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Failure of the Callaway description of heat flow in boron arsenide and boron
antimonide driven by phonon scattering selection rules
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Callaway’s simplified heat flow model is often used to confirm experimental realizations of unconventional,
hydrodynamic, and Poiseuille phonon transport in ultrahigh thermal conductivity (κ) materials, due to its
simplicity and low computational cost. Here, we show that the Callaway model works exceptionally well for
most ultrahigh-κ materials like diamond and boron nitride, but fails dramatically for boron arsenide (BAs) and
boron antimonide (BSb). This failure is driven by the inability of the Callaway model to effectively describe
the severely restricted phonon scattering in BAs and BSb, where many scattering selection rules are activated
simultaneously. Our work highlights the powerful predictive capability of the Callaway model, and gives insights
into the nature of phonon scattering in ultrahigh-κ materials and the suitability of Callaway’s description of heat
flow through them.
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I. INTRODUCTION

Thermal transport in ultrahigh thermal conductivity (κ)
materials has become a topic of considerable interest [1–5],
owing to their importance in the development of passive,
energy-efficient heat spreaders for low-thermal-noise and
high-power microelectronics [6,7]. Additionally, recent exper-
iments have shown that these materials are excellent platforms
to realize unconventional nondiffusive hydrodynamic heat
transport, apart from the conventional diffusive heat flow
governed by Fourier’s law [8–11], which could open up
possibilities for thermal cloaking and shielding of sensitive
electronics.

In these materials, heat is carried by phonons, which are
the quantized eigenmodes of the harmonic part of the crystal
Hamiltonian. The remaining perturbative anharmonic terms
in the crystal Hamiltonian drive two different types of scat-
tering processes among phonons: those conserving the total
quasimomentum of the participating phonons, called normal
(N) processes, and those dissipating a part of it to the crystal
lattice, called Umklapp (U) processes. In the ultrahigh-κ ma-
terials, the N processes are much stronger than the U processes
[12–15], resulting in very low resistance to heat flow and
enabling strong collective hydrodynamic phonon transport in
them.

Phonon transport in these materials is governed by the
Peierls-Boltzmann equation (PBE) [16] given by

∂nλ

∂t
+ vλ · ∇nλ = C(nλ), (1)

where nλ is the nonequilibrium distribution function of a
phonon mode λ ≡ (q, j), with wave vector q and polariza-
tion j at a temperature T and time t ; vλ is the phonon
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group velocity; and C(nλ) is the collision integral, describ-
ing the rate at which nλ changes in space and time due
to phonon scattering processes. The PBE [Eq. (1)], even in
its linearized version, strongly couples the nonequilibrium
distribution functions of any two phonon modes [17–21], par-
ticularly for ultrahigh-κ materials, thus making it challenging
to gain qualitative insights on phonon transport from its so-
lution. Hence, several previous works have used a simplified
version of C(nλ), originally proposed by Joseph Callaway
[22], to obtain a microscopic perspective of phonon trans-
port in a number of ultrahigh-κ materials such as diamond
[23], graphite [24], graphene sheets [25,26], graphane, boron
nitride (BN), fluorographene, molybdenum disulphide [25],
and black phosphorus [27], under both diffusive and hydro-
dynamic conditions. However, it is unclear if the simplified
Callaway description of heat flow is universally applicable for
all materials.

Here, we show that while the Callaway description of heat
flow works exceedingly well for most ultrahigh-κ materi-
als, it fails dramatically for two ultrahigh-κ materials: boron
arsenide (BAs) and boron antimonide (BSb) from 150 K
to 1000 K, with a room temperature (RT) error of 26%
(∼ 350 Wm−1K−1) and 23% (∼150 Wm−1K−1) on their κ’s,
respectively. We show that the unusually strong and simulta-
neous activation of multiple phonon scattering selection rules
results in severely restricted phonon scattering in BAs and
BSb, which cannot be captured by the collision integral in
the Callaway model, by construction. Our results highlight the
powerful predictive capability of the Callaway model for most
ultrahigh-κ materials, elucidate the unconventional nature of
heat flow in BAs and BSb, and provide computationally in-
expensive guidelines to quickly identify the suitability of the
Callaway model for newly discovered materials in the future.

To check the validity of the Callaway approximation for
different materials, we construct the solution of the linearized
form of the PBE [Eq. (1)] by expanding nλ around the
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Bose-Einstein equilibrium distribution function n0
λ as nλ ≈

n0
λ + n0

λ(n0
λ + 1)ñ1

λ. Further, by assuming a steady-state, one-
dimensional temperature gradient and the spatial gradients
of the deviation nλ − n0

λ to be negligible, the linearized PBE
(LPBE) becomes [16,28,29]

vλ,x
dT

dx

∂n0
λ

∂T
≈ C lin.(nλ) =

∑
λ′

Rλλ′ ñ1
λ, (2)

where C lin.(nλ) is the linearized collision integral and Rλλ′

is the linearized collision matrix. In this work, we include
the terms corresponding to the three-phonon and four-phonon
processes in Rλλ′ . The expressions for C(nλ), C lin.(nλ) and
Rλλ′ and the details of the first-principles methodology to
solve Eq. (2) are provided in Appendix I and in Ref. [30]
(results for naturally occurring materials including phonon-
isotope scattering are included in the Supplemental Material
S1 [31], see also Ref. [32] therein). A material’s κ is then
obtained by solving the LPBE [Eq. (2)] for ñ1

λ and using it in
the heat flux expression as

Jx = 1

�

∑
λ

h̄ωλvλ,xn0
λ

(
n0

λ + 1
)
ñ1

λ = −κ
dT

dx
, (3)

where ωλ is the phonon frequency and � is the crystal volume.
It is instructive to note that C lin.(nλ) can be written as a sum of
a diagonal and an off-diagonal part:

C lin.(nλ) =
∑
λ′

Rλλ′ ñ1
λ′ = R(0)

λ ñ1
λ +

∑
λ′

R(1)
λλ′ ñ1

λ′ . (4)

A commonly used approximation to the LPBE, the relax-
ation time approximation (RTA), is obtained by ignoring the
off-diagonal terms of C lin.(nλ) (i.e.,

∑
λ′ R(1)

λλ′ ñ1
λ′) in Eq. (4).

The solution of the LPBE under the RTA provides simple
insights into the phonon decay processes and their effect on
κ , since there is no coupling among nλ’s of different phonon
modes in the RTA. However, κ derived from the RTA (κRTA)
significantly underpredicts the complete solution of the LPBE
for ultrahigh-κ materials, since the collision integral under the
RTA, given by

CRTA(nλ) = R(0)
λ ñ1

λ = −nλ − n0
λ

τU
λ

− nλ − n0
λ

τN
λ

, (5)

assumes that both the N- and U processes drive nλ towards
n0

λ with rates 1/τN
λ and 1/τU

λ , respectively. However, in the
absence of U processes, the N processes drive nλ towards n∗

λ =
1

exp( h̄ωλ
kBT +�·q)−1

≈ [n0
λ − n0

λ(n0
λ + 1)q · �], a drifting equilib-

rium distribution function with the constant � related to the
phonon mobility � as � = � dT

dx [25]. Hence, when the scat-
tering rates of the N processes (1/τN) are much stronger than
those of the U processes (1/τU), as in ultrahigh-κ materials,
the RTA [Eq. (5)] fails to capture their high κ .

