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A B S T R A C T   

Colorectal cancer (CRC) is highly heterogeneous with variable survival outcomes and therapeutic vulnerabilities. 
A commonly used classification system in CRC is the Consensus Molecular Subtypes (CMS) based on gene 
expression patterns. However, how these CMS categories connect to axes of phenotypic plasticity and hetero-
geneity remains unclear. Here, in our analysis of CMS-specific TCGA data and 101 bulk transcriptomic datasets, 
we found the epithelial phenotype score to be consistently positively correlated with scores of glycolysis, 
OXPHOS and FAO pathways, while PD-L1 activity scores positively correlated with mesenchymal phenotype 
scoring, revealing possible interconnections among plasticity axes. Single-cell RNA-sequencing analysis of pa-
tient samples revealed that that CMS2 and CMS3 subtype samples were relatively more epithelial as compared to 
CMS1 and CMS4. CMS1 revealed two subpopulations: one close to CMS4 (more mesenchymal) and the other 
closer to CMS2 or CMS3 (more epithelial), indicating a partial EMT-like behavior. Consistent observations were 
made in single-cell analysis of metabolic axes and PD-L1 activity scores. Together, our results quantify the 
patterns of two functional interconnected axes of phenotypic heterogeneity – EMT and metabolic reprogramming 
– in a CMS-specific manner in CRC.   

Introduction 

Colorectal cancer (CRC) is a multifaceted malignancy that arises 
from the epithelial lining of the colon or rectum [1]. It is the third most 
prevalent cancer worldwide [2]. Although surgical resection is the pri-
mary method of treatment for localized tumors, non-resectable tumors 
present substantial clinical challenges [3]. Targeted treatments such as 
bevacizumab (that prevents angiogenesis by blocking vascular endo-
thelial growth factor (VEGF)), cetuximab and panitumumab (that block 
EGFR), pembrolizumab (that blocks the immune checkpoint PD-1) and 
vemurafenib (that inactivates BRAF V600 kinase) are frequently used [4, 
5]. The inherent diversity in molecular and phenotypic heterogeneity of 
tumors leads to variable responses to targeted therapies and survival 
outcomes [6,7,8]. 

To characterize this diversity, the Consensus Molecular Subtypes 
(CMS) system, a classification of CRC tumors based on the tran-
scriptomic profile [9] was proposed. Based on gene expression profiles, 

the ’CMSclassifier’ divided the CRC tumors into four subtypes, using a 
random forest algorithm based on gene expression signals from tumor’s 
immune and stromal compartments: a) Microsatellite 
instability-immune, or CMS1 tumors, that show significant immune 
activation and genomic instability, b) ’Canonical’ CMS2 tumors that 
exhibit WNT and MYC signalling pathway activation, c) ‘Metabolic’ 
CMS3 tumors that show Epithelial-mesenchymal transition (EMT) fea-
tures and metabolic dysregulation, and d) ‘Mesenchymal’ CMS4 tu-
mours that display significant stromal infiltration, angiogenesis, and 
mesenchymal characteristics [10–12]. However, CMSclassifier algo-
rithm sometimes failed to correctly identify CMS4-mesenchymal sub--
population in cell lines, patient-derived organoids, and xenografts. Thus, 
CMSCaller, a more robust classifier developed lately, is being increas-
ingly adopted to deliver a more accurate subtype classification utilizing 
multiple sources of transcriptomic data [13]. 

CMS classification provides valuable therapeutic insights. For 
instance, clinical studies have found that the CMS1 patients who 
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received bevacizumab had significantly higher overall survival and 
progression free survival rates compared to CMS1 patients who received 
cetuximab [14,15] whereas for CMS4 tumors, irinotecan (IRI)-based 
chemotherapy outperforms oxaliplatin (OX)-based chemotherapy [16]. 
Since each subtype responds differently to therapies, CMS classification 
offers more personalized strategies for therapeutic interventions, thus 
improving treatment outcomes. 

Recently, another method is being increasingly used to quantify the 
extent of heterogeneity in tumor cells using single-cell transcriptomic 
data (scRNA-seq) - Shannon Entropy. Entropy is derived from informa-
tion theory and is helpful in providing a quantitative measure of the 
diversity and distribution of gene expression within cell populations [17, 
18]. Moreover, Shannon entropy can be used to identify key genes 
driving cellular heterogeneity. Genes with high entropy are often asso-
ciated with the dynamics of lineage specification and cell-fate decisions. 
Their expression patterns indicate transcriptional plasticity and 
cell-state transitions, providing valuable insights into underlying 
cellular dynamics driven by regulatory networks [19,20]. Thus, inves-
tigating the entropy of tumor cells, along with their functional attri-
butes, is important to fully understand the underlying biological 
variability and vulnerabilities in CRC. 

