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Baseflow significantly contributes 
to river floods in Peninsular India
Shailza Sharma 1* & P. P. Mujumdar 1,2

Extreme rainfall prior to a flood event is often a necessary condition for its occurrence; however, 
rainfall alone is not always an indicator of flood severity. Antecedent wetness condition of a catchment 
is another important factor which strongly influences the flood magnitudes. The key role of soil 
moisture in driving floods is widely recognized; however, antecedent conditions of deeper saturated 
zone may contribute to river floods. Here, we assess how closely the flood magnitudes are associated 
to extreme rainfall, soil moisture and baseflow in 70 catchments of Peninsular India for the period 
1979–2018. Annual flood magnitudes have declined across most of the catchments. Effect of flow 
regulations is also assessed to understand the impact of human interventions on flood characteristics. 
Reservoir regulation has positive effect by reducing the flood peak and volume, whereas the duration 
of flood events has increased after the construction of dams. Baseflow exhibits similar patterns of 
trends as floods, whereas trends in rainfall and soil moisture extremes are weakly correlated with 
trends in flood magnitudes. Baseflow is found to be more strongly influencing the flood magnitudes 
than soil moisture at various time lags. Further analysis with event coincidence analysis confirms that 
baseflow has stronger triggering effect on river floods in Peninsular India.

Understanding the changing characteristics of  floods1 and their relationship with the physical causative mecha-
nisms is a prerequisite for developing effective flood management  strategies2,3. Physical causes of short term 
variability and long term changes in extreme floods vary between the  catchments4,5. Investigating the relative 
importance of key drivers of floods is therefore critical for improving the scientific understanding of catch-
ment dynamics. Changing characteristics and causes of floods are well documented across many catchments 
in  Europe3,6–10 and United  States2 with extreme rainfall, soil moisture excess and snowmelt as potential drivers. 
Influence of rainfall and soil moisture extremes on flood peaks is evaluated in  Australian11,12 and  African13 catch-
ments. However, there is no systematic study on identifying the importance of flood generating mechanisms in 
Indian catchments.

There is significant evidence that rainfall extremes are intensifying in response to  warming14,15, whereas the 
evidence for increase in floods remains  elusive16. Increasing trends in rainfall  extremes17–20 and increase in the 
flood  risk21,22 are reported in India. However, studies on understanding the physical causes of such trends remain 
 limited23–25. A recent study identifies multiday rainfall as a prominent driver of floods in India by examining the 
soil moisture conditions and rainfall before high flow events simulated using the Variable Infiltration Capacity 
(VIC)  model26. Authors adopt an event-based approach to identify the flood drivers but the analysis does not 
consider the role of groundwater in triggering floods. Floods have serious impacts on agriculture, infrastructure, 
water resources systems and reservoir operations. Therefore, a detailed assessment is required to classify the 
flood generating mechanisms in Indian catchments. Identifying the hydrological processes which trigger floods 
will not only improve our understanding of flood mechanisms in Indian catchments but it will also provide a 
foundation for robust flood risk assessment.

Rainfall and subsurface antecedent wetness conditions prior to the flood event are the primary drivers of 
floods in  India24,26 as snowmelt triggers floods in a few  catchments27,28. The role of soil moisture in driving river 
floods is widely recognized in  literature2,3,11–13, whereas groundwater is not considered in flood related studies. 
Groundwater plays an important role in maintaining the flow of rivers, but its influence on floods is poorly 
 understood29. Groundwater well observations are sparse and may not represent the influence of water storage 
in deeper saturated zone on floods. Therefore, baseflow is used to understand the role of groundwater storage 
in controlling floods in Peninsular India.