To overcome this problem, Callaway [22] proposed an
improved approximation to C lin.(nλ) for ultrahigh-κ materials,
where the dissipative U processes relax nλ towards n0

λ, while
the nondissipative N processes relax nλ towards n∗

λ. The LPBE
[Eq. (2)] under the Callaway approximation becomes

vλ,x
dT

dx

∂n0
λ

∂T
= −nλ − n0

λ

τU
λ

− nλ − n∗
λ

τN
λ

= CCall.(nλ), (6)

thus maintaining the uncoupled nature of the collision integral
with respect to nλ. The phonon mobility �, needed to calcu-
late n∗

λ in Eq. (6), is determined using an additional closure
condition on the exact conservation of phonon quasimomen-
tum h̄q in the presence of N processes only, i.e.,∑

λ

h̄qC lin., N(nλ) =
∑
λλ′

h̄qRN
λλ′ ñ1

λ′ = 0. (7)

Here, C lin., N(nλ) and RN
λλ′ are the linearized collision integral

and matrix, respectively, in the presence of N processes only.
Identifying ñ∗1

λ′ = [n∗
λ − n0

λ]/[n0
λ(n0

λ + 1)] as belonging to the
null space of RN

λλ′ [13,14] and neglecting the off-diagonal
terms in RN

λλ′ , we obtain the closure condition originally used
by Callaway [22] as

∑
λλ′

h̄qRN
λλ′

[
ñ1

λ′ − ñ∗1
λ′

] ≈ −
∑

λ

h̄q
nλ − n∗

λ

τN
λ

= 0. (8)

Assuming linearized forms of nλ and n∗
λ, Eqs. (3), (6), and (8)

can be solved to obtain κ from the Callaway model (κCall.) as

κCall. = 1

�

∑
λ

h̄ωλτ
T
λ v2

λ,x

∂n0
λ

∂T

+ 1

�

∑
λ

τT
λ

τN
λ

h̄ωλvλ,xn0
λ

(
n0

λ + 1
)
q · �. (9)

Here, τT
λ is the total phonon relaxation time, obtained using

Matthiessen’s rule from the relaxation times of N- and U
processes as 1/τT

λ = 1/τN
λ + 1/τU

λ , and the phonon mobility
� is given by

� =
[∑

λ

q ⊗ q
τT
λ

τN
λ τU

λ

n0
λ

(
n0

λ + 1
)]−1(∑

λ

qvλ,x
τT
λ

τN
λ

∂n0
λ

∂T

)
,

where ⊗ represents a dyadic product (for a detailed derivation,
see Appendix I).

II. RESULTS AND DISCUSSION

Figures 1(a) and 1(b) show the error in κCall. [ε(κCall. )]
relative to that obtained from the LPBE (κLPBE) for 20
different cubic semiconductors with varying masses of the
constituent atoms and strengths of their interatomic bonds.
Three important observations can be made from this figure.
First, the Callaway model predicts, with reasonable accuracy
[ε(κCall. ) < 10%], the κ at 200 K and 300 K of those materi-
als where the RTA description of phonon transport including
three-phonon and four-phonon scattering is sufficient. For
these materials, the distinction between N- and U processes
is not important as their N- and U scattering rates are com-
parable. Therefore, the predictions of the Callaway model
are in agreement with those of the RTA, thus confirming our
expectation. Second, it also accurately predicts the κ of certain
ultrahigh-κ materials like diamond and BN at 200 K and
300 K, where the RTA is known to fail dramatically [4,17].
The percentage errors [ε(κCall. )] are only about 12% and 4%
for diamond, and 9% and 5% for BN, at 200 K and 300 K,
respectively, including four-phonon scattering. Third, in stark
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FIG. 1. Percentage error in κCall., ε(κCall. ) = 100 × |1 − κCall.
κLPBE

|%,
for 20 materials at 200 K and 300 K, with (dark color bars) and
without (light color bars) the inclusion of four-phonon scattering.
The materials listed to the right of silicon carbide (SiC) have a
percentage error of more than 10% in κRTA including four-phonon
scattering.

contrast to the above two cases, the Callaway model fails
dramatically for two other ultrahigh-κ materials—BAs and
BSb, at 200 K and 300 K, with or without the inclusion of
four-phonon scattering in our calculations. For BAs, ε(κCall. )
is about 26% (28%) at 300 K (200 K), while for BSb, it is

about 23% (24%) at 300 K (200 K) including four-phonon
scattering. Since the Callaway model works for aluminum an-
timonide (AlSb) when four-phonon scattering is included, we
do not discuss this case further (see Appendix II for details).

Interestingly, for diamond, the agreement between the
Callaway and the LPBE solution is much better for the first
[0.4% (7%)] and second [4% (10%)] transverse acoustic
branches—TA1 and TA2, respectively—than for the longitu-
dinal acoustic—LA branch [17% (27%)]—at 300 K (200 K),
as shown in Fig. 2 for 300 K. Similar excellent agreement
between the Callaway and the LPBE solutions is observed for
the TA1 and TA2 branches in BN as well. However, since
the overall contribution to κ is much larger from the TA1
and TA2 branches than from the LA branch, the Callaway
solution closely approximates that of the LPBE in diamond
and BN. For both diamond and BN, the RTA significantly
underpredicts the κ for TA1, TA2, and LA branches relative
to the LPBE solution at 200 K and 300 K.

To understand why the Callaway model works so well for
diamond and BN in general, and for TA1 and TA2 phonons
in these materials in particular, but fails dramatically for BAs
and BSb, we recast CCall.(nλ) into a form similar to C lin.(nλ) in
Eq. (4). To get to this form, we first solve Eq. (8) for � using
the linearized forms of nλ and n∗

λ as

∑
λ

h̄q

(
n0

λ

(
n0

λ + 1
)
ñ1

λ

τN
λ

+ n0
λ

(
n0

λ + 1
)
q · �

τN
λ

)
= 0.

FIG. 2. Mode-wise (TA1, TA2, and LA phonon modes) spectral contributions of κ for diamond and BAs at 300 K, with (solid) and without
(dashed) the inclusion of four-phonon scattering.
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FIG. 3. Comparison of the diagonal and off-diagonal parts of the
collision integral in LPBE for Si (a), diamond (b), BAs (c), and BSb
(d) at 300 K as a function of phonon frequency νa.

