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Abstract

Reward and emotion are tightly intertwined, so there is a growing interest in mapping their interactions. However, our knowledge of 
these interactions in the human brain, especially during the consummatory phase of reward is limited. To address this critical gap, we 
conducted a functional magnetic resonance imaging study to investigate the effects of negative emotion on reward outcome process-
ing. We employed a novel design where emotional valence (negative or neutral) indicated the type of outcome (reward or no-reward) in 
a choice task. We focused our functional magnetic resonance imaging analysis on the ventro-medial prefrontal cortex (vmPFC), ventral 
striatum and amygdala, which were frequently implicated in reward outcome processing. In these regions of interest, we performed 
multi-voxel pattern analysis to specifically probe how negative emotion modulates reward outcome processing. In vmPFC, using decod-
ing analysis, we found evidence consistent with the reduced discriminability of multi-variate activity patterns of reward vs no-reward 
outcomes when signaled by a negative relative to a neutral image, suggesting an emotional modulation of reward processing along 
the plausible common value/valence dimension. These findings advance our limited understanding of the basic brain mechanisms 
underlying the influence of negative emotion on consummatory reward processing, with potential implications for mental disorders, 
particularly anxiety and depression.
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Introduction
The neural substrates underlying reward and emotion have been 
traditionally investigated in a largely independent manner. How-
ever, reward and emotion are tightly intertwined in such a way 
that the core dimensions of reward (value & salience) and emotion 
(valence & arousal) have commonalities between them (Cromwell 
et al., 2020; Sander and Nummenmaa, 2021). Hence, there is 
a growing interest in mapping the interactions between reward 
and emotion. Although some previous human neuroimaging work 
has investigated the brain mechanisms underlying the reward–
emotion interactions, one set of those studies focused on the 
initial choice phase of the decision-making paradigms (Talmi 
et al., 2009; Park et al., 2011; Aupperle et al., 2015) and the 
other set of studies have mostly focused on the reward antici-
pation (Wittmann et al., 2008; Choi et al., 2014; Wei et al., 2016;
Padmala et al., 2017; Park et al., 2019). On the other hand, only a 
limited number of studies have examined the interactions during 
the consummatory phase of reward (Gorka et al., 2018; Bandy-
opadhyay et al., 2019; Kim and Anderson, 2020). Hence, very little 
is known regarding the brain mechanisms underlying the reward 

outcome–emotion interactions, which is of both basic and clinical 
relevance (Dillon et al., 2014; Rolls et al., 2020).

Separate lines of human functional magnetic resonance imag-
ing (fMRI) studies focused on reward outcomes and emotion 
processing has implicated the ventro-medial prefrontal cortex 
(vmPFC) in the coding of the value and valence dimension, respec-
tively (see Bartra et al., 2013; Lindquist et al., 2016; Oldham et al., 
2018, for meta-analytic findings). A few studies that had employed 
both monetary reward outcomes and emotional stimuli in the 
same set of participants had reported overlapping activity in the 
vmPFC (Smith et al., 2010; also see Sescousse et al., 2013, for func-
tional overlap in terms of meta-analytic findings), supporting the 
notion of common neural currency underlying the encoding of 
multiple value signals (Levy and Glimcher, 2012). In addition to 
vmPFC, the ventral striatum is also commonly engaged during 
receipt of monetary rewards (Bartra et al., 2013; Sescousse et al., 
2013; Oldham et al., 2018) and during the processing of emotional 
stimuli (Sescousse et al., 2010; Smith et al., 2010). On the other 
hand, the amygdala, a region frequently implicated in encod-
ing the intensity of emotional stimuli in human fMRI studies 
(Sergerie et al., 2008; Sabatinelli et al., 2011; Lindquist et al., 2016; 
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but see Jin et al., 2015) is also engaged during the processing 
of monetary reward outcomes (Sescousse et al., 2013; Oldham 
et al., 2018), supposedly reflecting their salient nature (Sescousse 
et al., 2013). A key question in affective neuroscience beyond the 
observation of specific brain regions encoding the purported com-
mon value/valence or salience/arousal dimensions of reward and 
emotion is whether and how the neural signatures of reward 
outcomes and emotion interact along those dimensions. For 
instance, in regions sensitive to the value/valence dimension, 
one could expect to find inhibitory-type effects between nega-
tive emotion and reward outcomes. In contrast, facilitatory-type 
effects are expected in regions sensitive to the salience/arousal
dimension.

