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NON-ADMISSIBLE IRREDUCIBLE REPRESENTATIONS OF

p-ADIC GLn IN CHARACTERISTIC p

EKNATH GHATE, DANIEL LE, AND MIHIR SHETH

Abstract. Let p > 3 and F be a non-archimedean local field with residue field
a proper finite extension of Fp. We construct smooth absolutely irreducible
non-admissible representations of GL2(F ) defined over the residue field of F
extending the earlier results of the authors for F unramified over Qp. This con-
struction uses the theory of diagrams of Breuil and Paškūnas. By parabolic
induction, we obtain smooth absolutely irreducible non-admissible representa-
tions of GLn(F ) for n > 2.

1. Introduction

Let p be a prime number. This note concerns the smooth representation the-
ory of (connected) p-adic reductive groups over coefficient fields of characteristic
p initiated in [2]. This theory has its origins in the study of congruences between
automorphic forms and plays an important role in the mod p Langlands program
proposed by Breuil [5]. In our context, smooth means that the stabilizers of vec-
tors are open subgroups. Spaces of automorphic forms provide natural sources of
smooth representations which are also admissible, i.e., the space of vectors invari-
ant under any compact open subgroup is finite-dimensional. Over characteristic
0 fields, building upon Harish-Chandra’s work [10], Jacquet [15] and Bernstein [4]
showed that any irreducible (or finite length) smooth representation of a p-adic
reductive group is automatically admissible by reducing to the supercuspidal case.
Vignéras extended this result to base fields of positive characteristic different from
p [21]. The proofs use Haar measures which do not exist in characteristic p. Nev-
ertheless, [1, Question 1] asked whether a similar result holds in characteristic p.
It is not hard to see that smooth irreducible representations of p-adic reductive
groups which are anisotropic modulo center are finite-dimensional. Berger showed
that any irreducible representation of GL2(Qp) over an algebraically closed field of
characteristic p admits a central character [3]. Barthel-Livné and Breuil classified
the irreducible representations of GL2(Qp) over an algebraically closed field of char-
acteristic p with central character [2, 5] and a direct computation shows that each
such representation is admissible. Together these results imply that any absolutely
irreducible representation of GL2(Qp) over a field of characteristic p is admissi-
ble. Recently, the authors [8, 16] used the theory of diagrams developed by Breuil
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and Paškūnas [6, 18] to construct absolutely irreducible smooth representations of
GL2(F ) in characteristic p which are not admissible when F is a proper finite
unramified extension of Qp and p > 2 (see also [9]). This naturally leads one to
ask which p-adic reductive groups admit irreducible non-admissible representations.
Here, we focus on the case of GLn(F ).

Theorem 1.1. Let p > 3 and n ≥ 2. Let F be a non-archimedean local field with
residue field a proper finite extension of Fp. Then there is an absolutely irreducible
non-admissible smooth representation of GLn(F ) defined over the residue field of
F .

The hypothesis in Theorem 1.1 that the residue field of F is not Fp cannot be
entirely removed given the results of Berger, Barthel-Livné, and Breuil above (see
also Remark 3.2). Following the methods of [16], we also have a counterexample to
a Schur-type lemma for irreducible representations of GL2(F ).

Theorem 1.2. Let p > 3 and F be a non-archimedean local field with residue field
a proper finite extension of Fp. Then there is an irreducible smooth representation
of GL2(F ) over the residue field of F whose endomorphism algebra contains an
algebraically closed field.

We prove Theorem 1.1 by first constructing smooth absolutely irreducible non-
admissible representations for GL2(F ). The construction is uniform and provides
a new construction in the cases when F is an unramified extension of Qp. By
parabolically inducing non-admissible irreducible representations of GL2(F ), we
obtain such representations of GLn(F ) for n > 2. The proof of the irreducibility
of induced representations uses Herzig’s comparison isomorphism between compact
and parabolic inductions. We remark that the non-admissible irreducible represen-
tations constructed here have a central character. The ones for GL2(F ) are nec-
essarily supersingular by the classification of Barthel-Livné. The ones for GLn(F )
with n > 2 are, by contrast, not supersingular.

The reason for restricting to unramified extensions of Qp in our earlier works is
that we used some of the results of [6] relying on delicate Witt vector computa-
tions to prove the irreducibility. Recently, one of us [20] introduced cyclic modules
to circumvent the irreducibility arguments of [6] and constructed infinitely many
supercuspidal representations of GL2(F ) with fixed central character under the
assumptions in Theorem 1.1. Our construction of an irreducible non-admissible
representation of GL2(F ) involves splicing two cyclic modules together. The re-
sulting diagram is quite different from the diagrams appearing in [6, 8, 16], namely
the GL2(OF )-subrepresentation generated by a pro-p Iwahori fixed eigenvector can
have reducible socle. This construction was inspired by similar features of the mod
p cohomology of U(3) arithmetic manifolds (see [17]). Finally, one of the motiva-
tions for our construction is a recent conjecture of Emerton, Gee, Hellmann, and
Zhu [7, Conjecture 2.4.3] stating that there should exist a fully faithful functor from
the category of smooth representations of GLn(F ) to the category of quasicoherent
sheaves on an appropriate moduli stack of Langlands parameters. The existence
of irreducible non-admissible smooth GLn(F )-representations should have an inter-
pretation in terms of the geometry of this moduli stack. We hope to return to this
in future work.

