η′C⊗A ⊗ 1A) ◦ δC⊗A

= (1C⊗A ⊗ iA ⊗ 1A) ◦ (r−1
C⊗A ⊗ 1A) ◦ (1C⊗A ⊗∇A) ◦ (1C ⊗ ζ ⊗ 1A) ◦ (ΔC ⊗ 1A)

(5.34)

A computation using (5.32), (5.33), (5.34) shows that for all c ∈ C,

S1(c) = εC
(
c[1][1]

)
ζ1 (c[2])ψ ⊗ ζ1 ((c[1][2])ψ)⊗ ζ2 ((c[1][2])ψ) .ζ2 (c[2])

S2(c) = εC
(
c[1]

)
ζ1 (c[2])⊗ 1 ⊗ ζ2 (c[2])

which are the left-hand side and the right-hand side respectively, of equation (5.30).

Now, suppose that (δFAUA) ◦ δ = (UCFAη
′UA) ◦ δ. Then in particular, (Ψ1)C⊗A =

(Ψ2)C⊗A. Using (5.32), it follows that S1 = S2. Hence, (5.30) holds. Conversely, if ζ
satisfies condition (5.30), then S1 = S2. Thus, α′(Ψ1) = S1 = S2 = α′(Ψ2), so that 
Ψ1 = Ψ2 since α′ is injective. Hence, (δFAUA) ◦ δ = Ψ1 = Ψ2 = (UCFAη

′UA) ◦ δ. �
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No data was used for the research described in the article.

References

[1] A. Ardizzoni, C. Menini, Milnor-Moore categories and monadic decomposition, J. Algebra 448 
(2016) 488–563.

[2] A. Ardizzoni, C. Menini, Heavily separable functors, J. Algebra 543 (2020) 170–197.
[3] A. Ardizzoni, C. Menini, Monadic vs adjoint decomposition, J. Pure Appl. Algebra 226 (8) (2022) 

106945.
[4] M. Balodi, A. Banerjee, S. Ray, Entwined modules over linear categories and Galois extensions, Isr. 

J. Math. 241 (2) (2021) 623–692.
[5] A. Banerjee, Entwined modules over representations of categories, Algebr. Represent. Theory (2023), 

https://doi .org /10 .1007 /s10468 -023 -10203 -3.
[6] G. Böhm, T. Brzeziński, R. Wisbauer, Monads and comonads on module categories, J. Algebra 

322 (5) (2009) 1719–1747.
[7] T. Brzeziński, S. Majid, Coalgebra bundles, Commun. Math. Phys. 191 (2) (1998) 467–492.
[8] T. Brzeziński, On modules associated to coalgebra Galois extensions, J. Algebra 215 (1) (1999) 

290–317.
[9] T. Brzeziński, Frobenius properties and Maschke-type theorems for entwined modules, Proc. Am. 

Math. Soc. 128 (8) (2000) 2261–2270.
[10] T. Brzeziński, S. Caenepeel, G. Militaru, S. Zhu, Frobenius and Maschke Type Theorems for Doi-

Hopf Modules and Entwined Modules Revisited: a Unified Approach, Lecture Notes in Pure and 
Appl. Math., vol. 221, Dekker, New York, 2001, pp. 1–31.

[11] T. Brzeziński, The structure of corings: induction functors, Maschke-type theorem, and Frobenius 
and Galois-type properties, Algebr. Represent. Theory 5 (4) (2002) 389–410.

[12] T. Brzezinski, R. Wisbauer, Corings and Comodules, London Mathematical Society Lecture Note 
Series, vol. 309, Cambridge University Press, Cambridge, 2003.

[13] D. Bulacu, S. Caenepeel, B. Torrecillas, Frobenius and separable functors for the category of 
entwined modules over cowreaths, I: general theory, Algebr. Represent. Theory 23 (3) (2020) 
1119–1157.

[14] D. Bulacu, S. Caenepeel, B. Torrecillas, Frobenius and separable functors for the category of en-
twined modules over cowreaths, II: applications, J. Algebra 515 (2018) 236–277.

[15] S. Caenepeel, G. Militaru, S. Zhu, Doi-Hopf modules, Yetter-Drinfel’d modules and Frobenius type 
properties, Trans. Am. Math. Soc. 349 (11) (1997) 4311–4342.

[16] S. Caenepeel, G. Militaru, S. Zhu, A Maschke type theorem for Doi-Hopf modules and applications, 
J. Algebra 187 (2) (1997) 388–412.

[17] S. Caenepeel, G. Militaru, B. Ion, S. Zhu, Separable functors for the category of Doi-Hopf modules, 
applications, Adv. Math. 145 (2) (1999) 239–290.

[18] S. Caenepeel, E. De Groot, Modules over Weak Entwining Structures, Contemp. Math., vol. 267, 
Amer. Math. Soc., Providence, RI, 2000, pp. 31–54.

[19] S. Caenepeel, G. Militaru, Maschke functors, semisimple functors and separable functors of the 
second kind: applications, J. Pure Appl. Algebra 178 (2) (2003) 131–157.

[20] S. Caenepeel, Galois Corings from the Descent Theory Point of View, Galois Theory, Hopf Algebras, 
and Semiabelian Categories, Fields Inst. Commun., vol. 43, Amer. Math. Soc., Providence, RI, 2004, 
pp. 163–186.

[21] X.-W. Chen, A note on separable functors and monads with an application to equivariant derived 
categories, Abh. Math. Semin. Univ. Hamb. 85 (1) (2015) 43–52.