Thus,

� = −
∑

λ

(
q̃n0

λ

(
n0

λ + 1
)
ñ1

λ

τN
λ

)
, (10)

where q̃ =
[∑

λ′
q′ ⊗ q′ n

0
λ′ (n0

λ′ + 1)

τN
λ′

]−1

q. (11)

Next, we substitute the resulting � into Eq. (6), with lin-
earized forms of nλ and n∗

λ, to get the collision matrix that
corresponds to CCall.(nλ) as (see Ref. [33] and Appendix I for
details)

CCall.(nλ) ≈ − nλ − n0
λ

τU
λ

− nλ − n0
λ + n0

λ

(
n0

λ + 1
)
q · �

τN
λ

= − n0
λ

(
n0

λ + 1
)
ñ1

λ

τT
λ

− n0
λ

(
n0

λ + 1
)
q · �

τN
λ

=R(0)
λ ñ1

λ +
∑
λ′

S (1)
λλ′ ñ1

λ′ , (12)

with S (1)
λλ′ = q · q̃′ n

0
λ

(
n0

λ + 1
)

τN
λ

n0
λ′
(
n0

λ′ + 1
)

τN
λ′

. (13)

Here, S (1)
λλ′ are the off-diagonal elements of the Callaway

collision matrix Sλλ′ . The Callaway collision integral is con-
structed in such a way that the diagonal terms of Rλλ′ and
Sλλ′ are both equal to R(0)

λ . Thus, the Callaway model will
poorly approximate the LPBE solution when (1) the off-
diagonal contribution to C lin.(nλ),

∑
λ′ R(1)

λλ′ ñ1
λ′ , is comparable

to or larger than the diagonal term, R(0)
λ ñ1

λ, and (2) the off-
diagonal matrix elements R(1)

λλ′ and S (1)
λλ′ are very different.

Figure 3 shows the comparison between the diagonal and the
off-diagonal contributions to C lin.(nλ) for the acoustic phonons
in different materials at 300 K. For materials like Si, where
κRTA ≈ κLPBE, the diagonal terms are much larger than the
off-diagonal terms [Fig. 3(a)]. As shown in Fig. S4 in the

FIG. 4. The off-diagonal collision matrices from the LPBE
(R(1)

λλ′ ) and the Callaway model (S (1)
λλ′ ) for the TA1 phonon branch in

diamond [(a) and (b), respectively] and the LA phonon branch in BAs
[(c) and (d), respectively]. The ordinate lists the q-points (in units of
2π/a, where a is the lattice constant) of the TA1 (LA) phonons only,
while the abscissa has six points for each unique q′, corresponding
to the six polarizations in diamond (BAs).

Supplemental Material S2 [31], the diagonal terms dominate
over the off-diagonal terms even for CCall.(nλ) in Si. Hence,
for Si, κRTA ≈ κLPBE ≈ κCall.. On the other hand, for materials
like diamond, BAs, and BSb [Figs. 3(b), 3(c) and 3(d), respec-
tively], the diagonal and the off-diagonal terms of C lin.(nλ) are
comparable, thus satisfying the first failure condition of the
Callaway model.

To check the second failure condition for the Callaway
model in diamond, we focus on the TA1 polarization, for
which the Callaway solution closely approaches the LPBE so-
lution at 300 K, while the RTA solution deviates strongly [see
Fig. 2(a)]. In Figs. 4(a) and 4(b), we compare R(1)

λλ′ and S (1)
λλ′ for

the TA1 phonons in diamond at 300 K. Although S (1)
λλ′ is sim-

plistic, it qualitatively captures the important features of R(1)
λλ′

accurately. Specifically, the features of large R(1)
λλ′ for small

‖q‖2 or small ‖q′‖2 where the N processes dominate, and the
vanishingly small R(1)

λλ′ for large ‖q‖2 and large ‖q′‖2 where
the U processes dominate, as shown in Fig. S9 in the Sup-
plemental Material S3 [31], are also reflected in S (1)

λλ′ . Thus,
the LPBE picture of strong N scattering and relatively weak
U scattering in diamond at 300 K, which is the origin of the
large enhancement of κ from the RTA to the complete LPBE
solution, is qualitatively captured by the Callaway collision
matrix. The small quantitative differences in R(1)

λλ′ and S (1)
λλ′ do

not affect the results significantly, since the off-diagonal terms
of C lin.(nλ) and CCall.(nλ) are still smaller than the diagonal
terms for the vast majority of the TA1 phonons. Similar fea-
tures are also observed in the collision matrix of BN, as shown
in Fig. S10 in the Supplemental Material S3 [31].

On the other hand, S (1)
λλ′ fails to capture the features of

R(1)
λλ′ in BAs at 300 K. In BAs, the acoustic phonons are
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FIG. 5. Comparison of R(N/U,0)
λ = n0

λ(n0
λ + 1)/τ (N/U)

λ for the N-
and U processes of LA phonons in BAs at 300 K.

bunched together, which severely restricts the lowest-order
three-phonon interactions among them [18,30,34]. Addition-
ally, the large mass difference between the boron and arsenic
atoms results in a large frequency gap between the acoustic
and the optic phonons, that almost completely forbids any
three-phonon interactions among them. The simultaneously
strong activation of these three-phonon scattering selection
rules [30] results in vanishingly small values of R(1)

λλ′ for a
large number of (λ, λ′) pairs except when ‖q‖2 or ‖q′‖2 is
small, as shown in Fig. 4(c) for the LA phonons in BAs,
for which the error ε(κCall. ) is the largest as shown in Fig. 2
(see Fig. S11 in the Supplemental Material [31] for the R(1)

λλ′
contours of the TA1 and TA2 phonons in BAs). As shown in
Fig. S9 in the Supplemental Material S3 [31], the region of
large ‖q‖2 and ‖q′‖2 in these contours is dominated by the U
processes due to the momentum conservation restriction, and
so the vanishingly small R(1)

λλ′ for BAs in this region explains
the overall weak U scattering of acoustic phonons with large
frequencies, as observed earlier [30] and also represented in
Fig. 5.

In stark contrast, Fig. 4(d) shows the exact opposite trend in
S (1)

λλ′ , with more than an order of magnitude larger S (1)
λλ′ when

‖q‖2 and ‖q′‖2 are large, compared to the case when ‖q‖2

or ‖q′‖2 is small. This behavior originates from the absence
of any information on U processes in the expression for S (1)

λλ′
[Eq. (13)], since it depends on the relaxation times of the N
processes only. As shown in Fig. 5, the factor n0

λ(n0
λ + 1)/τN

λ

for the N processes, which appears in S (1)
λλ′ , is weakly de-

pendent on ‖q‖2. Therefore, for a fixed ‖q‖2, S (1)
λλ′ does not

decay fast enough as ‖q′‖2 increases in Fig. 4(d) to capture
the sharply decreasing R(1)

λλ′ with increasing ‖q′‖2 in Fig. 4(c).
Similar trends in R(1)

λλ′ and S (1)
λλ′ are also found for BSb, as

shown in the Supplementary Material S2 and S3 [31]. Thus,
due to the complete qualitative and quantitative misrepresen-
tation of R(1)

λλ′ by S (1)
λλ′ , the Callaway model fails dramatically

for BAs and BSb at 300 K. In fact, the Callaway model

FIG. 6. Thermal conductivity (κ) of BAs (a) and BSb (b) at
different temperatures (T), calculated by solving the complete LPBE
(red), the LPBE under the RTA (green), and the LPBE using the
Callaway model (blue), with (solid line) and without (dashed line)
the inclusion of four-phonon scattering.

performs well for diamond and BN over a broad temperature
range as shown in the Supplemental Material S4 [31], but it
is unable to predict the LPBE solution for κ in BAs and BSb
anywhere between 150 K and 1000 K, as shown in Figs. 6(a)
and 6(b), respectively (similar plots for the other 18 materials,
with and without the inclusion of phonon-isotope scattering,
are included in the Supplemental Material S4 [31]).

