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Abstract
The depletion of groundwater resources in the water-stressed regions has led to the overuse of surface water reservoirs. 
Recharging groundwater by rejuvenating dried surface reservoirs using recycled water is a new sustainable solution. To 
ensure the prevention of groundwater contamination and associated health risks (as recycled water is used), it is crucial 
to assess the surface reservoir water quality. The study for the first time suggests the Lake2K model, a one-dimensional 
mechanistic mass-balance model, to simulate the changes in water quality in a series of man-made surface water reservoirs 
where recycled water flows under an indirect groundwater recharge scheme (soil aquifer treatment system). The model was 
developed, calibrated, and validated using field observations to estimate degradation/reaction rate constants for various water 
quality parameters. The observed average degradation/reaction rate constants for parameters including ammonia-N, nitrate–
N, total nitrogen, total organic carbon, and organic phosphorous were 0.043  day−1, 0.04  day−1, 0.043  day−1, 0.055  day−1, 
and 0.056  day−1, respectively, which were found to be relatively high compared to existing literature, indicating a greater 
degradation of these parameters in warmer climates. The results showed that the water quality improved significantly as the 
water progressed through the reservoirs, aligning with field observations. Additionally, the simulated seasonal variations 
revealed that the maximum growth rate of phytoplankton occurred during July, August, and September for each reservoir, 
while the nutrient pool (nitrate–N and orthophosphates) experienced the greatest depletion during this growth period. These 
findings shed light on the dynamics of surface water quality in regions facing water scarcity and contribute to the develop-
ment of sustainable groundwater management strategies.

Keywords Degradation/reaction rate · Lake2K model · Surface reservoir water quality · Reservoirs in series · Recycled 
water

Abbreviations
ANOVA  Analysis of variance
BOD  Biochemical oxygen demand
CGWB  Central Ground Water Board
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DO  Dissolved oxygen
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DOP  Dissolved organic phosphate
GLEC  Great Lakes Environmental Center
GUI  Graphical user interface
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HZ  Herbivorous zooplankton
IP  Inorganic phosphorous
ISS  Inorganic suspended solids
K&C  Koramangala–Challaghatta
LSD  Least significant difference
Mcft  Million cubic feet
MLD  Millions of liter per day
NGT  National Green Tribunal
NH+
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NO2-N  Nitrite nitrogen
NO3-N  Nitrate nitrogen
ON  Organic nitrogen
OP  Organic phosphorous
Phy  Phytoplankton
PJK  Panjiakou
POC  Particulate organic carbon
SAT  Soil aquifer treatment
SDG  Sustainable development goals
SOD  Sediment oxygen demand
SRP  Soluble reactive phosphorus
STP/STPs  Sewage treatment plant/plants
TKN  Total Kjeldahl nitrogen
TN  Total nitrogen
TOC  Total organic carbon
TP  Total phosphorous
UV  Ultraviolet
VBA  Visual Basic for Applications

Introduction

Water scarcity is a major obstacle to the economic and social 
progress of countries, particularly in arid and semi-arid 
regions (Fernandes et al. 2023; Tariq et al. 2022; Dolan et al. 
2021; Marangon et al. 2020; Verma et al. 2017). Ground-
water accounts for approximately 50% of the total water 
extracted worldwide for household purposes, and roughly 
25% of the total water withdrawn is dedicated to irrigation 
(UNESCO 2023). However, the over-exploitation of water 
resources without sufficient natural replenishment has led to 
an irreversible shortage of this vital natural resource (Agath-
okleous et al. 2023; Al-Hazmi et al. 2023; Chi et al. 2022; 
Dangar et al. 2021). Consequently, there is an urgent need 
for sustainable groundwater management strategies (Xia 
et al. 2023; Sunyer-Caldú et al. 2022; Rock et al. 2019).

Kolar District in Karnataka, India, is a water-stressed 
semi-arid region affected by erratic rainfall, leading to a sig-
nificant decline in groundwater levels (Verma et al. 2023a; 
Manisha et al. 2023a, b; CGWB 2012). The depletion of 
groundwater has resulted in the overuse of surface water 
reservoirs for agricultural irrigation, ultimately causing them 
to dry up. In response to the escalating water demand, the 
Government of Karnataka initiated the Koramangala–Chal-
laghatta (K&C) Valley project. This innovative scheme 
aims to recharge groundwater by reviving dried surface 
reservoirs using recycled water from urban areas (Verma 
et al. 2023a; Manisha et al. 2023a; Rock et al. 2019; Dillon 
and Arshad 2016). The concept behind the scheme is based 
on soil aquifer treatment (SAT), where the quality of the 
treated water improves naturally through flow in open chan-
nels and residence time in surface reservoirs before reach-
ing the groundwater table (Al-Hazmi et al. 2023; Xia et al. 

2023; Verma et al. 2023a, b; Panagiotou et al. 2023; Singh 
2020; Grinshpan et al. 2021; Alslaibi et al. 2017; Sharma 
and Kennedy 2017; Levantesi et al. 2010). Thus, it is cru-
cial to monitor the water quality of the surface reservoirs 
critically and assess the changes in recycled water quality 
during its flow from one reservoir to another and residence 
time in each surface reservoir to prevent further groundwater 
contamination and associated health risks.