A couple of recent fMRI studies have attempted to address 
this question by investigating the plausible inhibitory influence 
of aversive information on reward outcome processing (Gorka 
et al., 2018; Kim and Anderson, 2020). Gorka et al. (2018) employed 
a modified version of the monetary incentive delay (MID) task 
(Knutson et al., 2000) to examine how an instructed threat-of-
shock context (where aversive shocks were delivered in an unpre-
dictable fashion) compared to a safe context (where shocks were 
never delivered) influences reward anticipation and outcome pro-
cessing. Of particular interest to the present study, the authors 
did not observe that anticipating an aversive shock dampened the 
reward outcome responses in the vmPFC and ventral striatum. 
More recently, Kim and Anderson (2020) employed a four-armed 
bandit task during which participants received one of the four 
equiprobable outcomes following their choice: monetary reward 
alone, aversive shock alone, concurrent reward-plus-shock and 
neither of them. Again, of relevance to the present study, atten-
uation of the reward response in the presence of simultaneous 
aversive shock was not found in the reward sensitive regions such 
as the vmPFC and ventral striatum. Overall, the evidence sup-
porting the inhibitory influence of aversive information on reward 
outcome processing remains elusive.

In the present fMRI study, we sought to further investigate 
the effects of negative emotion on reward outcome processing by 
employing a novel experimental design. In addition to ensuring 
that both the reward and emotion manipulations were concurrent 
and behaviorally relevant, we made the processing of the for-
mer contingent on the latter to achieve their effective integration 
within the paradigm (see Park et al., 2019 for a similar design in 
the context of a reward motivation task). Participants performed 
a simple two-choice task and either received a reward or a no-
reward outcome following their response (Figure 1). Specifically, 
the type of outcome was indicated by the presentation of a nega-
tive or neutral emotional scene stimulus in such a way that one 
of the valence categories indicated reward and the other indi-
cated no-reward. The instructed valence-outcome mapping was 
reversed during the second half of the experiment, resulting in 
an orthogonal manipulation with four unique valence-outcome 
combinations over the entire experiment. We presumed that since 
our design mandates processing of the emotional valence to deter-
mine the type of outcome (reward or no-reward), it would foster 
the integrated processing of reward and emotional information 
better than during the concurrent presentation of separate reward 
and aversive stimulus employed previously (Kim and Anderson, 
2020).

Using a region of interest (ROI) approach (Poldrack, 2007), 
we focused our analysis on the vmPFC, ventral striatum and 
amygdala which were commonly implicated in reward outcome 
processing (Liu et al., 2011; Bartra et al., 2013; Oldham et al., 
2018). In these targeted ROIs, in addition to the conventional 
univariate analysis, we performed multi-voxel pattern analysis 
(MVPA; Weaverdyck et al., 2020) to specifically probe how nega-
tive emotion modulates reward outcome processing. In several 
past fMRI studies of reward processing, MVPA techniques have 
been successful in revealing effects that were undetected in the 
standard univariate analysis (Kahnt et al., 2010; Vickery et al., 
2011; Yan et al., 2016) demonstrating their higher sensitivity

Fig. 1. Experimental design. In each trial, during the initial Choice phase, participants were asked to choose between a square or a triangle shape 
stimulus to maximize their bonus reward. The chosen option was highlighted in yellow. During the subsequent Outcome phase, a negative or neutral 
emotional scene stimulus was presented. The valence of the scene stimulus indicated whether the participant won a reward (‘REWARD’ outcome) or 
did not win any reward (‘NO-REWARD’ outcome). In Phase A, negative stimulus indicated a reward outcome and neutral stimulus indicated a 
no-reward outcome, and this valence-outcome mapping was reversed in Phase B. The order of Phase A and Phase B was counterbalanced across 
participants. In each trial, the Choice and Outcome phases were separated by a variable inter-stimulus interval (ISI), where a central white fixation 
cross was shown. Finally, each trial ended with a variable inter-trial interval (ITI) where the screen remained blank.
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(see Kahnt, 2018 for review). We hypothesized that in regions asso-
ciated with the encoding of common value/valence dimension 
such as the vmPFC, the multi-variate activity patterns of reward 
(vs no-reward) outcomes would be less discriminable when signaled 
by a negative relative to a neutral scene. In contrast, we expected 
a opposite pattern in regions that were reported to be sensitive 
to the arousal/salience dimension such as the amygdala, where 
multi-variate activity patterns of reward (vs no-reward) outcomes 
were expected to be more discriminable when signaled by a negative 
(vs neutral) scene.

Methods
For full information on Methods, please see Supplementary Material.

Participants
Thirty-six right-handed healthy adult volunteers (mean age: 
24.12 years, SD: 3.39, range: 19–32 years, 21 males) provided 
informed consent to participate in this fMRI study, approved by 
the Institutional Human Ethics Committee of the Indian Insti-
tute of Science and the Central Ethics Committee of the HCG 
(HealthCare Global Enterprises Ltd) Hospital, Bangalore.

Paradigm
Task and experimental design
We employed a simple two-choice task for this study. Each 
trial (Figure 1) started with a Choice phase (2 s), followed by a 
fixation cross that appeared for a jittered inter-stimulus-interval 
(ISI) of 2–6 s which was followed by the Outcome phase (2 s). 
Finally, a variable inter-trial interval (ITI) of 2–6 s was employed, 
during which a blank screen was presented. The ISI and ITI 
values were sampled from an exponential distribution favoring 
shorter intervals which allowed us to separately estimate the 
fMRI response during the Choice and Outcome phases (Serences,
2004).

