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Abstract—Irregular repetition slotted aloha (IRSA) is a massive
random access protocol which can be used to serve a large
number of users while achieving a packet loss rate (PLR) close
to zero. However, if the number of users is too high, then the
system is interference limited and the PLR is close to one. In this
paper, we propose a variant of IRSA in the interference limited
regime, namely Censored-IRSA (C-IRSA), wherein users with
poor channel states censor themselves from transmitting their
packets. We theoretically analyze the throughput performance of
C-IRSA via density evolution. Using this, we derive closed-form
expressions for the optimal choice of the censor threshold which
maximizes the throughput while achieving zero PLR among
uncensored users. Through extensive numerical simulations, we
show that C-IRSA can achieve a 4× improvement in the peak
throughput compared to conventional IRSA.

Index Terms—Irregular repetition slotted aloha, massive
machine-type communications, user censoring, random access

I. INTRODUCTION

Massive machine-type communications (mMTC) is an
evolving use-case, expected to serve about a million users per
square km [1]. In this context, irregular repetition slotted aloha
(IRSA) [2] is a distributed massive random access protocol
which has received much attention in the literature [3], [4]. The
performance of IRSA mainly depends on the system load, i.e.,
the number of users participating in the protocol per frame. At
low system loads, the system is not interference-limited, and
the packet loss rate (PLR) is close to zero. As the system load
increases beyond a so-called inflection load, IRSA becomes
interference limited, and the system throughput rapidly drops
to zero, with PLR approaching one [3]. In this paper, we
address the issue of the poor throughput of IRSA in the
high load regime by introducing a distributed self-censoring
scheme, which allows the system to maintain the throughput
at the maximum possible value even as the load increases.

In IRSA, users transmit packet replicas in multiple randomly
selected slots (within a frame) to a base station (BS); the latter
decodes the packets using successive interference cancellation
(SIC) [5]. If the BS successfully decodes a user in a slot, it
uses the decoded data to perform SIC in all other slots in
which that user has transmitted a replica. The decodability of
any user in IRSA depends on the signal to interference plus
noise ratio (SINR) of that user [6]. If the users have poor
channel states or there are many collisions in a slot resulting
in increased multi-user interference (MUI), then the SINR
decreases, leading to users not getting decoded.

When the system load is low, all users with sufficiently
good channel states can be decoded at the end of the SIC
process [7]. However, as the load increases, more collisions
lead to the system becoming interference limited, and the

throughput quickly drops close to zero [5]. To tackle this
issue, in this paper, we propose a modified IRSA protocol,
as follows. The BS transmits a pilot signal at the start of
each frame, using which the users estimate their channel state
information (CSI). Then, users with poor CSI self-censor, i.e.,
they refrain from transmitting, thereby reducing collisions and
enable the decoding of the transmissions from the active users
to succeed. Here, choosing too high a (CSI-based) censor
threshold leads to very few users participating in the IRSA
protocol, while too low a threshold leads to too many collisions
and the system becoming interference-limited. Thus, given the
system load, there is an optimal threshold that maximizes the
throughput. The censor threshold is calculated by the BS based
on the load and the SNR, and its value is periodically broadcast
to the users. Note that this approach retains the fully distributed
nature of IRSA.

IRSA has been studied for the collision channel [2],
with multiple antennas [3], with activity detection [4], with
path loss [6], for the Rayleigh fading channel [7], with
channel estimation errors [8], and with multi-cell effects [9].
Density evolution has been used to characterize the asymptotic
throughput of IRSA [3], [6], [7]. Variants of aloha such
as K-repetition have also been studied [10], [11]. However,
none of these papers address the dramatic increase in PLR
and the corresponding reduction in throughput as the system
load increases, which is our focus in this paper. Our specific
contributions are as follows:

1) We propose a censored-IRSA (C-IRSA) protocol in the
interference limited regime, where users with poor CSI
self-censor to decrease the effective system load, thereby
enabling the uncensored users to be decoded at the BS.