Various techniques exist in the literature for evaluating 
the quality of surface water bodies and internal nutrient 
loadings, including site-specific studies, laboratory experi-
ments, and mass-balance methods (Qin et al. 2016). How-
ever, most of these studies have focused on determining the 
reaction rate constants of specific parameters, primarily con-
ducted in colder-climate lakes (Abdelwahab et al. 2021; Xia 
et al. 2021). Since reaction rates vary geographically across 
different temperature ranges, it is essential to determine site-
specific temperature-dependent reaction rate constants for a 
precise analysis of lake dynamics. A summary of the litera-
ture studies that focus on determining reaction rate constants 
is given in Table 1.

Field experiments provide insights into specific meas-
urement points but often fail to capture the dynamic and 
transient processes occurring in a lake system (Doan et al. 
2018; Luff and Moll 2004). Additionally, conducting field 
and laboratory studies to obtain spatial and temporal data 
for large lakes is economically challenging. In this context, 
mathematical models offer a valuable framework for simu-
lating physical and biochemical processes in lakes (Liu et al. 
2018). These models integrate diagnostic and ecosystem 
models, providing a powerful tool to represent idealized lake 
systems and simulate their dynamic responses to perturba-
tions (Zhang et al. 2021). Modeling studies on environmen-
tal systems, such as lakes, typically investigate variations on 
specific time scales (Xia et al. 2023; Mccarthy 2016; Chapra 
and James 2012). These studies can be categorized into (i) 
long-term simulations and future projections under different 
climate change scenarios, (ii) daily/seasonal dynamics in the 
lake system, and (iii) short-term studies spanning from hours 
to several days and at various scales (Amadori et al. 2021). 
The Lake2K mathematical model is well suited for daily/sea-
sonal and short-term studies (Chapra and James 2012). It is 
designed to simulate water quality trends in stratified lakes, 
considering geographic, physical, biochemical, geological, 
and anthropogenic factors. This one-dimensional mechanis-
tic mass-balance model has been successfully used to simu-
late water quality and nutrient dynamics in both artificial and 
natural lakes (Kang et al. 2020; Henderson 2019; Mccarthy 
2016; Epstein et al. 2013; GLEC 2007). A summary of these 
modeling studies in the literature is given in Table 1.

Thus, as per author’s knowledge, the presented study for 
the first time quantifies and simulates the changes in water 
quality of the recycled water in a series of man-made surface 
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water reservoirs where recycled water flows under an indi-
rect groundwater recharge scheme (SAT system) using the 
Lake2K model which is a one-dimensional mechanistic 
mass-balance model. Specific objectives of the study are 
as follows:

1. Estimating the rate constant of surface water degrada-
tion under the climatic conditions of India.
2. Evaluating the alteration in surface water quality as it 
passes through a series of reservoirs.
3. Development and validation of the Lake2K model.
4. Investigating the seasonal fluctuations in various 
parameters that affect the quality of surface water.

Methodology

Study area

Kolar and Chikkaballapur districts located to the North 
and East of the city of Bengaluru (Manisha et al. 2023a, 
b; Verma et al. 2023a, b; Singh 2020) receive around 440 
million liters per day (MLD) of treated wastewater from 

Bengaluru District sewage treatment plants (STPs) and 
is distributed by gravity to over 137 irrigation reservoirs 
which, in turn, recharge the groundwater. Figure 1 represents 
the study site/stretch of three reservoirs in series which were 
identified to assess the change in surface water quality. This 
stretch of three reservoirs in series was selected as there was 
no sewage/surface runoff intervention in the reservoirs from 
nearby agricultural fields. Table 2 presents details, such as 
volume of water in reservoirs, flow rate of water, and its 
residence time, of the studied reservoirs.

Characterization of secondary treated water 
and surface reservoir water

Secondary treated water samples from the outlet of K&C 
Valley STP and water samples from three surface reservoirs 
(inlet and outlet) were collected in the morning hours (9 to 
10 a.m.). Quality assurance/quality control measures were 
undertaken as all the water samples were tested in tripli-
cates, and average values along with standard deviation are 
presented as avg. ± std. dev. Dissolved oxygen (DO) con-
centrations were assessed at each treatment point through 
two methods: field measurements using an optical DO 

Fig. 1  Study area

Table 2  Technical information 
of the selected reservoirs in the 
study area

Mcft million cubic feet

Stretch of reservoirs

Bagalahalli reservoir 
(reservoir 1)

Teranahalli reservoir 
(reservoir 2)

Mastenahalli 
reservoir (reser-
voir 3)

Volume (Mcft) 12.55 29.28 33.22
Flow rate (MLD) 65
Flow rate (Mcft/month) 68.86
Residence time (months) 0.182 0.425 0.482
Residence time (days) 6 13 15
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probe (Lovibond 740800, featuring a luminophore-covered 
membrane), and laboratory measurements using the modi-
fied Winkler DO titration procedure. The latter method was 
employed to verify and compare the readings obtained from 
the probe (Mohan et al. 2022). To determine the nitrogen 
components, the total Kjeldahl nitrogen (TKN) and organic 
nitrogen (ON) in the samples were analyzed in the labora-
tory using the macro Kjeldahl method. This involved digest-
ing and distilling the samples to  NH4-N. The  NH4-N con-
tent in the samples was then determined via pre-distillation 
and the standard titration method. The  NO3-N in the sam-
ples was determined by analyzing the difference in sample 
absorbances at 220 nm and 275 nm, the  NO2-N content was 
assessed at an absorbance of 543 nm, and orthophosphates 
were analyzed at 880 nm using UV spectroscopy. TOC was 
analyzed using a TOC analyzer (Thermo Fisher, 3100). The 
detailed procedure for determining all these parameters was 
followed from the APHA manual of standard methods for 
the examination of water and wastewater (APHA 2005). 
Phytoplankton in the reservoirs were quantified by chloro-
phyll a concentration (APHA 2005). Zooplankton in the res-
ervoirs were identified and counted using a hemocytometer 
under the microscope (at × 40 in a Labomed OPTI CX UPS 
microscope). For representing zooplankton in terms of mg 
C/L, the number of zooplankton per sample was multiplied 
with the carbon weights of the respective zooplankton. The 
carbon weights were obtained from the literature review 
(Miron et al. 2018).