Notation and convention. Let p > 3 be a prime number. Let Fp be the algebraic

closure of the finite field Fpf of size pf . Fix an embedding Fpf ↪→ Fp. Let F be a
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non-archimedean local field of residual characteristic p and residue degree f > 1.
Let OF ⊆ F be the valuation ring with a uniformizer �. Throughout the note,
except for the last part, we work with the group GL2(F ). Let G = GL2(F ),
K = GL2(OF ), Γ = GL2(Fpf ), and Z be the center of G. Let B and U be the
subgroups of Γ consisting of the upper triangular matrices and the upper triangular
unipotent matrices respectively. Let I and I(1) be the preimages of B and U
respectively under the reduction modulo � map K � Γ. The subgroups I and
I(1) of K are the Iwahori and the pro-p Iwahori subgroup of K respectively. The
normalizer N of I in G is a subgroup generated by I and Π = ( 0 1

� 0 ). Note that
N is also the normalizer of I(1) in G. Let K(1) denote the kernel of the map
K � Γ, i.e., the first principal congruence subgroup of K. Unless stated otherwise,
all representations considered in this note are on Fp-vector spaces.

A weight is an irreducible representation of Γ. Any weight is of the form of⎛
⎝f−1⊗

j=0

SymrjF
2

p ◦ Φj

⎞
⎠⊗ detm

for some integers 0 ≤ r0, . . . , rf−1 ≤ p− 1 and 0 ≤ m ≤ pf − 2, where Φ : Γ → Γ is

the automorphism induced by the Frobenius map α �→ αp on Fpf and det : Γ → F×
pf

is the determinant character. We denote such a weight by r ⊗ detm where r is the
f -tuple (r0, . . . , rf−1) of integers. Let σ = r ⊗ detm be a weight; its subspace
σU of U -fixed vectors is 1-dimensional and stable under the action of B because
B normalizes U . The resulting B-character, denoted by χ(σ), sends

(
a b
0 d

)
∈ B

to ar(ad)m where r =
∑f−1

j=0 rjp
j . Any B-character valued in F

×
p factors through

the quotient B/U which is identified with the subgroup of diagonal matrices in
B by the section B/U → B, ( a 0

0 d )U �→ ( a 0
0 d ). For a B-character χ, let χs be

the inflation to B of the conjugation-by-s character t �→ χ(sts−1) on B/U where
s = ( 0 1

1 0 ). We say that a weight is generic if it is not equal to (0, 0, . . . , 0)⊗detm or
(p−1, p−1, . . . , p−1)⊗detm for anym. The map σ �→ χ(σ) gives a bijection from the
set of generic weights to the set of B-characters χ such that χ 
= χs. If σ is a generic
weight, let us denote by σ[s] the generic weight corresponding to the character χ(σ)s.
For σ = r ⊗ detm, we have σ[s] = (p − 1 − r0, . . . , p − 1 − rf−1) ⊗ detm+r. For a
B-representation V and a character χ, we denote by V χ the χ-isotypic component
of V . We refer the reader to [2, §1] for all non-trivial assertions in this paragraph.

Given two weights σ and τ , let E(σ, τ ) be the unique non-split Γ-extension

0 −→ σ −→ E(σ, τ ) −→ τ −→ 0

of τ by σ whenever it exists [6, Corollary 5.6]. A finite-dimensional representation
of Γ is said to be multiplicity-free if the multiset of its Jordan-Hölder factors is
multiplicity-free. For any group H, the socle and the cosocle of an H-representation
π are denoted by socHπ and cosocHπ respectively.

Note that a weight is a smooth irreducible representation of K (resp. of KZ)
and a B-character is a smooth I-character (resp. IZ-character) via the map K � Γ
(resp. KZ � Γ). In fact, the weights exhaust all smooth irreducible representations
of K (resp. of KZ such that � acts trivially). In the last section, we also talk
of M(OF )-weights for a Levi subgroup M ⊆ GLn which mean smooth irreducible
representations of M(OF ).
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2. The spliced module

We recall some notation from [20, §1] that is used in this section. Let (Z± x)f be
the set of f -tuples of linear polynomials in x having integral coefficients with leading
coefficient ±1. For λ = (λ0(x), . . . , λf−1(x)) and λ′ = (λ′

0(x), . . . , λ
′
f−1(x)) ∈

(Z± x)f , let

λ ◦ λ′ := (λ0(λ
′
0(x)), . . . , λf−1(λ

′
f−1(x))) ∈ (Z± x)f .

Let μ ∈ (Z± x)f be the f -tuple of polynomials defined by

μ0(x) := x− 1,

μ1(x) := p− 2− x,

μj(x) := p− 1− x for 2 ≤ j ≤ f − 1.

When f = 2, the condition 2 ≤ j ≤ f − 1 is empty and μ = (μ0(x), μ1(x)) =
(x− 1, p− 2− x). Let g ∈ Sf denote the cyclic permutation (123 . . . f), and let

μ(k) := gk−1μ ◦ gk−2μ ◦ . . . ◦ gμ ◦ μ for all 1 ≤ k ≤ l,

where l is equal to f (resp. 2f) if f is odd (resp. even). We let μ(0) = (x, x, . . . , x).
It follows from the definition of μ(k) that, for 1 ≤ k ≤ l,

(2.1) μ
(k)
j (x) =

⎧⎪⎨
⎪⎩
μ
(k−1)
j (x)− 1 if j ≡ 1− k mod f ,

p− 2− μ
(k−1)
j (x) if j ≡ 2− k mod f ,

p− 1− μ
(k−1)
j (x) otherwise.

Recall from [20, Lemma 1.4 (1)] that μ(l) = μ(0) = (x, x, . . . , x). We assign to μ(k)

an element m(k) ∈ (Z/2Z)f according to the rule that its jth entry m
(k)
j is 0 if and

only if the sign of x in μ
(k)
j (x) is +.

