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Abstract
In this article, we establish pointwise sparse domination results for Grushin pseudo-
multipliers corresponding to various symbol classes, as a continuation of our
investigation initiated in Bagchi et al. (J Fourier Anal Appl 29(3): 1–38, 2023). As a
consequence, we deduce quantitative weighted estimates for these pseudo-multipliers.
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1 Introduction

This article is a continuation of our work [3] where we have considered pseudo-
multipliers associated to Grushin operators and studied sparse operator bounds for
pseudo-multipliers with symbols satisfying Mihlin–Hörmander type conditions. In
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this article, we analyse other symbol classes associated to Grushin operators and
study their quantitative weighted boundedness. Before discussing our main results, let
us first review some well known results regarding pseudo-differential operators on the
Euclidean space which serve as the motivation for our investigation.

1.1 Pseudo-differential Operators on the Euclidean Space

The pseudo-differential operator m(x, D) associated with a function m ∈ L∞
(Rn × R

n) is defined by

m(x, D) f (x) :=
∫

Rn
m(x, ξ) f̂ (ξ)eix ·ξ dξ,

for Schwartz class functions f on R
n , where f̂ denotes the Fourier transform of f

which is defined by f̂ (ξ) = (2π)−n/2
∫

Rn f (x)e−i x ·ξ dx . Recall the following class
of symbols. For any σ ∈ R, and ρ, δ ≥ 0, S σ

ρ,δ (Rn) denote the set consisting of all
functions m ∈ C∞ (Rn × R

n) such that for all α, β ∈ N
n ,

∣∣∣∂β
x ∂α

ξ m(x, ξ)

∣∣∣ �α,β (1 + |ξ |)σ−ρ|α|+δ|β|.

Pseudo-differential operators associated with the symbol class S 0
1,0 (Rn) belong

to the realm of Calderón–Zygmund operators and they are bounded on L p(Rn) for
1 < p < ∞ (see [34]) and also they are of weak type (1, 1). For others symbol classes
we recall first the following fundamental result of Fefferman.

Theorem 1.1 (C. Fefferman [16]) Fix 0 < a < 1 and 0 ≤ δ < 1 − a.

• For m ∈ S
−na/2
1−a,δ (Rn), the operator m(x, D) extends to a bounded operator from

the Hardy space H1(Rn) to L1(Rn). Also, m(x, D) admits a bounded extension
from L∞(Rn) to BMO(Rn).

• In general, for any σ ≤ 0 and m ∈ S σ
1−a,δ , the operator m(x, D) is bounded on

L p(Rn) provided | 1p − 1
2 | ≤ −σ/na.

We also refer to [2] for more general results in this direction. Since we are primarily
interested in weighted estimates for pseudo-differential operators, we first mention
the work of Miller [27] where the author established weighted L p-estimates for
pseudo-differential operators belonging to the symbol classS 0

1,0(R
n). Also, recall the

following result of Chanillo and Torchinsky [10] where the authors obtained weighted
estimates for pseudo-differential operators with symbols belonging to S

−na/2
1−a,δ (Rn)

with 0 ≤ δ < 1 − a < 1 using suitable estimates for the Fefferman–Stein sharp
maximal function M
 acting on m(x, D).

Let M stand for the uncentered Hardy–Littlewood maximal function on R
n and

for 1 < r < ∞,Mr f := (M(| f |r ))1/r .

123



Sparse Bounds for Pseudo-multipliers Associated to Grushin... Page 3 of 49 34

Theorem 1.2 (Chanillo–Torchinsky [10]) For m ∈ S
−na/2
1−a,δ (Rn) with 0 ≤ δ <

1 − a < 1,

M
(m(·, D) f )(x) � M2 f (x),

for all f ∈ C∞
c (Rn). Consequently, for any 2 < p < ∞ and w ∈ Ap/2, the operator

m(x, D) maps L p (Rn, w) to itself.

Operators m(x, D) with m ∈ S
−na/2
1−a,δ (Rn) are more singular in nature and have

close connections with strongly singular integral operators studied by Fefferman [15].
Motivated by the above result, Michalowski et al. [29] studiedm(x, D) corresponding
to m ∈ S −na

1−a,δ (Rn). Increasing the decay from −na/2 to −na, it was proved that
m(x, D) is bounded from L p (Rn, w) to itself for any 1 < p < ∞ and w ∈ Ap. In
fact, they made use of some sharp kernel estimates and proved their result by proving
the following estimate.

Theorem 1.3 (Michalowski–Rule–Staubach [29]) Let m ∈ S −na
1−a,δ (Rn) for 0 < a <

1 and 0 ≤ δ ≤ 1 − a. Then, for any 1 < p < ∞ we have

M
(m(·, D) f )(x) � Mp f (x),

for all f ∈ C∞
c (Rn). Consequently, for any 1 < p < ∞ and w ∈ Ap, the operator

m(x, D) maps L p (Rn, w) to itself.