Reaction rate calculation

In this study, the reaction rate for ON,  NH4-N, TN,  NO3-N, 
organic phosphorous, TOC, zooplankton, and phytoplankton 
was calculated using the differential first-order reaction rate 
equation. It is a mathematical expression that describes the 
rate at which a substance or particle reacts over time, and 
is represented by the following equation (Guo et al. 2020; 
Thompson and Cotner 2018; Catalán et al. 2016):

Integrating on both sides

(1)−
d[C]

dt
= k[C]

(2)∫
[C]

[C]
0

1

[C]
d[C] = −∫

t

t
0

kdt

(3)ln[C] − ln[C]
0
= −kt

(4)k =
ln

[C]
0

[C]

t

where k is the first-order reaction rate constant, [C]
0
 is the 

initial concentration, [C] is the final concentration, and t is 
the residence time. This type of reaction is often observed 
in natural systems, such as rivers and lakes, and is used to 
model the removal of pollutants due to natural processes 
(Guo et al. 2020).

Conceptual Lake2K model

The Lake2K modeling framework developed by Chapra 
and James (2012) simulates the spatial (as the water passes 
from reservoir to reservoir) and temporal/seasonal varia-
tions of water quality in the three reservoirs. The Lake2K 
model is designed to compute seasonal water quality vari-
ations in stratified reservoirs. The model is programmed in 
the Visual Basic for Applications (VBA) macro language 
and uses an Excel program as the graphical user interface 
(GUI). The model can be applied to stratified lakes using 
site-specific physical or geographical conditions (tempera-
ture, inflow–outflow, altitude).

The model simulates the reservoir as a one-dimensional 
system with three vertical layers: the epilimnion, the met-
alimnion, and the hypolimnion. The volume of the upper 
layer (the epilimnion) was allowed to vary depending on the 
inflows and the outflows, while the volume of the remaining 
two layers (the metalimnion and the hypolimnion) was fixed. 
The dynamic water balance in the reservoir was computed 
as (Mccarthy 2016; Chapra and James 2012):

where V is the volume of the lake  (m3), t is the time (days), 
Qin is the inflow  (m3/day), Qp is the precipitation  (m3/day), 
Qe is the evaporation flow  (m3/day), and Qout is the outflow 
 (m3/day).

The inflow to the reservoir includes the inputs from all 
the point and non-point sources provided as a single or time-
series data, while the precipitation was represented using 
time-series data with specific precipitation rates. The model 
internally computes the loss of water due to evaporation. 
This flow is computed as (Chapra and James 2012):

where Je is the heat flux due to evaporation (cal/cm2/day), 
ρ is the density of water (1 g/cm3), and Le is the latent heat 
of vaporization (cal/g). The output from the reservoir can 
be represented using seven output boundary conditions, 
depending on the flow from the different vertical layers of 
the reservoir. The vertical mixing of the stratified layers was 
incorporated into the model using a turbulent diffusion coef-
ficient specified as a user-defined term.

(5)
dV

dt
= (Qin + Qp) −

(

Qe + Qout

)

Qe =
JeAo

�Le
×

m

100cm
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A heat balance equation was solved for each vertical 
layer of the reservoir, and the surface heat exchange at 
the air–water interface was also included in the model. 
The surface heat exchange was as a combination of seven 
processes: solar short-wave radiation, atmospheric long-
wave radiation, water long-wave radiation, conduction, 
convection, evaporation, and condensation. The first three 
processes contribute to net absorbed radiations, whereas 
the other processes were water dependent (Mccarthy 2016; 
Chapra and James 2012). The transfer of heat within the 
system was determined using a diffusion term, and the 
model output specified the temperature trends in the res-
ervoir for the specified duration.

The Lake2K model included 17 state variables, includ-
ing components of carbon, nitrogen, oxygen, and phos-
phorous along with silica, phytoplankton, and zooplank-
ton. A mass balance was written for each vertical layer, 
and for the epilimnion (where the inflow and outflow pass 
directly), the mass balance is given as:

where Vi is the volume of layer  (m3), ci is the concentration 
of layer (mg/L), cin is the concentration of the inflow (mg/L), 
Ei′ is the bulk turbulent diffusion coefficient across the lower 
boundary of layer  (m3/day), c(i + 1) is the concentration of 
layer i + 1 (mg/L), and Si is the sources and sinks of the con-
stituent due to reactions and mass transfer mechanisms (mg/
m3/day). The state variables and kinetic and mass transfer 
processes included in the model are given in Table 3. More 
detailed information about the processes can be found in the 
Lake 2 K manual (Chapra and James 2012).