During the Choice phase, the participants chose one of the 
two shape stimuli (a square and a triangle) presented side-by-side 
on the screen, and the chosen shape was highlighted follow-
ing the choice (Figure 1). Participants were instructed that their 
choice between the two shape stimuli will determine the sub-
sequent monetary bonus reward outcome and were asked to 
actively make choices to maximize their bonus reward. During the 
Outcome phase (Figure 1), a neutral or negative scene stimulus 
was presented on trials where participants chose one of the two 
shape stimuli during the initial Choice phase. Participants were 
instructed that the valence of the scene would indicate the type of 
outcome (reward outcome of Rs. 2 or no-reward outcome of Rs. 0). 
During one phase of the experiment (phase A), a negative scene 
indicated that their choice led to a reward outcome and a neutral 
scene indicated that it led to a no-reward outcome. This instructed 
mapping between the scene valence and the type of outcome 
was reversed during the other phase of the experiment (phase B). 
The order of phase A and phase B was counterbalanced across 
participants. Overall, our experiment resulted in four unique 
outcome conditions as part of a 2 Reward Outcome (reward, no-
reward) × 2 Emotion (negative, neutral) within-subjects factorial 
design. Of note, in our factorial design, when we refer to reward 
and no-reward outcomes in the ‘Negative’ condition, it means 
reward outcomes signaled by a negative image in one phase and 
no-reward outcomes signaled by a negative image in another 
phase, respectively. Likewise, when we refer to reward and no-
reward outcomes in the ‘Neutral’ condition, it means reward 

outcomes signaled by a neutral image in one phase and no-
reward outcomes signaled by a neutral image in another phase,
respectively.

Unbeknownst to the participants, the reward outcome on every 
trial was predetermined using a pseudo-randomized order (same 
for all participants) with the constraint that the same outcome 
was not repeated for more than three trials in a sequence. This 
was done to ensure an equal number of trials for the four unique 
outcome conditions in our factorial design. Although outcomes 
were predetermined, we included an initial choice phase in our 
paradigm (see Delgado et al., 2000; Tricomi et al., 2004) for a similar 
strategy) because previous work has reported that passive deliv-
ery of reward outcomes (i.e. without involving any instrumental 
choice or action context) did not activate regions of our inter-
est specifically the sub-cortical amygdala and ventral striatum 
(Elliott et al., 2004; Zink et al., 2004).

For each of the four outcome conditions, 36 trials were 
employed resulting in a total of 144 trials. These trials were 
divided into four runs (with 36 trials in each run) with two runs 
in each phase. Each run contained an equal number of predeter-
mined reward and no-reward outcome trials (18 trials of each). 
At the end of each run, the amount of bonus reward won in 
that particular run along with the cumulative bonus reward won 
until then was displayed to the participants. The instruction about 
the valence-outcome mapping changed between the two phases. 
Each phase began only after verbal confirmation by the experi-
menter that the participants clearly understood the instructed 
valence-outcome mapping. Finally, at the end of each phase, 
subjective ratings of pleasantness of the experienced reward/no-
reward outcomes were collected on a scale of 1–9 units. Example 
question: ‘Please rate how you felt when you received REWARD outcome 
signaled by a NEGATIVE image’ with labels ‘UNPLEASANT’ and 
‘PLEASANT’ at the extremities of the 1–9 scale.

ROI definitions
To enhance statistical power, we primarily focused on the ROI 
analysis in the vmPFC, bilateral ventral striatum, and bilateral 
amygdala that were commonly engaged during the process-
ing of reward outcomes (Bartra et al., 2013; Sescousse et al., 
2013; Oldham et al., 2018). The ROIs were selected from a 
recent meta-analysis of fMRI studies that examined reward (vs
no-reward) outcome-related processing separately from reward 
anticipation (Oldham et al., 2018). See Supplementary Material for
details.

Univariate analysis
For the individual-level analysis, the representative time-series 
data in each ROI was modeled using multiple linear regres-
sion (using 3dDeconvolve in AFNI) with the following task-related 
regressors. During the Choice phase, two regressors were included 
for square and triangle choices separately, and during the Out-
come phase, four regressors were included corresponding to each 
outcome type (Neutral-Reward, Neutral-NoReward, Negative-
Reward, Negative-NoReward). These six regressors were modeled 
for 2 s from the corresponding stimulus onset and convolved with 
a canonical gamma (GAM) variate hemodynamic response func-
tion model (Cohen, 1997). The Choice and Outcome phase regres-
sors of no response trials [pooled over all conditions; 0.78 ± 0.9 tri-
als (mean ± SD)], whenever applicable, were also included in the 
model as regressors of no interest. Additional regressors included 
in the GLM model were six estimated motion parameters, their 
derivatives, and polynomial regressors (of degrees 0–3) separately 
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for each run to account for baseline and drifts of the MR sig-
nal. Finally, we excluded volumes [0.6 ± 1.36% (mean ± SD)] with 
a frame-to-frame displacement of >1.5 mm Euclidean distance 
(half of the original voxel size; Siegel et al., 2014) from the GLM 
analysis (using the censor option in 3dDeconvolve).