Recently, Beltran and Cladek [4] established sparse domination for pseudo-
differential operators on R

n . Their work recover not only the previously known
weighted boundedness results for classes S −na/2

1−a,δ (Rn) and S −na
1−a,δ (Rn), but it also

establishes quantitative weighted estimates for operators corresponding to symbols
coming from the intermediate classes. Namely, it follows from their results that for
m ∈ S σ

1−a,δ (Rn) with −na ≤ σ ≤ −na/2, the operators m(x, D) are bounded on
L p (Rn, w) for re < p < ∞ and w ∈ Ap/re where re = −na/σ . Moreover, they
could also prove weighted estimates for symbol classes with lesser decay, namely, for
S σ

1−a,δ (Rn)with−na/2 < σ < 0. But, we do not concern our self with those results,
and for interested readers we refer Corollary 4.2 in [4].

Themain contribution of the present article is in establishing some analogous results
in the context of Grushin pseudo-multipliers. Our approach also relies on the sparse
domination technique. Note that in the context of the Grushin operator, we need not
have the adjoint operatorm(x,Gκ)∗ to be a pseudo-multiplier operator, a fact crucially
used in [4]. Therefore, our focus in the present work is to obtain linear sparse forms,
which in fact provide a stronger pointwise control. In [4], linear sparse forms were
shown only in the case of σ = −na. We succeed in establishing linear sparse forms
in the range −na ≤ σ < −na/2. We also have some weighted boundedness results
for σ = −na/2, which we shall explain in Sects. 1.4 and 1.5. In order to present our
results in detail, let us first recall some preliminaries.
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1.2 Grushin Pseudo-multipliers

We start with recalling some preliminaries. Let us denote the points in R
n1+n2 as

x = (x ′, x ′′) ∈ R
n1 × R

n2 . For each κ ∈ N+, we consider Grushin operator

Gκ = −�x ′ − Vκ

(
x ′)�x ′′ ,

where Vκ

(
x ′) is either |x ′|2κ or

∑n1
j=1 x

′
j
2κ . We simply denote G1 by G itself. These

are well-known operators and Grushin studied hypoellipticity of these operators in
[18]. The operatorGκ is degenerate elliptic along the n2-dimensional plane {0}×R

n2 .
It is studied in various contexts related to Dirichlet problems in weighted Sobolev
spaces, free boundary problems in partial differential equations etc. and it is closely
connected to the sub-Laplacian on the Heisenberg group. Multipliers associated to
Grushin operators are always of deep interest and is currently a very active area of
research. For instance,we refer [8, 12, 28, 30]wheremultiplier theorems are developed
in various contexts related toGrushin operators.Mihlin-Hörmandermultiplier theorem
for Grushin multipliers with sharp number of derivatives on the multiplier function
was obtained first in [30] by Martini–Sikora when n1 ≥ n2, and finally in complete
generality in [28] by Martini–Müller. We also refer [5] where the authors develop a
general notion of pseudo-differential operators on metric measure spaces. These are
our point of departure and in this articlewe specialize in developing pseudo-multipliers
for Grushin operators.

Using inverse Fourier transform in the last variable, for a dense class of functions,
we can write

Gκ f (x) =
∫

R
n2
e−iλ·x ′′ (

Hκ(λ) f λ
)
(x ′) dλ,

where, for λ �= 0, Hκ(λ) = −�x ′ + |λ|2|x ′|2κ or Hκ(λ) = −�x ′ + |λ|2∑n1
j=1 x

′
j
2κ ,

depending on the choice of Vκ(x ′) and f λ(x ′) = (2π)−n2
∫

R
n2 f (x ′, x ′′)eiλ·x ′′

dx ′′. In
particular, when κ = 1, for each λ �= 0, operators H1(λ) = H(λ) = −�x ′ + |λ|2|x ′|2
are the scaled Hermite operators on R

n1 .

Using spectral decomposition of Hκ(λ) we have the following representation

Gκ f (x) =
∫

R
n2
e−iλ·x ′′ ∑

k∈N

|λ| 2
κ+1 νκ,k

(
f λ, hλ

κ,k

)
hλ

κ,k(x
′) dλ,

where {hκ,k : k ∈ N} is a complete orthonormal basis of L2 (Rn1) such that
Hκ(1)hκ,k = νκ,khκ,k with 0 < νκ,1 ≤ νκ,2 ≤ νκ,3 ≤ . . . and limk→∞ νκ,k = ∞,
and for each k ∈ N and λ �= 0,

hλ
κ,k(x

′) := |λ| n1
2(κ+1) hκ,k

(
|λ| 1

κ+1 x ′) .