As observed from Table 3, nine kinetic and four mass 
transfer processes were included in the model. The carbon 
components in the model were represented by particulate 
organic carbon (POC), dissolved organic carbon (DOC), 
phytoplankton C, and zooplankton C. The growth of phyto-
plankton and zooplankton was limited by the availability of 
nutrients (nitrogen and phosphorous) and oxygen concentra-
tions. All the components of the nitrogen cycle (hydrolysis, 
nitrification, and denitrification) and the phosphorus cycle 
(enhanced biological phosphorous removal) were also 
included in the model. The reaeration of water was repre-
sented using O’Connor’s model (O’Connor 1983), which 
was based on a set of formulas to compute gas transfer for 
low-solubility gases such as oxygen in the water. The sedi-
ment nutrient fluxes and sediment oxygen demand (SOD) 
were based on a model developed by Di Toro and Fitzpatrick 
(1993). The stoichiometric and kinetic default coefficients 
were provided in the model, but it is necessary to modify 
these constants based on site-specific conditions to ensure 
that the model output fits well with the observations.

(6)Vi

dci

dt
= Qincin − Qoutci + Ei�

(

c(i+1) − ci
)

+ SiVi

Model inputs

The user inputs to the Lake2K model included geophysi-
cal characteristics (elevation and area of lake), flow char-
acteristics (inflow, outflow, concentration of variables in 
inflow), metrological characteristics (air temperature, wind 
speed, precipitation rate, and average daily solar radia-
tion), vertical mixing diffusion coefficients, initial condi-
tions (for initiating the model run), and kinetic and stoi-
chiometric parameters.

The study period for modeling the three reservoirs was 
1 year. The inflow and outflow conditions were provided 
as measured in the field. It was observed that water flows 
from the first reservoir (Bagalahalli) to the second (Ter-
anahalli) and from the second to the third reservoir (Mas-
tenahalli) in series. Hence, three different model runs were 
performed for the three reservoirs. And, the water qual-
ity data measured at the inlet of the three reservoirs were 
provided as the input concentration for all the runs. The 
flow, hydraulic, and temperature parameters of the three 
reservoirs are given in Table 4. The epilimnion, metalim-
nion, and hypolimnion depths were set at 10.0 m, 7.5 m, 
and 10.0 m, respectively, and remain constant for all the 
model runs. The site-specific reaction rate constants of 
nine variables (as given in Table 4), calculated from the 
field observations, were used in the model. For the remain-
ing variables, default constants were employed. The model 
results were generated on Lake2K worksheets, and the out-
put variable concentration of each reservoir was compared 
with field measurements.

The main assumptions while developing the model were 
as follows:

• The reservoirs were filled with secondary treated water 
(from K&C Valley STP), and the water quality param-
eters of the treated wastewater were within the NGT dis-
charge limit (NGT 2019).

• The three reservoirs were assumed to be in series, with 
outflow from one reservoir feeding as inflow to the next.

• It was assumed (according to the field observations) that 
there were no other sources of inflow into the reservoirs 
(runoff from neighboring land, sewage outlets into the 
reservoir).

• The subsurface runoff component was assumed to be 
negligible.

• The average water temperature was measured to be 
26 ± 4 °C, and the reservoirs were observed to receive 
constant sunlight throughout the study period.

• The vertical diffusion coefficient for the reservoirs was 
taken from the literature (Henderson 2019).

• The meteorological data input to Lake2K including air 
temperature, wind speed, and precipitation rates were 
obtained from field observations and literature studies.



120214 Environmental Science and Pollution Research (2023) 30:120207–120224

1 3

Table 3  State variables and processes included in the Lake2K model (Mccarthy 2016; Chapra and James 2012)

K, kinetic processes; M, mass transfer processes; + , mass input; − , mass output

Variable Unit Processes

Dissolved oxygen (DO) mg  O2/L Reaeration (M) ( +)
Photosynthesis (K) ( +)
Sediment oxygen demand (M) ( −)
Oxidation of carbon and nitrogen components (K) ( −)
Growth of phytoplankton (K) ( −)

Particulate organic carbon (POC) mg C/L Death and egestion of phytoplankton and zooplankton (K) ( +)
Hydrolysis to DOC (K) ( −)
Settling (M) ( −)

Dissolved organic carbon (DOC) mg C/L Hydrolysis from POC (K) ( +)
Oxidation (K) ( −)
Sediment–water exchange (M) ( −)
Carbon for denitrification (K) ( −)

Organic nitrogen (ON) µg N/L Death and egestion of phytoplankton and zooplankton (K) ( +)
Hydrolysis to  NH4-N (K) ( −)
Settling (M) ( −)

Ammonia nitrogen  (NH4-N) µg N/L Hydrolysis from ON (K) ( +)
Respiration of phytoplankton and zooplankton (K) ( +)
Sediment–water exchange (M) ( −)
Nitrification (K) ( −)
Growth of phytoplankton (K) ( −)

Nitrate nitrogen  (NO3-N) µg N/L Nitrification (K) ( +)
Denitrification (K) ( −)
Sediment–water exchange (M) ( −)
Growth of phytoplankton (K) ( −)

Organic phosphorous (OP) µg P/L Death and egestion of phytoplankton and zooplankton (K) ( +)
Settling (M) ( −)
Hydrolysis to IP (K) ( −)

Inorganic phosphorous µg P/L Hydrolysis from OP (K) ( +)
Respiration of phytoplankton and zooplankton (K) ( +)
Growth of phytoplankton (K) ( −)
Settling (M) ( −)

Phytoplankton (Phy) µg C/L Growth in the presence of nutrients (nitrogen and phospho-
rous) and oxygen (K) ( +)

Death and egestion (K) ( −)
Respiration (K) ( −)
Grazing to HZ (K) ( −)
Settling (M) ( −)