It is important to note here that the failure of the Call-
away model is due to the simultaneous activation of multiple
three-phonon scattering selection rules. To further highlight
the importance of this requirement, we conducted a compu-
tational experiment on BN at 300 K. BN exhibits small optic
bandwidth and acoustic bunching, but the A-O (A: acoustic,
O: optic) band gap vanishes since the basis atoms, boron
and nitrogen, have nearly the same masses. In our compu-
tational experiment, we artificially shifted the optic branches
to higher frequencies systematically, and computed the κ , as
depicted in Figs. 7(a) and 7(b). To keep the calculations sim-
ple, we included scattering among three phonons only for this
computational experiment, since the effects of four-phonon
scattering on the κ of BN are weak at 300 K and there are
no selection rules for these higher-order scattering processes,
as discussed in Refs. [4,30]. Initially, when there is no shift,
significant AAO scattering is observed that compensates for
the low AAA U scattering, as shown in Figs. 7(c) and 7(d).
In this case, the phonon-phonon scattering processes are not
highly restricted, so the Callaway model provides a reasonable
estimate of κ compared to the complete solution of the LPBE.
As we increase the band gap from zero to 15 THz, we do
not observe any notable differences between the κ values
obtained using the LPBE and the Callaway model, since the
low AAA scattering is always compensated by the large AAO
scattering within this range of the optic phonon frequency
shift. However, when the A-O gap exceeds 15 THz, the low
AAA U-scattering rates begin to manifest, and they are fully
exposed as the A-O gap approaches the acoustic bandwidth,
as shown in Figs. 7(e) and 7(f). In this range, the error in the
prediction of κ from the Callaway model relative to the com-
plete solution of the LPBE progressively worsens as the band
gap increases, as shown in Fig. 7(b). Thus, the simultaneous
activation of multiple phonon scattering selection rules that
results in a highly restricted phonon scattering phase space is
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FIG. 7. A computational experiment showing the failure of the
Callaway model by artificially activating multiple three-phonon scat-
tering selection rules in boron nitride (BN) at 300K. (a) Phonon
dispersions for BN showing the acoustic (red) and the optic (blue)
phonon branches. The optic branches are systematically shifted to
create and widen the A-O band gap. (b) κ calculated using the LPBE
(red), the Callaway model (blue), and the RTA (green), as a function
of the shift in the optic branches. [(c) and (d)] Three-phonon N-
and U scattering rates, respectively, for BN without any shift in the
optic branches. (e and f) Three-phonon N- and U scattering rates,
respectively, for BN with a shift in the frequencies of the optic
branches equal to the acoustic bandwidth. The same harmonic and
anharmonic force constants are used for all of these calculations.

a necessary condition for the failure of the Callaway model in
predicting the κ of a material.

III. MODIFICATIONS TO THE CALLAWAY MODEL

Over the past few years, two variations to the original Call-
away model have been proposed in the literature. In the first
variant [35], which we refer to as Allen’s modified Callaway
model, a different quasimomentum conservation condition
has been used to obtain �, by enforcing the condition that
the total quasimomentum of phonons remains invariant when
only N scattering among phonons occurs in a crystal. This
condition is represented by∑

λ

h̄q(nλ − n∗
λ) = 0. (14)

Using the quasimomentum conservation condition as in
Eq. (14), the phonon mobility for the calculation of κ and

FIG. 8. Percentage error in κ - ε(κ ) = 100 × |1 − κ

κLPBE
| calcu-

lated using (a) the Callaway model, (b) Allen’s modified Callaway
model, and (c) the RTA, for 20 materials at 300 K, with (dark color
bars) and without (light color bars) including four-phonon scattering.
The materials listed here are sorted according to increasing ε(κRTA)
with the inclusion of four-phonon scattering.

the off-diagonal elements of the collision matrix in Allen’s
modified Callaway model are obtained as

� =
[∑

λ

q ⊗ qn0
λ

(
n0

λ + 1
) τT

λ

τU
λ

]−1

[∑
λ

q
(

vλ,xτ
T
λ

∂n0
λ

∂T

)
dT

dx

]
(15)

S (1)
λλ′ = q · q̃′ n

0
λ

(
n0

λ + 1
)

τN
λ

n0
λ′
(
n0

λ′ + 1
)
, (16)

where q̃ =
[∑

λ

q ⊗ qn0
λ

(
n0

λ + 1
)]−1

q.

Figure 8 shows the error in κ [ε(κ )] calculated by the RTA,
the Callaway, and Allen’s modified Callaway models relative
to that obtained from the solutions of the LPBE (κLPBE) for
the 20 cubic materials studied here. We see from this fig-
ure that, for diamond and BN, the Callaway model, both in
its original form and with Allen’s modification to it, performs
exceedingly well in predicting the complete solutions of the
LPBE. However, both models severely fail for BAs and BSb.
Once again, the failure of Allen’s modified Callaway model
for BAs and BSb is due to its inability to replicate the highly
restricted three-phonon scattering phase space in these two
materials, as shown in the contour plots for the LA phonons
in BAs [Figs. 9(c) and 9(d)]. It is to be noted from Fig. 9(b)
that even though the contours of the collision matrix from
Allen’s modified Callaway model show the correct features
of large S (1)

λλ′ values at small (‖q‖2, ‖q′‖2) and small S (1)
λλ′

values at large (‖q‖2, ‖q′‖2) for the TA1 phonons in dia-
mond, the qualitative features at [small ‖q‖2, large ‖q′‖2] and
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FIG. 9. The off-diagonal collision matrices from the LPBE
(R(1)

λλ′ ) and Allen’s modified Callaway model (S (1)
λλ′ ) for the TA1

phonon branch in diamond [(a) and (b), respectively] and the LA
phonon branch in BAs [(c) and (d), respectively]. The ordinate lists
the q-points (in units of 2π/a, where a is the lattice constant) of the
TA1 (LA) phonons only, while the abscissa has six points for each
unique q′, corresponding to the six polarizations in diamond (BAs).

[large ‖q‖2, small ‖q′‖2] are slightly different compared to
the respective regions in the collision matrix of the LPBE
[Fig. 9(a)], due to the inherent asymmetry of the collision
matrix of Allen’s modified Callaway model [Eq. (16)]. Nev-
ertheless, these slight differences between the off-diagonal
elements of the collision matrix from the LPBE and Allen’s
modified Callaway model do not influence the results signifi-
cantly, since the off-diagonal terms of C lin.(nλ) and CCall.(nλ)
are still smaller than the diagonal terms for the vast majority of
the TA1 phonons in diamond, similar to the original Callaway
model as mentioned earlier.