2) We theoretically analyze the asymptotic performance of
C-IRSA using density evolution.

3) We provide the optimal choice of the censor threshold
with which the PLR of uncensored users can be driven
close to zero at all system loads, while maintaining the
throughput of the system at its highest value.

With CSI-based censoring in C-IRSA, we can achieve a 4×
improvement in the peak performance of the system compared
to conventional IRSA. Further, C-IRSA can be operated at the
peak performance for all system loads, whereas the throughput
of conventional IRSA becomes zero at high loads.

Notation: The symbols a, a, and A, denote a scalar, a vector,
and a matrix, respectively. [N ] denotes the set {1, 2, . . . , N}.
1{·}, | · |, [·]∗, and E[·], denote the indicator, magnitude (or
cardinality of a set), conjugate, and expectation, respectively.
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II. SYSTEM MODEL

We consider an IRSA system with M single-antenna users
communicating with a central BS over a frame consisting of
T slots. The BS is located at the cell center, and the users
are arbitrarily located within the cell. mMTC applications
use similar settings as narrowband internet of things, which
uses a narrow bandwidth of 180 kHz [1]. Over this band,
the channel can be assumed to be flat and Rayleigh block
fading. The BS allocates a pre-specified band to all the users
in the system and the M users transmit their packets within
this band. The system load, L, is defined as the ratio of
the number of users to the number of slots, L , M/T . In
conventional IRSA, in each frame, the users randomly select
a subset of the slots, and transmit replicas of their packets
in the chosen slots. The access of the T slots in a given
frame can be represented as a binary access pattern matrix
G∈ {0, 1}T×M [3]. The (t,m)th element of G, denoted by
gtm, equals 1 if the mth user transmits its packet in the tth
slot, and gtm = 0 otherwise. In such a protocol, when L is
high, there will be too many collisions in any slot, leading to
a failure of the SIC-based decoding process (described below),
resulting in low throughput.

The C-IRSA protocol we propose works as follows. At the
start of each frame, the BS transmits a pilot signal, using which
the users estimate their channel state. The users participate in
the IRSA protocol if and only if the magnitude squared of
their channel exceeds a censor threshold denoted by ν. We
refer to the users who self-censor as inactive or censored users,
and the other users as active or uncensored users. A censored
user can sleep till the next time it has data to transmit, by
when its channel state would change. At the BS, the active
users’ packets are decoded using the SIC process as with the
conventional IRSA protocol.

The mth user transmits a symbol xm with E[xm] = 0 and
E[|xm|2]=1. The received signal yt at the BS in the tth slot is

yt =
∑M
m=1

√
ρ0amgtmhmxm + nt, (1)

where hm
i.i.d.∼ CN (0, 1) ∀m ∈ [M ] is the uplink fading

channel of the mth user, assumed independent across users
and frames; am = 1{|hm|2 ≥ ν} is the activity coefficient
of the mth user, and nt

i.i.d.∼CN (0, 1) is the complex AWGN
at the BS. Also, ρ0 , Pσ2

h/N0 denotes the signal to noise
ratio (SNR) of any user (in the absence of any collisions),
where P is the transmit power, σ2

h is the fading variance,
and N0 is the noise variance. Here, we assume that the users
perform path loss inversion based power control to ensure the
same average received power levels of all users, which in turn
ensures fairness. In addition, inverting only the path loss rather
than full channel inversion helps with capture effect, which
allows some of the users to be decoded in slots where there are
collisions, improving the throughput [3]. We denote the set of
active users by A,{i ∈ [M ]||hi|2≥ν}, the number of active
users by Ma, |A|, and the active load La by La,Ma/T .

