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Abstract—In orthogonal time frequency space (OTFS) mod-
ulation, Zak transform approach is a natural approach for
converting information symbols multiplexed in the DD domain
directly to time domain for transmission, and vice versa at the
receiver. Past research on OTFS has primarily considered a two-
step approach where DD domain symbols are first converted to
time-frequency domain which are then converted to time domain
for transmission, and vice versa at the receiver. The Zak trans-
form approach can offer performance and complexity benefits
compared to the two-step approach. This paper presents an early
investigation on the bit error performance of OTFS realized using
discrete Zak transform (DZT). We develop a compact DD domain
input-output relation for DZT-OTFS using matrix decomposition
that is valid for both integer and fractional delay-Dopplers. We
analyze the bit error performance of DZT-OTFS using pairwise
error probability analysis and simulations. Simulation results
show that 1) both DZT-OTFS and two-step OTFS perform better
than orthogonal frequency division multiplexing (OFDM), and
2) DZT-OTFS achieves better performance compared to two-step
OTFS over a wide range of Doppler spreads.

Index Terms—Discrete Zak transform, OTFS modulation,
delay-Doppler domain, diversity order, two-step OTFS.

I. INTRODUCTION

As we rapidly progress towards the next-generation wireless
technologies, i.e., 6G and beyond, the air interface and the
modulation waveform must cater to diverse scenarios and
use cases, which include high-Doppler wireless environments
that result in rapidly time-varying channels. Orthogonal time
frequency space (OTFS) modulation has gained attention due
to its ability to enable highly reliable communication over
high-Doppler channels [1]- [6]. OTFS modulation utilizes the
delay-Doppler (DD) domain to mount information-carrying
symbols. Also, it represents the time-varying channel in the
DD domain, which is almost time-invariant and sparse.

In wireless communication based signal processing appli-
cations, Zak transform [7] is emerging as an important tool
for directly transforming a signal in time domain to delay-
Doppler (DD) domain and vice versa. In the context of OTFS
modulation, Zak transform approach provides a natural means
to directly convert the information symbols multiplexed in
the DD domain to time domain for transmission, and vice
versa at the receiver. Whereas past research on OTFS has
mainly considered a two-step approach for DD domain to time
domain conversion and vice versa. In the two-step approach,
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information symbols in the DD domain are converted to time-
frequency (TF) domain using inverse symplectic finite Fourier
transform (ISFFT) which are then converted to time domain
for transmission using Heisenberg transform. Corresponding
inverse transforms are carried out at the receiver to convert
the received time domain signal to DD domain in two steps.

While the two-step approach has been inspired by its com-
patibility with existing multicarrier modulation waveforms
(e.g., orthogonal frequency division multiplexing (OFDM))
and a majority of the existing work on OTFS consider this
approach, the Zak approach remains less explored so far.
Consequently, this paper focuses on the Zak approach and its
performance in comparison with that of the two-step approach.
The Zak approach in continuous time has been derived from
first principles in [8], where it is shown that the spectral
efficiency performance of the Zak approach remains invariant
to user velocity, whereas it degrades in OFDM as the velocity
increases. However, [8] does not provide a discrete-time sys-
tem model for the Zak approach and the bit error rate (BER)
performance. The work in [11] considers the Zak approach
only at the receiver while using a two-step approach at the
transmitter, and presents the BER performance. Recently,
[10] has presented a discrete Zak transform (DZT) approach
both at the transmitter and receiver, but it does not provide
the BER performance. Also, it does not provide a compact
input-output relation in a matrix-vector form amenable for
BER performance evaluation. In the above context, the new
contributions in this paper can be summarized as follows.
• We first develop a compact DD domain input-output

relation in matrix-vector form for DZT-OTFS (with Zak
approach at the transmitter as well as the receiver)
using matrix decomposition that is valid for both integer
and fractional delay-Dopplers. This compact vectorized
input-output relation is an useful contribution as it en-
ables the BER performance evaluation (through analysis
and simulations) and the development of techniques and
algorithms for DZT-OTFS transceivers.

• Using the developed vectorized input-output relation, we
analyze the asymptotic diversity of DZT-OTFS. We also
present the simulated BER performance of DZT-OTFS in
comparison with that of the two-step approach of OTFS
as well as OFDM over a range of Doppler spreads.