For κ = 1, the eigen functions hκ,k are the well-known scaled Hermite functions.
Let us now define pseudo-multipliers associated to Grushin operators.
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Definition 1.4 Given m ∈ L∞ (
R
n1+n2 × R+

)
, the Grushin pseudo-multiplier

m(x,Gκ) is defined densely on L2
(
R
n1+n2

)
by

m(x,Gκ) f (x) :=
∫

R
n2
e−iλ·x ′′ ∑

k∈N

m
(
x, |λ| 2

κ+1 νκ,k

) (
f λ, hλ

κ,k

)
hλ

κ,k(x
′) dλ.

(1.1)

Throughout this article, Km(x,Gκ) will denote the integral kernel of theGrushin pseudo-
multiplier operatorm(x,Gκ). Also,m(Gκ)will simply denote the Grushinmultiplier
corresponding to a bounded function m defined on R+.

Recall that Grushin operator Gκ can be expressed as a negative sum of X2
j ’s and

X2
α,k’s where X j and Xα,k are first order gradient vector fields defined as follows

X j = ∂

∂x ′
j

and Xα,k = x ′α ∂

∂x ′′
k
, (1.2)

for 1 ≤ j ≤ n1, 1 ≤ k ≤ n2, and α ∈ N
n1 with |α| = κ.

Let us denote by X the first order gradient vector field

X := (X j , Xα,k)1≤ j≤n1, 1≤k≤n2, |α|=κ . (1.3)

We consider symbol classes S σ
ρ,δ(Gκ), defined as follows.

Definition 1.5 For any σ ∈ R and ρ, δ ≥ 0, we say that a function m ∈
C∞ (

R
n1+n2 × R+

)
, belongs to the symbol classS σ

ρ,δ(Gκ) if it satisfies the following
estimate:

∣∣∣X�∂ lηm(x, η)

∣∣∣ ��,l (1 + η)
σ
2 −(1+ρ) l

2+δ
|�|
2 (1.4)

for all � ∈ N
n0 and l ∈ N, where n0 = n1 + n2

(
κ+n1−1
n1−1

)
.

For N ∈ N, we define the seminorm for the above symbol classes as follows:

‖m‖S σ,N
ρ,δ

= sup
|�|+l≤N

sup
x,η

(1 + η)−
σ
2 +(1+ρ) l

2−δ
|�|
2

∣∣∣X�∂ lηm(x, η)

∣∣∣ . (1.5)

For convenience, we will use a shortened notation ‖m‖S σ
ρ,δ

where the number of
derivatives N should be clear from the context where it is used.

In [7], an analogue of the Calderón–Vaillancourt theorem for the Grushin operator
G = G1 was shown to be true for symbol classes S 0

ρ,δ(G) with 0 ≤ δ < ρ ≤ 1.

In [3], we were primarily concerned with symbol classes S 0
1,δ(Gκ), δ < 1, and we

established appropriate sparse bounds with an emphasis on the number of derivatives
of symbol functions.

The present article is dedicated to study sparse bounds and quantitative weighted
estimates for the symbol classes S

−Qa/q
1−a,δ (Gκ) for 0 < a < 1, δ ≤ 1 − a, and

1 ≤ q < 2.

123
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We also prove weighted estimates for pseudo-multipliers corresponding to the sym-
bol class S

−Qa/2
1−a,δ (L,U), with 0 < a < 1, δ ≤ 1 − a, associated with the joint

functional calculus of the Grushin operator G.
In the next few subsections we describe our main results.

1.3 Main Results for ClassesS −Qa/q
1−a,ı (Gκ)with 1 ≤ q < 2

Before discussing our results, let us record here that unless otherwise stated, throughout
this article we work under the following convention on parameters.

Convention 1.6 We always take 0 < a < 1, 0 ≤ δ ≤ 1 − a, and 0 ≤ δ ≤ ρ < 1.

We also have the following standing assumption, which plays an important role in
our analysis.

Assumption 1.7 We assume that for each m ∈ S 0
ρ,δ(Gκ), the operator

m(·,Gκ) : L2(|B(·, 1)|b) → L2(|B(·, 1)|b)

is bounded for all 0 ≤ b < 1, with the operator norm bound depending only on b and
the symbol seminorm ‖m‖S 0

ρ,δ
.

The following remark is in order.

Remark 1.8 Standing assumption 1.7 may at first look artificial but we will show in
Proposition 2.8 that given any m ∈ S 0

ρ,δ(G), with δ < ρ, the operator m(x,G) maps

L2(|B(·, 1)|b) to itself for all b ≥ 0.
In general, since even an analogue of the Calderón–Vaillancourt type theorem is not

known, we have to assume throughout this article that for any symbolm ∈ S 0
ρ,δ(Gκ),

the pseudo-multiplier operator m(x,Gκ) is bounded on L2(|B(·, 1)|b) for all 0 ≤
b < 1.