1) SIC-based Decoding: The BS iteratively processes the
received signal. In each slot, the BS attempts to decode the

Algorithm 1: Performance Evaluation of C-IRSA
Input: T,M, ρ0,G, kmax,A = {i ∈ [M ]||hi|2 ≥ ν}

1 Initialize: S1 = [M ]
2 for k = 1, 2, . . . , kmax do
3 for t = 1, 2, . . . , T do
4 Evaluate the SINR ρkti, ∀i ∈ Sk from (3)
5 If ρkti ≥ γth, remove user i from Sk and

perform SIC in all slots where gti = 1
6 end
7 end
8 Output: PLR = |Skmax

|/M, T = M(1− PLR)/T,
PLRa = |A ∩ Skmax

|/|A|.

users’ packets. If a user is successfully decoded, which can be
verified via a cyclic redundancy check, then using the decoded
data, the BS performs SIC in all slots in which that user
has transmitted a packet [2].1 This process repeats and the
decoding at the BS proceeds in iterations.

We use the SINR threshold model to abstract the
decodability of any packet: a packet can be decoded correctly
if and only if its SINR is above a threshold γth ≥ 1 [3],
[7]. To evaluate the performance of C-IRSA with the SINR
threshold model, we first compute the SINRs achieved by all
the users in all the slots in any decoding iteration. If there
is a user with SINR ≥ γth in some slot, we consider that
packet as successfully decoded and remove the contribution
of that user’s packet from all other slots in which that user
has transmitted a replica [6]. We then proceed to the next
decoding iteration and recompute the SINRs for all users yet
to be decoded. This process stops when no additional users
are decoded in two successive iterations. The throughput T is
calculated as the number of correctly decoded unique packets
divided by the number of slots.

The calculation of the SINR of the users is as follows. We
define Sk as the set of users not decoded upto the kth iteration
with Smk , Sk\{m} and S1 = [M ]. We can write the received
signal in the tth slot in the kth decoding iteration as

ykt =
∑
i∈Sk
√
ρ0aigtihixi + nt. (2)

In order to decode the mth user, we first compute the processed
signal ỹktm , h

∗
my

k
t , which can be written as

ỹktm=
√
ρ0amgtm|hm|2xm+

∑
i∈Sm

k

√
ρ0aigtih

∗
mhixi+h

∗
mnt,

where the first term T1 ,
√
ρ0amgtm|hm|2xm is the desired

signal, the second term T2 ,
∑
i∈Sm

k

√
ρ0aigtih

∗
mhixi is the

MUI, and T3 , h∗mnt is noise. Since noise is uncorrelated
with the other terms and the data streams of distinct users
are uncorrelated, the terms T1, T2, and T3 are all uncorrelated
with each other. The power in the received signal is a sum of
the powers of the terms. Thus, the SINR, ρktm, of the mth user

1The set of slots where the user’s packet is repeated can be included in the
header of the packet.
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in the tth slot in the kth iteration, can be computed as

ρktm =
ρ0amgtm|hm|2

1 +
∑
i∈Sm

k
ρ0aigti|hi|2

. (3)

The performance of C-IRSA can now be computed as detailed
in Alg. 1. Here, the decoding proceeds for kmax iterations, and
the output is the system throughput, T , the packet loss rate
(PLR) of the active users, PLRa, and the system PLR, PLR.

Remarks: The threshold ν can be declared by the BS during
pilot transmission based on the system load; the optimal choice
of ν is discussed in the sequel. Also, we ignore channel
estimation errors in determining whether the user remains
active/inactive and in calculating the SINR in (3). However,
it is straightforward to include these effects using the results
in [3]. Finally, the BS can determine which users are active
in each frame, for example, using the user activity detection
(UAD) algorithm presented in [4]. It is shown in [4] that a
short pilot transmission from the users for channel estimation
at the BS is also sufficient for accurate UAD.