Another modification to the Callaway model has been
proposed in Ref. [27], where the authors have modified the
method of classifying the phonon-phonon scattering processes
as N- and U processes. In this modification, any scattering
event that conserves phonon quasimomentum in the direction
of the temperature gradient (i.e.,

∑3
i=1 qxi = 0 for a three-

phonon scattering process with the temperature gradient along
the x direction) is classified as an N process, while those that
do not fulfill this condition are classified as U processes. This
definition can be used along with the closure condition of the
original Callaway model [Eq. (8)] or Allen’s modified Call-
away model [Eq. (14)] to obtain the κ values. With the original
Callaway model [Eq. (8)] for a one-dimensional temperature
gradient (say, along the x direction) and with the modified
definition of the N- and U processes, the quasimomentum
conservation condition becomes

−
∑
λ′

h̄qx

(
nλ − n∗

λ

τN
λ

)
= 0. (17)

Following a similar procedure to get the phonon mobility �

as in the previous cases, with Eq. (17) as the quasimomentum

FIG. 10. Percentage error in κ - ε(κ ) = 100 × |1 − κ

κLPBE
| cal-

culated using (a) the Callaway model, and (b) Allen’s modified
Callaway model, for 20 materials at 300 K, including four-phonon
scattering. Here the N processes are defined in two different ways:
the conventional definition, which conserves the total quasimomen-
tum of interacting phonons, i.e.,

∑
i qi = 0 (dark color bars), and

a modified definition as in Ref. [27], which conserves the total
quasimomentum of interacting phonons along the direction of the
temperature gradient (x direction here), i.e.,

∑
i qxi = 0 (light color

bars). In the above conditions, the sum over i runs from one to three
for three-phonon processes and from one to four for four-phonon
processes.

conservation condition, we get

∑
λ

qx

τN
λ

τ T
λ vλ,x

∂n0
λ

∂T
=

∑
λ

qx

τN
λ

τ T
λ

τU
λ

n0
λ

(
n0

λ + 1
)
q · �. (18)

Equation (18) is a single equation with three unknowns, which
cannot be solved in general. However, by assuming that the
component of � is nonzero only along the temperature gradi-
ent, we can obtain an expression for �x as

�x =
∑

λ
qx

τN
λ

τ T
λ vλ,x

∂n0
λ

∂T∑
λ

qx

τN
λ

τ T
λ

τU
λ

n0
λ

(
n0

λ + 1
)
qx

. (19)

Similarly, �x can be obtained with Allen’s modified condi-
tion for quasimomentum conservation [Eq. (14)] in a separate
calculation.

Figure 10 shows the comparison of ε(κ ) from the original
Callaway and Allen’s modified Callaway models, consid-
ering the conventional and the newly defined N- and U
processes as in Ref. [27], with the inclusion of four-phonon
scattering. Upon adopting the modified classification pro-
cedure for the N- and U processes as in Ref. [27], a few
of the conventionally defined U processes will now be cat-
egorized as N processes. Since this reclassification does
not affect the total scattering rates, the RTA outcomes re-
main unaffected, so ε(κ ) from the RTA is not compared
in this figure. However, for both the original Callaway and
Allen’s modified Callaway models, we find that ε(κ ) is lower
while adopting the conventional definition of the N- and U
processes than while using the newly defined N- and U pro-
cesses as in Ref. [27], particularly for ultrahigh-κ materials.
Most importantly, even with the newly defined N- and U
processes, both the original Callaway and Allen’s modified
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Callaway models fail to predict the κ values of BAs and BSb,
due to the additional reduction in the number of U processes
caused by this reclassification.

IV. CONCLUSION AND OUTLOOK

In summary, we have shown that the Callaway description
of heat flow works exceptionally well for most ultrahigh-κ
materials except BAs and BSb. This peculiar failure for BAs
and BSb is caused by the inability of the Callaway collision
matrix to capture the strong and simultaneous activation of
multiple phonon scattering selection rules that restrict the
allowed phonon decay processes in these two materials. Our
work elucidates the unconventional nature of heat flow in
BAs and BSb compared to other ultrahigh-κ materials like
diamond and BN. Owing to the simplicity and low compu-
tational cost of the Callaway model compared to the complete
solution of the LPBE, we anticipate that our work will inspire
development of new computational tools, such as the Monte
Carlo schemes for phonon transport [36–38] using the Call-
away model to directly simulate heat flow through complex
nanoscale devices made of some of the ultrahigh-κ materials
like diamond and BN, as well as new Callaway-like simplifi-
cations for coupled transport problems involving phonon-spin
and phonon-electron interactions [39–42].
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APPENDIX A: METHODS

1. First-principles calculation of the phonon collision matrix

In this work, we have considered three-phonon and four-
phonon scattering processes. The total phonon collision
integral [C(nλ)] for these processes can be written as

C(nλ) = C3-ph.(nλ) + C4-ph.(nλ). (A1)

The individual collision integrals for these phonon scattering
processes are expanded below.

a. Three-phonon collision matrix

The three-phonon collision integral C3-ph.(nλ) is obtained
from Fermi’s golden rule as

C3-ph.(nλ) = − π h̄

4N0

∑
λ′λ′′

[
|�λλ′(−λ′′ )|2
ωλωλ′ωλ′′

(nλnλ′ (nλ′′ + 1) − (nλ + 1)(nλ′ + 1)nλ′′ )δ(ωλ + ωλ′ − ωλ′′ )

+ 1

2

|�λ(−λ′ )(−λ′′ )|2
ωλωλ′ωλ′′

(nλ(nλ′ + 1)(nλ′′ + 1) − (nλ + 1)nλ′nλ′′ )δ(ωλ − ωλ′ − ωλ′′ )

]
. (A2)

Here, N0 is the number of unit cells in the crystal. The three-phonon matrix elements �λλ′λ′′ are related to the third-order
interatomic force constants �αβγ (lk, l ′k′, l ′′k′′) as

�λλ′λ′′ =
∑
l ′l ′′

∑
kk′k′′

∑
αβγ

�αβγ (0k, l ′k′, l ′′k′′)√
mkmk′mk′′

wα (q j, k)wβ (q′ j′, k′)wγ (q′′ j′′, k′′)

× exp [iq′ · R(l ′)] exp [iq′′ · R(l ′′)]�(q + q′ + q′′), (A3)

where l, l ′, l ′′ are the lattice site indices with position vectors R(l ), R(l ′), and R(l ′′), respectively; k, k′, k′′ are the indices for the
types of basis atoms with masses mk , mk′ , and mk′′ , respectively; α, β, γ are the indices for the Cartesian coordinates; and w is
the phonon eigenvector.