Herbivorous zooplankton (HZ) mg C/L Growth (K) ( +)
Death and egestion (K) ( −)
Respiration (K) ( −)
Grazing to CZ (K) ( −)

Carnivorous zooplankton (CZ) mg C/L Growth (K) ( +)
Death and egestion (K) ( −)
Respiration (K) ( −)

Inorganic suspended solids (ISS) mg D/L Settling (M) ( −)

Table 4  Reservoir input characteristics

Reservoirs Latitude Longitude Elevation (m) Storage capacity 
(Mcft)

Water spread 
area (ha)

Average flow 
(MLD)

Average 
temperature 
(°C)

Reservoir 1 13° 17′ 30.92″ N 78° 06′ 13.44″ E 837 12.55 12 65 26 ± 4
Reservoir 2 13° 17′ 17″ N 78° 06′ 47″ E 832 29.28 33 65 26 ± 4
Reservoir 3 13° 17′ 20″ N 78° 07′ 29″ E 828 33.22 12 65 26 ± 4
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Model validation

The model was calibrated by adjusting the model coeffi-
cients, seeking an appropriate fit of model output to field 
measurements over the specified study period. The cali-
brated model was validated by comparing the model output 
with the field observations for nine major variables. The 
model output concentration variations from the field values 
were calculated as the error in the model simulation. Also, 
the reaction rate constants of these nine variables were back 
calculated from the model output values and compared with 
the field-measured values to ensure the robustness of the 
model. The validation results are given in the section “Vali-
dation of conceptual Lake2K model.” Once the model was 
validated, the reaction rate constants of each parameter cal-
culated from the experimental observations were compared 
with the model constants. The model constants were attained 
by back calculating the reaction rates from the simulated 
parameter concentrations. Finally, a transient simulation was 
carried out for a period of 12 months, to analyze the seasonal 
variations of the parameters in the three reservoirs.

Results and discussion

Characterization of surface water quality

Table 5 represents characteristics of surface water reservoir. 
It can be observed that when water flows from one reservoir 
to another in series, the water quality of the surface water 
body can undergo several changes. The DO improved from 
3.2 to 5.7 mg/L whereas  NH4-N reduced to 91%,  NO3-N 
reduced to 78%, ON reduced to 67%, TN reduced by 79%, 
and TOC reduced by 67% with significant reduction in 
orthophosphate, phytoplankton, and zooplankton. These 
changes occurred due to various processes and factors pre-
sent within each reservoir, such as (i) dilution and mixing 
(as water from one reservoir enters another, it undergoes 

dilution and mixing with the existing water in the receiving 
reservoir which also lead to changes in the concentration 
of dissolved substances), (ii) sedimentation and settling (as 
water flowed from one reservoir to another, the flow velocity 
may decrease, allowing suspended particles to settle down), 
(iii) biological processes (as water flowed from one reservoir 
to another, it carried along diverse ecosystems, including 
phytoplankton, zooplankton, and various aquatic organisms 
which resulted into different biological processes, such as 
photosynthesis, respiration, and decomposition, and this 
altered the surface water quality by influencing the levels 
of dissolved oxygen, nutrients, and organic matter), (iv) 
chemical reactions occurred (when water flowed between 
reservoirs and came into contact with different chemical 
environments, altering their composition and concentration), 
and (v) nutrient exchange (like phosphorous and nitrogen) 
occurred for biological productivity in reservoirs resulting in 
improved water quality. However, the biochemical reactions 
that reduce organic matter and nitrogen components and the 
nutrient exchange that aids the growth of plankton in the 
reservoir ecosystem are identified as the dominant factors 
that contribute toward the improvement of water quality.

Validation of conceptual Lake2K model

The developed Lake2K model was validated by comparing 
the time-averaged simulated parameter concentrations with 
the time-averaged field observations at the outlet of the three 
reservoirs. Figure 2 shows the comparison of model vs. field 
observations (time averaged) of (a)  NH4-N, (b)  NO3-N, and 
(c) TN concentrations at the outlet of the three reservoirs. 
As seen in Table 5, the inlet  NH4-N concentration to the first 
reservoir was 1.83 mg/L. Eventually, it reduces to 1.36 mg/L 
at the outlet of the first reservoir, to 0.39 mg/L at the outlet 
of the second reservoir, and to 0.17 mg/L at the outlet of the 
third reservoir. The reduction in  NH4-N was accounted due 
to the nitrification reactions in the presence of high DO con-
centrations (given in Fig. 2). As seen from Fig. 2, a similar 