Lemma 2.1.

(1) For all 1 ≤ k ≤ l, m(k) = gkm(l−k).
(2) For 1 ≤ k1, k2 ≤ l− 1 and k1 
= k2, m

(k1) and m(k2) are (cyclic) permuta-
tions of each other if and only if k2 = l − k1.

(3) For 1 ≤ k ≤ l − 1, k 
= l
2 if f is even, m(k) is not equal to any of its

non-trivial cyclic permutations.

Proof. (1) By definition, m(k) =
∑k−1

i=0 gim(1). Since m(l) = (0, 0, . . . , 0), we
have

l−1∑
i=0

gim(1) = (0, 0, . . . , 0).

Thus,

k−1∑
i=0

gim(1) + gk
l−k−1∑
i=0

gim(1) = (0, 0, . . . , 0), i.e., m(k) + gkm(l−k) = (0, 0, . . . , 0).

Since an element of (Z/2Z)f is equal to its additive inverse, (1) follows.
(2) If m(k1) and m(k2) are (cyclic) permutations of each other for 1 ≤ k1, k2 ≤

l − 1, then the tuples m(k1) and m(k2) have the same number of 0’s. When f is
odd (resp. even), the number of 0’s in m(k) for odd k equals k (resp. k if k ≤ l

2

and l − k if k > l
2 ), and the number of 0’s in m(k) for even k equals l − k (resp.
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l
2 − k if k ≤ l

2 and k − l
2 if k > l

2 ). Hence, it follows that if m(k1) and m(k2) are
(cyclic) permutations of each other, then either k1 = k2 or k2 = l− k1. This proves
the forward implication. The converse statement follows from (1).

(3) By (1), it is enough to show (3) for 1 ≤ k ≤ f − 1. Now, (3) follows from
the observation that for 1 ≤ k ≤ f − 1, the tuple m(k) is a cyclic permutation of a
tuple of the form k 0’s followed by (f − k) 1’s (resp. (f − k) 0’s followed by k 1’s)
for odd (resp. even) k.

�

Lemma 2.2. {μ(1),μ(2), . . . ,μ(l−1),μ(l), gμ(1), gμ(2), . . . , gμ(l−1)} is a set of dis-
tinct f -tuples in (Z± x)f .

Proof. By [20, Lemma 1.4 (2)], it is enough to prove that μ(k1) 
= gμ(k2) for 1 ≤
k1, k2 ≤ l − 1. If μ(k1) = gμ(k2) for some 1 ≤ k1, k2 ≤ l − 1, then we have
m(k1) = gm(k2) for the corresponding elements in (Z/2Z)f . We now find all the
pairs (k1, k2) satisfying m(k1) = gm(k2). If k1 = k2 = k, then m(k) = gm(k). By
Lemma 2.1 (3), it follows that f is even and k = f = l

2 . If k1 
= k2, we use Lemma

2.1 (1) and (2) to find that m(l−k1) = gk1−1m(l−k1). By Lemma 2.1 (3), gk1−1

must be the identity permutation. This gives k1 = 1 (resp. k1 = 1 or l
2 + 1) for

odd (resp. even) f . Therefore, the pairs (k1, k2) satisfying m(k1) = gm(k2) are

(1) (1, l − 1) if f is odd,
(2) (1, l − 1), ( l

2 + 1, l
2 − 1), ( l

2 ,
l
2 ) if f is even.

In Case (1), one checks using (2.1) that μ
(1)
0 (x) = x− 1 
= x+ 1 = μ

(l−1)
1 (x). Thus

μ(1) 
= gμ(l−1). In Case (2), one checks using (2.1) again that μ
(1)
0 (x) = x − 1 
=

x + 1 = μ
(l−1)
1 (x) in the first subcase, μ

( l
2+1)

1 (x) = x + 1 
= x − 1 = μ
( l
2−1)

2 (x) in

the second subcase, and μ
( l
2 )

0 (x) = p − 1 − x 
= p − 3 − x = μ
( l
2 )

1 (x) in the third
subcase. �

For λ = (λ0(x), . . . , λf−1(x)) ∈ (Z± x)
f
and r ∈ Zf ,

λ(r) := (λ0(r0), λ1(r1), . . . , λf−1(rf−1)) ∈ Zf .

Recall the linear polynomial e(λ) ∈ Z[x0, x1, . . . , xf−1] associated to λ ∈ (Z± x)
f

in [6, §2]:
e(λ)(x0, . . . , xf−1)

:=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

(
f−1∑
j=0

pj(xj − λj(xj))

)
if λf−1(xf−1) ∈ {xf−1, xf−1 − 1},

1
2

(
pf − 1 +

f−1∑
j=0

pj(xj − λj(xj))

)
otherwise.

Now let r = (r0, r1, . . . , rf−1) ∈ Zf such that 1 ≤ rj ≤ p− 3 for all j, and consider
the following generic weights of Γ

σk := μ(k)(r)⊗ detek(r) for all 0 ≤ k ≤ l,

where

e0(r) := 0 and ek(r) :=
k−1∑
j=0

e(gjμ)(μ(j)(r)) for all 1 ≤ k ≤ l.
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It is shown in [20, Lemma 1.4 and Theorem 1.6] that σl = σ0 = r, E(σk, σ
[s]
k−1)

exists for all 1 ≤ k ≤ l, and E(σk, σ
[s]
k−1)

U = χ(σk) ⊕ χ(σk−1)
s for all 1 ≤ k ≤ l.