Annual maximum flows are the largest floods experienced in a year and often represent the most disastrous 
flood event. Trends in the annual flood magnitudes are estimated to understand the changes in water availability. 
Impact of reservoirs is also examined in this study to understand the influence of flow regulations in Peninsular 
India. The natural flow regime of rivers is largely altered due to boom in dam construction across the world 
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during the last  century30. The regulation of rivers with reservoirs for different purposes such as irrigation, hydro-
power, water supply and flood control significantly alters the downstream flow by storing and releasing water with 
certain operation rules. Flow regulations affect the magnitude, frequency and timing of downstream high and 
low  flows31–34. Therefore, it is important to study the impact of reservoirs on the flow regime using downstream 
streamflow records. This study presents the analysis of pre- and post-dam construction high flow changes to 
understand the influence of reservoirs on annual flood characteristics: peak, volume and duration. Understand-
ing the extent to which the reservoir regulations affected the flood characteristics is crucial for designing better 
reservoir operation rules in Peninsular catchments.

The importance of rainfall, soil moisture and baseflow for generating floods in Peninsular India is investi-
gated first using Kendall’s rank correlation coefficient and Pearson correlation coefficient for different lags at 
annual timescale. However, high flows with a little lower magnitude than the annual maximum flow can occur 
in the same year and in the same catchment. In addition, drivers of these floods of different magnitudes can be 
quite different from annual maximum floods. Event-based approach which extracts the sample using peaks-
over-threshold is more robust to assess the importance of flood generating  mechanisms13,26. Therefore, further 
investigation is performed using Event Coincidence Analysis (ECA), which tests for possible causal influence 
of flood drivers in triggering the flood events of little lower magnitude than annual floods. Triggering effect is 
evaluated using the statistics based on trigger coincidences for the condition that extreme rainfall, soil moisture 
and baseflow are followed by the flood events. ECA results are used to find the dominant driver which has a 
higher influence on the flood events in Peninsular catchments.

Study area
Narmada, Tapi, Mahanadi, Godavari, Krishna and Cauvery are six major river basins of Peninsular India. Tapi 
is the smallest river basin with an area of 65,145  km2 and Godavari is the largest which covers an area of 312,812 
 km2. Narmada and Tapi are west flowing rivers which join the Arabian Sea, while other four are east flowing rivers 
which drain into the Bay of Bengal. Godavari is the longest river of length 1465 km and Cauvery is the shortest 
river with a length of 560 km in Peninsular India. The locations of 70 selected catchments are shown in Fig. 1a. 
The catchment areas vary in size from 1260 to 307,800  km2 (Fig. S1). The elevation varies between a minimum 
of 1 m to a maximum of 937 m (Fig. 1b). Spatial variation of mean annual maximum runoff rate averaged over 

Figure 1.  (a) Locations of streamflow gauges with catchment boundaries in six major river basins of Peninsular 
India, (b) elevation map and mean annual maximum runoff rate (streamflow per unit catchment area), (c) 
Aridity Index (AI) and (d) Baseflow Index (BFI). The maps in first row are prepared in QGIS (Version 2.14.0 
‘Essen’ (2016), URL: http:// qgis. org) and the maps in second row are generated using R (Version 4.2.2 (2022), 
URL: https:// www.R- proje ct. org/).

http://qgis.org
https://www.R-project.org/
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a period of 40 years is shown in Fig. 1b. High runoff rates are observed in Narmada, lower and middle Maha-
nadi, Krishna upper sub-basin, Tungabhadra upper sub-basin and Cauvery upper sub-basin. Aridity Index (AI) 
defined as the ratio of mean annual precipitation to mean annual potential evapotranspiration is shown in Fig. 1c. 
United Nations Environment Programme (UNEP)35 provides a climate classification scheme based on the Arid-
ity Index values. Peninsular catchments have semi-arid (AI 0.2–0.5), dry sub-humid (AI 0.5–0.65) and humid 
(AI > 0.65) climate conditions. Spatial variation of Baseflow Index (BFI), the long-term ratio between baseflow 
to total streamflow is shown in Fig. 1d. The distribution of BFI is relatively even with BFI values between 0.25 
and 0.50 for most of the catchments.