Table 5  Characteristics of surface reservoir water

Parameters Reservoir 1 Reservoir 2 Reservoir 3

Inlet Outlet Inlet Outlet Inlet Outlet

DO (mg/L) 3.25 ± 0.07 3.9 ± 0.07 4.15 ± 0.12 4.76 ± 0.08 5.09 ± 0.07 5.72 ± 0.15
NH4-N (mg/L) 1.83 ± 0.11 1.36 ± 0.17 0.44 ± 0.09 0.39 ± 0.08 0.36 ± 0.05 0.17 ± 0.07
NO3-N (mg/L) 5.80 ± 0.06 4.26 ± 0.08 3.88 ± 0.07 2.17 ± 0.08 2.09 ± 0.07 1.28 ± 0.07
ON (mg/L) 1.45 ± 0.03 1.03 ± 0.03 .01 ± 0.02 0.72 ± 0.03 0.61 ± 0.01 0.48 ± 0.03
TN (mg/L) 9.08 ± 0.08 6.65 ± 0.09 5.32 ± 0.1 3.28 ± 0.16 3.06 ± 0.08 1.93 ± 0.1
TOC (mg/L) 242 ± 5.21 181 ± 5.02 181 ± 5.02 107 ± 5.03 103 ± 5.23 80 ± 5.02
Orthophosphates (mg/L) 0.10 ± 0.002 0.062 ± 0.002 0.05 ± 0.002 0.03 ± 0.001 0.03 ± 0.001 0.014 ± 0.001
Phytoplankton (mg Chl a/L) 0.013 ± 0.0003 0.005 ± 0.0003 0.004 ± 0.0002 0.001 ± 0.0001 0.001 ± 0.0001 0.0003 ± 0.0001
Zooplankton (mg C/L) 2.66 ± 0.11 2.4 ± 0.09 2.49 ± 0.1 2.18 ± 0.1 0.42 ± 0.07 0.38 ± 0.06
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trend was observed for the simulation results too. The out-
flow  NO3-N concentrations were significantly lower than 
those in the inflow as observed for the three reservoirs. The 
obvious mechanism for the removal of nitrates is through 
denitrification, but denitrification reactions are not possible 
at high DO concentrations (as observed, Fig. 3). The other 
possible mechanism of nitrate removal is through nutrient 
uptake (nitrates and phosphates) mechanism by planktons, 
which was assumed to the attributing factor for nitrate 
removal.  NH4-N,  NO3-N, and the TN concentrations were 
also significantly reducing as water moved in series through 
the three reservoirs. The TN concentration at the outlet of 
the third reservoirs was as low as 1.93 mg/L. Also, the simu-
lation values were matching well with the field observations, 
thereby validating the model.

Figure 3 shows the comparison of model vs. field obser-
vations (time averaged) of (a) TOC, (b) orthophosphate, 
and (c) DO at the outlet of the three reservoirs. TOC was 
calculated as the sum of POC and DOC. The dead biomass 
of planktons was represented as POC in the model. Even 
with this addition of concentration (from biomass) along 
with the POC sources from the water itself, the POC values 
were observed to reduce at the outflow of all the three reser-
voirs. This was attributed to the high hydrolysis and settling 
rate of POC within the reservoir. Also, the majority of POC 
reduction was observed in reservoir 1 and the minimum at 
reservoir 3.

The DOC concentrations were increasing at the outflow 
side of the three reservoirs. It was observed that reservoirs 
acted as a source and sink for DOC throughout the uptake, 
recycling, and growth phase of planktons. Phytoplankton 
consumes and produces DOC during their life cycle (Spill-
ing and Lindström, 2008). The amino acids and peptides in 
DOC serve as a carbon source for phytoplankton particu-
larly when dissolved inorganic N is scarce (Yu et al. 2023). 
The DOC uptake by phytoplankton generally increases with 
decreasing light availability. The DOC is produced by the 
phytoplankton by extracellular release under low nutrient 
and high light levels. Phytoplankton can also produce DOC 
under nutrient-limited conditions, while the release of DOC 
by zooplankton occurs through feeding and excretion (Yu 
et al. 2023). Hence, POC concentrations were reducing 
and DOC concentrations were increasing, and as a net, the 
TOC concentrations were reducing at the outflow. The same 
results were observed in the model simulation as presented 
in Fig. 2.

As seen in Fig. 3, the orthophosphate concentrations were 
reducing after each reservoir. If the mass balance of phos-
phorous is analyzed, the total phosphorous is the sum of its 

Fig. 2  Comparison of model vs. field observations (time averaged) of 
a  NH4-N, b  NO3-N, and c TN concentrations at the outlet of the three 
reservoirs

▸
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components: soluble reactive phosphorus (SRP), particulate 
organic phosphorus (POP), and dissolved organic phospho-
rus (DOP). The SRP is a measure of orthophosphate and is 
bioavailable for phytoplankton uptake and is then converted 
into POP. The POP is then either captured by zooplankton 
or is solubilized into DOP (Li and Brett 2013). The DOP, 
in turn, is mineralized into SRP. The rates of SRP uptake 
depend on the rate of phytoplankton growth and the DO 
availability.

A minimum amount of DO is essential for the plankton 
to sustain. This is referred to as critical DO concentration, 
and it is the level at which oxygen supply is sufficient to sup-
port their respiration needs (Stumm and Morgan 1970). The 
critical DO concentration can vary depending on the specific 
species of plankton and environmental conditions, includ-
ing temperature, light, and nutrient availability (Stumm and 
Morgan 1970). However, in general, most plankton species 
require a minimum DO concentration for growth. Several 
studies in the literature have consistently shown that DO 
concentrations below 2 mg/L, often referred to as hypoxia, 
are detrimental to the sustenance of plankton (Karpowicz 
et al. 2019, 2020; Miller et al. 2002; Tasnim et al. 2021; 
Tellier et al. 2022; Vanderploeg et al. 2009a, b; Weinstock 
et al. 2022).