In other words, C :=
⊕l

k=1 E(σk, σ
[s]
k−1) is a cyclic module of Γ (see [20, Definition

1.1]). Permuting the f -tuples of σk’s by the application of g ∈ Sf , we obtain
another cyclic module of Γ. Indeed, let

σ′
k := (gμ(k))(r)⊗ dete

′
k(r) for all 0 ≤ k ≤ l,

where

e′0(r) := 0 and e′k(r) :=
k−1∑
j=0

e(gj+1μ)((gμ(j))(r)) for all 1 ≤ k ≤ l.

Lemma 2.3. For all 1 ≤ k ≤ l, E(σ′
k, σ

′[s]
k−1) exists, and C ′ :=

⊕l
k=1 E(σ′

k, σ
′[s]
k−1)

is a multiplicity-free cyclic module of Γ.

Proof. The arguments similar to those in the proof of [20, Lemma 1.4 (3)] show
that the integer e′l(r) is independent of r and is 0 modulo pf − 1. Thus σ′

l =

σ′
0 = r. Now the first graded piece gr1cosoc(Ind

Γ
Bχ(σ

′
k−1)

s) of the cosocle filtration

of IndΓBχ(σ
′
k−1)

s is

f−1⊕
i=0

(giμ)((gμ(k−1))(r))⊗ det(g
iμ)((gμ(k−1))(r))dete

′
k−1(r).

So, gμ(k) = gkμ◦gμ(k−1) implies that σ′
k ⊆ gr1cosoc(Ind

Γ
Bχ(σ

′
k−1)

s) for all 1 ≤ k ≤ l.

As a result, E(σ′
k, σ

′[s]
k−1) exists for all k, and E(σ′

k, σ
′[s]
k−1)

U = χ(σ′
k)⊕χ(σ′

k−1)
s. As

the f -tuples {gμ(1), gμ(2), . . . , gμ(l)} are all distinct, it follows that C ′ is a cyclic
module. The multiplicity-freeness of C implies that C ′ is also multiplicity-free. �

Let σ := σl = σ′
l and σ[s] := σ

[s]
l = σ

′[s]
l . Note that σ (resp. σ[s]) occurs with

multiplicity two in the socle (resp. cosocle) of C⊕C ′ while all the other socle (resp.
cosocle) weights occur with multiplicity one by Lemma 2.2. We construct a certain
subquotient of C⊕C ′ by splicing C and C ′ together along σ and σ[s]. The resulting
spliced module will have multiplicity-free socle and cosocle.

Let ισ and ισ[s] be the compositions

σ
Δ
↪−→ σ⊕σ ↪−→ socΓ (C ⊕ C ′) and σ[s] Δ

↪−→ σ[s]⊕σ[s] ↪−→ cosocΓ (C ⊕ C ′) respectively,

where the first map Δ in both is the diagonal embedding and the second map
in both is the natural inclusion. As the cyclic modules C and C ′ are individually
multiplicity-free (Lemma 2.3), σ 
∈ cosocΓ (C ⊕ C ′) and σ[s] 
∈ socΓ (C ⊕ C ′). Thus,
one has the following short exact sequence of Γ-modules

0 −→ σ ⊕
(

l−1⊕
k=1

σk ⊕ σ′
k

)
−→ C ⊕ C ′

ισ(σ)
−→ cosocΓ (C ⊕ C ′) −→ 0.

Define the spliced module D0 to be the submodule of C⊕C′

ισ(σ)
that sits in the following

short exact sequence

(2.2) 0 −→ σ ⊕
(

l−1⊕
k=1

σk ⊕ σ′
k

)
−→ D0 −→ ισ[s](σ[s])⊕

(
l−1⊕
k=1

σ
[s]
k ⊕ σ

′[s]
k

)
−→ 0.
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The Hasse diagram of the cosocle filtration of D0 looks as follows:

σ
[s]
l−2

σl−1
⊕

. . .
⊕

σ
[s]
1

σ2
⊕

σ
[s]
l−1

��
��

��
��

�
σ[s]

��
��
��
��
��

��
��

��
��

� σ
′[s]
l−1

��
��
��
��
�

σ1 σ σ′
1

⊕
σ
′[s]
1

σ′
2

⊕
. . .

⊕
σ
′[s]
l−2

σ′
l−1

Notice that D0 is a direct sum of 2(l − 2) non-split extensions and two inde-
composable modules of length 3 shown in the middle of the above diagram. Of
these two indecomposable modules, let us denote the one with socle σ by M(σ)
and the other one with cosocle σ[s] by M(σ[s]). The module M(σ) is a quotient of

E(σ, σ
[s]
l−1)⊕E(σ, σ

′[s]
l−1) such that the natural surjection E(σ, σ

[s]
l−1)⊕E(σ, σ

′[s]
l−1) �

M(σ) restricted to individual extensions is an isomorphism. Similarly, the module
M(σ[s]) is a submodule of E(σ1, σ

[s]) ⊕ E(σ′
1, σ

[s]) such that the natural maps
M(σ[s])

M(σ[s])∩E(σ1,σ[s])
→ E(σ′

1, σ
[s]) and M(σ[s])

M(σ[s])∩E(σ′
1,σ

[s])
→ E(σ1, σ

[s]) are isomor-

phisms.

Remark 2.4. Though the socle and the cosocle of D0 are multiplicity-free by con-
struction, D0 need not be multiplicity-free. For example, when f = 2, the weight

(p− 2− r0, r1 + 1)⊗ detr0+p(p−1) occurs in the socle of C as well as in the cosocle
of C ′.