• Our simulation results show that i) both DZT-OTFS and
two-step OTFS perform better than OFDM, and ii) DZT-
OTFS achieves better performance compared to two-step
OTFS over a wide range of Doppler spreads.
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Notations: Matrices and vectors are denoted by upper and
lower case boldface letters, respectively, diag{vi} denotes a
diagonal matrix with diagonal entries vi, i = 1, 2, · · · , and IK
denotes the identity matrix of size K. (·)N denotes the modulo
N operation. Hermitian, transpose, and conjugation operations
are denoted by (·)H , (·)T , and (·)∗, respectively. Hadamard
product, kronecker product, and convolution operations are
denoted by �, ⊗ and ~, respectively.

II. DZT-OTFS SYSTEM MODEL

In this section, we present the DZT-OTFS system model
and develop the compact DD domain input-output relation
in matrix-vector form. Figure 1 shows the block diagram
of a DZT-OTFS transceiver. OTFS is a two-dimensional
modulation technique that uses a DD grid to multiplex
information symbols from a modulation alphabet A. In
OTFS using DZT, KL information symbols, denoted by
Zx[k, l]s, are multiplexed over a K × L DD grid given
by
{(

k∆ν = k
KLTs

, l∆τ = lTs

)
, k = 0, · · · ,K − 1, l =

0, · · · , L− 1
}

, where Ts = 1/B is the symbol duration, B is
the bandwidth available for communication, and ∆τ and ∆ν
are the delay and Doppler resolutions, respectively. The DD
domain symbols, Zx[k, l]s, are converted to TD using inverse
DZT (IDZT) [10], as

x[n] =
1√
K

K−1∑
k=0

Zx[k, n mod L]ej2π
bn/Lc

K k. (1)

To mitigate the inter-frame interference, a cyclic prefix (CP)
of length NCP ≥ dτmax/Tse is added in the TD, where τmax

is the maximum delay spread of the channel and d·e denotes
the ceil function. The TD sequence is then mounted on the
time-shifted transmit pulse gtx(t), 0 ≤ t ≤ Ts, resulting in a
continuous time signal xt(t), given by

xt(t) =

N+NCP−1∑
n=0

x[(n−NCP )N ]gtx(t− nTs), (2)

where 0 ≤ t ≤ (N + NCP )Ts and N = KL. This operation
is carried out in the digital-to-analog converter (DAC) block
in Fig. 1. The transmitted signal xt(t) passes through a time-
varying channel whose DD domain response is given by [5]

h(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi), (3)

where P denotes the number of resolvable paths in the DD
domain, hi is the channel gain of the ith path, and τi = (αi+
ai)Ts is the delay associated with the ith path, where αi is
integer part and ai ∈ [−0.5, 0.5] is the fractional part of the ith
path’s delay. Similarly, νi = (βi+bi)

KLTs
is the Doppler associated

with the ith path, where βi is integer part and bi ∈ [−0.5, 0.5]
is the fractional part of the ith path’s Doppler. The received
time domain signal is given by

r(t) =

∫
ν

∫
τ

h(τ, ν)xt(t− τ)ej2πν(t−τ)dτdν + w(t). (4)

Substituting (2) and (3) in (4), we have

r(t) =

P∑
i=1

hi

N+NCP−1∑
n=0

x[(n−NCP )]

gtx(t− τi − nTs)ej2πνit + w(t), (5)

where w(t) is the additive noise. At the receiver, after matched
filtering with receive pulse grx(t), we get

yt(t) =

∫
τ

r(τ)g∗rx(t− τ)dτ. (6)

Let gtx(t) = grx(t) = p(t). Substituting (5) in (6), we get

yt(t) =

P∑
i=1

hi

N+NCP−1∑
n=0

x[(n−NCP )N ]∫
τ

p(τ − τi − nTs)p∗(t− τ)ej2πνiτ + v(t), (7)

where v(t) is the match filtered noise. Assuming the pulse
bandwidth to be much larger than the maximum Doppler, the
integral in (7) can be approximated as [10]∫

τ

p(τ − τi − nTs)p∗(t− τ)ej2πνiτdτ ≈

ej2πνi(τi+nTs)g(t− τi − nTs), (8)

where g(t) ,
∫
τ
p(τ)p∗(t − τ)dτ . For example, g(t) for a

raised cosine (RC) pulse with a roll-off factor γ is given by

g(t) =
sin(πt/Ts) cos(γπt/Ts)

(πt/Ts)(1− (2γt/Ts)2)
. (9)

The output of the matched filter is sampled at t = mTs, m =
0, 1, 2, · · · . The first NCP samples corresponding to the CP
are discarded. The resulting discrete time-domain signal is
given by

y[m] =

P∑
i=1

hi

N−1∑
n=0

x[n]g[(m−n)Ts−τi]ej2πνi(τ+nTs)+v[m].