Equation (A2), upon linearization using nλ = n0
λ + n0

λ(n0
λ + 1)ñ1

λ, becomes

C lin., 3-ph.(nλ) = − π h̄
4N0

∑
λ′λ′′

[
|�λλ′(−λ′′ )|2
ωλωλ′ωλ′′ δ(ωλ + ωλ′ − ωλ′′ )n0

λn0
λ′
(
n0

λ′′ + 1
)(

ñ1
λ + ñ1

λ′ − ñ1
λ′′

)

+1

2
|�λ(−λ′ )(−λ′′ )|2

ωλωλ′ωλ′′ δ(ωλ − ωλ′ − ωλ′′ )n0
λ

(
n0

λ′ + 1
)(

n0
λ′′ + 1

)(
ñ1

λ − ñ1
λ′ − ñ1

λ′′
)]

.

Using the short-hand notation for the three-phonon transition rates for phonon emission (−) and absorption (+) processes as

W±
λλ′λ′′ = − π h̄

4N0

|�λ(±λ′ )(−λ′′ )|2
ωλωλ′ωλ′′

δ(ωλ ± ωλ′ − ωλ′′ )n0
λ

(
n0

λ′ + 1

2
∓ 1

2

)(
n0

λ′′ + 1
)
, (A4)

the linearized three-phonon collision integral C lin., 3-ph.(nλ) is simplified as

C lin., 3-ph.(nλ) =
∑
λ′

Tλλ′ ñ1
λ′ =

∑
λ′λ′′

[
W+

λλ′λ′′
(
ñ1

λ + ñ1
λ′ − ñ1

λ′′
) + 1

2
W−

λλ′λ′′
(
ñ1

λ − ñ1
λ′ − ñ1

λ′′
)]

(A5)
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= T (0)
λ ñ1

λ +
∑
λ′λ′′

[
W+

λλ′λ′′ − 1

2
W−

λλ′λ′′

]
ñ1

λ′ −
∑
λ′λ′′

[
W+

λλ′λ′′ + 1

2
W−

λλ′λ′′

]
ñ1

λ′′

= T (0)
λ ñ1

λ +
∑
λ′

[∑
λ′′

(
W+

λλ′λ′′ − W−
λλ′λ′′ − W−

λ′λλ′′
)]

ñ1
λ′

= T (0)
λ ñ1

λ +
∑
λ′

T (1)
λλ′ ñ1

λ′ , (A6)

where T is the three-phonon collision matrix, with T (0) being its diagonal part and T (1) being its off-diagonal part, given by

T (0)
λ =

∑
λ′λ′′

[
W+

λλ′λ′′ + 1

2
W−

λλ′λ′′

]
= −n0

λ

(
n0

λ + 1
)

τ
3-ph., T
λ

(A7)

T (1)
λλ′ =

∑
λ′′

(W+
λλ′λ′′ − W−

λλ′λ′′ − W−
λ′λλ′′ ) = T (1)

λ′λ , (A8)

with 1/τ
3-ph., T
λ = 1/τ

3-ph., N
λ + 1/τ

3-ph., U
λ being the total scattering rates for the three-phonon processes, written as a sum of

the scattering rates of the N-(1/τN
λ ) and the U-(1/τU

λ ) processes. In the above simplification, the following symmetries of the
transition rates have been used:

W−
λλ′′λ′ = W−

λλ′λ′′

W+
λλ′′λ′ = W−

λ′λλ′′

W+
λ′λλ′′ = W+

λλ′λ′′ .

b. Four-phonon collision matrix

Similar to three-phonon case, the collision integral for four-phonon scattering processes can be derived as

C4-ph.(nλ) = − π h̄

4N0

∑
λ′λ′′λ′′′

[
1

2

|�λλ′λ′′(−λ′′′ )|2
ωλωλ′ωλ′′ωλ′′′

δ(ωλ + ωλ′ + ωλ′′ − ωλ′′′ )(nλnλ′nλ′′ (nλ′′′ + 1) − (nλ + 1)(nλ′ + 1)(nλ′′ + 1)nλ′′′ )

+ 1

2

|�λλ′(−λ′′ )(−λ′′′ )|2
ωλωλ′ωλ′′ωλ′′′

δ(ωλ + ωλ′ − ωλ′′ − ωλ′′′ )(nλnλ′ (nλ′′ + 1)(nλ′′′ + 1) − (nλ + 1)(nλ′ + 1)nλ′′nλ′′′ )

+ 1

6

|�λ(−λ′ )(−λ′′ )(−λ′′′ )|2
ωλωλ′ωλ′′ωλ′′′

δ(ωλ − ωλ′ − ωλ′′ − ωλ′′′ )(nλ(nλ′ + 1)(nλ′′ + 1)(nλ′′′ + 1) − (nλ + 1)nλ′nλ′′nλ′′′ )

]
, (A9)

where the four-phonon scattering matrix element is given by

�λλ′λ′′λ′′′ =
∑
l ′l ′′l ′′′

∑
kk′k′′k′′′

∑
αβγ

�αβγ δ (0k, l ′k′, l ′′k′′, l ′′′k′′′)√
mkmk′mk′′mk′′′

wα (q j, k)wβ (q′ j′, k′)wγ (q′′ j′′, k′′)wδ (q′′′ j′′′, k′′′)

× exp [iq′ · R(l ′)] exp [iq′′ · R(l ′′)] exp [iq′′′ · R(l ′′′)]�(q + q′ + q′′ + q′′′), (A10)

with �αβγ δ (0k, l ′k′, l ′′k′′, l ′′′k′′′) being the quartic interatomic force constants.
Linearizing with nλ ≈ n0

λ + n0
λ(n0

λ + 1)ñ1
λ and using a short-hand notation Y±±

λλ′λ′′λ′′′ for the four-phonon transition rates as
above, the linearized four-phonon collision integral becomes

C lin., 4-ph.(nλ) =
∑

λ′λ′′λ′′′

[
1

2
Y++

λλ′λ′′λ′′′
(
ñ1

λ + ñ1
λ′ + ñ1

λ′′ − ñ1
λ′′′

) + 1

2
Y+−

λλ′λ′′λ′′′
(
ñ1

λ + ñ1
λ′ − ñ1

λ′′ − ñ1
λ′′′

)

+1

6
Y−−

λλ′λ′′λ′′′
(
ñ1

λ − ñ1
λ′ − ñ1

λ′′ − ñ1
λ′′′

)]
, (A11)

where the four-phonon transition rates are given by

Y++
λλ′λ′′λ′′′ = − π h̄

4N0

|�λλ′λ′′(−λ′′′ )|2
ωλωλ′ωλ′′ωλ′′′

δ(ωλ + ωλ′ + ωλ′′ − ωλ′′′ )n0
λn0

λ′n0
λ′′

(
n0

λ′′′ + 1
)

Y+−
λλ′λ′′λ′′′ = − π h̄

4N0

|�λλ′(−λ′′ )(−λ′′′ )|2
ωλωλ′ωλ′′ωλ′′′

δ(ωλ + ωλ′ − ωλ′′ − ωλ′′′ )n0
λn0

λ′
(
n0

λ′′ + 1
)(

n0
λ′′′ + 1

)