Here, we analyze 101 bulk transcriptomic datasets, along with pa-
tient tumor samples in colorectal cancer from The Cancer Genome Atlas 
(TCGA) and single-cell RNA sequencing data, to evaluate the degree of 
variation among CMS subtypes across metabolic reprogramming and 
EMT axes. Further, we analyzed the consequences of associations be-
tween these axes for disease prognosis. Our results show that the 
epithelial phenotype score was positively correlated with scores of 
glycolysis, OXPHOS and FAO pathways, while mesenchymal scores 
showed CMS subtype-specific associations with metabolic axes. PD-L1 
activity scores consistently correlated positively with mesenchymal 
signature ones and negatively with epithelial signature ones, across CMS 
categories. Finally, we observed that CMS2 and CMS3 were more 
epithelial as compared to CMS1 and CMS4. Interestingly, single-cell 
RNA-seq data revealed two subpopulations in CMS1: one close to 
CMS4 (more mesenchymal) and the other closer to CMS2 or CMS3 (more 
epithelial), indicating a partial EMT-like behavior. Together, our results 
quantify the patterns of epithelial-mesenchymal heterogeneity and 
interplay between EMT and metabolic plasticity in different CMS sub-
types in CRC. 

Methods 

Software and datasets 

Computational and statistical analyses were conducted using R 
(version 4.3.0) and Python (version 3.9). Microarray datasets were 
retrieved from National Center for Biotechnology Information’s Gene 
expression omnibus (NCBI GEO) using the ‘GEOquery’ R package. Pro-
cessed RNA sequencing and single-cell RNA sequencing data were also 
obtained directly from individual datasets from the NCBI GEO database 
(Table S1). TCGA datasets were obtained using UCSC Xena tools for 
COAD_READ. 

Pre-processing of datasets 

Pre-processing of microarray datasets was conducted to obtain the 
gene-wise expression from the probe-wise expression matrix using 
respective annotation files for the mapping of probes to genes. In case 
multiple probes were mapped to a single gene, the mean expression of all 
mapped probes was utilized to obtain the final values for those genes. 

Raw counts obtained for RNA and single-cell RNA sequencing data 
were normalized for gene length and transformed to transcripts per 
million (TPM) values. They were then log2 normalized to acquire the 
final expression data. 

For single-cell RNA sequencing (scRNA-seq) datasets, MAGIC 

(version 2.0.3) [21] imputation algorithm was utilized to recover noisy 
and sparse single-cell data using diffusion geometry. To map individual 
reads to corresponding genes, relevant platform annotation files were 
utilized. 

CMS Classification 

CMS classification for colorectal cancer samples and tumor cells was 
carried out using ‘CMScaller’ [13]. ‘CMScaller’ uses the nearest template 
prediction algorithm to assign the CMS (CMS1-CMS4) to each sample 
with a prediction distance with a corresponding p-value. The predictions 
with insignificant p-values (p > 0.05) are not assigned any subtype. The 
CMS template genes were also used as signatures for ssGSEA scoring to 
identify the enrichment of the CMS-specific signatures in the sample. 

Gene signature scoring 

To quantify the enrichment of epithelial and mesenchymal signa-
tures independently, ssGSEA (single sample gene set enrichment anal-
ysis) was performed on epithelial (for Epi scores) and mesenchymal (for 
Mes scores) gene signatures [22] separately using GSEAPY python li-
brary for bulk RNA sequencing and microarray datasets. Normalized 
enrichment score (NES) for these genesets was obtained for further 
analysis. A higher NES score corresponds to enrichment of that partic-
ular phenotype for the given sample. Similarly, the gene signatures for 
hallmark EMT, hallmark Fatty Acid Oxidation, and hallmark Glycolysis 
were obtained from molecular signatures database MSigDB and the 
respective scores were calculated [23]. PD-L1 signature was curated as 
reported earlier [24], wherein the top correlated genes (Spearman cor-
relation coefficient > 0.5 and p < 0.01) with PD-L1 levels in at least any 
13 out of 27 cancer types were considered (Table S2). 

The activity scores for metabolic pathways, PD-L1, and E/M signa-
tures for single-cell RNA sequencing datasets were computed using 
AUCell (version 1.18.1) [25] from the ‘Bioconductor’ package [26] in R 
package with default parameters. 