(10)
Substituting for τi and νi in (10), we get

y[m] =

P∑
i=1

hie
j2πτiνi

N−1∑
n=0

x[n]ei[n]gi[m− n] + v[m], (11)

where gi[n] = g[n−li] and ei[n] = ej2π
ki
KLn, n = 0, · · · , N−

1, li = αi+ai and ki = βi+bi. Here, gi and ei are the discrete
sequences that capture the effect of delay and Doppler of the
ith path in the channel, respectively. Let h

′

i = hie
j2πτiνi and

yi[m] =

N−1∑
n=0

x[n]ei[n]gi[m− n]. (12)

Then (11) can be written as

y[m] =

P∑
i=1

h
′

iyi[m] + v[m]. (13)
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Fig. 1: Block diagram of DZT-OTFS transceiver.

A. Vectorized formulation of DD domain input-output relation

Here, we first write the TD input-output relation in (13)
in a vectorized form and transform it to a DD domain input-
output relation in vectorized form using matrix decomposition
as follows. The relation between yi[m], x[m], ei[m], and gi[m]
can be expressed in vector form as

yi = (x� ei) ~ gi, (14)

where yi, ei,gi ∈ C1×N are obtained by stacking the ele-
ments yi[m], ei[m] and gi[m], respectively. The input-output
relation in (13) can then be written in a vectorized form as

y =
[
1 1 · · · 1

]
diag{h′1, · · · , h′P }

y1

...
yp

+ v. (15)

The discrete time-domain signal y at the receiver is converted
to the DD domain using DZT as

Zy[k, l] =
1√
K

K−1∑
n=0

y[l + nL]e−j2π
k
K n. (16)

The equivalent DD domain representations of (12) and (13)
are given by

Zyi [k, l]=

L−1∑
m=0

K−1∑
n=0

Zx[n,m]Zei [k − n,m]Zgi [k, l −m],

(17)

and Zy[k, l] =

P∑
i=1

h
′

iZyi [k, l] + Zv[k, l], (18)

respectively.
Now, let Zyi ,Zei and Zgi denote the DZT of the sequences

yi, ei and gi, respectively. Let Bi be a K ×K matrix whose
jth row is

Bi(j, :) = ZTei(:, u)Pj−1
K , (19)

where u = 0, · · · , L − 1, j = 0, · · · ,K − 1, and PK is a
K ×K permutation matrix. Further, define

Ei = diag{B0, · · · ,BL−1}. (20)

Likewise, define a block matrix A = [A0, · · · ,AL−1], where
Au = diag{Zgi(:, u)}. Let Qu be an N × N matrix, given
by

Qu = Pu−1
L ⊗ IK , (21)

where PL is an L× L permutation matrix. Further, define

Gi =

 AQ0
...

AQL−1

 . (22)

Using Ei and Gi, the effective channel matrix H is given by

H =

P∑
i=1

h
′

iEiGi. (23)

Vectorizing (18) using the above, we obtain end-to-end input-
output relation in DD domain as

yDD = xDDH + vDD, (24)

where yDD,xDD,vDD ∈ C1×N , such that yDD(k + Kl) =
Zy[k, l], xDD(k + Kl) = Zx[k, l], and vDD(k + Kl) =
Zv[k, l], for k = 0, 1, · · · ,K−1 and l = 0, 1, · · · , L−1, and
H ∈ CN×N is the end-to-end effective channel matrix in the
DD domain. We use the compact matrix-vector representation
of DZT-OTFS in (24) for the diversity analysis and BER
simulations in the subsequent sections.