Let D1 :=DU
0 , S1 :=(socΓD0)

U
, and Q1 :=(cosocΓD0)

U
. The B-representations

S1 and Q1 are multiplicity-free, i.e., for a B-character χ, we have dim
Fp
Sχ
1 ≤ 1 and

dim
Fp
Qχ

1 ≤ 1.

Lemma 2.5. As B-representations,

D1 = S1 ⊕Q1 = χ(σ)⊕ χ(σ)s ⊕
(

l−1⊕
k=1

χ(σk)⊕ χ(σ′
k)⊕ χ(σk)

s ⊕ χ(σ′
k)

s

)
.

Thus, for a B-character χ, dim
Fp
Sχ
1 = 1 if and only if dim

Fp
Qχs

1 = 1.

Proof. The second part follows from the first part and the discussion before the
lemma. The first part is equivalent to the claim that dim

Fp
D1 = 4l−2 because D0,

by definition, has length 4l − 2 (2.2). Note that dim
Fp
(C ⊕ C ′)U = 4l implies that

dim
Fp

(
C⊕C′

ισ(σ)

)U

≥ 4l − 1. However, the Γ-module C⊕C′

ισ(σ)
has length 4l − 1. Hence

dim
Fp

(
C⊕C′

ισ(σ)

)U

= 4l − 1. Since D0 sits in the short exact sequence

0 −→ D0 −→ C ⊕ C ′

ισ(σ)
−→ σ[s] −→ 0

and the functor of U -invariants is left exact, we have

dim
Fp
D1 + dim

Fp
Im

((
C ⊕ C ′

ισ(σ)

)U

→
(
σ[s]

)U
)

= dim
Fp

(
C ⊕ C ′

ισ(σ)

)U

= 4l − 1.

As dim
Fp
Im

((
C⊕C′

ισ(σ)

)U

→
(
σ[s]

)U) ≤ 1 and dim
Fp
D1 ≤ 4l − 2, the claim follows.

�
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Remark 2.6. We remark that one can work with any two cyclic modules of Γ
arising from two different cyclic permutations of μ to form a spliced module D0

(see [20, Remark 1.7]).

Remark 2.7. Recently, M. Schein [19] constructed interesting cyclic diagrams built
out of principal series to construct irreducible admissible supercuspidal representa-
tions of G with K-socles compatible with Serre’s weight conjecture in the ramified
setting.

3. Infinite-dimensional irreducible diagram

To construct diagrams in the sense of [6, §9], equip the spliced module D0 with a
smooth KZ-action via KZ � Γ such that � acts trivially. Equip D1 with a smooth
N -action by defining the action of Π to be a linear automorphism of order 2 that

maps Sχ
1 to Qχs

1 for all I-characters χ such that Sχ
1 
= 0 (see Lemma 2.5). This

gives rise to a basic 0-diagram (D0, D1, can) where can : D1 ↪→ D0 is the canonical
inclusion (see [6, Introduction, page 3] for the definition of a basic 0-diagram). It
is easy to see that the diagram (D0, D1, can) is irreducible.

Let D0(∞) :=
⊕

i∈Z
D0(i) be the smooth KZ-representation with component-

wise KZ-action, where there is a fixed isomorphism D0(i) ∼= D0 of KZ-represent-
ations for every i ∈ Z. Following [16], we denote the natural inclusion D0

∼−→
D0(i) ↪→ D0(∞) by ιi, and write vi := ιi(v) for v ∈ D0 for every i ∈ Z. Let
D1(∞) := D0(∞)I(1) ∼=

⊕
i∈Z

(S1 ⊕ Q1). We define a Π-action on D1(∞) as

follows. Let λ = (λi) ∈
∏

i∈Z
F
×
p . For all integers i ∈ Z, define

Πvi :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λi(Πv)i if v ∈ S
χ(σ)
1 ,

(Πv)i−1 if v ∈ S
χ(σ1)
1 ,

(Πv)i+1 if v ∈ S
χ(σ′

1)
1 ,

(Πv)i if v ∈ Sχ
1 for χ ∈ {χ(σ2), . . . , χ(σl−1), χ(σ

′
2), . . . , χ(σ

′
l−1)}.

This uniquely determines a smooth N -action on D1(∞) such that � = Π2 acts
trivially on it. Thus we get a basic 0-diagram D(λ) := (D0(∞), D1(∞), can) with
the above actions where can is the canonical inclusion D1(∞) ↪→ D0(∞).

Proposition 3.1. If λi 
= ±λ0 for all i 
= 0, then the basic 0-diagram D(λ) is
irreducible.

Proof. Let W ⊆ D0(∞) be a non-zero KZ-subrepresentation such that Π stabilizes
W I(1). The claim is W = D0(∞). We have HomK(τ,W ) 
= 0 for some τ ∈ socKD0.
We first consider the case τ = σ.

There exists a non-zero (ci) ∈
⊕

i∈Z
Fp such that(∑

i

ciιi

)
(σ) ⊆ W.

We pick (ci) with #(ci) := #{i ∈ Z : ci 
= 0} minimal. We first show that

#(ci) = 1. The Π-action on (
∑

i ciιi) (S
χ(σ)
1 ) gives (

∑
i λiciιi) (Q

χ(σ)s

1 ) ⊆ W I(1)

which implies that (
∑

i λiciιi) (M(σ[s])) ⊆ W because M(σ[s]) is indecomposable.
Hence

(3.1)

(∑
i

λiciιi

)
(σ1 ⊕ σ′

1) ⊆ W.
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Now the Π-action on (
∑

i λiciιi) (S
χ(σ1)
1 ) and (

∑
i λiciιi) (S

χ(σ′
1)

1 ) gives respectively(∑
i

λiciιi−1

)
(Q

χ(σ1)
s

1 ) ⊆ W I(1) and

(∑
i

λiciιi+1

)
(Q

χ(σ′
1)

s

1 ) ⊆ W I(1).