Survival analysis 

Survival data were obtained from the TCGA cohort of patients for 
colorectal cancer. The samples were categorized into CMS high, and 
CMS low groups based on median of the respective CMS scores for each 
CMS subtype. Kaplan-Meier analysis was performed using the R package 
‘survival.’ A log-rank test was used to compute the p-values. The re-
ported hazard ratio (HR) and confidence interval (95% CI) were deter-
mined using Cox regression using the ‘coxph’ function. 

Additionally, colorectal cancer samples were also split into High (+) 
and Low (-) expression subgroups based on the median for different gene 
signatures (Epi, Mes, FAO, glycolysis, OXPHOS, and PD-L1) scores. The 
effect of the simultaneous enrichment on survival was calculated for all 
gene signatures in a pairwise manner. HR and p-values were depicted in 
forest plots created using the ‘ggforest’ function from the ‘survminer’ 
package. 

Entropy Calculation 

Cell-wise entropy values were calculated for each geneset using the 
following formula [27]: 

Shannon entropy = −
∑

P(f )ln(P(f ))

Where P(f) is the ratio of the normalized expression value of a particular 
gene to the sum of all gene expression values for a cell. The entropy 
values were normalized for the number of genes in each gene set to 
maintain comparability. 
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Code availability 

Codes used in this study are available at https://github. 
com/Soundharya-R/CRC 

Data availability 

Publicly available transcriptomics datasets from NCBI GEO 
(Table S1), TCGA cohorts from UCSC Xena and single-cell RNA 
sequencing data (GSE132465, GSE144375) were analyzed in this study. 

Results 

Associations between EMT, metabolism axes and immune evasion and 
their associations with patient survival 

To assess the associations between multiple axes of plasticity gov-
erning CRC heterogeneity, we began by investigating three important 
aspects - cancer cell metabolism, immune evasion, and EMT. We 
investigated the associations among these three axes in 101 bulk tran-
scriptomic datasets with CRC samples (Table S1) by calculating ssGSEA 
scores of associated gene signatures. We observed that among the 43 
cases where the epithelial phenotype correlated significantly (p < 0.05) 

Fig. 1. Relationship between EMT, metabolism, and PD-L1 signatures in CRC bulk-level transcriptomes and differences in survival probabilities for their 
pairwise concurrent enrichment. A) Volcano plots depicting Spearman correlation coefficient (x-axis) and -log10(p-values) (y-axis) for PD-L1 vs. Epi scores (left), 
Epi vs. OXPHOS (middle-left), Epi vs. FAO (middle-right) and Epi vs Glycolysis scores (right). Boundaries for significant correlation are set at R > ± 0.3 and p < 0.05. 
Red data points indicate datasets for which the association is significantly positive, blue for negative, and gray for insignificant correlation. B) Same as A) but for PD- 
L1 vs. Mes (left), OXPHOS vs. Mes (middle-left), FAO vs. Mes (middle-right), and Glycolysis vs. Mes scores (right). C) Forest plots depicting mean hazard ratios (HR) 
± 95% confidence intervals and corresponding p-values (‘*’ for p <0.05) for overall survival associated with simultaneous enrichment of epithelial and OXPHOS 
(left), epithelial and FAO (middle) and epithelial and Glycolysis signatures (right). (+) and (-) subgroups are based on median values. Mean HR values > 1 are shown 
in blue, while those < 1 are shown in red. D) same as C) but for mesenchymal and OXPHOS (left), mesenchymal and FAO (middle), and mesenchymal and Glycolysis 
signatures (right). 
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with the PD-L1 pathway, the correlation coefficient was negative in 36 
cases, indicating that epithelial phenotype is largely negatively corre-
lated with immune evasion (Fig 1A). Conversely, mesenchymal pheno-
type predominantly correlated positively with the PD-L1 signature (60 
out of 61 cases). Epithelial and mesenchymal signatures showed a 
dominantly negative correlation with each other (53 out of 58 datasets), 
as expected (Fig S1). Similar antagonistic trends were seen for epithelial 
vs. mesenchymal signatures with the metabolic axes - while the 
epithelial phenotype correlated positively with oxidative phosphoryla-
tion (OXPHOS) (47 out of 51 datasets), and fatty acid oxidation (FAO) 
(65 out of 67 datasets), mesenchymal phenotype enrichment was 
negatively correlated with OXPHOS (42 out of 48 datasets) and FAO 
axes (25 out of 31 datasets) (Fig 1B). The trend with the glycolysis 
signatures was not as strong, yet antagonistic for the epithelial vs. 
mesenchymal signature ssGSEA scores. These trends are reminiscent of 
our pan-cancer analysis showing that FAO and OXPHOS were negatively 
correlated with EMT [28]. However, we had noticed an association 
between glycolysis with partial or full EMT, which is not as strongly 
recapitulated in CRC data. Such context-specific differences may emerge 
from the heterogeneity in CRC samples from a CMS context. 