For the group-level analysis, our primary focus in this study 
was on the Outcome phase of the task. Hence, for each ROI, 
estimated beta coefficients of the four outcome regressors were 
submitted to a 2 Reward Outcome (reward, no-reward) × 2 Emotion
(negative, neutral) repeated-measures ANOVA using JASP soft-
ware (Love et al., 2019). Accounting for multiple comparisons 
using the Bonferroni correction for the number of ROIs tested, the 
P-value was set at 0.01 for these analyses for an overall α-value of 
0.05.

Multi-voxel pattern analysis
Our primary motivation for employing MVPA in this study was to 
capitalize on its sensitivity to across voxels variability (which is 
discarded in the univariate analysis) and its lower sensitivity to 
between-subject variability (which is the primary source of vari-
ability in univariate analysis) that may lead to better detection 
of effects of interest when compared to the standard univariate 
analysis (Davis et al., 2014). Specifically, we employed decod-
ing analysis using a linear support vector machine classifier in 
our targeted ROIs (Weaverdyck et al., 2020). We were primarily 
interested in probing if the ability to classify multi-variate activ-
ity patterns of reward vs no-reward outcomes differs based on 
whether negative or neutral scenes signaled those outcomes. A 
significant difference in classification accuracies between neg-
ative and neutral conditions would be indicative of emotional 
modulation during the reward outcome processing.

Estimation of single-trial activity
Decoding analysis was performed using single-trial activity (i.e. 
beta) estimates of the four outcome conditions. For each ROI, the 
single-trial beta estimation was performed on the representative 
timeseries data in a GLM framework using 3dLSS command in 
AFNI (See Supplementary Material for details).

Decoding analysis
As noted above, in each of our targeted ROIs, we were primar-
ily interested in probing whether the ability to classify reward 
vs. no-reward outcomes was modulated by the valence of the 
emotional scenes that signaled them. At first, decoding anal-
ysis was performed in each participant to classify reward vs
no-reward outcomes separately in each valence condition that 
indicated the outcome (i.e. negative and neutral). The following 
classification was implemented in the five targeted ROIs (Table 2), 
using custom MATLAB scripts with functions from The Decod-
ing Toolbox (Hebart et al., 2015). In each ROI, the reward vs
no-reward outcomes were classified using a linear support vec-
tor machine algorithm (default cost parameter C = 1) separately
in each valence condition. For cross-validation, leave-one-trial-
out approach was used where the classifier was trained with 
multi-variate activity patterns of reward and no-reward outcome 
trials and classification accuracy was calculated on a single left-
out pair of reward and no-reward trials in each fold. In each 
valence condition, the average classification accuracy across folds 
was computed and was considered as cross-validation accuracy. 
Then, in each valence condition, the cross-validation accuracies 
were averaged across participants to get group-level average clas-
sification accuracy. Secondly, concerning our primary research 

question of interest, cross-validation accuracies were compared 
between valence conditions. To do so, for each ROI, difference in 
cross-validation accuracies between negative and neutral condi-
tions was calculated in each participant, and then averaged across 
participants to get group-level average differential classification
accuracy.

In each ROI, for assessing statistical significance of the 
cross-validation accuracies, we followed the non-parametric 
permutation-based testing advised in Stelzer et al. (2013), which 
was employed in several recent studies (e.g. Palenciano et al., 
2019). See Supplementary Material for details.

Pleasantness ratings analysis
To probe for potential modulatory effect of negative (vs neutral) 
emotion on the subjective ratings of pleasantness, the ratings col-
lected for each of the four outcome conditions were submitted to 
a 2 Reward Outcome (reward, no-reward) × 2 Emotion (negative, neu-
tral) repeated-measures ANOVA using JASP software. The P-value 
was set at 0.05 for this analysis.

Behavioral choice measures
Since participants were instructed that their choice of the shape 
stimulus determines the reward outcome, the proportion of 
square and triangle choices was calculated separately during each 
phase of the main experiment. As noted previously, in one phase, 
negative and neutral stimuli signaled reward and no-reward out-
comes respectively, and in the other phase this valence-outcome 
mapping was reversed. Additionally, in each of these phases, 
the proportion of rewarded trials following square and triangle 
choices was computed to confirm that the choices did not differ 
in their expected reward values. In case of each metric, the aver-
age value across participants was statistically compared against 
the chance value (50%) using a one-sample t-test. The P-value was 
set at 0.05 for this analysis.