We now present the following theorem regarding the end-point boundedness of
pseudo-multipliers associated to the symbol classS −Qa

1−a,δ(Gκ). This result is not only
essential in our subsequent proofs of sparse domination, it is also very important in
its own right. Let H1

Gκ

(
R
n1+n2

)
denote the Hardy space associated to the Grushin

operator Gκ which we will explain in detail in Sect. 2.1.

Theorem 1.9 Given m ∈ S −Qa
1−a,δ(Gκ), the operator m(x,Gκ) is bounded from

H1
Gκ

(
R
n1+n2

)
to L1

(
R
n1+n2

)
. Consequently, m(x,Gκ) is L p-bounded for all 1 <

p < 2.

Here we present our main pointwise estimates for pseudo-multipliers with sparse
operators. Obtaining pointwise estimates for classical operators by sparse operators
has attracted many minds recently, for example we refer [19, 21, 23]. In [6], bilinear
sparse forms are introduced to handle more general operators and this method was
further developed to obtain beautiful estimates for several fundamental operators in
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[4, 9, 20, 22] just to name a few. Since (Rn1+n2 , dGκ
, | · |) is a homogeneous space, in

order to develop sparse domination results we rely on the dyadic structure provided by
Christ’s dyadic grid S. For more relevant details, we refer to Sect. 2.4 of [3]. We say
a collection of measurable sets S ⊂ S to be a η-sparse family (for some 0 < η < 1) if
for every memberQ ∈ S there exists a set EQ ⊆ Q such that |EQ| ≥ η|Q| and {EQ}
are pairwise disjoint. Corresponding to a sparse family S and 1 ≤ r < ∞, we define
the sparse operator as follows:

Ar ,S f (x) =
∑
Q∈S

(
1

|Q|
∫
Q

| f |r
)1/r

χQ(x). (1.6)

We simply write AS for A1,S . The precise quantitative estimates for sparse operators
in terms of the Ap characteristic follow from Proposition 4.1 in [25]. The following
is our main pointwise estimate.

Theorem 1.10 Let σ = −Qa/q for some 1 ≤ q < 2. Given m ∈ S σ
1−a,δ(Gκ), for

every compactly supported function f and every q < r < ∞, there exists a sparse
family S such that

|m(x,Gκ) f (x)| � Ar ,S f (x), (1.7)

holds true a.e. x ∈ R
n1+n2 .

Weemploy the following grandmaximal truncated operator in our proof ofTheorem
1.10: For any linear operator T , and any s > 0, we consider the grand maximal
truncated operator defined by

M#
T ,s f (x) = sup

B:B
x
ess supy,z∈B

∣∣T ( f χR
n1+n2\sB)(y) − T ( f χR

n1+n2\sB)(z)
∣∣ ,
(1.8)

where the supremum is taken over all balls B containing the point x .
It is known that the sparse domination results for T follow once we have an appro-

priate end-point boundedness ofM#
T ,s . More precisely, following the terminology of

Sect. 2.4 of [3], we have that for a sublinear operator T , if we have

• T is of weak type (p, p) for some 1 ≤ p < ∞,
• M#

T ,s is weak type (q, q) for some 1 ≤ q < ∞,

and s ≥ 3C2
0

δ0
, then there is an 0 < η < 1 such that for every compactly supported

bounded measurable function f , there exist an η-sparse family S ⊂ S such that for
almost every x ∈ R

n1+n2 , we have

|T f (x)| �S,s CTAr ,S f (x), (1.9)

where r = max{p, q} and CT = ‖T ‖L p→L p,∞ + ‖M#
T ,s‖Lq→Lq,∞ .
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The above methodology was first shown by Lerner and Ombrosi on Euclidean
spaces in [24], and the same was extended to spaces of homogeneous type by Lorist
in [25]. Concluding weighted estimates from sparse operator bounds is standard by
now and hence we do not provide details and rather conclude the following weighted
estimates. Thus we achieve the following counterpart in the Grushin setting of a recent
Euclidean result by Beltran–Cladek [4].

Theorem 1.11 Let σ = −Qa/q for some 1 ≤ q < 2. Given m ∈ S σ
1−a,δ(Gκ), the

operator m(x,Gκ) is bounded on L p(w) to itself for w ∈ Ap/q(R
n1+n2) and for all

q < p < ∞. More precisely,

‖m(x,Gκ) f ‖L p(w) ≤ Cm,n1,n2,p,q,r [w]max{ 1
p−r ,1}

Ap/r (R
n1+n2 )

‖ f ‖L p(w),

for any q < r < p < ∞.

This is a consequence of Theorem 1.10 and Proposition 4.1 in [25].

1.4 About ClassesS −Qa/2
1−a,ı (Gκ)

In the previous subsection, we explained sparse domination and weighted estimates
for pseudo-multipliers with symbols coming from S

−Qa/q
1−a,δ (Gκ) classes with 1 ≤

q < 2. It turns out that our approach is not well suited for the class S −Qa/2
1−a,δ (Gκ).