Results
Trend analysis
Annual flood magnitudes have decreased in Peninsular catchments over the period 1979–2018 (Fig. 2a). An 
increase in flood magnitudes is observed only in two catchments (Kurubhata and Kantamal) of Mahanadi river 
basin and one catchment (Dameracherla) of Godavari river basin. Flood magnitudes are declining drastically in 
Narmada river basin. Trends in flood magnitudes show a strong association with trends in annual mean baseflow 
(Fig. 2b). Signs of flood magnitude trends are more consistent with the signs of trends in baseflow compared to 
rainfall and soil moisture. The strength of dependence between trends in flood magnitudes and trends in flood 
drivers is summarized with Kendall rank correlation coefficient. A high value of Kendall’s τ = 0.737 is observed 
for the pairs of trends in annual flood magnitude and trends in mean annual baseflow across all the Peninsular 
catchments. Trends in annual maximum daily rainfall ( τ = 0.165 ) and annual mean soil moisture ( τ = 0.0746 ) 
show a weak correlation with trends in flood magnitudes. These results suggest that floods in Peninsular catch-
ments are strongly correlated with baseflow compared to rainfall and soil moisture.

Effect of flow regulations on flood characteristics
The impacts of reservoir flow regulations in Peninsular catchments are assessed using “pre-post-disturbance” 
approach in this study. Locations of dams are marked on the streamflow network and the streamflow gauges 
downstream of these dams on the same flow lines are identified (Fig. 3a). Total 31 dams are considered which 
came after 1980 as per the information from National Register of Large Dams (NRLD) and 25 streamflow gauges 
are marked which have a good length of flow records available for pre-disturbance period. When there is more 
than one reservoir upstream of a stream gauge, impact is evaluated for the structure which came first and year of 
construction decides the length of records for the new dam downstream of the old dam. The pre-dam construc-
tion period of new dam begins from the year of construction of the older dam lying upstream and ends at its own 
year of construction. Annual flood peak, volume and duration are computed for pre- and post-dam construction 
period as illustrated in Fig. 3b. The comparison of mean flood characteristics for the two periods shows that 
reservoir regulations have strong influence on flood characteristics. Reservoir regulation has increased the flood 
duration by up to 65% while it has reduced the peak flow and flood volume by ~ 48.5% and ~ 50%, respectively. 
Floods after the construction of dams last longer but are less severe with reduced peak and volume in Peninsular 
catchments. These impacts are independent of the purpose of reservoirs. Upper Wardha dam which serves the 
purpose of flood control along with irrigation and water supply shows reduction in all the flood characteristics 
(peak − 21.5%, volume − 32.1% and duration − 14%). Flood alleviation effect of reservoirs is observed in differ-
ent parts of the  world31,34,36. Reduction in flood severity indicates a positive effect of dam construction on flood 
alleviation in Peninsular India.

Figure 2.  (a) Trends in annual flood magnitudes and (b) association of trends in flood magnitudes with trends 
in flood drivers. Flood magnitudes are shrinking across most of the catchments in Peninsular India. Trends 
in floods are strongly correlated with trends in baseflow (Kendall’s τ = 0.737 ) and weakly correlated with soil 
moisture (Kendall’s τ = 0.0746) . The figure is prepared in R (Version 4.2.2 (2022), URL: https:// www.R- proje ct. 
org/).

https://www.R-project.org/
https://www.R-project.org/
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Importance of flood drivers
It is well established in literature that antecedent soil moisture conditions play an important role in the hydro-
logical response of a  catchment11,12,16,37. However, importance of antecedent conditions may extend deeper into 
the saturated zone as revealed in a recent study by Berghuijs and  Slater29. Here, we investigated the association 
of annual floods and flood drivers (baseflow, rainfall and soil moisture) with Pearson correlation coefficient for 
a range of antecedent periods from 1 to 14 days (Fig. 4a). Instantaneous values of baseflow and soil moisture are 
used, whereas accumulated rainfall from a specific lag to the flooding day are used in the correlation analysis. 
Baseflow shows a strong correlation with annual maximum flows at all the time lags compared to soil moisture. 
Baseflow dominates for the first few lags i.e. less than 3–4 days and rainfall dominates at longer antecedent periods 
for 50 catchments. For remaining 20 catchments (especially from Cauvery river basin), baseflow dominates for 
more than 5–7 days and rainfall dominates for more longer antecedent periods as shown in Fig. S2. A catch-
ment with higher baseflow reflects more wet conditions, which means the chances of rapid runoff are high with 
the incoming rainfall event. On the other hand, the correlation between accumulated rainfall and flow peaks is 
relatively high at longer time lags because rainfall not only drives the flood peak but it also contributes to soil 
moisture and groundwater levels. Accumulated rainfall over a longer period will eventually raise the baseflows 
and thus more water will be contributed to river flows. Results are shown for a randomly selected catchment 
Bamini with semi-arid climate in Godavari river basin. Similar correlation pattern is observed across 50 catch-
ments of Peninsular India. At short time scales, flood magnitudes are strongly associated to baseflow than rainfall 
and soil moisture. This observation suggests that baseflow contributes more water to the Peninsular catchments.