Results
fMRI univariate analyses
The central aim of this study was to assess the influence of neg-
ative emotion on reward outcome processing. To probe this, in 
each targeted ROI, we performed a 2 Reward Outcome (reward, 
no-reward) × 2 Emotion (negative, neutral) repeated-measures 
ANOVA on the beta estimates of the four outcome conditions. As 
expected, a strong main effect of Reward Outcome was detected 
in all the ROIs, with activity during the reward outcomes being 
higher than that of the no-reward outcomes (Figure 2, Table 1). 
A main effect of Emotion was observed in the bilateral amygdala 
such that the activity during the negative scenes was higher than 
that of the neutral scenes (Figure 2, Table 1). Crucially, the effect 
of primary interest, the interaction between Reward Outcome and 
Emotion, was not detected in any of the ROIs.

For completeness, we also report the 2 Reward Outcome (reward, 
no-reward) × 2 Emotion (negative, neutral) repeated-measures 
ANOVA results from whole-brain voxel-wise univariate analysis 
in the Supplementary Material (Figures S2 and S3; Tables S3 and 
S4). We did not detect any clusters exhibiting Reward Outcome × 
Emotion interactions.

fMRI multi-voxel pattern analyses
First, we performed MVPA-decoding analysis to test whether 
reward vs no-reward outcomes can be classified separately under 
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Fig. 2. Univariate fMRI analysis results from the targeted ROIs in (A) ventro-medial prefrontal cortex (vmPFC), (B) left ventral striatum, (C) right ventral 
striatum, (D) left amygdala and (E) right amygdala. For each ROI, the bar plot shows the average group-level estimates of the four outcome conditions 
of interest. The error bars represent within-subject error bars based on O’Brien and Cousineau (2014)

Table 1. Univariate ROI analysis results from the 2 Reward Outcome (reward, no-reward) × 2 Emotion (negative, neutral) repeated-measures 
ANOVA

 Main effect: Reward outcome  Main effect: Emotion  Interaction effect: Reward outcome * Emotion

ROI name F(1,35) P-value F(1,35) P-value F(1,35) P-value

Ventromedial PFC 15.362 <0.001 0.064 0.801 1.713 0.199
Left ventral striatum 39.719 <0.001 3.732 0.061 0.074 0.787
Right ventral striatum 30.967 <0.001 3.073 0.088 1.718 0.199
Left amygdala 9.125 0.005 45.629 <0.001 1.367 0.250
Right amygdala 18.744 <0.001 61.12 <0.001 0.458 0.503

Table 2. MVPA ROI-decoding analysis results

Negative condition Neutral condition Negative minus Neutral

S. No. ROI name

Classification 
accuracy
(Mean ± SE) P-value

Classification 
accuracy
(Mean ± SE) P-value

Classification 
accuracy difference
(Mean ± SE) P-value

1 Ventromedial 
PFC

53.67 ± 1.28 1.00E-04 58.46 ± 1.46 <0.00001 −4.79 ± 1.96 1.00E-04

2 Left ventral 
striatum

58.76 ± 1.61 <0.00001 56.17 ± 1.78 <0.00001 2.59 ± 2.09 0.122

3 Right ventral 
striatum

60.28 ± 1.48 <0.00001 56.04 ± 1.61 <0.00001 4.24 ± 2.06 0.015

4 Left amygdala 56.08 ± 1.50 <0.00001 53.63 ± 1.36 1.00E-04 2.45 ± 2.04 0.086
5 Right amygdala 58.35 ± 1.38 <0.00001 55.51 ± 1.40 <0.00001 2.84 ± 1.59 0.062

the neutral and negative valence conditions. We observed that the 
classification accuracy was above the chance performance in all 
five ROIs under negative and neutral conditions (Table 2). Then, 
we tested whether reward vs no-reward outcome classification 
accuracy differed based on the emotional valence of the image 
that signaled the outcomes, which is of primary interest to our 
hypothesis. We observed the following (Figure 3, Table 2): (i) in 
vmPFC, the reward vs no-reward classification accuracy decreased
under negative compared to the neutral condition; (ii) in the right 
ventral striatum, the classification accuracy increased under neg-
ative compared to the neutral condition (a similar pattern was 
also observed in the left ventral striatum but was not statisti-
cally significant) and (iii) in bilateral amygdala, the classification 
accuracy numerically increased under negative compared to the 
neutral condition but was not statistically significant.

Pleasantness ratings analysis
The 2 Reward Outcome (reward, no-reward) × 2 Emotion (negative, 
neutral) repeated-measures ANOVA of subjective ratings revealed 
a main effect of Reward Outcome [F(1,35) = 35.487; P < 0.001], where 
higher pleasantness ratings were reported for reward compared 
to no-reward outcomes (Table 3). Neither the main effect of Emo-
tion [F(1,35) = 0.278; P = 0.602] nor the interaction between Reward 
Outcome and Emotion were detected [F(1,35) = 0.226; P = 0.638].