III. DIVERSITY ANALYSIS OF DZT-OTFS

For the purpose of diversity analysis, the input-output
relation in (24) can be written in an alternate form, as

yDD = hX + vDD, (25)

where X is a P ×N matrix defined as

X = (IP ⊗ xDD)

G1E1

...
GPEP

 , (26)

and h = [h′1, · · · , h′P ] is a 1×P vector. Let xiDD and xjDD be
two distinct DD symbol vectors as defined in (24), and let the
corresponding symbol matrices be Xi and Xj . Let ρ be the
normalized signal-to-noise ratio (SNR) given by ρ = 1/N0,
where N0 is the noise power. Assuming maximum likelihood
(ML) detection and perfect channel knowledge at the receiver,
the conditional pairwise error probability (PEP) between Xi

and Xj is given by

P (xiDD → xjDD|h) = P (
∥∥y − hXj

∥∥2 < ‖y − hXi‖
2
)

= Q

√ρ ‖h(Xi −Xj)‖2

2

 . (27)
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System Parameters No. of difference matrices with rank Minimum rank1 2 3 4

System-1
K = 2, L = 2,

P = 2

DD Profile-A τ = [0, 0]∆τ
ν = [0, 1]∆ν

w/o PR 32 208 - - 1
with PR 0 240 - - 2

DD Profile-B τ = [0, 1]∆τ
ν = [0, 1]∆ν

w/o PR 0 240 - - 2
with PR 0 240 - - 2

System-2
K = 2, L = 4,

P = 4

DD Profile-C τ = [0, 0, 1, 1]∆τ
ν = [0, 1, 0, 1]∆ν

w/o PR 0 136 2072 63072 2
with PR 0 0 0 65280 4

DD Profile-D τ = [0.2, 1.4, 2.3, 3.6]∆τ
ν = [−0.3, 1.4, 0.8,−0.2]∆ν

w/o PR 0 0 0 65280 4
with PR 0 0 0 65280 4

TABLE I: Rank profile of the difference matrices.

Using Chernoff bound and averaging over the statistics of h,
the average PEP can be bounded as

P (xiDD → xjDD) ≤ Eh

{
exp

(
−ρ ‖h(Xi −Xj)‖2

4

)}
,

(28)

where Eh denotes expectation operation. Assuming the ele-
ments of h are independent and identically distributed com-
plex Gaussian random variables with zero mean and variance
1/P , (28) can be simplified as [11]

P (xiDD → xjDD) ≤
r∏
l=1

1

1 +
ρλlij

4P

, (29)

where r is the rank of the difference matrix (Xi −Xj), and
λlij is the eigen value of (Xi − Xj)(Xi − Xj)

H . At high
SNRs, using the approximation 1 +

ρλlij

4P ≈ ρλlij

4P , we can
write

P (xiDD → xjDD) ≤ 1

ρr
∏r
l=1

λlij

4P

. (30)

Using the above average PEP expression, an upper bound on
the bit error probability, Pe, can be obtained as

Pe ≤
1

QKL log2 |A|

Q∑
i=1

Q∑
j=1,j 6=i

d(xiDD,x
j
DD)P (xiDD → xjDD)

=
1

QKL log2 |A|

Q∑
i=1

Q∑
j=1,j 6=i

d(xiDD,x
j
DD)ρ−r∏r

l=1
λlij

4P

, (31)

where d(xiDD,x
j
DD) is the Hamming distance between xiDD

and xjDD, Q = |AKL|, and | · | denotes the cardinality of
a set. Also, a lower bound on Pe is obtained by summing
the PEPs corresponding to the pairs Xi and Xj such that the
rank of (Xi −Xj) is least amongst all the pairs. From (31),
it is observed that the exponent of the SNR is r which is the
rank of the symbol difference matrix (Xi −Xj) and for all
i, j, i 6= j and the minimum rank dominates the overall BER.
Therefore the diversity order (DO) is given by

DO = min
i,j i6=j

rank(Xi −Xj). (32)