Figure 3.  (a) Locations of reservoirs and streamflow gauges lying downstream on the same flow lines, (b) 
schematic diagram to derive the flood characteristics and (c) effect of flow regulations on flood peak, volume 
and duration. Floods last longer but became less severe with reduced peak and volume after the construction 
of dams. The map in first row is prepared in QGIS (Version 2.14.0 ‘Essen’ (2016), URL: http:// qgis. org), (b) is 
generated using Microsoft Word (Version 2010 https:// www. office. com/), and (c) is prepared in R (Version 4.2.2 
(2022), URL: https:// www.R- proje ct. org/).

http://qgis.org
https://www.office.com/
https://www.R-project.org/
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The spatial pattern of correlation between flood magnitudes and baseflow computed 5 days before the flood 
events is shown in Fig. 4b. High positive correlation is observed across all the catchments indicating a strong 
association of baseflow with floods. This highlights the strong influence of baseflow on floods in Peninsular 
catchments. Relative contribution of baseflow to peak flows is further investigated using Baseflow Index (BFI) 
on the flooding day. This will help in quantifying the fraction of peak flow which comes from baseflow. Negative 
correlation is observed between flood magnitudes and BFI (Fig. 4c). This suggests that although baseflow con-
tributes more to river flows (Fig. 4b); however, its contribution to the event flow magnitude decreases as surface 
runoff contributes a higher fraction of flood discharge than baseflow. Additionally, a flood event cannot occur 
without high rainfall even if the landscape has higher baseflow.

The importance of flood drivers is evaluated using the trigger coincidence rate for the period 1979–2018. The 
p-values are lower than the confidence level α = 0.01 , therefore the null hypothesis of independent random series 
is rejected for all the catchments. All the trigger coincidence rates are statistically significant. Trigger coincidence 
rates are high for baseflow compared to rainfall and soil moisture across all the Peninsular catchments (Fig. 5). 
Baseflow 1 day prior to the flood event is significantly influencing the river floods, whereas soil moisture on the 
previous day has lowest triggering effect on floods (Fig. 5a–c). This suggests that high baseflow conditions are 
coinciding more with the severe 95th percentile flood events. The triggering effect of baseflow is longer-lasting 
as the trigger coincidences remain high compared to other two flood drivers at a time lag of 5 days (Fig. 5d–f). 
Baseflow on the previous day of flood has a higher trigeering effect than longer time lag. ECA results corroborate 
the statement that baseflow significantly contributes to floods in Peninsular India.

The role of flood drivers may change with time; therefore, investigation is carried out for two periods to bet-
ter understand the evolving nature of floods and their association with flood drivers. Data is divided into two 
equal halves from 1979–1998 to 1999–2018. Triggering effect of flood drivers is assessed for 85th as well as 95th 

Figure 4.  (a) Correlation between flood magnitude and flood drives (baseflow, rainfall and soil moisture) for a 
range of antecedent periods (1–14 days) in a randomly selected Peninsular catchment. Baseflow has a stronger 
and long lasting association with flood peaks than soil moisture at annual time scale. (b) Spatial variation 
of correlation between flood magnitude and baseflow 5 days before the flood event. (c) Spatial variation of 
correlation between flood magnitude and baseflow index on flooding day. All parts of the figure are generated 
using R (Version 4.2.2 (2022), URL: https:// www.R- proje ct. org/).

https://www.R-project.org/


6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1251  | https://doi.org/10.1038/s41598-024-51850-w

www.nature.com/scientificreports/

percentile extremes to understand the influence on floods of different magnitudes (Figs. S3–S4). Baseflow has 
high trigger coincidence rates compared to rainfall and soil moisture irrespective of the flood magnitude and 
record length. These findings suggest that baseflow plays a critical role in controlling floods in Peninsular India 
and future floods depend on the pre-existing baseflow conditions during high rainfall events.