To understand the clinical impact of the enrichment of these diverse 
signatures/pathways (epithelial, mesenchymal, FAO, OXPHOS, glycol-
ysis and PD-L1 pathway) individually and in combination, we plotted 
Kaplan-Meier graphs for overall survival data on the TCGA colorectal 
cancer patient cohort. Our evaluation of pairwise comparisons revealed 
that upregulation of epithelial signature along with higher expression of 
FAO and OXPHOS genes (E+F+ and E+O+) had significantly better 
overall survival probability compared to Epi-Low/FAO low group (E-F-) 
and Epi-Low/OXPHOS-low group (E-O-) respectively. No such trend was 
observed for glycolysis signature, though (Fig 1C). In contrast, the 
combination of high expression of glycolysis pathway genes with the 
mesenchymal phenotype (G+M+) has significantly worse implications 
for survival probability with reference (G-M-) (Fig 1D), but no trend was 
noticed for co-enrichment of mesenchymal with FAO or OXPHOS. 
Additionally, the PD-L1 signature, despite being positively correlated 
with mesenchymal signatures, is associated with better survival proba-
bility in CRC (Fig S1). This analysis revealed the strong association of 
epithelial phenotype with a better survival response, whereas the pres-
ence of mesenchymal phenotype with a worse prognosis, as also noted in 
trends for epithelial and mesenchymal signatures alone (Fig S1C). 
Further, the metabolic pathways, such as FAO and OXPHOS, that 
correlated positively with epithelial phenotype, had a similar effect on 
the hazard ratio (HR). On the contrary, the glycolysis signature and PD- 
L1 signature, although more strongly positively associated with 
epithelial phenotype and mesenchymal phenotype respectively, tend to 
affect the hazard ratios in opposite directions (Fig 1D, S1B). Together, 
these results suggest an interplay between the different interconnected 
axes of cellular plasticity (EMT, metabolic switching) in mediating pa-
tient survival [29]. 

Heterogeneity among Consensus Molecular Subtypes (CMS) and their 
associations with EMT and different axes of metabolism and immune 
evasion 

The intra-tumor heterogeneity in CRC patients can be better studied 
by subdividing cancer samples into subtypes based on their shared 
features and differences at the molecular and cellular levels. The sub-
types differ widely in their transcriptomic and genomic profiles while 
also showing differences in prevalence in parts of the colon [6]. 

To begin, we performed Kaplan Meier survival analysis to determine 
the clinical outcome for the enrichment of different CMS using patient 
data from TCGA database. The CMS scores were calculated with ssGSEA 
using the subtype-specific template signatures used by ‘CMSCaller’ 
function. We hypothesized that the samples with higher CMS2 and 
CMS3 scores would have better survival probabilities than those with 
higher CMS4 scores since the latter has upregulation of EMT pathway, 

correlating to poor patient outcomes [30]. 
The Kaplan Meier plots compared CMS-high versus CMS-low 

expression for the four subtypes, and we observed the hazard ratios 
for samples with high CMS1 and 4 scores were greater than 1 (i.e. 
enrichment of CMS1 or CMS4 associated with worse survival), and 
hazard ratios for samples with higher CMS2 and 3 scores were lower 
than 1. (i.e., enrichment of CMS2 or CMS3 associated with better sur-
vival) (Fig 2A). However, the trend was statistically significant only for 
CMS2 and CMS4. Similar analysis was done to test the enrichment of the 
different CMS signatures on progression free interval (PFI) and disease- 
free interval (DFI). The enrichment of CMS4 subtype was found to 
associate with worse PFI significantly, but no clear trends were noticed 
for DFI (Fig S2). Similarly, low epithelial and/or high mesenchymal 
scores associated with worse DFI and/or PFI (Fig S3). 