[22] S. Eilenberg, J.C. Moore, Adjoint functors and triples, Ill. J. Math. 9 (1965) 381–398.
[23] S. Estrada, S. Virili, Cartesian modules over representations of small categories, Adv. Math. 310 

(2017) 557–609.
[24] G.M. Kelly, R. Street, Review of the elements of 2-categories, in: Category Seminar, Proc. Sem., 

Sydney, 1972/1973, in: Lecture Notes in Math., vol. 420, Springer, Berlin, 1974, pp. 75–103.
[25] C. Menini, B. Torrecillas, Heavily separable cowreaths, J. Algebra 583 (2021) 153–186.
[26] B. Mesablishvili, Monads of effective descent type and comonadicity, Theory Appl. Categ. 16 (1) 

(2006) 1–45.

http://refhub.elsevier.com/S0021-8693(23)00648-8/bibE169FDAD4B2EB7CB680A5F083BB8C76As1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibE169FDAD4B2EB7CB680A5F083BB8C76As1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibE80D880E0907F8A2CF93767B58A3D011s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib01CA9361AC4807268028A53B7DD07BE5s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib01CA9361AC4807268028A53B7DD07BE5s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibF6E9A7012DFEB304919113FA227D1A10s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibF6E9A7012DFEB304919113FA227D1A10s1
https://doi.org/10.1007/s10468-023-10203-3
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibC2296CC9BFED26D5D5A3B5D29C8E8E9Ds1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibC2296CC9BFED26D5D5A3B5D29C8E8E9Ds1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib6C700AE0AD30E0BE8F86820C0CC514F5s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib28D23B27D684639A8C5E6A7E8F62FC40s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib28D23B27D684639A8C5E6A7E8F62FC40s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib6A5557E9DFEFB9089047F4C3C14A1A0Fs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib6A5557E9DFEFB9089047F4C3C14A1A0Fs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibE52805D8344B67B9B3554D45F1C8958Fs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibE52805D8344B67B9B3554D45F1C8958Fs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibE52805D8344B67B9B3554D45F1C8958Fs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib5041AA405408823DA146E96E6AC7CEEAs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib5041AA405408823DA146E96E6AC7CEEAs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibAAF00DDF855F1E22887EC14AE5D07C53s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibAAF00DDF855F1E22887EC14AE5D07C53s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib263820892E41819073011A24C8B96616s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib263820892E41819073011A24C8B96616s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib263820892E41819073011A24C8B96616s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib910C1D1E435001F2D416B062813BF884s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib910C1D1E435001F2D416B062813BF884s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib963BB033A54BE2E63C562840031E7832s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib963BB033A54BE2E63C562840031E7832s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib70D48149F1C39EFABA27BEE7025A851Cs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib70D48149F1C39EFABA27BEE7025A851Cs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib43583163F6606ED00ABFD86167A8A3B8s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib43583163F6606ED00ABFD86167A8A3B8s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib0E589F30C9693C954692FA4A89B9B88Fs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib0E589F30C9693C954692FA4A89B9B88Fs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib707354872D4E8210A2A573B99721B1FBs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib707354872D4E8210A2A573B99721B1FBs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibD677B410373BC790D9A8EC2E68090839s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibD677B410373BC790D9A8EC2E68090839s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibD677B410373BC790D9A8EC2E68090839s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibEF6BF3FD02C2C92BF0E156D4B5B818ACs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibEF6BF3FD02C2C92BF0E156D4B5B818ACs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib02308D4698DA352B17ED5E6C4FBC02D5s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib834D41112F2943C357F660165B6EB6DEs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib834D41112F2943C357F660165B6EB6DEs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib0902DC05D6AA44F849F969C744285C32s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib0902DC05D6AA44F849F969C744285C32s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib08AD08F6491037714D09263A79BEBFBAs1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib7A065D8D264A13AB77EF872A209009F2s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib7A065D8D264A13AB77EF872A209009F2s1


A. Banerjee, S. Das / Journal of Algebra 643 (2024) 49–75 75
[27] B. Mitchell, Rings with several objects, Adv. Math. 8 (1972) 1–161.
[28] C. Năstăsescu, M. Van den Bergh, F. Van Oystaeyen, Separable functors applied to graded rings, 

J. Algebra 123 (2) (1989) 397–413.
[29] M.D. Rafael, Separable functors revisited, Commun. Algebra 18 (5) (1990) 1445–1459.
[30] B. Stenström, Rings of Quotients, Die Grundlehren der Mathematischen Wissenschaften, vol. 217, 

Springer-Verlag, New York-Heidelberg, 1975, An introduction to methods of ring theory.

http://refhub.elsevier.com/S0021-8693(23)00648-8/bibBC9655F8014D3199CDB20D7677C7B444s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib4935DC44157992A5D6995321FCDC15C9s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bib4935DC44157992A5D6995321FCDC15C9s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibE7A40E08D20EEB79EF2CFC6CF4C33031s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibF2709E9883EFB7CF344D55FDB2BB9EC1s1
http://refhub.elsevier.com/S0021-8693(23)00648-8/bibF2709E9883EFB7CF344D55FDB2BB9EC1s1

	Heavily separable functors of the second kind and applications
	1 Introduction
	2 Heavily I-separable functors and a Rafael type theorem
	3 Functors between module categories
	4 Free functors associated to monads and comonads
	5 Functors associated to entwined modules
	Data availability
	References