Behavioral choice measures
Across both phases of the main experiment, participants exhib-
ited a high response rate (mean: 99.22%; SD: 0.9%) indicating that 
they were attentive to the choice task. In both Phase A and Phase B, 
the choice proportions of the square and the triangle stimuli did not 
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Fig. 3. Reward vs no-reward outcome classification accuracies from MVPA-decoding analysis in the targeted ROI. The error bars represent 
within-subject error bars based on O’Brien and Cousineau (2014). Asterisk indicates a significant difference between the reward vs no-reward outcome 
classification accuracies of negative and neutral emotion conditions assessed using the non-parametric permutation-based testing. vmPFC: 
ventro-medial prefrontal cortex; VS: ventral striatum; Amyg: amygdala.

Table 3. Pleasantness ratings of the four outcome conditions on a 
scale of 1–9 with 1 being Unpleasant and 9 being Pleasant

Condition Mean ± SD

No-Reward Outcome signaled by a Neutral image 4.00 ± 1.87
Reward Outcome signaled by a Neutral image 6.17 ± 2.09
No-Reward Outcome signaled by a Negative image 4.14 ± 1.91
Reward Outcome signaled by a Negative image 6.47 ± 1.99

differ from 50% across the participants (Table 4), indicating that 
the choice pattern was not skewed towards any single stimulus. 
Additionally, we also computed the proportions of reward out-
comes following square and triangle choices in both phases and 
found them not to significantly differ from the chance level (Table 
4). This result confirmed that the reward outcome expectancies 
for the two choices were not skewed in favor of one over the other. 

Discussion
In the present fMRI study, using a novel experimental design 
where emotional valence indicated the type of outcome, we 
investigated the influence of negative emotion during reward 
receipt. We focused our analysis in a set of ROIs involving vmPFC, 
bilateral ventral striatum, and bilateral amygdala that were fre-
quently implicated in reward outcome processing. Based on the 

proposals that the usually referred core dimensions of reward and 
emotion have commonalities between them (Cromwell et al., 2020; 
Sander and Nummenmaa, 2021), we expected negative emotion 
would modulate reward outcome signatures along those common 
dimensions. In vmPFC, using MVPA decoding analysis, we found 
evidence consistent with the reduced discriminability of reward 
(vs no-reward) outcome signatures when signaled by a negative 
relative to a neutral image, suggesting an emotional modulation 
of reward outcome processing along the common value/valence 
dimension.

Extensive previous work conducted separately in reward and 
emotion domains has implicated vmPFC in the coding of value 
and valence dimensions, respectively (Bartra et al., 2013; Lindquist 
et al., 2016). More importantly, by including both the reward 
outcome and emotion manipulations in the same set of par-
ticipants, Smith et al. (2010) has reported that fMRI activity in 
vmPFC represents a common neural currency for the coding of the 
value/valence dimension (also see Sescousse et al., 2013). Based on 
the notion of this common value/valence dimension, we hypoth-
esized that the signatures of reward (vs no-reward) outcomes 
would become less discriminable when signaled by negative rel-
ative to neutral emotional scenes in vmPFC. In line with our 
hypothesis, we found that the classification accuracy of decoding 
reward vs. no-reward outcomes was lower in the negative rela-
tive to the neutral condition. Multiple past fMRI studies employing 
MVPA have reported successful decoding of reward outcomes in 
the vmPFC (Kahnt et al., 2010; Vickery et al., 2011; Yan et al., 

Table 4. Behavioral choice measures during the main experiment. In Phase A, negative stimulus signaled a reward outcome and neutral 
stimulus signaled a no-reward outcome. In Phase B, neutral stimulus signaled a reward outcome and negative stimulus signaled a 
no-reward outcome. The t(35) and corresponding P-values are based on a one sample t-test against the chance value (50%)

 Phase A  Phase B

Condition Mean ± SD (%) t(35) P-value Mean ± SD (%) t(35) P-value

Square choices 51.43 ± 9.08 0.94 0.35 50.46 ± 9.73 0.28 0.78
Triangle choices 47.92 ± 8.82 −1.42 0.16 48.61 ± 9.57 −0.87 0.39
Square choices that led to reward outcome 49.01 ± 5.64 −1.06 0.30 50.54 ± 5.65 0.57 0.57
Triangle choices that led to reward outcome 51.00 ± 6.14 0.98 0.33 48.74 ± 6.35 −1.19 0.24
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2016). Our findings indicate that such an ability to classify multi-
voxel fMRI activity patterns of reward and no-reward outcomes 
in vmPFC decreased when the outcomes were signaled by negative 
compared to neutral scenes revealing emotional modulation of 
the reward outcome processing.