Conclusions
The active role of groundwater in storm runoff in streams is discovered decades  ago38,39. Baseflow also exerts 
significant influence over the entire flood frequency  curves40. Despite the significant role of groundwater in storm 
runoff generation, groundwater is rarely considered in flood related studies. Recent studies consider the critical 
role of soil moisture in modulating  floods2,3,11–13, whereas groundwater is often overlooked. Present study extends 
our knowledge on process based controls on floods. Our analysis reveals that pre-existing baseflow conditions 
play an important role in driving floods. Baseflow is the dominant driver of floods at shorter time lags and rainfall 
controls flood magnitudes at longer antecedent periods. The effect of baseflow is stronger than soil moisture and 
lasts for longer antecedent periods in Peninsular catchments.

Presence of reservoir in a catchment significantly influences the natural flow regime by storages and releases. 
Reservoir regulation has reduced flood severity i.e. flood peak and flood volume but duration of flood events has 
increased after the construction of dams in Peninsular catchments. This attenuation in flood severity is independ-
ent of the purpose of reservoirs. A reduction in flood peak and volume is achieved due to the retention of water 
in the reservoir and by releasing this excess water over longer durations. Reservoir regulation has positive effect 
by alleviating the flood severity in Peninsular India.

One potential limitation of present study is that we identified single dominant mechanism of floods in the 
catchments. However, floods in a catchment can arise through a combination of different mechanisms. Present 
analysis can be further extended by conditioning on the combination of flood drivers using multivariate statisti-
cal tools to accurately estimate their combined effect on river flooding. Incorporating more information on the 
flood generating mechanisms is the key for improving flood predictions and plan better preventive measures.

Methods
Datasets
Daily streamflow time series for 70 catchments in six major river basins of Peninsular India (Fig. 1a) are obtained 
from India Water Resources Information System (https:// india wris. gov. in/ wris/). Gaps in the daily streamflow 
records are filled using time series methods for synthesizing missing streamflow  records41,42. Daily high resolu-
tion  rainfall43 dataset on a grid size of 0.25° is obtained from India Meteorological Department (IMD). European 
Space Agency Climate Change Initiative (ESA CCI) soil  moisture44–46 with daily temporal and 0.25° spatial 

Figure 5.  Triggering effect of baseflow, rainfall and soil moisture on floods defined above 95th percentile 
threshold. Baseflow and soil moisture are based on their instantaneous values before the flood event; whereas 
rainfall is the 5 days accumulated rainfall. Tigger coincidence rates are high for baseflow 1 day (first row) and 
5 days (second row) prior to the flood event. Baseflow has stronger triggering effect on floods in Peninsular 
India. The maps are prepared in R (Version 4.2.2 (2022), URL: https:// www.R- proje ct. org/).

https://indiawris.gov.in/wris/
https://www.R-project.org/
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resolution is used in this study. High resolution Aridity index values are obtained from Global Aridity Index 
and Potential Evapotranspiration Database—Version 3 (Global-AI_PET_v3)47. Information on location, year 
of construction, capacity and purpose of reservoirs is collected from Central Water Commission (CWC) report 
on National Register of Large  Dams48. Catchments are delineated in Quantum Geographic Information System 
(QGIS) using Digital Elevation Model (DEM) obtained from Shuttle Radar Topographic Mission (SRTM) at 
30 m spatial resolution (https:// srtm. csi. cgiar. org/ srtmd ata/). Catchment average rainfall, soil moisture and 
aridity index are calculated across the selected catchments of Peninsular India. ESA CCI daily soil moisture 
(COMBINED) data product is available from 1978; therefore a common period of 40 years (1979–2018) is 
selected based on the availability of data for all the variables.