To further understand the variability among the CMS subtypes, we 
looked at the correlation between well-studied signatures pertaining to 
metabolism, immune evasion, and EMT, in TCGA data available for CRC, 
in a CMS-specific manner (Fig 2). We observed that when CRC samples 
are not segregated by CMS, the common trends seen for the bulk dataset 
meta-analysis (Fig 1) hold true, i.e., a positive correlation between 
epithelial scores with FAO, OXPHOS and glycolysis scores, a positive 
correlation between mesenchymal and PD-L1 scores, and a negative 
correlation for Epi scores vs. Mes scores, and a negative correlation of 
Epi scores with PD-L1 scores (Fig S4). However, as we delved into 
examining these trends at the CMS subtype level, we saw CMS subtype- 
specific differences. For instance, in the case of glycolysis scores versus 
epithelial and mesenchymal scores (Fig 2E), the variability in the cor-
relation coefficient values seen (both positive and negative values across 
4 CMS subtypes) seem to explain their seemingly counterintuitive as-
sociation with respect to epithelial and mesenchymal scores seen in the 
bulk data analysis noted earlier (Fig 1A-B). We further noticed that 
epithelial and mesenchymal programs were negatively correlated even 
at individual subtype-level and PD-L1 signature scores associated posi-
tively with mesenchymal ones across the CMS subtypes. While, in CMS3 
samples, the PD-L1 and Epi scores did not show any association, in the 
rest of the subtypes they were negatively correlated (Fig 2B). OXPHOS 
was shown to be positively linked with Epi and negatively associated 
with Mes in CMS1, CMS2 and CMS4 but these associations were found to 
be in the reverse direction in the CMS3 samples (Fig 2C). Similarly, in 
CMS3 and CMS4, FAO and Mes are correlated positively while in CMS1 
and CMS2, they are negatively associated. However, FAO was associated 
positively with epithelial phenotype in all four subtypes to a similar 
extent (Fig 2D). Such differences in the relationship between these two 
key axes of plasticity (EMT, metabolic switching) at subtype level could 
serve as a distinguishing functional role of different CMS categories. 

Different CMS subtype samples have varied status of epithelial- 
mesenchymal plasticity 

Given the observed role of epithelial vs. mesenchymal phenotypes in 
determining patient survival, we assessed the extent of epithelial/ 
mesenchymal, metabolic pathway and PD-L1 enrichment across CMS 
subtypes. We chose five datasets with samples corresponding to each 
subtype (GSE196576, GSE161158, GSE96528, GSE14333, GSE14095). 
The samples in each dataset were classified into the respective subtypes 
using the ‘CMSCaller’ package. Here, we consistently observed that the 
Epi score was the highest in CMS3 subtype, followed by CMS2, whereas 
the Mes scores were comparable for these two subtypes. Further, we saw 
that CMS4 samples had the highest Mes score and lowest Epi score 
among all and was followed by CMS1 samples (Fig 3A). Consistently, 
CMS1 and CMS4 -the two more mesenchymal subtypes – had higher 
levels of PD-L1 enrichment. Also, all the metabolic signatures - Glycol-
ysis, FAO and OXPHOS - consistently showed lower activity in the CMS4 
subtype (Fig S5A-B), reinforcing our observations from meta-analysis of 
EMT with metabolic axes (Fig 1A-B). 

Next, we obtained two datasets, one with TGFβ treated samples 
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(GSE137779) and the other having samples with overexpression of EMT- 
inducing transcription factor SNAI1 over time (GSE115716) to gauge the 
extent of influence of EMT on the CMS sub-classification score. We 
compared the changes in CMS3 and CMS4 when samples were treated 
with TGFβ or SNAI1. In SNAIL induction experiment, the LS174T colo-
rectal carcinoma cells were made to express a dox-inducible SNAI1 
transgene, that was incubated at 0, 3, 6, 24, 48, 72 or 96 hours with 0.1 
µg/ml Doxycycline. Expectedly, we observed that SNAI1 overexpression 
causes a decrease in Epi scores and an increase in Mes scores. Intrigu-
ingly, we observed that SNAI1 overexpression led to higher CMS4 

enrichment scores but reduced CMS3 scores (Fig 3D), indicating that 
SNAI1, a potent EMT inducer, possibly plays a role in controlling CMS 
plasticity. On the other hand, when SW480 colorectal cells were treated 
with 10 ng/ml TGF-β1, Epi scores decreased, whereas Mes scores do not 
show the expected increase. While projecting the same set of samples on 
the CMS3/CMS4 axes, we saw that TGFβ treatment seemed to increase 
both CMS3 and CMS4 scores, and PD-L1 activity, but decreased FAO and 
OXPHOS (Fig 3B-C). These examples illustrate that the mode of EMT 
induction dictates the extent of EMT observed as well as corresponding 
changes in their molecular subtyping. Another reason for this difference 