We have observed through simulations that the rank profile
of the difference matrices can be such that r is less than P
for several (Xi,Xj) pairs. This means the full DD diversity
of P is not always achieved. To alleviate this, phase rotation
(PR) of the transmit vector xDD can be carried out before

transmission. That is, instead of transmitting the xDD vector
as such, a phase rotated vector x̃DD = ΘxDD is transmit-
ted, where Θ is a PR matrix given by Θ = diag{ej

q
N },

q = 0, · · · , N − 1. Our simulations have shown that with
this PR scheme, the full diversity of P is achieved. The
above observations are illustrated in Table I which shows the
rank profile of difference matrices in two systems, namely
System-1 with K = L = P = 2 and System-2 with
K = 2, L = P = 4. The rank profiles for these two systems
with and without PR are shown. It can be seen that, without
PR, 32 out of 240 rank matrices in System-1 with DD Profile-
A have rank 1 (which is less than P = 2), resulting in a
diversity order of 1. Likewise, without PR, many difference
matrices in System-2 with DD Profile-C have ranks 2 and 3
(which are less than P = 4). On the other hand, with PR, all
the ranks are P in both the systems for all the DD Profiles-
A to D, achieving the full diversity order of P . In the next
section, we have verified these minimum rank based diversity
orders through BER simulations.

IV. RESULTS AND DISCUSSIONS

In this section, we first present the simulated BER results
that validate the analytical BER bounds and diversity orders
obtained in the previous section. We then present the simulated
BER performance of DZT-OTFS for different system settings
in comparison with those of two-step OTFS and OFDM.

A. Diversity performance of DZT-OTFS
Figure 2 shows the simulated BER performance of a

DZT-OTFS system with K = L = 2 and P = 2, 4. A
carrier frequency (fc) of 4 GHz and νp of 3.75 kHz (hence,
τp = 1

νp
= 0.267 ms) are considered. The information

symbols are chosen from BPSK modulation alphabet and
ML detection is used at the receiver. Simulated BER curves
without PR for System-1 with DD Profile-A and DD Profile-
C in Table I are plotted. The corresponding upper bound and
lower bound on BER are also plotted for comparison. The
following observations can be made from the figure. The upper
and lower bounds on BER and the simulated BER curves
almost merge at high SNRs validating the analytical BER
results. Also, the diversity slopes in the high SNR regime are
1 and 2, respectively, for System-1 with DD Profile-A and
System-1 with DD Profile-C. These are in agreement with the
diversity orders predicted according to minimum ranks shown
in Table I.

Next, Fig. 3 shows the simulated BER curves without
PR for 1) System-1 with DD Profile-A, 2) System-2 with
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Fig. 2: Simulated BER upper and lower bounds on BER for
DZT-OTFS.
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Fig. 3: BER performance of DZT-OTFS with and without PR.

DD Profile-C, and 3) System-2 with DD Profile-D. The
corresponding BER curves with PR are also plotted. It is
observed that the diversity slopes of the BER curves are in
accordance with the minimum ranks shown in Table I. It is
also observed that full diversity of P is achieved with PR.

B. BER performance of DZT-OTFS
Here, we present the BER performance of DZT-OTFS

for different system settings. The number of delay bins L
and the number of Doppler bins K are chosen to meet the
system specifications and channel constraints as follows. A
fundamental rectangle in the DD domain of width τp and
height νp is chosen such that τpνp = 1, and for a given
available bandwidth (B) and delay requirement (T ), K and L
are chosen such that L =

⌈
B
νp

⌉
and K =

⌈
T
τp

⌉
. The following

parameters are considered in the simulations: B = 60 kHz,
T = 4.27 ms, and Ts = 1

B = 16.67µs. Fixing νp = 3.75

kHz gives τp = 1
νp

= 0.267 ms, L =
⌈
B
νp

⌉
= 16, and

K =
⌈
T
τp

⌉
= 16. Fractional delay-Dopplers are considered

in all the simulations and g(t) is taken to be a RC pulse with
roll-off factor γ. The channel is considered to have P = 4
paths with uniform power delay profile. For a given maximum
Doppler νmax and maximum delay τmax, the ith path’s αi is
a random integer uniformly sampled from {0, 1, · · · , αmax},
ai ∈ Unif[−0.5, 0.5], where αmax = round

(
τmax

Ts

)
, Unif[., .]

Fig. 4: BER performance of DZT-OTFS, two-step OTFS, and
OFDM as a function of SNR.

Fig. 5: BER performance of DZT-OTFS, two-step OTFS, and
OFDM as a function of maximum Doppler, νmax.

denotes uniform distribution, and νi = νmax cos(θ), where
θ ∈ Unif[−π, π]. The performance of two-step OTFS and
OFDM are also obtained for comparison. BPSK modulation
and minimum mean square error (MMSE) detection are used
in all the systems.