In hypoxic reservoirs, the metabolic rates of plankton can 
decelerate (can reduce up to 0.09–0.14  gO2  m−3  h−1 for net 
primary productivity and 0.15–0.20  gO2  m−3  h−1 for gross 
primary productivity), and their capacity for growth can 
be significantly hindered (Tellier et al. 2022; Vanderploeg 
et al. 2009a). Furthermore, certain plankton species exhibit 
greater tolerance to low oxygen conditions than others. In 
reservoirs experiencing hypoxia, there may be an observable 
shift in the composition of plankton species. More resilient 
species that can thrive in hypoxic conditions may become 
dominant, while those sensitive to low oxygen levels may 
decline (Tellier et al. 2022; Vanderploeg et al. 2009a, b). 
Additionally, hypoxia can lead to the release of nutrients 
from the sediment, which, in turn, stimulates algal blooms 
and exacerbates nutrient pollution in the reservoir (Tellier 
et al. 2022; Vanderploeg et al. 2009a, b). In conclusion, a 
dissolved oxygen level exceeding 2 mg/L is essential for 
the survival of plankton. In the context of the three reser-
voirs under study, it is noteworthy that the dissolved oxygen 
concentrations exhibit a consistent range, typically falling 
between 3.5 and 5.5 mg/L (as seen in Fig. 3). Among these 
reservoirs, it is evident that reservoir 3 consistently exhibits 
the highest DO concentration levels. This observation pro-
vides valuable insights into the dynamics of oxygen levels 
within these aquatic ecosystems. The phenomenon of DO 
concentration in the reservoirs finds a basis in scientific 
literature. As elucidated by Mackay et al. (2020) in their 
research, DO concentrations within reservoirs are predomi-
nantly governed by two critical processes: photosynthetic 

Fig. 3  Comparison of model vs. field observations (time averaged) of a 
TOC, b orthophosphate, and c DO at the outlet of the three reservoirs
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oxygen generation and total plankton respiration. This 
research underscores the vital role of both natural pro-
cesses in influencing the oxygen dynamics within aquatic 
environments.

Photosynthetic oxygen generation, as observed in the 
reservoirs, plays a pivotal role in elevating DO concentra-
tions. It is an inherently biological process where aquatic 
plankton and algae utilize sunlight to convert carbon dioxide 
and water into organic compounds, releasing oxygen as a 
byproduct. This photosynthetic activity occurs during day-
light hours and is particularly pronounced in shallow regions 
of the reservoirs where sunlight penetrates the bed of the 
reservoir.

It is essential to contextualize these findings within 
the broader ecological dynamics of these reservoirs. The 
observed increase in DO concentrations coincides with a 

noticeable depletion of nutrients, specifically nitrogen and 
phosphorus (Buckingham et al. 2022). This depletion can 
be attributed to the efficient uptake and utilization of these 
nutrients by the flourishing plankton communities. As plank-
ton thrive and proliferate, they act as effective biological 
filters, sequestering nutrients from the water column. Con-
sequently, this nutrient removal, driven by plankton growth, 
contributes to the observed increase in DO concentrations 
(Taipale et al. 2019). The research findings in this context 
establish a clear relationship between nutrient dynamics, 
plankton growth, and DO concentrations within the three 
studied reservoirs.

Table 6 shows the average reaction rate  (day−1) of param-
eters for all the three reservoirs as calculated from field 
observations, and Fig. 4 shows the comparison of model 
vs. field observed reaction rates of (a)  NH4-N, (b)  NO3-N, 

Table 6  Average reaction rate 
 (day−1) of parameters for all the 
three reservoirs

Parameters Average reaction rate  (day−1) of reservoirs Reaction rate reported 
in the literature  (day−1)

Reservoir 1 Reservoir 2 Reservoir 3

NH4-N 0.05 0.03 0.05 0.022–1.175
NO3-N 0.05 0.04 0.03  − 0.096 to 2.402
TN 0.05 0.05 0.03 0.006–0.449
TOC 0.05 0.04 0.02  − 0.02 to 0.09
Organic phosphorous 0.08 0.05 0.04 0.001–0.12

Fig. 4  Comparison of model vs. field observed reaction rates of a  NH4-N, b  NO3-N, c TN, d TOC, and e orthophosphate in the three reservoirs
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(c) TN, (d) TOC, and (e) orthophosphate in the three reser-
voirs. The typical value of reaction rate constant for  NH4-N 
reported in literature varies between 0.022 and 1.175  day−1 
(Guo et al. 2020). Similarly for  NO3-N and TN, the reac-
tion rate constants were observed in between 0.096 and 
2.402  day−1 and between 0.006 and 0.449  day−1, respec-
tively (Guo et al. 2020). It was observed that high water 
temperature promotes biochemical reactions and the reac-
tion rate coefficient for all forms of nitrogen (Noori et al. 
2022a, b; Zhao et al. 2013, 2015). Hence, the maximum 
reaction rates for nitrogen were observed in temperatures 
between 20 and 30 °C. In the present study, the reaction 
rates were within the literature observed range. Also, the 
simulated reaction rate constants (by back calculating the 
reaction rates from the simulated parameter concentrations) 
were matching well with the field observed value, thereby 
validating the model.

The literature studies on the reaction rate of TOC in 
warmer or tropical climate are less. However, it was observed 
that the reaction rate varies anywhere between − 0.02 to 
0.09  day−1 in colder temperature ranging between − 6 to 
27  °C (Magyan and Dempsey 2021). The reaction rate 

observed in the current study for TOC varied between 0.02 
to 0.05  day−1 (at an average water temperature of 26 ± 4 °C). 
Long-term nutrient degradation experiments and models 
in literature have revealed that reaction rate constants for 
DOP to orthophosphates ranged from 0.001 to 0.12  day−1 
with an average value of 0.01  day−1 (Thompson and Cotner 
2018). These rates were geographically variable across a 
wide range of temperature and were as high as or higher than 
DOC reaction rate constants. Moreover, the total bioavail-
ability of DOP ranged from 0 to 100% with an average of 
78%, showing that DOP bioavailability was highly variable 
across temperature (Thompson and Cotner 2018). For the 
present study, the reaction rate of DOP varied between 0.04 
and 0.08  day−1 and was higher than the DOC reaction rates.