Baseflow separation
George and  Sekhar49 finds Ekhardt  filter50 more suitable compared to other digital filters for baseflow separation 
in Kabini basin, a tributary of Cauvery river in Western Ghats, India. Therefore, Ekhardt filter, a two-parameter 
recursive filter is used to estimate baseflow in the study area. The filter equation is given by

where α is the recession constant and BFImax is the maximum baseflow index modelled by the algorithm, bi is the 
baseflow, and  Qi is discharge for time step i . Peninsular catchments are underlain by hard rock aquifers; therefore 
BFImax = 0.25 is selected. Recession constant is computed based on the master recession curve (MRC) method 
described in WMO manual on low-flow estimation and  prediction51. The beginning of recession is marked below 
the Q70 threshold at least two days after the peak flood discharge. Segment length is computed for each catchment 
and MRC is obtained by plotting pairs of Qt−1 and Qt . Recession constant α is estimated as the slope of the curve. 
The procedure is illustrated for a randomly selected Haralahalli catchment of Krishna river basin in Fig. S5.

Trend estimation
Trends in annual maximum streamflow are detected using Mann–Kendall trend  test52 and the slope of linear 
trends in Peninsular catchments is computed using Sen-Theil slope  estimator53. In order to facilitate a relative 
comparison of trends across catchments of different sizes, they are expressed in units of percentage change per 
decade following previous  studies54–56, such that

where T is the trend in %/decade, S is the Sen’s slope and x is the mean of annual maximum streamflow time 
series. Decadal trends in the flood drivers are estimated similarly.

Extracting flood characteristics
Annual flood peak, volume and duration series are extracted using the procedure followed in previous  studies57–60. 
Annual maxima of streamflow data is the peak flow. Baseflow is used as the criterion to delineate flood hydro-
graph and derive flood volume and flood duration. Start day of flood runoff is marked as the abrupt rise in dis-
charge (above the baseflow) and flattening of the recession limb (a return to baseflow) is the end day as shown 
in Fig. 3b. Flood duration for the selected year i is Di = (EDi − SDi). Flood volume for ith year with observed 
streamflow Qij on jth day is computed as follows

where Qis and Qie are the observed daily streamflows on the start and end dates of flood runoff, respectively. 
In this study, a flood event is defined as the upper part of the hydrograph lying above the fixed threshold 
Qi(thresh) = 0.5× PeakFlow as described by Karmakar and  Simonovic59. Flood duration is Di(thresh) and flood 
volume Vi(thresh) is estimated for the threshold discharge after deducting the baseflow volume.

Quantifying the impact of flow regulations
Human activities like construction of reservoirs significantly affect the hydrological system by disturbing the 
natural flow conditions. Paired-catchment approach is the classical method in catchment hydrology to detect 
the impact of a disturbance on the flow  regime34,61,62. The flow regimes of two nearby catchments with similar 
physical characteristics are compared in this method by setting one as a benchmark catchment and other as a 
disturbed catchment. Indian catchments are bigger in size and it is difficult to find adequate number of pairs with 
the presence of a large number of hydraulic structures in a single catchment. Therefore, the “pre-post-disturbance” 
approach which compares hydrologic extremes before and after a disturbance is used in this study to quantify 
the impact of human influence. A minimum of 15 years and an optimum of 20 years for each part are required 
such that the normal, dry and wet years within each period are equally  distributed63,64. Stream networks are 
delineated for the Peninsular river basins and locations of dams are marked on the network. The streamflow 
gauging stations which lie downstream of the dams on same flowlines are identified. A comprehensive analysis 

(1)bi =
(1− BFImax)αbi−1 + (1− α)BFImaxQi

1− αBFImax

(2)T =
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x
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on changes in flood characteristics (peak, volume and duration) is conducted by dividing the streamflow records 
into two parts: the undisturbed period and the disturbed period. Length of streamflow records varies between a 
maximum of 52 years (1967–2018) to a minimum of 40 years (1979–2018) for quantifying the changes in flood 
characteristics. For a robust assessment of changes only the structures constructed after 1980 are considered so 
that a good length of records is available before a disturbance. Changes in the flood characteristics are estimated 
as (CD − CU )/CU , where CD and CU are the mean characteristics after disturbance and before the disturbance, 
respectively.