III. THEORETICAL ANALYSIS OF C-IRSA
In the previous section, we described an empirical approach

to evaluate the performance of C-IRSA, given by Alg. 1. We
now characterize the theoretical performance of C-IRSA using
density evolution (DE) [2], [3]. SIC-based decoding can be
viewed as message passing on a bipartite graph [6], and thus
C-IRSA can be decoded on graphs. The bipartite graph is made
up of the user nodes on one side, the slot nodes on the other
side, and the edges between them. An edge connects a user
node to a slot node if and only if that user has transmitted a
packet in that corresponding slot. DE is applicable as Ma and
T →∞ with a fixed La = Ma/T [7]. Hence, we describe the
DE process in terms of only the active load La. Due to lack
of space, we only outline the high-level steps in the analysis
here. Detailed discussion of the DE technique can be found
in several references [2], [3], [6], [7].

The repetition factor of a user is the number of replicas
the user has transmitted in a given frame, whereas the
collision factor of a slot is the number of packets that
have collided in that slot. The node-perspective user degree
distribution is the set of probabilities {φd}dmax

d=2 , where φd
is the probability that a user has a repetition factor d; with
minimum and maximum repetition factors of 2 and dmax,
respectively. The edge-perspective user degree distribution is
the set of probabilities {λd}dmax

d=2 , where λd = dφd/φ
′(1) is the

probability that an edge is connected to a user with repetition
factor d. The corresponding polynomial representations of the
node- and edge- perspective user degree distributions are

φ(x) =
∑dmax

d=2 φdx
d, λ(x) =

∑dmax

d=2 λdx
d−1, (4)

respectively. The average repetition factor is d̄ ,
∑
d dφd.

The degree distributions defined above are now used to find
a pair of interdependent failure probabilities denoted by “pi”
and “qi” in the ith decoding iteration. The user and slot nodes
exchange failure messages along an edge when a decoding
failure happens, i.e., when that user has not been decoded

in that slot in the current decoding iteration. The probability
that an edge carries a failure message from a slot node to
a user node is denoted by pi, whereas the probability that
an edge carries a failure message from a user node to a slot
node is denoted by qi. Using the edge-perspective user degree
distribution, the failure probability qi is calculated as

qi =
∑dmax

d=2 λdp
d−1
i−1 = λ(pi−1). (5)

Here, the probability that an edge carries a failure message in
the ith iteration given that it is connected to a user node with
repetition factor d is pd−1

i−1 . If all the other d − 1 incoming
edges to that user node carry failure messages in the previous
iteration, then the edge will carry a failure message from that
user node in the ith iteration. The failure probability pi is
calculated as in [3], [7] as

pi = 1− e−Lad̄qi
∑∞
r=1θr(Lad̄qi)

r−1/(r − 1)! , f(qi). (6)

Here, θr is the probability that a reference packet gets decoded
in any iteration in a slot of degree r using only intra-slot
SIC [7]. Intra-slot SIC refers to interference cancellation
within the same slot a user is decoded in, whereas inter-slot
SIC refers to interference cancellation in a different slot. We
now describe the evaluation of θr, which is the crucial step in
computing the throughput.

Theorem 1. For the Rayleigh block-fading channel with an
SNR of ρ0, a censor threshold ν, and a decoding threshold
γth, the probability that a reference packet gets decoded in a
slot of degree r using only intra-slot SIC, can be obtained as

θr =

r∑
k=1

exp(rν − (r − k)νγ̄th,k − ρ−1
0 (γ̄th,k − 1))

r γ̄
r−(k+1)/2
th,k

, (7)

where γ̄th,k = (1 + γth)k, and ν ≤ ρ−1
0 γth.

Proof. See Appendix A. �

Remark: When ν=0, i.e., there is no censoring, the expression
for θr matches with the results by Clazzer et al. [7].