In addition to vmPFC, we also investigated the influence of 
negative emotion on reward outcome processing in the amyg-
dala. Based on the separate set of fMRI findings from emotion 
and reward domains that support the notion that responses in 
the amygdala are sensitive to the arousal/salience dimension 
(Sergerie et al., 2008; Sabatinelli et al., 2011; Sescousse et al., 2013; 
Lindquist et al., 2016), we hypothesized that signatures of reward 
(vs no-reward) outcome processing would be more discriminable 
when signaled by negative (vs neutral) emotional scenes. In the 
MVPA analysis, in line with our prediction, classification accu-
racy of reward vs no-reward outcomes was numerically higher in 
the negative (relative to neutral) condition in the bilateral amyg-
dala, but not statistically significant. Clearly, additional studies 
are required to further assess the effects of negative emotion on 
reward outcome processing in the amygdala.

As noted in the ‘Introduction’ section, some recent attempts 
at probing for inhibitory influence of aversive stimuli on reward 
outcome processing yielded null findings (Gorka et al., 2018; Kim 
and Anderson, 2020). A few observations could be made regard-
ing the design elements of the above studies that might have 
reduced their ability to detect the hypothesized effects. First, in 
Gorka et al. (2018), although reward outcomes were delivered 
based on task performance, aversive shock stimulation was deliv-
ered independent of performance. Hence, the salient nature of 
performance-contingent reward outcomes (Tricomi et al., 2004; 
Zink et al., 2004) might have been resistant to any adverse influ-
ence of anticipating a behaviorally irrelevant aversive shock. 
Secondly, in the study by Kim and Anderson (2020), both the 
reward outcome and aversive shock were delivered concurrently 
and contingent on the participant’s choice making them behav-
iorally relevant. However, as the authors noted, maybe their 
concurrent mode of presentation, where they were delivered 
via two different sensory modalities (visual text information for 
revealing monetary reward outcome and tactile stimulation for 
shock), might not have been potent enough to result in inhibitory
interactions.

Specifically, compared to Kim and Anderson (2020), we made 
two major changes in the design and analysis strategy of the 
present study. First, in terms of experimental design, we ensured 
tighter coupling between reward and emotion manipulations 
by making the valence of the emotional scenes indicate the 
reward/no-reward outcomes rather than the concurrent pre-
sentation of the separate reward and aversive stimulus. The 
robust main effect of reward outcome in the univariate analy-
sis (see Table 1) confirms that participants effectively employed 
the instructed valence-outcome mapping resulting in greater 
responses during reward compared to no-reward outcomes in 
all the ROIs that were frequently reported to be engaged during 
reward receipt (Bartra et al., 2013; Sescousse et al., 2013; Oldham 
et al., 2018). However, univariate analysis did not reveal interac-
tions between emotion and reward outcome processing in any 
of the ROIs (Table 1), indicating that the major change made 
in our experimental design alone was insufficient. Secondly, we 
employed MVPA, which has higher sensitivity compared to the 
standard univariate analysis (Davis et al., 2014; Kahnt, 2018). 
Specifically, in the context of reward outcome processing, several 
fMRI studies which employed MVPA reported higher sensitivity in 

detecting the effects of interest (Kahnt et al., 2010; Vickery et al., 
2011; Yan et al., 2016). In the present study, unlike the standard 
univariate analysis, the MVPA-decoding analysis detected the 
hypothesized modulatory effects of negative emotion on reward 
outcome processing in the vmPFC. Simulations conducted by 
Davis and colleagues (Davis et al., 2014) have shown that MVPA 
analysis is sensitive to the magnitude of voxel-level variability in 
the effect of interest (i.e. reward vs no-reward outcomes effect 
in the present study) within subjects, even when the sign of the 
effect remains the same in each voxel. Moreover, MVPA is insensi-
tive to subject-level variability in mean activation across an ROI, 
which is the primary source of variance in the standard univari-
ate analysis. Thus, it is possible for a true but weak effect to 
remain undetected in a univariate analysis but could be picked up 
in an MVPA analysis specifically in cases of large across-subject 
variability (Davis et al., 2014). Overall, our novel experimental 
design combined with MVPA uncovered the influence of negative 
emotion on reward outcomes.

Although the observed emotional modulation of reward out-
come processing in the vmPFC was attributed to interaction along 
a common value/valence dimension, vmPFC was also implicated 
in processing pleasure that might have elicited during reward 
receipt (Kühn and Gallinat, 2012; Berridge and Kringelbach, 2015). 
In the subjective ratings of pleasantness collected in the present 
study, we found the main effect of reward outcome where par-
ticipants reported higher pleasantness during the experience of 
reward (vs no-reward) outcomes. However, of primary interest, 
interaction effects were not detected, suggesting a lack of emo-
tional modulation of pleasure associated with processing reward 
outcomes. Of note, because of time constraints in the MRI setup, 
we had collected only one pleasantness rating for each of the four 
valence-outcome conditions. Hence, the null interaction effects 
observed with these single rating scores should be interpreted 
with caution. Future studies may collect pleasantness ratings of 
experienced outcomes on each trial (see Sescousse et al., 2010; 
Buchel et al., 2018), and correlate those ratings with vmPFC 
responses to further characterize the nature of the observed 
interaction.