Fig. 2. CMS-specific differences in survival probabilities and associations between EMT, metabolism, and PD-L1 in TCGA colorectal cancer samples. A) 
Kaplan-Meier curves showing differences in survival probabilities for CMS1-high (red) and CMS1-low (blue) (left), CMS2-high and low (middle-left), CMS3-high and 
low (middle-right) and CMS4-high and low (right). Reported p-values are based on a log-rank test and indicate differences in survival between the subgroups. Mean 
hazard ratios (HR) ± 95% confidence intervals (95% CI) are shown. B) Scatter plot illustrating subtype-wise Epi (x-axis) and Mes (y-axis) scores (top), Epi and PD-L1 
scores (middle), and Mes and PD-L1 scores (bottom) for TCGA colorectal cancer patient samples. Pearson’s correlation coefficient ‘ρ’ and p-values for subtype-wise 
correlation are shown. Blue data points are for cells classified as CMS1, red for CMS2, green for CMS3, purple for CMS4. C) same as B) but for Epi and OXPHOS scores 
(left) and Mes and OXPHOS scores (right), D) Epi and FAO scores (left) and Mes and FAO scores (right), and E) Epi and Glycolysis scores (left) and Mes and Glycolysis 
scores (right). 

M. Sehgal et al.                                                                                                                                                                                                                                  



Translational Oncology 40 (2024) 101845

6

can be non-EMT associated changes driven by TGFβ in cellular response. 

Single-cell RNA-sequencing analysis reveals CMS subtype-specific patterns 
of epithelial-mesenchymal heterogeneity 

Our bulk-level CMS-specific investigation highlighted associations 
between CMS subtyping and EMT. We examined these associations at 
individual cell level through single-cell RNA-sequencing (scRNA-seq) 
datasets GSE132465 and GSE144375 [31]. The scRNA-seq data were 
filtered for tumor cells, and ‘CMSCaller’ was used to assign the appro-
priate CMS subtype. Only the statistically significant predictions in the 
context of CMS assignment were used for further analysis. We noticed all 
the four CMS subtypes to be well-represented in these two scRNA-seq 
datasets (Fig 4A, i-ii). First, we observed that the antagonism between 
epithelial and mesenchymal axes is maintained even at the single-cell 
level (Fig 4B, ii-ii) across cells belonging to all four CMS subtypes. 
Interestingly, we also noticed a spectrum of epithelial-mesenchymal 
states in this two-dimensional projection: while cells classified to 
belong to CMS4 cells localized in (high mesenchymal, low epithelial) 
area, the ones classified as CMS2 and CMS3 were centered around (low 
mesenchymal, high epithelial) area. The cells categorized as CMS1 

occupied intermediary position, indicating a hybrid E/M phenotype 
with the simultaneous enrichment of both epithelial and mesenchymal 
characteristics. 

To assess how the epithelial /mesenchymal, metabolic pathway and 
PD-L1 scores are distributed across the cells, we plotted the kernel 
density estimates of AUCell scores in a CMS subtype-wise manner. We 
noticed that the Epi density distribution for CMS4 shows a narrow peak 
centered around low Epi scores, whereas the CMS2 and CMS3 scores 
have wider distributions centered around higher Epi scores (Fig 4C, i-ii, 
left). On the other hand, the CMS2 and CMS3 samples have low Mes 
scores with less variability (narrower peaks centered at low Mes scores), 
while CMS4 scores show higher average Mes scores as well as more 
heterogeneity in them (Fig 4C, i-ii, right). Interestingly, in both these 
datasets, CMS1 subtype distinctly showed two subpopulations in terms 
of their epithelial and mesenchymal scores (Fig 4C, i-ii). In CMS1 sub-
type, this bimodality was also seen in levels of PD-L1 activity and the 
three metabolic axes in CMS1; however, other subtypes had homoge-
neously low PD-L1 activity scores. Moreover, as expected, CMS4 subtype 
had minimal metabolic activity (Fig S6). Together, our results support 
high phenotypic variability along multiple axes in the CMS1 subtype. 