Hence(∑
i

λiciιi−1

)
(E(σ2, σ

[s]
1 )) ⊆ W and

(∑
i

λiciιi+1

)
(E(σ′

2, σ
′[s]
1 )) ⊆ W.

The cyclicity of the Π-action on I-characters of C and C ′ then gives respectively
(3.2)(∑

i

λiciιi−1

)
(E(σk, σ

[s]
k−1)) ⊆ W and

(∑
i

λiciιi+1

)
(E(σ′

k, σ
′[s]
k−1)) ⊆ W

for all 2 ≤ k ≤ l. Therefore

(3.3)

(∑
i

λiciιi−1

)
(σ) ⊆ W and

(∑
i

λiciιi+1

)
(σ) ⊆ W.

Thus, by increasing or decreasing the index i if needed, we may assume c0 
= 0.
Now, repeating the above argument for

(∑
i λiciιi−1

)
(σ) ⊆ W , we obtain(∑

i

λ2
i ciιi−2

)
(σ) ⊆ W and

(∑
i

λ2
i ciιi

)
(σ) ⊆ W.

Note that
(∑

i λ
2
0ciιi

)
(σ) ⊆ W . So it follows that

(∑
i(λ

2
i − λ2

0)ciιi
)
(σ) ⊆ W .

Write c′i := (λ2
i −λ2

0)ci so that
(∑

i c
′
iιi

)
(σ) ⊆ W . If #(ci) > 1, then the hypothesis

on (λi) contradicts the minimality of (ci) because #(c′i) = #(ci) − 1. Therefore
ι0(σ) ⊆ W .

Now we repeat the above argument for ι0(σ) ⊆ W to show that ι0(D0) ⊆ W .

Indeed, the Π-action on ι0(S
χ(σ)
1 ) gives

ι0(M(σ[s])) ⊆ W.

By (3.3), we have

ι−1(σ) ⊆ W and ι1(σ) ⊆ W.

Using (3.1) for the above inclusions, we obtain

ι1(σ1) ⊆ W and ι−1(σ
′
1) ⊆ W,

and then using (3.2), we get

ι0(E(σk, σ
[s]
k−1)) ⊆ W and ι0(E(σ′

k, σ
′[s]
k−1)) ⊆ W

for all 2 ≤ k ≤ l. Together with the inclusion ι0(M(σ[s])) ⊆ W, this gives

ι0(D0) ⊆ W.

Repeat the argument for ι−1(σ) ⊆ W and ι1(σ) ⊆ W to obtain
⊕

i=0,±1 ιi(D0) ⊆
W , and so on. This process eventually gives

⊕
i∈Z

ιi(D0) = D0(∞) ⊆ W .
If HomK(τ,W ) 
= 0 for τ 
= σ, then using the cyclicity of the Π-action as above,

we reduce to the case HomK(σ,W ) 
= 0. �
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Remark 3.2. The main idea here to construct an infinite-dimensional irreducible
diagram is to arrange the Π-action on the infinite sum of a spliced module so that
the cycling on one loop increases the index and the cycling on the other decreases
the index. This construction does not work for GL2(F ) when F has residue degree
1 because the cyclic modules of GL2(Fp) are principal series representations, i.e.,

extensions of the form E(τ, τ [s]), and principal series are too small to form spliced
modules with two loops.

4. Proofs of main theorems

Proof of Theorem 1.1 for n = 2. We first construct a desired representation π of
G = GL2(F ) over Fp. The construction is similar to that of [16, Theorem 3.1] or
[8, Theorem 1]. Let Ω be the smooth injective K-envelope of D0 equipped with
the KZ-action such that � acts trivially. The smooth injective I-envelope injID1

of D1 is an I-direct summand of Ω. Let e denote the projection of Ω onto injID1.
There is a unique N -action on injID1 compatible with that of I and compatible
with the action of N on D1. By [6, Lemma 9.6], there is a non-canonical N -action
on (1 − e)(Ω) extending the given I-action. This gives an N -action on Ω whose
restriction to IZ is compatible with the action coming from KZ on Ω.

Let D(λ) = (D0(∞), D1(∞), can) be an irreducible infinite-dimensional diagram
from Proposition 3.1. Let Ω(∞) :=

⊕
i∈Z

Ω(i) with component-wise KZ-action
where there is a fixed isomorphism Ω(i) ∼= Ω of KZ-representations for every i ∈ Z.
As before, denote the natural inclusion Ω ∼−→ Ω(i) ↪→ Ω(∞) by ιi, and write
vi := ιi(v) for v ∈ Ω. Let Ωχ denote the smooth injective I-envelope of an I-
character χ. We have

e(Ω) = injID1 = injIS1 ⊕ injIQ1 =
⊕

ΩSχ
1
⊕ Ω

Qχs

1
.

If v ∈ (1− e)(Ω), we define Πvi := (Πv)i for all integers i. Otherwise, we define

Πvi :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λi(Πv)i if v ∈ Ω
S

χ(σ)
1

,

(Πv)i−1 if v ∈ Ω
S

χ(σ1)
1

,

(Πv)i+1 if v ∈ Ω
S

χ(σ′
1)

1

,

(Πv)i if v ∈ ΩSχ
1
for χ ∈ {χ(σ2), . . . , χ(σl−1), χ(σ

′
2), . . . , χ(σ

′
l−1)}.