In DE, qi=λ(pi−1) and pi=f(qi) are calculated recursively
as functions of each other using (5) and (6), with either q0 =1
or p0 = f(1). At the end of decoding, the failure probability
is p∞=limi→∞ pi. The probability that a packet from a user
with repetition factor d does not get decoded at all is (p∞)d.
Therefore, the asymptotic packet loss rate of the active users
(PLRa), which is the fraction of packets of active users that
are not decoded at the BS, is calculated as

PLRa = φ(p∞) =
∑dmax

d=2 φd(p∞)d. (8)

We denote the cumulative distribution function (CDF) and
the complementary CDF of the exponential distribution (of
|h|2 ∼ exp(1)) evaluated at x by F(x) and F̄(x), 1−F(x),
respectively. The active load La of the system is La=LF̄(ν).
Since the fraction of censored users is F(ν), the effective PLR
of the system (including censored users) can be calculated as

PLR = F(ν) + F̄(ν)PLRa. (9)
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The throughput T of the users in the system can now be
obtained from the asymptotic PLR as

T = L(1− PLR) = La(1− PLRa). (10)

The iterations pi=f(λ(pi−1)) converge to p∞=0 if the active
load La<L

∗
a, asymptotically [2], [3]. Here, L∗a is called the

active inflection load of the system, and it corresponds to a
system inflection load of L∗ =L∗a/F̄(ν), with a threshold ν.
For La<L∗a, since p∞= 0, we have PLRa = 0, PLR= F(ν),
and T = LF̄(ν) = La. For any La ≥ L∗a, PLRa does not
converge to 0, and T decreases monotonically with La. Also,
from (9), we see that PLR≥F(ν), and thus, T ≤LF̄(ν).

1) Choice of Threshold: In order to choose ν, we first
choose a target PLR for the active users, PLRa,tgt, which is a
maximum permissible PLR among the active users. Let Ltgt be
the target load, which is the minimum L at which the system
achieves an active PLR of PLRa,tgt, with ν=ρ−1

0 γth. At Ltgt,
the active load is La = LtgtF̄(ρ−1

0 γth), with a corresponding
throughput of Ttgt. For a load L≥Ltgt, we wish to continue to
operate at the same PLR of PLRa,tgt, to keep the throughput
fixed at Ttgt. This can be done by ensuring the same active
load La at L and Ltgt. Thus, we need to choose ν such that

La = LF̄(ν) = LtgtF̄(ρ−1
0 γth). (11)

Since F̄(x)=exp(−x), we obtain

ν = log(L/La) = log(L/Ltgt) + ρ−1
0 γth. (12)

The above is valid when L≥La or L≥Ltgt. When L<Ltgt,
as we will see in Fig. 3, the threshold that maximizes the
throughput occurs at ν=ρ−1

0 γth. An intuitive reason for this is
that the probability of decoding a user, if that user was the only
one transmitting in a slot, is θ1 =Pr(|h1|2≥ρ−1

0 γth | |h1|2≥ν)
=exp(ν−ρ−1

0 γth) · 1{ν≤ρ−1
0 γth}+ 1{ν>ρ−1

0 γth}, when the
threshold is ν. So if we set ν > ρ−1

0 γth or ν < ρ−1
0 γth, we

are censoring more or fewer users than required, respectively.
Thus, the optimal choice of the censor threshold is given by
the function g(·, ·) defined as

ν = g(L,Ltgt) ,

{
ρ−1

0 γth, L < Ltgt,

log(L/Ltgt) + ρ−1
0 γth, L ≥ Ltgt.

(13)

For ν = ρ−1
0 γth, the system inflection load is L∗ =

L∗a/F̄(ρ−1
0 γth). For Ltgt < L∗, the set of functions {g(·, ·)}

achieve PLRa ≤ PLRa,tgt among the set of active users. In
practice, we set a low target PLR of PLRa,tgt≈10−3 or 10−4.

IV. NUMERICAL RESULTS

In this section, we illustrate the performance of C-IRSA via
Monte Carlo simulations. We also show how C-IRSA helps to
overcome packet losses both due to poor CSI as well as due to
MUI, as the load increases. In every simulation, we generate
independent realizations of the channels and the access pattern
matrix, and empirically evaluate the throughput of C-IRSA
using Alg. 1. We also evaluate the theoretical throughput of
C-IRSA as discussed in Sec. III and provide insights into the
impact of various system parameters on the performance. The

Fig. 1: Impact of T on the throughput.