1) BER as a function of SNR: Figure 4 shows the BER
performance of DZT-OTFS, two-step OTFS, and OFDM as a
function of SNR. The maximum delay and Doppler spreads
are taken to be τmax = 8Ts = 133.33 µs and νmax = 937
Hz, and the roll-off factor of the RC pulse γ is taken to
be 0. From Fig. 4, it is observed that both DZT-OTFS
and two-step OTFS achieve significantly better performance
compared to OFDM. Also, DZT-OTFS is seen to achieve
better performance compared to two-step OTFS, illustrating
the inherent strength of the DZT-OTFS waveform compared
to the two-step OTFS waveform. For example, at a BER of
10−3, DZT OTFS has an SNR gain of about 1 dB and 10 dB
compared to two-step OTFS and OFDM, respectively. Further,
the performance gap between DZT-OTFS and two-step OTFS
increases in favor of DZT-OTFS as SNR increases.

2) BER as function of maximum Doppler, νmax : Figure
5 shows the BER as a function of νmax at an SNR of
20 dB and γ = 0. The simulations are done for a fixed
τmax = 2Ts = 33.34 µs and νmax varied in the range 500
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Fig. 6: Effect of RC pulse roll-off factor, γ, on BER vs νmax

performance.

Hz to 11.25 kHz. It is observed that, compared to OFDM,
both DZT-OTFS and two-step OTFS are significantly more
resilient to increase in maximum Doppler. In addition, DZT-
OTFS is found to achieve better performance compared to
two-step OTFS over a wide range of νmax. This illustrates
that DZT-OTFS waveform is more resilient to high Doppler
spreads compared to two-step OTFS waveform.
C. Effect of RC pulse roll-off factor

The choice of roll-off factor (γ) of the RC pulse plays a
crucial role in the performance of DZT-OTFS. This is due to
the DD domain spread of the RC pulse. As γ increases from
0 to 1, the spread of the RC pulse in the transform domain
increases considerably. This spread of the DD domain symbols
into the adjacent bins lead to a degraded BER performance.
The simulation results in Figs. 6 and 7 illustrate this point,
where the BER is shown as a function of νmax and τmax,
respectively, for γ = 0.1, 0.5, 0.9 at an SNR of 15 dB. The
performance is observed to degrade as the γ is increased from
0.1 to 0.9, because of the the increased spread of the RC pulse.

D. Complexity of DZT-OTFS and two-step OTFS
Here, we present a complexity comparison between DZT-

OTFS and two-step OTFS in transforming a time domain
sequence to DD domain and vice-versa. For DZT-OTFS, from
(16), we observe that for a given (k, l), Zy[k, l] can be
calculated for all k = 0, 1, · · · ,K − 1 using K-point discrete
Fourier transform (DFT), whose complexity is O(K log2K).
Therefore, for k = 0, 1, · · · ,K − 1 and l = 0, 1, · · · , L − 1,
the overall complexity for DZT-OTFS is O(KL log2K). For
two-step OTFS, transforming a signal from DD to TD via
TF domain involves SFFT, whose complexity is of the order
O(KL log2KL), which is higher than that of DZT-OTFS.

V. CONCLUSIONS

In this work, we presented an early investigation of the
bit error performance of OTFS modulation realized using
discrete Zak transform approach. We derived a compact
DD domain input-output relation for DZT-OTFS in matrix-
vector form, which is valid for fractional delay-Dopplers and
practical pulse shapes. This is a new and useful contribution
as the derived matrix-vector representation of the end-to-end

Fig. 7: Effect of RC pulse roll-off factor, γ, on BER vs τmax

performance.

DD domain input-output relation gives a basic foundation
for exploring further into the design of efficient techniques
and algorithms for DZT-OTFS transceivers. Our simulation
results showed that DZT-OTFS can achieve better performance
compared to two-step OTFS over a wide range of Doppler
spreads at a lesser complexity. In this work, we presented
the diversity order results through explicit computation of the
rank profile of the difference matrices. A formal analytical
proof on the diversity order results is a topic for future work.
Also, development and performance evaluation of efficient
algorithms for DD domain equalization/detection and channel
estimation for DZT-OTFS remains open for future research.
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