More precisely, in the proof of Theorem 1.10, we make a crucial use of the weighted
Plancherel estimates of the integral kernels of the following form

|B(x, R−1)|
∫

R
n1+n2

(1 + Rd(x, y))2r
∣∣Km(x,Gκ)(x, y)

∣∣2 dy �r,ε sup
x0

‖m(x0, R
2·)‖2W∞

r+ε
,

(1.10)

for every every r, ε > 0 and any bounded Borel functionm : R
n1+n2 ×R → C whose

support in the last variable is in [0, R2] for any R > 0. For a detailed proof of this
estimate, we refer Lemma 4.3 in [3].

We would like to note the fact that in the Euclidean setting it is possible to replace
the norm W∞

r+ε by W∞
r in right hand side of (1.10) using Hausdorff–Young theorem.

While working with symbols m ∈ S
−Qa/q
1−a,δ (Gκ) with 1 ≤ q < 2, we are able to

establish sparse domination even with the presence of the norm W∞
r+ε , but difficulties

arising from Grushin metric prohibit us to do the same for the class S −Qa/2
1−a,δ (Gκ)

even if we assume W∞
r norm in the right hand side of (1.10). For more details, we

refer to Remark 5.3.
However, we are able to employ the machinery of the Fefferman–Stein sharp

maximal function and good-λ-inequalities to conclude weighted boundedness for
pseudo-multiplier operator for the symbol classS −Qa/2

1−a,δ (L,U) associated to the joint
functional calculus of G, under some more assumptions on the symbol function. We
discuss this set-up and state our weighted boundedness result in that context in the
next subsection.
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1.5 Joint Functional Calculus and Results for ClassesS −Qa/2
1−a,ı (L,U)

Let us consider the following family of operators:

L j = (−i∂x ′
j
)2 + x ′

j
2

n2∑
k=1

(−i∂x ′′
k
)2 and Uk = −i∂x ′′

k
, (1.11)

for j = 1, 2, . . . , n1 and k = 1, 2, . . . , n2. The operators L1, L2 . . . Ln1,U1,U2, . . . ,

Un2 are essentially self adjoint onC
∞
c (Rn1+n2) and their spectral resolutions commute.

The same is true for all polynomials in L1, L2 . . . Ln1,U1,U2, . . . ,Un2 . Hence, they
admit a joint functional calculus on L2(Rn1+n2) in the sense of the spectral theorem.

Let us write L = (L1, L2, . . . , Ln1), U = (U1,U2, . . . ,Un2) and 1̃ =
(1, 1, . . . , 1) ∈ R

n1 . Now, given a functionm ∈ L∞ (
R
n1+n2 × (R+)n1 × (Rn2\{0})),

the pseudo-multiplier operator m(x, L,U) is (densely) defined on L2(Rn1+n2) by

m(x, L,U) f (x) :=
∫

R
n2
e−iλ·x ′′ ∑

μ∈N
n1

m
(
x, (2μ + 1̃)|λ|, λ

) (
f λ,�λ

μ

)
�λ

μ(x ′) dλ,

(1.12)

where �λ
μ are the scaled Hermite functions.

Definition 1.12 For any σ ∈ R and ρ, δ ≥ 0, we define the symbol classS σ
ρ,δ(L,U)

to be the collection of all m ∈ C∞ (
R
n1+n2 × (R+)n1 × (Rn2\{0})) which satisfy the

following estimate:

∣∣X�∂θ
τ ∂β

κ m(x, τ, κ)
∣∣ ��,θ,β (1 + |τ | + |κ|) σ

2 − (1+ρ)
2 (|θ |+|β|)+ δ

2 |�| (1.13)

for all � ∈ N
n1+n1n2 , θ ∈ N

n1 and β ∈ N
n2 .

Similar to (1.5), for N ∈ N, we define the seminorm for the above symbol classes
as follows:

‖m‖
S σ,N

ρ,δ

= sup
|�|+|θ |+|β|≤N

sup
x,τ,κ

(1 + |τ | + |κ|)− σ
2 + (1+ρ)

2 (|θ |+|β|)− δ
2 |�| ∣∣∣X�∂θ

τ ∂
β
κ m(x, τ, κ)

∣∣∣ ,
(1.14)

and here also for convenience we will use a shortened notation ‖m‖S σ
ρ,δ

without
specifying the number of involved derivatives.

In [7], first and third authors proved the following L2-boundedness result.

Theorem 1.13 [7, Theorem 1.10] Let m ∈ S 0
ρ,δ(L,U).