Fig. 2: Choice of target load Ltgt using theoretical PLRa.

results are presented for 104 Monte Carlo runs, SNR ρ0 =
10 dB, SINR threshold γth = 10 [3]. We use the truncated
Soliton distribution [12] φ(x)=0.625x2+0.25x3+0.125x4 to
generate the repetition factors of the users [3].2 The repetition
factor di is used to form the access vector for the ith user, by
uniformly randomly choosing di slots from T slots without
replacement [2]. The packet replicas are transmitted in these
di slots. For the empirical results, the number of users M is
computed based on L as M = bLT e; whereas the theoretical
performance is dependent only on L, as described in Sec. III.

Fig. 1 shows the impact of T on the empirical throughput
with ν = ρ−1

0 γth = 1. The theoretical asymptotic throughput
curves for ν=0, 0.4, and 1, obtained via DE, are also shown.
The curves linearly increase till a peak, after which they drop
quickly to zero as the system becomes MUI-limited. The
asymptotic T is maximized at L∗a=T = 0.76, for ν= 1. The
linear increase in T marks the region in which PLRa=0 [2]:
when La ≤ 0.76, all active users are decoded. Conventional
IRSA corresponds to no censoring (ν=0). At La=0.4, ν=0
achieves T = 0.15, whereas ν = 1 achieves full throughput

2We do not optimize the repetition distribution in this work since the goal
is to evaluate the impact of censoring.
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Fig. 3: Effect of active load La on T .

of T = La = 0.4. The asymptotic throughput dramatically
improves as ν is increased from 0 to 1, because users with poor
channel states are self-censored. Even with a little amount of
censoring, C-IRSA performs better than IRSA. Thus, C-IRSA
helps overcome packet losses due to both poor CSI and MUI.

We have seen that the choice of the threshold ν must be
such that La ≤L∗a. In Fig. 2, we depict the influence of the
choice of the target load, Ltgt, using the asymptotic active
PLR, PLRa. The PLR is close to 1 with no censoring. The
PLRa of the system increases with L for ν=0, 1, and 2, and
becomes 1 at high loads. The curves with ν=g(L,Ltgt) follow
the performance of ν = ρ−1

0 γth = 1 upto a load of L = Ltgt,
and beyond that PLRa stays constant at every load. Fixing
a PLRa,tgt yields the choice of Ltgt and the corresponding
threshold ν = g(L,Ltgt). The asymptotic PLR increases very
quickly around the inflection load L∗. In practice, however,
choosing Ltgt =0.9L∗ or 0.8L∗ works well.

In Fig. 3, we show the effect of the active load La on the
empirical throughput T , with T =250. Conventional IRSA (no
censoring, i.e., ν=0) achieves very low throughputs since the
system is highly interference limited. Similar to the previous
plot, where the theoretical throughput increased with increase
in ν, the empirical throughput also increases with an increase
in from ν=0 to ν=γth/ρ0 =1. For ν≥γth/ρ0, the throughput
of the system stays constant with respect to the active load and
the system achieves the same throughput for ν=2 as for ν=1.
From the plot, we also see that we should choose a threshold
ν such that we always operate the system at active load of
La ≤ L∗a = 0.65. Also, by optimally choosing the threshold
using ν=g(L,Ltgt) as described in Sec. III-1, we can obtain
the same throughput as that obtained with ν=1. Note that in
the MUI-limited regime, the PLR of IRSA is nonzero, and both
users with poor channel states as well as users who collide with
many users cannot be decoded correctly. Censoring improves
the performance of the system on both counts by choosing
users whose packets are more likely to be decoded correctly
as well as reducing the number of collisions.

So far, we have observed that both the theoretical and
empirical throughputs are maximized at ν=ρ−1

0 γth for every

Fig. 4: Impact of threshold ν on T .