By demanding that Π2 acts trivially, this defines a smooth N -action on Ω(∞)
which is compatible with the N -action on D1(∞), and whose restriction to IZ is
compatible with the action coming from KZ on Ω(∞). By [18, Corollary 5.5.5],
there is a smooth G-action on Ω(∞). Take π to be the G-representation generated
by D0(∞) inside Ω(∞). The smooth representation π has a property that socKπ =
socKD0(∞). Since D(λ) is irreducible and socKD0(∞) is infinite-dimensional, it
follows that π is irreducible and non-admissible.

Note that the spliced module D0, the diagram D(λ), and the module Ω(∞) are
all defined over the residue field Fpf of F . Hence, if (λi) ∈

∏
i∈Z

F×
pf , then the

G-representation π has a model over π0 over Fpf that is absolutely irreducible and
non-admissible. This gives Theorem 1.1 for n = 2. �

Proof of Theorem 1.2. Let π be a non-admissible irreducible representation of
GL2(F ) over Fp constructed in the proof of Theorem 1.1 for n = 2. If we take

(λi) ∈
∏

i∈Z
F
×
p so that the Fpf -span of {λ2

i } is Fp, then the restriction of scalars
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of π to Fpf is irreducible and its endomorphism algebra contains Fp, cf. the proof
of [16, Theorem 1.2]. �

Proof of Theorem 1.1 for n > 2. Let P = MN be the standard parabolic subgroup
of GLn with Levi subgroup M = GL2 × (GL1)

n−2. Let P = MN be the opposite
parabolic subgroup. Let ρ be a non-admissible irreducible representation of GL2(F )
over Fp constructed in the proof of Theorem 1.1 for n = 2, and let χ be a character
of (F×)n−2. Consider the smooth irreducible non-admissible representation ρ ⊗ χ
of M(F ), and let

π = Ind
GLn(F )

P(F )
(ρ⊗ χ)

be the parabolically induced representation of GLn(F ). It is clear that π is non-
admissible because

πK(1) =
(
Ind

GLn(OF )

P(OF )
(ρ⊗ χ)

)K(1)

= Ind
GLn(Fpf

)

P(F
pf

)

(
(ρ⊗ χ)M(1)

)
and the latter is not finite-dimensional. Here, K(1) = Ker(GLn(OF ) � GLn(Fpf ))
and M(1) = Ker(M(OF ) � M(Fpf )).

Recall that for a Levi subgroup L ⊆ GLn, an L(OF )-weight is, by defini-
tion, a smooth irreducible representation of L(OF ). The endomorphism algebra

EndL(F )(c-Ind
L(F )
L(OF )τ ) of the compactly induced representation c-Ind

L(F )
L(OF )τ of an

L(OF )-weight τ is called the spherical algebra of L(F ) and is denoted by HL(F )(τ ).
For a smooth representation V of L(F ), an L(OF )-weight of V simply means a
smooth irreducible L(OF )-subrepresentation of V.

Lemma 4.1. If every GLn(OF )-weight of π is M-regular (in the sense of [14,
Definition 2.4]), then π is irreducible.

Proof. Let τ be a (non-zero) GLn(OF )-weight of π. We will show that τ gener-
ates π as a GLn(F )-representation. By Frobenius reciprocity, the canonical inclu-

sion τ ↪→ π
∣∣
GLn(OF )

corresponds to an injection τN(F
pf

) ↪→ (ρ ⊗ χ)
∣∣
M(OF )

which

makes τN(F
pf

) into an M(OF )-weight of ρ⊗ χ, cf. [14, Lemma 2.3 and (2.13)]. Let

τρ := τN(F
pf

)
∣∣
GL2(OF )

and χ0 := χ
∣∣
(O×

F )n−2 so that τ ∼= τρ⊗χ0. The spherical Hecke

algebra HM(F )(τ
N(F

pf
)) of M(F ) is isomorphic to the tensor product HGL2(F )(τρ)⊗

H(F×)n−2(χ0) of the spherical Hecke algebras of GL2(F ) and (F×)n−2. The algebra
HGL2(F )(τρ) is commutative by [2, Proposition 8 (1)] and the algebra H(F×)n−2(χ0)

is commutative by [11, §2.10]. Hence, the algebra HM(F )(τ
N(F

pf
)) is commutative.

Under Frobenius reciprocity, the injection τN(F
pf

) ↪→ (ρ⊗χ)
∣∣
M(OF )

corresponds to

a map f ∈ HomM(F )

(
c-Ind

M(F )
M(OF )τ

N(F
pf

), ρ⊗ χ
)
. We claim that f is an eigenvector

for the action of HM(F )(τ
N(F

pf
)) on HomM(F )

(
c-Ind

M(F )
M(OF )τ

N(F
pf

), ρ⊗ χ
)
. Indeed,

the restriction of the injection τN(F
pf

) ↪→ (ρ ⊗ χ)
∣∣
M(OF )

to GL2(OF ) gives a map

fρ ∈ HomGL2(F )

(
c-Ind

GL2(F )
GL2(OF )τρ, ρ

)
. It is enough to show that fρ is an eigenvec-

tor for the action of HGL2(F )(τρ) on HomGL2(F )

(
c-Ind

GL2(F )
GL2(OF )τρ, ρ

)
. The Hecke

algebra HGL2(F )(τρ) is isomorphic to the polynomial algebra Fp[S
±1, T ] where the

Hecke operators S and T correspond to the characteristic functions supported
on GL2(OF ) (� 0

0 � )GL2(OF ) and GL2(OF ) ( 1 0
0 � )GL2(OF ) respectively. Since ρ
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has central character, fρ is an eigenvector for the operator S. We now show
that T · fρ = fρ ◦ T = 0. By [19, Lemma 2.1], fρ(T (τρ)) is contained in a K-

subrepresentation W of ρ generated by Πv for a non-zero v ∈ τ
I(1)
ρ . As ρ is con-

structed from a spliced module, W has length at most 3 (see the Hasse diagram).