In both the scRNA-seq datasets, CMS specific associations of 

Fig. 3. Relationship between CMS and EMT induction in bulk datasets. A) Boxplots showing differences in epithelial and mesenchymal scores in a subtype- 
specific manner. *, **, ***, **** denote p < 0.05, 0.01, 0.001, 0.0001, respectively. Plot titles denote NCBI-GEO dataset IDs. B) Bar plots showing ssGSEA scores 
of CMS3, CMS4 genes, FAO, hallmark EMT, OXPHOS, and PD-L1 gene sets in control (blue) vs. TGFβ-treated samples (red). C) Scatterplot with Epi (y-axis) and Mes 
(x-axis) scores (left) and CMS3 (y-axis) and CMS4 (x-axis) scores of control and TGFβ-treated samples of GSE137779. D) Same as C) but for control samples and 
samples with SNA1 overexpression (GSE115716). 
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epithelial and mesenchymal programs with metabolic axes and PD-L1 
were largely consistent with our earlier subtype-specific trend seen in 
bulk (TCGA) data. Simultaneously considering the associations between 

these axes of plasticity help in distinguishing similar CMS groups such as 
CMS1 and CMS4 (S7-S8). For instance, In CMS1 cells, PDL1 and Epi 
scores are strongly negatively correlated, but not in other subtypes (Fig 

Fig. 4. Heterogeneity among CMS subtypes along the epithelial-mesenchymal axis. A) i) Pie chart illustrating the percentage of cells classified as CMS1 
(yellow), CMS2 (blue), CMS3 (pink), and CMS4 (green) in GSE132465. B) i) Scatter plot depicting the subtype-wise association between Epi (x-axis) and Mes scores 
(y-axis). Pearson’s correlation coefficient ‘ρ’ and p-values for subtype-wise correlation are shown. C) i) Subtype-wise kernel density estimate plots for AUCell scores 
of Epi (left) and Mes (right) signatures across cells in GSE132465. A ii), B ii), and C ii) are the same as A i), B i), C i) respectively, but for GSE144735. 

Fig. 5. CMS-specific associations between cell-wise AUCell scores and entropy values of Epi and Mes genesets at a single-cell resolution. A) i) Scatter plot 
depicting the association between Epi scores (x-axis) and Epi entropy values (y-axis) for GSE132465. Same as A i) but for B) i) Mes score and entropy, C) i) PD-L1 
score and entropy. A ii), B ii), and C ii) are the same as A i), B i), and C i) respectively, but for GSE144735. Pearson’s correlation coefficient ‘ρ’ and p-values for 
subtype-wise correlation are shown. Blue data points are for cells classified as CMS1, red for CMS2, green for CMS3, purple for CMS4. 
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S8D, i). 
Next, we wanted to quantify the amount of heterogeneity seen across 

these signatures in a subtype-specific manner. We used Shannon Entropy 
to calculate the variability among certain genes involved in a particular 
pathway across different sub-populations of CRC tumor cells [32,33]. 
Higher entropy scores correspond to more variability in that axis for a 
particular cell. Cell-wise entropy values and activity scores largely 
showed a negative association with each other for all gene sets (Fig 5, 
S9). A possible explanation for this trend can be that once a cell acquires 
a particular phenotype, the genes involved in that pathway are coordi-
nately being upregulated (or downregulated) and therefore have uni-
form high (or low) expression levels, reducing the underlying 
variability. Thus, it was unsurprising to notice the entropy for epithelial 
signature in CMS2 and CMS3 subtypes decreased with an increase in 
epithelial scores (Fig 5A, i-ii), potentially because those two subtypes 
are more epithelial relative to CMS1 and CMS4. Similarly, for CMS4, the 
most mesenchymal subtype, the increase in Mes scores associated with a 
decrease in entropy for mesenchymal signature in a cell (Fig 5B, i-ii). 
Further, in CMS1, the subtype enriched in immune activation, an in-
crease in PD-L1 signature scores correlated with a consistent decrease in 
entropy of corresponding signature (Fig 5C, i-ii). However, the entropy 
of metabolic signatures did not show any CMS-specific trend, while they 
were also negatively correlated consistently with the corresponding 
signature scores (Fig S9). 