Event coincidence analysis
Event Coincidence Analysis (ECA) is a recently developed statistical tool exclusively designed for measuring the 
strength, directionality and time lag of statistical interdependency between two event  series65,66. Donges et al.67 
used the ECA framework to investigate the role of floods as triggers of epidemic outbreaks with country-level 
observational data. Manoj et al.68 employed ECA to identify and quantify the preconditioning of precipitation 
extremes by soil moisture anomalies over India. ECA is suitable to test for existence, direction and significance 
of possible relationship between pairs of two event  series68,69 X and Y  . ECA is utilized in this study to test for 
existence and significance of statistical interrelationship of floods with the flood drivers.

Let X be flood events occurring at timings 
{

tX1 , . . . , t
X
NX

}

 and Y  be the flood drivers (rainfall, soil moisture 
and baseflow) occurring at times 

{

tY1 , . . . , t
Y
NY

}

. NX and NY are the number of events of event series X and Y , 
respectively. The event series are assumed to cover a time interval (t0, te) with length T = te − t0 , such that 
t0 ≤ tX1 ≤ · · · ≤ tXNX

≤ te and t0 ≤ tY1 ≤ · · · ≤ tYNY
≤ te which yields the event rates �X = NX/T and �Y = NY/T . 

Coincidences of events in both the series are counted and the strength of statistical interrelationship is quantified 
using a measure called “Trigger Coincidence Rate” (rt) . It measures the fraction of Y-type events that are followed 
by at least one X-type event. Multiple X-type events within the coincidence interval are counted only once.

Trigger coincidence  rate67 is defined as

where �T is the coincidence interval and τ is the time lag parameter. An instantaneous coincidence occurs if 
events of two event series occur closer in time i.e. if the condition tXi − tYj ≤ �T is satisfied. A lagged coincidence 
occurs when the X events shifted by time lag τ i.e. at time (tXi − τ) coincide with the Y-type event and the condi-
tion (tXi − τ)− tYj ≤ �T holds. F(·) denotes the Heaviside function which conveys information on whether the 
flood drivers (Y) have a triggering effect on flood (X) events or not. The values of rt vary between 0 (complete 
absence of triggering effect between X and Y  ) and 1 ( X events succeed all the Y  events).

Testing the significance of coincidences
The two event series are assumed to be randomly distributed and mutually independent over the continuous 
time interval T . The occurrences of coincidences are rare and thus X and Y  event time series are treated as two 
independent Poisson processes. This allows derivation of distributions of coincidence rates to test the statistical 
significance of ECA results. The probability of occurrence of a given number of trigger coincidences (K = NX ·rt) 
between two event series can be approximated by Binomial  distribution66

where �T is the temporal tolerance and τ is the time lag between X and Y  . Significance test for coincidence 
measure is based on the null hypothesis that the number of coincidences can be explained by two independent 
series of randomly distributed events. The p-value of empirically observed number of coincidences Ke with 
respect to the test distribution in Eq. (4) i.e. the probability to obtain a number of coincidences K equal to or 
greater than Ke is given by P(K ≥ Ke) =

∑NY
K ′=Ke

P(K ′;NY , 1− (1− p)NX ) . Null hypothesis is rejected if the p
-value is smaller than the defined confidence level α.

Data availability
India-Water Resources Information System (India-WRIS) daily streamflow data used in this study is available at 
https:// india wris. gov. in/ wris/#/ River Monit oring. India Meteorological Department (IMD) provides daily high 
resolution gridded rainfall data can be accessed from https:// www. imdpu ne. gov. in/ cmpg/ Gridd ata/ Rainf all_ 25_ 
NetCDF. html. European Space Agency Climate Change Initiative (ESA CCI) soil moisture dataset with daily 
temporal and 0.25° spatial resolution is available at https:// esa- soilm oistu re- cci. org/ data. Global Aridity Index 
is available at https:// doi. org/ 10. 6084/ m9. figsh are. 75044 48. v5. Shuttle Radar Topographic Mission (SRTM) at 
30 m spatial resolution is available at https:// srtm. csi. cgiar. org/ srtmd ata/.
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