On the other hand, W naturally receives a surjection from IndKI χ(τρ)
s which is

multiplicity-free of length at least 4 (as f > 1) and has socle isomorphic to τρ,
cf. [6, Theorem 2.4]. Therefore τρ is not a Jordan-Hölder factor of W . Hence

fρ(T (τρ)) = 0. As fρ and T are G-equivariant, T · f = 0 on c-Ind
GL2(F )
GL2(OF )τρ. This

finishes the proof of the claim.

The set of eigenvalues of f gives a character ψ : HM(F )(τ
N(F

pf
)) → Fp and a

surjective map

(4.1) c-Ind
M(F )
M(OF )τ

N(F
pf

) ⊗
HM(F )(τ

N(F
pf

)
),ψ

Fp � ρ⊗ χ

of M(F )-representations. Further, as τ is M-regular, there is a natural isomorphism

(4.2) c-Ind
GLn(F )
GLn(OF )τ ⊗HGLn(F )(τ),ψ Fp

∼−→ Ind
GLn(F )

P(F )

(
c-Ind

M(F )
M(OF )τ

N(F
pf

) ⊗
HM(F )(τ

N(F
pf

)
),ψ

Fp

)
of GLn(F )-representations by [14, Theorem 3.1]. Therefore, (4.1) and (4.2) together
give a surjective map

(4.3) c-Ind
GLn(F )
GLn(OF )τ ⊗HGLn(F )(τ),ψ Fp � π

of GLn(F )-representations because Ind
GLn(F )

P(F )
is exact. Since τ generates the left-

hand side of (4.3) as a GLn(F )-representation, it also generates π as a GLn(F )-
representation.

Now, if π′ ⊆ π is a non-zero subrepresentation, then π′ contains a (non-zero)
GLn(OF )-weight. By the previous paragraph, this weight generates π as a GLn(F )-
representation. Hence π′ = π. �

Lemma 4.2. There exists a smooth character χ of (F×)n−2 such that

π = Ind
GLn(F )

P(F )
(ρ⊗ χ)

is irreducible.

Proof. We use the notation F (a1, a2, . . . , an) in [13, §3.3] to denote weights. By
Lemma 4.1, it suffices to show that there exists a smooth character χ of (F×)n−2

such that every GLn(OF )-weight of π is M-regular. We pick 0 ≤ a, b < pf − 1
such that a 
= b and a is different from all the determinant powers of weights in
socGL2(OF )ρ. Such an a exists because there are at most 4f − 1 distinct weights

in socGL2(OF )ρ = socGL2(OF )D0(∞), and pf − 1 > 4f − 1 for p > 3 and f > 1.
Consider the alternating tensor product χ0 = F (a) ⊗ F (b) ⊗ F (a) . . . of F (a) and
F (b) as a character of (O×

F )
n−2, and let χ be a character of (F×)n−2 such that

χ|(O×
F )n−2 = χ0. We claim that χ works. Indeed, let τ = F (a1, . . . , an) be a

GLn(OF )-weight of π with pf −1 ≥ ai−ai+1 ≥ 0 for all i. Note that τ is M-regular
if and only if a2, a3, . . . , an are distinct, cf. the paragraph after [14, Definition 2.4].

Since τN(F
pf

) = F (a1, a2) ⊗ F (a3) ⊗ . . . ⊗ F (an) is an M(OF )-weight of ρ ⊗ χ, we
find that a2 modulo pf − 1 is the determinant power of a weight in socGL2(OF )ρ,
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and for i ≥ 3, ai ≡ a mod pf − 1 (resp. b mod pf − 1) if i is odd (resp. even). By
the construction of χ, we have ai 
≡ ai+1 mod pf − 1 for all 2 ≤ i ≤ n− 1. As the
sequence a2, a3, . . . , an is decreasing, this implies that ai 
= aj for all 2 ≤ i, j ≤ n
and i 
= j. �

We now take χ as in the proof of Lemma 4.2. Then it follows from Lemma
4.2 that GLn(F ) admits a smooth irreducible non-admissible representation π =

Ind
GLn(F )

P(F )
(ρ⊗ χ) over Fp. As explained in the proof of Theorem 1.1 for n = 2, the

GL2(F )-representation ρ can be chosen to have a model ρ0 over Fpf . Then

π0 = Ind
GLn(F )

P(F )
(ρ0 ⊗ χ)

is a model of π over Fpf because Ind
GLn(F )

P(F )
commutes with scalar extension [12,

Proposition III.12 (i)]. It is clear that π0 is absolutely irreducible and non-admissible.
�

Remark 4.3. We remark that the methods of this note to construct non-admissible
irreducible representations also apply to other connected split reductive groups G

whenever G has GL2 as a Levi factor, e.g., GSp4 or G2.

Acknowledgments

We thank the anonymous referee for many helpful comments and corrections on
an earlier version of this paper. We also thank the organizers of the International
Centre for Theoretical Sciences (ICTS) program “Elliptic curves and the special val-
ues of L-functions” (code:ICTS/ecl2022/8) for their invitation and the hospitality
during which the collaboration on this project began.

References

[1] Noriyuki Abe, Guy Henniart, Florian Herzig, and Marie-France Vignéras, Questions on mod
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[4] I. N. Bernštĕın, All reductive p-adic groups are of type I (Russian), Funkcional. Anal. i
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