(1) If δ < ρ, then m(x, L,U) extends to a bounded operator on L2(Rn1+n2).
(2) For m ∈ S 0

ρ,ρ(L,U), with 0 ≤ ρ < 1, if we further assume that

lim
κ→0

∂β
κ m(x, τ, κ) = 0, (CancelCond)

123
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for all β ∈ N
n2 with |β| ≤ 4N0 = 4

(
� Q
4 � + 1

)
, then m(x, L,U) extends to a

bounded operator on L2(Rn1+n2).

In this paper, we have the following weighted bounded results for symbol classes
S

−Qa/2
1−a,δ (L,U).

Theorem 1.14 Let m ∈ S
−Qa/2
1−a,δ (L,U) be such that it satisfies the cancellation con-

dition CancelCond for all β ∈ N
n2 with |β| ≤ max

{
4
(
� Q
4 � + 1

)
, � Q

2 + 1
1−a � + 1

}
.

Then, the operator m(x, L,U) is bounded on L p(w) for all w ∈ Ap/2(R
n1+n2) and

2 < p < ∞.

1.6 Organisation of the Paper

Concluding weighted L p estimates has always been an important theme of research
in the study of pseudo-differential operators. In this article, employing modern tools
like sparse operators and others, we prove series of weighted estimates for Grushin
pseudo-multipliers.

We have organised the article as follows.

• In Sect. 2, we recall the relevant preliminary details. Here, we prove some basic
results which are not only essential to establish our main results but are also
important in their own rights. In Sect. 2.1, we list out an interpolation result using
the Hardy space as an end-point. We also need a suitable Hardy–Littlewood–
Sobolev inequality for Gκ , and we prove the same (see Theorem 2.6) in Sect. 2.2.
Finally, inProposition2.8,weprove aweighted analogueofCalderón–Vaillancourt
type theorem for Grushin pseudo-multipliers.

• Sect. 3 is dedicated to recalling or proving a number of kernel estimates for pseudo-
multipliers associated with Gκ as well as for (L,U) assuming the cancellation
condition CancelCond. Most of the results in this section are a consequence of
kernel estimates of [3].

• We develop results concerning unweighted boundedness of pseudo-multipliers
corresponding to various symbol classes in Sect. 4. In particular, the end-point
H1-L1 boundedness for S −Qa

1−a,δ(Gκ) class symbols is addressed in Sect. 4.1. In
establishing this result, we make use of suitable kernel estimates, which we prove
in Lemma 4.1. Let us mention that our proofs in Sect. 4.1 are inspired by the work
of Álvarez–Hounie [2], however, due to the non-Euclidean nature of the Grushin
metric we had to overcome many difficulties. Subsequently, in Sect. 4.2, as an
application of the interpolation between classes S −Qa

1−a,δ(Gκ) and S
−Qa/2
1−a,δ (Gκ),

we obtain unweighted L p-boundedness for symbol classes S −Qa/q
1−a,δ (Gκ) with

1 < q < 2.
• We prove our sparse domination results in Sect. 5. In Sect. 5.1, we prove an end-
point boundedness for the grandmaximal truncated operatorM


T ,s which is among
the key ingredients in our proof of sparse domination, using which we conclude
the proof of Theorem 1.10 in Sect. 5.2.
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• Sect. 6 deals with the analysis related to the symbol class S
−Qa/2
1−a,δ (L,U). We

prove a pointwise domination of the Fefferman–Stein maximal function in Sect.
6.1, and the article culminates with the proof of Theorem 1.14 in Sect. 6.2.

Notation: For any pair of positive real numbers A1 and A2, by the expression A1 � A2
we mean A1 ≤ CA2 for some C > 0. We write A1 �ε A2 whenever the implicit
constant C may depend on a parameter ε. The notation A1 ∼ A2 stands for A1 � A2
and A2 � A1. For a general vector τ = (τ1, . . . , τn1) ∈ R

n1 , we write |τ |1 =∑n1
j=1 |τ j | and |τ | =

(∑n1
j=1 |τ j |2

)1/2
. Whenever it is obvious that μ ∈ N

n1 , by

abuse of notation, we write |μ| in pace of |μ|1.

2 Preliminaries and Basic Results

We start with recalling the control distance function d̃ associated with the sub-
Riemannian structure of the Grushin operator Gκ . For details, we refer to Sect. 2.1 of
[3]. The asymptotic description of d̃ is known to be:

d̃(x, y) ∼ d(x, y) := ∣∣x ′ − y′∣∣+
⎧⎨
⎩

|x ′′−y′′|
(|x ′|+|y′|)κ if

∣∣x ′′ − y′′∣∣1/(1+κ) ≤ ∣∣x ′∣∣+ ∣∣y′∣∣
∣∣x ′′ − y′′∣∣1/(1+κ) if

∣∣x ′′ − y′′∣∣1/(1+κ) ≥ ∣∣x ′∣∣+ ∣∣y′∣∣ .