Discussion 

Colorectal cancer is one of the most heterogeneous cancers charac-
terized by intra and inter-tumoral heterogeneity. Thus, the classification 
of CRC into four CMS sub-types – while a helpful metric – does not 
entirely depict the heterogeneity in CRC. Here, we evaluated how some 
key axes that drive tumor progression and metastasis in carcinomas 
(immune evasion, metabolic reprogramming, and EMT) to understand 
their heterogeneity within CMS subtypes. EMT is not a binary switch but 
a spectrum of states including many hybrid epithelial/mesenchymal 
ones [34,35] that can co-express both epithelial (E) and mesenchymal 
(M) markers and show mixed functional traits. Hybrid E/M cells have 
been shown to be positively associated with immune evasion in other 
cancers [36,28]. Here, we observed a positive correlation between 
PD-L1 signature and mesenchymal state, however, across the CMS 
subtypes, PD-L1 signature score was not always negatively associated 
with epithelial scores. Thus, the positive association of PD-L1 with both 
epithelial and mesenchymal signature furthers the hypothesis about 
hybrid E/M cells possessing these immune-evasive traits [37,24]. 

The spectrum of states along the EMT spectrum provides cancer cells 
stem-like traits, thereby facilitating aggressive tumor progression [38]. 
Cell populations with higher plasticity along the E/M axis tend to be 
more metastatic and pose significant hurdles for treatment [39,40]. In 
this context, our analysis of CRC samples treated with EMT-inducers, 
SNAI1 and TGFβ revealed context-specific changes in the CMS state of 
samples with a concurrent alteration in their E/M state. While SNAI1, a 
highly specific EMT-TF reduces the epithelial and CMS3 enrichment and 
increases Mes and CMS4 scores, while TGFβ downregulates genes 
driving epithelial phenotype and increases enrichment of both CMS3 
and CMS4 genes, possibly due to its role in mediating other axes of 
plasticity such as metabolic state [41]. The results indicate the possi-
bility of phenotypic switching within subtypes by inducing EMT; how-
ever further experimental validation in perhaps a larger cohort would be 
needed to assess its clinical impact. Our results showing CMS4 to be 
most mesenchymal are consistent with earlier observations about higher 
methylation of miR-200 family in CMS4 cell lines and tumors [42]. 
Further, transcriptomes of TGFβ treatment of CRC organoids resemble 
the CMS4 signature seen in human tumors [43]. 

Our results for scRNA-seq and bulk RNA-seq analysis are largely self- 
consistent across the CMS subtypes, such as antagonism between 
epithelial and mesenchymal programs, or the association of those 

programs with metabolic axes and PD-L1 signature enrichment scores. 
The different modalities of associations observed between these axes 
may explain the CMS subtype-specific observations of patient survival 
and/or sensitivity to various therapeutics and remains a key focus for 
our future work. A key point that our scRNA-seq analysis reveals is that 
CMS2 and CMS3 are relatively most epithelial, while CMS4 and CMS1 
being more mesenchymal. This categorization is reminiscent of multi- 
omics profiling of CRC cell lines suggesting that CMS2 and CMS3 ones 
are more colon-like, while CMS and CMS4 ones are more undifferenti-
ated and had higher expression of genes associated with EMT and TGFβ 
signaling [44]. Similarly, in TCGA CRC data, most patients from ZEB1hi 

group belonged to CMS4 subtype, while the ZEB1lo group was mainly 
composed of CMS2 and CMS3 tumors [45]. CMS4 subtype expression 
also correlates well with the signature of EpCAM lo sub-population in 
HCT116 and SW480 cells [46]. Overall, our observations highlight how 
the four CMS subtypes are positioned differently along the inter-
connected axes of phenotypic plasticity – EMT, metabolic activity, and 
immune-evasion – thus suggesting CMS-specific functional maps of CRC 
heterogeneity and pinpointing varied therapeutic vulnerabilities of 
different CMS subtypes. 

Besides EMT, metabolic reprogramming is another key axis of cancer 
cell plasticity. Recent studies have shown that along with the classical 
Warburg effect observed in cancer cells, some cancers, including cervi-
cal and breast cancer, predominantly use OXPHOS as a primary energy 
source [47,48]. In fact, Colorectal cancer (CRC) cells have a higher 
OXPHOS rate compared to normal colon cells [49]. Through the 
mechanism known as Reverse Warburg effect, elements of the tumor 
microenvironment, such as cancer-associated fibroblasts (CAF), can 
regulate the OXPHOS-glycolysis metabolic switch in cancers [50]. Thus, 
varying microenvironments may possibly explain our counterintuitive 
association of glycolysis with epithelial and mesenchymal scores. 
Metabolism-based characterization of CRC samples has also been 
attempted recently [51]. Future efforts enabling more accurate classi-
fication of CRC patients into different subgroups with specified vulner-
ability can integrate such efforts being made to unravel phenotypic 
heterogeneity among multiple interconnected axes of plasticity. 
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