La. We now study the effect of censoring and the system load
L on the empirical throughput in Fig. 4, with T = 250. With
ν=0, i.e., no censoring, the throughput of IRSA becomes zero
at L= 3. With ν = ρ−1

0 γth = 1, the throughput of the system
increases linearly with load upto T =0.65 at L=2, and beyond
that, the throughput drops to zero. This is also observed with
ν=2, which achieves a peak throughput of T =0.65 at L=5.
The linearity of the curve upto L=5 indicates that too many
users are self-censoring, and we could reduce ν. For ν = 1,
we have PLRa = 0 and PLR = F̄(1) upto L = 2; for ν = 2,
we have PLRa = 0 and PLR = F̄(2) upto L = 5. Thus, we
could choose ν for every L such that we obtain an envelope
of all curves for ν≥1, which yields the same performance as
that of the curve marked ν = g(L,Ltgt = 2).3 All the curves
marked ν = g(L,Ltgt) follow the performance of ν = 1 upto
Ltgt, beyond which T stays constant for every L. Since L∗=2,
choosing Ltgt =3 is not preferred since the system is operating
at a high PLR. Choosing Ltgt =1, 1.6, and 2 all yield PLRa=0
at all L since the active load La≤0.65. We thus choose Ltgt =2
to maximize T , which can be obtained from our analysis as
Ltgt =L∗a/F̄(ρ−1

0 γth)=0.65/F̄(1)=2. Since the DE curves are
achieved asymptotically, in practice, we back off from Ltgt by
10% to 20% to Ltgt =1.8 or 1.6, to achieve zero PLRa at all L.
At high L, we see that C-IRSA with Ltgt≤L∗ operates with
T = 0.65, whereas conventional IRSA has T = 0. Thus, the
system can be operated at its maximum potential in C-IRSA
compared to vanilla IRSA which has zero throughput.

1) Impact of random censoring: The censoring of users
can be done in a random fashion as opposed to CSI-based
censoring: users independently participate in each frame with
probability pa, and self-censor with probability 1 − pa. This
yields an active load of La = Lpa. The optimal random
censoring can be done by choosing pa = L∗a/L, since this
ensures that La=L∗a. The curve marked “Random” in Fig. 3
uses random censoring and achieves the same throughput as

3The theoretical throughputs for Figs. 3 and 4 match the above observations.
Due to lack of space, we have not included them. Also, the results are
presented for ρ−1

0 γth =1. The trends are similar for any other ρ−1
0 γth, and

T is maximized at ν=ρ−1
0 γth for every La.
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conventional IRSA for every pa ∈ (0, 1]. For the same active
load La, the channel states of the uncensored users with
CSI-based censoring are better than the channel states of the
active users with random censoring. With optimal random
censoring, in order to operate the system at Ttgt = 0.15 at
L∗a = 0.6, we need to choose pa = min{1, 0.6/L}. With this
choice of pa, we obtain the curve marked “Random” in Fig. 4,
which achieves T = 0.15 at all L ≥ 0.6. Thus, the optimal
CSI-based censoring in C-IRSA achieves a peak throughput
of T = 0.65 whereas optimal random censoring in IRSA has
a peak throughput of T =0.15, an over 4× improvement.

V. CONCLUSION

In this work, we proposed a variant of IRSA, called
C-IRSA, to overcome the performance degradation of IRSA
at high loads. In C-IRSA, users self-censor based on their
CSI, and the protocol retains the fully distributed, random
access nature of IRSA. We derived closed-form expressions
for the success probability θr for CSI-based censoring, and
theoretically characterized the asymptotic performance of
C-IRSA. Our analysis allows us to determine the optimal
choice of the censor threshold ν, with which the PLR of
the active users can be driven close to zero and yields the
highest possible throughput. The results showed that we can
achieve a 4× improvement in C-IRSA compared to optimal
random censoring. Future work could account for CSI and load
estimation errors, optimize the repetition distribution under
C-IRSA, and also include a proportional fairness mechanism
for users with poor CSI.