Y−−
λλ′λ′′λ′′′ = − π h̄

4N0

|�λ(−λ′ )(−λ′′ )(−λ′′′ )|2
ωλωλ′ωλ′′ωλ′′′

δ(ωλ − ωλ′ − ωλ′′ − ωλ′′′ )n0
λ

(
n0

λ′ + 1
)(

n0
λ′′ + 1

)(
n0

λ′′′ + 1
)
.
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Just as in the three-phonon case, the four-phonon collision matrix (F ) can be divided into a diagonal (F (0) ) and an off-
diagonal (F (1)) part as

C lin., 4-ph.(nλ) =
∑
λ′

Fλλ′ ñ1
λ′ = F (0)

λ ñ1
λ +

∑
λ′

F (1)
λλ′ ñ1

λ′ , (A12)

where

F (0)
λ =

∑
λ′λ′′λ′′′

[
1

2
Y++

λλ′λ′′λ′′′ + 1

2
Y+−

λλ′λ′′λ′′′ + 1

6
Y−−

λλ′λ′′λ′′′

]
= −n0

λ

(
n0

λ + 1
)

τ
4-ph., T
λ

(A13)

and

F (1)
λλ′ =

∑
λ′′λ′′′

[
1

2
Y++

λλ′λ′′λ′′′ + 1

2
Y+−

λλ′λ′′λ′′′ − 1

6
Y−−

λλ′λ′′λ′′′ + 1

2
Y++

λλ′′λ′λ′′′ − 1

2
Y+−

λλ′′λ′λ′′′ − 1

6
Y−−

λλ′′λ′λ′′′ − 1

2
Y++

λλ′′′λ′′λ′ − 1

2
Y+−

λλ′′′λ′′λ′ − 1

6
Y−−

λλ′′′λ′′λ′

]
.

(A14)

As discussed in Refs. [1,19,30], the diagonal term dominates the four-phonon collision integral for all materials, since the U
processes dominate four-phonon scattering and, unlike the lowest-order three-phonon scattering events, there are no selection
rules that apply to these higher-order interactions among four phonons. Hence, we ignore the off-diagonal terms of the four-
phonon collision integral in this study.

c. Solution of the linearized Peierls-Boltzmann equation
for phonon transport

Once the collision matrix is obtained, the linearized
Peierls-Boltzmann equation (LPBE), given by

vλ,x
dT

dx

∂n0
λ

∂T
≈ C lin.(nλ) =

∑
λ′

Rλλ′ ñ1
λ

= [
T (0)

λ + F (0)
λ

]
ñ1

λ +
∑
λ′

T (1)
λλ′ ñ1

λ′ (A15)

= R(0)
λ ñ1

λ +
∑
λ′

R(1)
λλ′ ñ1

λ′ , (A16)

is solved for the unknown variable ñ1
λ. For the calculations

in this work, we use a 173 q grid and a stabilized bicon-
jugate gradient algorithm to solve Eq. (A16). The harmonic
and the anharmonic force constants, the converged parame-
ters for the density functional theory (DFT) calculations to
obtain these force constants, and the phonon properties such
as the phonon frequencies and eigenvectors needed to evaluate
Eq. (A3) are obtained using the methodology described in
Ref. [46]. These converged parameters of the DFT calcula-
tions for all materials except diamond, silicon, and germanium
are provided in Ref. [30]. The corresponding converged pa-
rameters for silicon, germanium, and diamond are provided in
Tables I and II below. With these parameters, excellent agree-
ment with available experimental results has been obtained in
Ref. [30] for the κ obtained by solving the LPBE from first
principles including three-phonon, four-phonon, and phonon-
isotope scattering, for silicon carbide and the 16 different

III–V compounds considered in this study. Additionally, it
has also been shown in Ref. [46] that the calculations for
diamond with the same methodology also match well with
the experimental data in the literature. For the remaining two
materials considered in this study, silicon and germanium,
our first-principles prediction of the κ agrees well with the
experimental data in the literature, as shown in Fig. 11. Hence,
the first-principles κ values of all materials considered here to
evaluate the effectiveness of the Callaway model are overall
in excellent agreement with experimental measurements from
different research groups in the literature.

2. Callaway model calculations

a. Quasimomentum conservation for N processes

For the condition on the conservation of phonon quasimo-
mentum (h̄q) in the presence of N processes only, Callaway
[22] imposed the requirement that the rate of change of quasi-
momentum is zero, i.e.,

∑
j

∫
h̄q

(
dnλ

dt

)
N

dq = 0

⇒
∑

j

∫
h̄qCN(nλ)dq ≈

∑
j

∫
h̄qC lin., N(nλ)dq

≈
∑

λ

h̄qC lin., N(nλ) = 0. (A17)

TABLE I. First-principles computational parameters used in the DFT and the density functional perturbation theory (DFPT) calculations
that produced converged total energy, stress, Born effective charges, and dielectric constants for Si, Ge, and diamond. Here, KE is the kinetic
energy, wfc. stands for wave function, ρel is the electron density, and “shifted” implies a BZ grid that is not centered at the � point.

Material KE cutoff (wfc., Ry) KE cutoff (ρel, Ry) k grid q grid (DFPT)

Si 54 216 12 × 12 × 12 shifted 8 × 8 × 8
Ge 35 140 5 × 5 × 5 shifted 7 × 7 × 7
Diamond 150 600 8 × 8 × 8 8 × 8 × 8
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TABLE II. Convergence of κ
(3)
Pure and κ

(3+4)
Pure from the LPBE at different temperatures for Si, Ge, and diamond. For q grids finer than 173,

the three-phonon scattering probabilities (W±
λλ1λ2

) are calculated directly on the finer grid, while the four-phonon scattering is treated under
the RTA obtained using a trilinear interpolation scheme from a 173 q grid. The κ’s are in Wm−1K−1. For each entry, the numbers outside the
brackets are κ

(3+4)
Pure and the numbers within the brackets are κ

(3)
Pure.

Material q grid 100 K 300 K 750 K

Si 173 886.35 (932.11) 121.38 (134.52) 37 (47.8)
353 947.4 (1000.58) 128.24 (144.05) 39 (51.1)
513 952.11 (1020.66) 127.23 (146.21) 38.26 (51.8)

Ge 173 244.62 (257.61) 55.04 (63.02) 16.86 (22.97)
353 256.77 (270.2) 57.36 (65.81) 17.42 (23.96)
513 258.88 (273.85) 56.79 (66.52) 17.32 (24.21)

Diamond 173 243 364 (244 357) 3246.69 (3373.85) 815.55 (1059.44)
353 184 801 (185 740) 3276.52 (3409.32) 824.98 (1071.79)
513 183 694 (184 674) 3286.34 (3420.32) 819.52 (1071.65)

Here, the superscript N indicates that only N processes
are taken into account. Rewriting Eq. (A17) in terms of the
collision matrix of the N processes (RN

λλ′ ), we get

∑
λλ′

h̄qRN
λλ′ ñ1

λ′ = 0. (A18)

Furthermore, in the presence of only N processes, colli-
sions equilibrate nλ towards n∗