Since d̃ is a metric, it follows that d is a quasi-metric, that is, there exists a constant
C0 > 1 such that for all x, y, z ∈ R

n1+n2 ,

d(x, y) ≤ C0 (d(x, z) + d(z, y)) . (2.1)

Equipped with the Lebesgue measure | · |, it is known that (Rn1+n2 , d) is a space
of homogeneous type with homogeneous dimension Q := n1 + (1 + κ)n2. We refer
Proposition 5.1 of [33] for more details. Let us now recall the following mean-value
estimate that we need in our subsequent kernel estimates.

Lemma 2.1 [3, Lemma 2.1] There exist constants C1,κ,C2,κ > 0 (depending also
on n1 and n2) such that for any ball B(x0, r) and points x, y ∈ B(x0, r), there exists
a d̃-length minimising curve γ0 : [0, 1] → B(x0,C1,κ r) joining x to y, and

| f (x) − f (y)| ≤C2,κ d(x, y)
∫ 1

0
|X f (γ0(t))| dt,

for any f ∈ C1
(
B(x0,C1,κ r)

)
.

Let us state another convention that we shall follow throughout the article.

Convention 2.2 For a given symbol function m(x, η) defined on R
n1+n2 × R+, we

shall use the same notation m(x, η) for its extension to R
n1+n2 × R with m(x, η) = 0

whenever η /∈ R+. A similar remark holds for symbol functionsm(x, τ ) andm(x, τ, κ)

defined on R
n1+n2 × (R+)n1 and R

n1+n2 × (R+)n1 × (Rn2\{0}) respectively.
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Before moving on, let us mention that in our analysis we mostly decompose the
spectrum of pseudo-multipliers into dyadic pieces. In that direction, we choose and
fix ψ0 ∈ C∞

c ((−2, 2)) and ψ1 ∈ C∞
c ((1/2, 2)) such that 0 ≤ ψ0(η), ψ1(η) ≤ 1, and

∞∑
j=0

ψ j (η) = 1, (2.2)

for all η ≥ 0, where ψ j (η) = ψ1
(
2−( j−1)η

)
for j ≥ 2.

2.1 Hardy Spaces and Interpolation

The theory of Hardy spaces corresponding to Grushin operators is well developed and
we recall it according to our requirement. For κ = 1, the Hardy space for the Grushin
operatorG was studied in [11] and subsequently more general results were established
in [32].

Let H1
Gκ

denote the Hardy space associated to the Grushin operator Gκ , defined
as follows:

H1
Gκ

:= { f ∈ L1(Rn1+n2) : MGκ
f ∈ L1(Rn1+n2)},

where MGκ
f (x) = supt>0 |e−tGκ f (x)| is the maximal function associated to the

heat semigroup and the norm is defined as ‖ f ‖H1
Gκ

:= ‖MGκ
f ‖L1(Rn1+n2 ).

Recall that the heat kernel e−tGκ (x, y) satisfy the following two-sided Gaussian
bounds (see, for example, Theorem 2.1 in [13]): There exist constants c, c′ > 0 such
that

∣∣∣B(x,
√
t)
∣∣∣−1

exp

(−c′
t

d(x, y)2
)

�
∣∣∣e−tGκ (x, y)

∣∣∣ �
∣∣∣B(x,

√
t)
∣∣∣−1

exp

(−c

t
d(x, y)2

)
,

(2.3)

In practice, for 1 ≤ q < ∞, in the spirit of [14, 32], we consider the atomic Hardy
space H1

at,q as well as BMO spaces on the homogeneous space
(
R
n1+n2 , d, | · |) as

follows.

Definition 2.3 We call a function a to be a (1, q)-atom if there exists a ball B such
that supp(a) ⊆ B, ‖a‖Lq ≤ |B|−1/q ′

and the cancellation condition
∫
B a(x) dx = 0

holds.

Definition 2.4 The space H1
at,q

(
R
n1+n2

)
consists of all functions f ∈ L1(Rn1+n2)

such that f = ∑
k λkak , where ak’s are (1, q)-atoms and λk’s are complex numbers

with
∑

k |λk | < ∞. Furthermore, we define

‖ f ‖H1
at,q

:= inf
∑
k

|λk | < ∞, (2.4)

where the infimum is taken over all such representations of f .
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Since theheat semigroup {e−tGκ }t>0 is conservative, that is,
∫

R
n1+n2 e

−tGκ (x, y)dy
= 1 for all t > 0 and x ∈ R

n1+n2 , invoking Theorem A in [32] we have that the spaces
H1
Gκ

and H1
at,2

(
R
n1+n2

)
coincide with their norms ‖ · ‖H1

Gκ

and ‖ · ‖H1
at,2

being

equivalent.
Next, we say that a function f (upto constant differences) belongs to BMOq(