APPENDIX A: PROOF OF THEOREM 1

We now characterize θr, which is the probability of
decoding a reference packet in a single slot where r users
have transmitted their packets. Since there is only one slot
under consideration, users are decoded via intra-slot SIC. The
reference packet is one of the r packets, and it gets decoded
only if the packets having a higher SINR get successfully
decoded first. Hence, they must also satisfy the SINR ≥ γth
constraint. Thus, θr is the probability that the reference packet
and the packets with higher SINRs all get decoded.

We denote the set of active users who have not yet been
decoded in the first k− 1 intra-slot decoding iterations by Sk,
and Smk , Sk \{m}, with S1 =[r]. The SINR of the mth user
in the kth intra-slot decoding iteration, ρkm, is calculated as
ρkm= |hm|2/(ρ−1

0 +
∑r
i∈Sm

k
|hi|2). Let ρkmax denote the SINR

of the user with the highest SINR in the kth intra-slot decoding
iteration, calculated as ρkmax = maxm∈Sk ρkm. Let s be the
index of the intra-slot decoding iteration in which the reference
packet is decoded, with 1 ≤ s ≤ r. Thus, θr is calculated
as θr = Pr(ρ1

max ≥ γth, ρ
2
max ≥ γth, . . . , ρ

s
max ≥ γth). Since

the reference packet is tagged uniformly at random from the
users, the reference packet is equally likely to get decoded
in any decoding iteration. We denote the probability that the
k packets with the highest SINRs across decoding iterations
all exceed the threshold γth by θrk , Pr(ρ1

max ≥ γth, ρ
2
max ≥

γth, . . . , ρ
k
max ≥ γth). We can calculate θr using θrk as θr =

(
∑r
k=1 θrk)/r. Without loss of generality, let the channels of

the users be ordered as |h1|2 ≥ |h2|2 ≥ . . . ≥ |hr|2. Now,

θrk = Pr

(
|h1|2

ρ−1
0 +

∑r
i=2 |hi|2

≥γth,
|h2|2

ρ−1
0 +

∑r
i=3 |hi|2

≥γth,

. . . ,
|hk|2

ρ−1
0 +

∑r
i=k+1 |hi|2

≥γth

∣∣∣∣|hj |2 ≥ ν, ∀j ∈ [r]

)
. (14)

The above is a conditional probability, conditioned on |hj |2 ≥
ν, since we are considering only uncensored users. Thus, θrk
from (14) can be calculated equivalently as

θrk = Pr(t1 ≥ γth(ρ−1
0 +

∑r
i=2ti), t2 ≥ γth(ρ−1

0 +
∑r
i=3ti),

. . . , tk ≥ γth(ρ−1
0 +

∑r
i=k+1ti)).

Here, ti is a random variable follows a truncated exponential
distribution with the density function f(t) = exp(ν−t)·1{ν ≤
t < ∞}. Assuming ν ≤ ρ−1

0 γth, with γ̄th,i = (1 + γth)i, θrk
can be calculated as

θrk = erν
∫ ∞
ν

e−trdtr

∫ ∞
ν

e−tr−1dtr−1 · · ·
∫ ∞
ν

e−tk+1dtk+1

×
∫ ∞
γth(ρ

−1
0 +

∑r
i=k+1ti)

e−tkdtk · · ·
∫ ∞
γth(ρ

−1
0 +

∑r
i=2ti)

e−t1dt1

=
exp(rν − (r − k)νγ̄th,k − ρ−1

0 γth(
∑k
i=1 γ̄th,i−1))

γ̄
r−(k+1)/2
th,k

. (15)

Thus, we get

θr=
r∑

k=1

exp(rν − (r − k)νγ̄th,k − ρ−1
0 (γ̄th,k − 1))

r γ̄
r−(k+1)/2
th,k

. (16)
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