λ = 1
exp( h̄ωλ

kBT +�·q)−1
. Following

the usual linearization procedure for n∗
λ about � = 0, i.e.,

n∗
λ ≈ n0

λ + n0
λ(n0

λ + 1)ñ∗1
λ , where ñ∗1

λ = −q · �, we can show,
using Eq. (A5), that ñ∗1

λ forms a null vector of RN
λλ′ [12–15],

i.e.,

C lin., N(n∗
λ) =

∑
λ′

RN
λλ′ ñ∗1

λ′ = 0. (A19)

Combining Eqs. (A18) and (A19), we get∑
λλ′

h̄qRN
λλ′

(
ñ1

λ′ − ñ∗1
λ′

) = 0. (A20)

To get the exact quasimomentum conservation condition
used by Callaway [22], the off-diagonal part (R(1),N

λλ′ ) is

neglected in Eq. (A20) to get∑
λ

h̄qR(0),N
λ

(
ñ1

λ − ñ∗1
λ

)

= −
∑
λ′

h̄q
n0

λ

(
n0

λ + 1
)

τN
λ

(
ñ1

λ − ñ∗1
λ

) = 0,

i.e., −
∑
λ′

h̄q
(

nλ − n∗
λ

τN
λ

)
= 0. (A21)

b. Thermal conductivity from the Callaway model

To calculate the κ of a material using the Callaway model,
we start with Eq. (6). Introducing the linearized form of
n∗

λ (n∗
λ ≈ [n0

λ − n0
λ(n0

λ + 1)q · �]) and substituting � = � dT
dx ,

where � is the phonon mobility, the LPBE becomes

vλ,x
∂n0

λ

∂T

dT

dx
= − nλ − n0

λ

τT
λ

− n0
λ

(
n0

λ + 1
)

τN
λ

q · �
dT

dx

i.e., nλ − n0
λ = − vλ,xτ

T
λ

∂n0
λ

∂T

dT

dx
− τT

λ

τN
λ

n0
λ

(
n0

λ + 1
)
q · �

dT

dx
.

(A22)

Using the linearized form of n∗
λ in the quasimomentum conservation condition for the N processes [Eq. (A21)], we get

∑
λ

h̄q
(

nλ − n∗
λ

τN
λ

)
≈

∑
λ

h̄q

(
nλ − n0

λ

τN
λ

+ n0
λ

(
n0

λ + 1
)
q · �

τN
λ

)
= 0

⇒
∑

λ

h̄q
(

− τT
λ

τN
λ

+ 1

)
n0

λ

(
n0

λ + 1
)
q · �

τN
λ

=
∑

λ

h̄q
(

vλ,x
τT
λ

τN
λ
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∂T
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)

⇒
∑

λ

qn0
λ

(
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λ + 1
)
q · �

τT
λ

τU
λ τN

λ

=
∑

λ

q
(
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λ
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λ
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)
dT
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⇒ � =
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(
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λ

τN
λ
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λ
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= �
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. (A23)

Here, q̂ = �−1q, where � is given by

� =
∑

λ

q ⊗ qn0
λ(n0

λ + 1)
τT
λ

τU
λ τN

λ

.
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FIG. 11. The κ of isotopically pure silicon (Si, red) and germa-
nium (Ge, blue), calculated from first principles with the inclusion of
four-phonon scattering. The calculated values are compared with the
experimental data from Inyushkin et al. [43] (red triangle), Kremer
et al. [44] (red circle), and Ozhogin et al. [45] (blue triangle).

Next, the heat flux Jx and hence the thermal conductivity κ

are calculated as

Jx = 1

�

∑
λ

h̄ωλvλ,x
(
nλ − n0

λ

)

−κ
∂T

∂x
= − 1

�

∑
λ

h̄ωλv
2
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− 1

�
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λ
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λ

(
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κ = 1

�
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+ 1

�
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(
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λ + 1
)
q · �. (A24)

APPENDIX B: PERFORMANCE OF THE CALLAWAY
MODEL FOR ALUMINUM ANTIMONIDE (ALSB)

In aluminum antimonide (AlSb), the three-phonon scatter-
ing rates are low for the optic phonons due to the simultaneous
activation of AOO and AAO selection rules (A: acoustic, O:
optic) as discussed in Ref. [30]. These low scattering rates
occur in the region of the Brillouin zone, where the group
velocities are nonzero, as can be seen in Figs. 12(a) and 12(b)
and discussed in Ref. [30], thus resulting in a large contri-
bution of optic phonons to total κ , when only three-phonon
scattering processes are considered. On the other hand, for the
acoustic phonons, the AAO selection rule is alone activated;
hence, their three-phonon scattering rates are not as low as
for the optic phonons, so their contribution to κ is relatively
small [Fig. 12(c)]. The features in the phonon dispersions that
activate these selection rules are highlighted in Fig. 12(a).

However, since the four-phonon scattering rates for the
optic phonons in AlSb are much larger than their lower-
order three-phonon counterparts, as shown in Fig. 12(b), the
acoustic phonons become the primary heat carriers when four-
phonon scattering is included in the calculations, and the
total κ including three- and four-phonon scattering will be
much smaller than that including only three-phonon scattering
[Fig. 12(c)]. To check the suitability of the Callaway model
for AlSb, the two conditions listed in the main text must
be considered. As shown in Fig. 13(a), when four-phonon
scattering is ignored, the RTA significantly underpredicts the
complete solution of the LPBE only for the optic phonons in
AlSb. This observation is also reflected in Fig. 13(b), where
the diagonal terms R(0)

λ ñ1
λ of C lin.(nλ) are much larger than

the off-diagonal terms
∑

λλ′ R(1)
λλ′ ñ1

λ′ for the acoustic phonons,

FIG. 12. (a) Phonon dispersions for aluminum antimonide (AlSb), showing the key features that activate the AAO and AOO selection rules
on phonon scattering processes. (b) Scattering rates vs phonon frequency for AlSb at 300 K. (c) Spectral contribution to κ with (blue) and
without (red) the inclusion of four-phonon scattering in isotopically pure AlSb at 300 K.
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FIG. 13. (a) Spectral contribution to κ without the inclusion of four-phonon scattering in isotopically pure AlSb at 300 K from the solutions
of the RTA (pink solid line), the complete LPBE (red solid line), and the Callaway model (blue dashed line). (b and c) Diagonal and off-diagonal
terms of collision integrals C lin.(ñ1) and CCall.(ñ1), respectively.

but are comparable to each other for the optic phonons. On
the other hand, the solution from the Callaway model shows
much smaller off-diagonal terms in the Callaway collision in-
tegral for all phonons, and particularly for the optic phonons.
Due to this large difference in the off-diagonal terms of the
collision integrals in the LPBE and the Callaway model, the
latter fails dramatically to capture the complete solution of
the LPBE for AlSb when only three-phonon scattering is

included. When four-phonon scattering is also included, the
acoustic phonons become the primary heat carriers in AlSb
as discussed before. Since the diagonal terms of the collision
integral from LPBE for the acoustic phonons are much larger
than their off-diagonal counterparts [Fig. 13(b)], the predicted
κ from the RTA, the LPBE, and the Callaway approximation
overlap for AlSb, when four-phonon scattering is included in
the calculations.
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