Seasonal variation of parameters (period 
of 12 months) in the surface reservoirs

The simulated seasonal variations (for a period of 12 months) 
of (a)  NO3-N, (b) orthophosphate and phytoplankton, (c) 
DOC, and (d) average temperature for all the three reservoirs 
are given in Figs. 5, 6, and 7, respectively. It is observed that 

Fig. 5  Model simulation of seasonal variation (12 months) of a  NO3-N, b orthophosphate and phytoplankton, c DOC, and d average temperature 
at reservoir 1
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the maximum growth rate of phytoplankton is in the months 
of July, August, and September for reservoirs 1, 2, and 3, 
respectively. Several studies have analyzed and concluded 
that the growth rate of phytoplankton increases under an 
optimum temperature range of 8.5–31.5 °C, with maximum 
growth rate attained at temperatures around 24 °C (Pulsi-
fer and Laws 2021; Rasconi et al. 2015). Specifically for 
the study area (Kolar, India), for the period of July–August, 
the average temperatures were around 24 ± 5 °C, which was 
in the optimum range for plankton growth. The light avail-
ability was also favorable throughout the study period. The 
maximum phytoplankton concentration was observed as 
76 µg/L for reservoir 3. The model predicts a gentle decline 
in phytoplankton biomass after the maximum growth period 
with the approach to turnover.

It was observed that warmer climates favored the growth 
of smaller autotrophic pico-phytoplankton (Rasconi et al. 
2015). It was also observed that phytoplankton in warmer 
climate can have a different plankton structure, food web 
interactions, and higher community turnover as compared 
to their counterparts in colder climate, and that is an area of 
research that needs to be further explored.

The nutrient pool (nitrate–N and orthophosphates) was 
depleted during the maximum growth period of the plank-
ton (Figs. 5, 6, and 7). The minimum concentrations of 
nitrate–N and orthophosphates were observed when the 
plankton concentrations in the reservoirs were at maximum. 
This juxtaposition of model results for phytoplankton and 
nutrients confirmed the applicability of the model to simu-
late the reservoir dynamics. The DOC concentrations were 
observed to increase gradually in the beginning, reaching 
a maximum, and then decreased at the end of the study 
period. As discussed before, the DOC was taken up by the 
planktons in the absence of a nitrogen source. Also, DOC 
was produced through extracellular release where organic 
substances were released from phytoplankton cells during 
the growth phase. Polysaccharides comprises of 80–90% 
of the total extracellular release (Myklestad 1995). The 
maximum DOC concentration was observed to coincide 
with the maximum phytoplankton concentration, proving 
that the possible increase in DOC is through extracellu-
lar release. During the death and lysis cycle of planktons, 
POC is produced as compared to DOC, which explains the 
decreasing DOC concentrations at the end of study period.

Fig. 6  Model simulation of seasonal variation (12 months) of a  NO3-N, b orthophosphate and phytoplankton, c DOC, and d average temperature 
at reservoir 2
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Conclusion

This study proposes the use of the conceptual Lake2K model 
to evaluate the change in surface water quality as it passes 
through a series of reservoirs. The model was developed using 
reaction rate constants determined from field observations. 
The developed model was calibrated, validated, and used to 
investigate the seasonal fluctuations of water quality param-
eters. The major conclusions of the study were as follows:

• NH4-N,  NO3-N, and the TN concentrations were signifi-
cantly reduced as water moved in series through the three 
reservoirs due to the combined effect of nitrification, sed-
imentation, and nutrient uptake. The POC concentrations 
reduced, and DOC concentrations increased, and as a net, 
the TOC concentrations reduced at the outflow of all the 
reservoirs. The percentage reduction (from the inlet of 
reservoir 1 to the outlet of reservoir 3) of  NH4-N,  NO3-N, 
TN, TOC, and orthophosphates was observed as 90%, 
78%, 79%, 67%, and 70%, respectively.

• The reaction rate constants of the water quality 
parameters including  NH4-N,  NO3-N, TN, TOC, and 
organic phosphorous were calculated as 0.043  day−1, 

0.04  day−1, 0.043  day−1, 0.055  day−1, and 0.056  day−1, 
respectively. And, these constants were on the higher 
end of the literature range, synonymous to the reaction 
rate constants observed in warmer climates.

• It was observed that the maximum growth rate of phy-
toplankton was in the months of July, August, and Sep-
tember (for reservoirs 1, 2, and 3), with the average 
temperature around 24 °C which is the optimum range 
for plankton growth.

• The minimum concentrations of nutrients (nitrate–N 
and orthophosphates) were observed during the maxi-
mum growth period of plankton. This juxtaposition of 
model results confirmed the applicability of the model 
to simulate the dynamics of reservoirs in series.

In summary, surface water quality monitoring is a fun-
damental tool for achieving SDG 6 by ensuring safe and 
clean water, protecting ecosystems, managing groundwater 
resources, promoting public health, and facilitating data-
driven policies and targets.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11356- 023- 30623-4.

Fig. 7  Model simulation of seasonal variation (12 months) of a  NO3-N, b orthophosphate and phytoplankton, c DOC, and d average temperature 
at reservoir 3
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