One limitation of the present study that merits discussion is 
the inability of our experimental design to tease apart the process-
ing of experienced reward value from prediction errors that signal 
the discrepancy between received and expected reward outcomes. 
Given that our task did not involve any orthogonal manipula-
tion of reward predictability following the Choice phase, positive 
and negative reward prediction errors of equal magnitude were 
expected to be generated during reward and no-reward outcomes, 
respectively. This would result in a high correlation between the 
prediction error signals and outcome value signals in our design. 
Hence, the current study cannot provide unequivocal evidence for 
the emotional modulation of reward value vs prediction error sig-
nals in our regions of interest. However, some past fMRI studies 
that employed ingenious experimental paradigms to tease apart 
the value from prediction error signals have implicated vmPFC in 
the coding of experienced reward value, whereas the ventral stria-
tum is believed to be involved in encoding reward prediction errors 
(Pagnoni et al., 2002; Hare et al., 2008; Rutledge et al., 2010; Rohe 
et al., 2012). In the MVPA analysis, we found that the classification 
accuracy of decoding reward vs no-reward outcomes was higher 
under negative compared to neutral valence condition in the right 
ventral striatum. We speculate that negative emotion might have 
modulated the coding of reward prediction errors in the (right) 
ventral striatum. The enhanced decoding accuracy in the negative 
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condition could also be attributed to the possibility of a non-
specific increase in overall arousal and attention in the presence 
of salient negative (relative to neutral) images, which is sup-
ported by some previous work that implicated ventral striatum in 
saliency processing (Zink et al., 2004; Jensen and Walter, 2014; but 
see Sabatinelli et al., 2007). Nevertheless, we expect future stud-
ies to include explicit manipulations of reward predictability to 
delineate how emotional information modulates prediction error 
and other value/salience related signals in the ventral striatum 
(see Watanabe et al., 2013).

One potential caveat while interpreting the null interaction 
effects in our standard univariate ROI analysis is worth men-
tioning. As noted earlier, we observed a robust main effect of 
reward in all our ROIs (and also in the retrospective subjective 
ratings data), attesting to the effectiveness of our reward manip-
ulation. However, we did not detect a main effect of negative 
(vs neutral) valence in the univariate ROI analysis and subjective 
ratings. The lack of evidence for our emotional manipulation sug-
gests that the brief presentation of a negative emotional image 
might not have been sufficient to transiently induce negative 
affect to interfere with the reward outcome processing, contribut-
ing to the weaker interaction effects. Hence, more potent affect 
manipulations employing other intense aversive stimuli or nega-
tive mood induction could allow one to detect the hypothesized 
interaction effects even in the standard univariate analysis. Nev-
ertheless, the strong effect of reward (vs no-reward) outcomes 
independent of whether a negative or neutral valenced image 
signaled them suggests that the neurocircuitry of consumma-
tory reward processing is reasonably robust to the particular 
visual features and connotations of the stimulus signaling the
outcome.

In the present study, we employed negative stimuli to specif-
ically examine the emotional modulation of reward outcome 
signatures when signaled by valence-incompatible images. Future 
work could complement these findings by investigating how sig-
naling outcomes by valence-compatible images (i.e. positive stim-
uli) would influence the reward outcome signatures in vmPFC 
and other brain regions. Although some previous fMRI studies 
have included both monetary rewards and erotic images as out-
comes in their task paradigms (Sescousse et al., 2010; Buchel et al., 
2018), they were presented on separate trials leaving the question 
of how positive emotion modulates reward outcome signatures 
unexplored. Of note, one previous ERP study reported that con-
current presentation of an incidental happy (relative to neutral) 
emotional facial stimulus enhanced the coding of monetary loss 
(vs gain) outcomes as reflected in the feedback-related negativity 
(FRN) component (Bandyopadhyay et al., 2019).

In conclusion, using a novel experimental design combined 
with MVPA, our study demonstrated the emotional modulation 
of reward outcome processing in the human brain. Specifically, 
in vmPFC, decoding analysis revealed reduced discriminability 
of reward (vs no-reward) outcome signatures when signaled by 
a negative relative to a neutral emotional stimulus. Extending 
the notion of the commonality between the core dimensions of 
reward and emotion (Cromwell et al., 2020; Sander and Nummen-
maa, 2021), the MVPA results in vmPFC elucidated how negative 
emotion modulates reward outcome processing along the com-
mon value/valence dimension. These findings advance our lim-
ited understanding of the basic brain mechanisms underlying the 
influence of negative emotion during the consummatory phase 
of reward processing, with potential implications for mental ill-
nesses such as anxiety and depression (Dillon et al., 2014; Rolls 
et al., 2020).
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