R
n1+n2

)
if

‖ f ‖BMOq := sup
B

inf
c∈C

(
1

|B|
∫
B

| f (x) − c|q dx
)1/q

∼ sup
B

(
1

|B|
∫
B

∣∣∣∣ f (x) − 1

|B|
∫
B
f

∣∣∣∣
q

dx

)1/q

< ∞, (2.5)

where the supremum is taken over all balls B.
Further, following the work of [14], we define the space BMOGκ ,q

(
R
n1+n2

)
to be

the equivalence classes of functions f (upto constant differences) for which

‖ f ‖BMOGκ ,q := sup
B

(
1

|B|
∫
B

∣∣∣ f (x) − e−r2BGκ f (x)
∣∣∣q dx

)1/q

< ∞, (2.6)

where rB denotes the radius of the ball B, and the supremum is taken over all balls B.
Combining various results from [14, 32], we can establish the following interpola-

tion result.

Lemma 2.5 Let T beabounded sublinear operator from H1
at,2

(
R
n1+n2

)
to L1

(
R
n1+n2

)
.

If T is also bounded on L2
(
R
n1+n2

)
, then T is bounded on L p

(
R
n1+n2

)
for all

1 < p < 2.

Proof Byduality, it follows that T ∗ : L∞ (
R
n1+n2

)→
(
H1
at,2

(
R
n1+n2

))∗
is bounded.

We begin with invoking Theorem B of [32] to get that the dual space of
H1
at,2

(
R
n1+n2

)
is BMO2

(
R
n1+n2

)
. Here we have used the fact that the heat semi-

group {e−tGκ }t>0 is conservative, that is, e−tG(1) = ∫
R
n1+n2 e

−tGκ (x, y) dy = 1, for
all t > 0, and therefore one can do the analysis of [32] with h = 1 itself.

Next, we have by Proposition 2.5 of [14] (which, in fact, is a consequence of

Proposition 3.1 of [26]), the continuity of the inclusion map BMO1
i

↪−→ BMOGκ ,1.

Also, the continuity of the inclusion map BMOp2

(
R
n1+n2

) i
↪−→ BMOp1

(
R
n1+n2

)
,

for any 1 ≤ p1 ≤ p2 < ∞, follows trivially from Hölder’s inequality.
Putting all the above results together, we get the following chain of bounded oper-

ators:

L∞ (
R
n1+n2

) T ∗
↪−→ BMO2

(
R
n1+n2

) i
↪−→ BMO1

i
↪−→ BMOGκ ,1

(
R
n1+n2

)
.

As a consequence, we have that T ∗ : L∞ (
R
n1+n2

) → BMOGκ ,1
(
R
n1+n2

)
is

bounded. With that we can invoke Theorem 5.2 of [14] to conclude that T ∗ is bounded
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on L p
(
R
n1+n2

)
for all 2 < p < ∞. By duality, we get that T is bounded on

L p
(
R
n1+n2

)
for all 1 < p < 2.

This completes the proof of the Lemma 2.5. ��

2.2 Hardy–Littlewood–Sobolev Inequality

As earlier, letMGκ
denote the maximal operator corresponding to the heat semigroup

{e−tGκ }t>0. It is well-known that MGκ
is bounded on L p(Rn1+n2) for all 1 < p ≤

∞. We essentially repeat the steps of the proof of Theorem 3 of [1], with minor
modifications, in establishing the following version of the Hardy–Littlewood–Sobolev
inequality.

Theorem 2.6 (Hardy–Littlewood–Sobolev inequality) For 1 < p < q < ∞, 0 <

b < Q/p and 1
p − 1

q = b
Q , we have

‖ |B(·, 1)|b/Q (I + Gκ)−b/2 f ‖q �b,p,q ‖ f ‖p. (2.7)

Proof Write Tt = e−tGκ for t > 0, and denote by pt the kernel of the operator Tt .
Fix p and q satisfying the conditions of the statement of the theorem. Using Hölder’s
inequality we get

|Tt f (x)| =
∣∣∣∣
∫

R
n1+n2

f (y)pt (x, y) dy

∣∣∣∣
≤
(∫

R
n1+n2

| f (y)|p |pt (x, y)| dy
)1/p (∫

R
n1+n2

|pt (x, y)| dy
)1/p′

�
∣∣∣B(x,

√
t)
∣∣∣−1/p ‖ f ‖p.

Next, recall that

(I + Gκ)−b/2 f (x) = 1

�(b/2)

∫ ∞

0
e−t t

b
2−1Tt f (x) dt,

with the integral converging absolutely, a fact that is well known, and the same can
also be verified from the analysis that we are now going to perform.

We break the integration in t-variable in two parts, on (0, δ0] and (δ0,∞) where
the exact value of δ0 > 0 would be prescribed later. Let us write

Jb f (x) = 1

�(b/2)

∫ δ0

0
e−t t

b
2−1Tt f (x) dt, and

Kb f (x) = 1

�(b/2)

∫ ∞

δ0

e−t t
b
2−1Tt f (x) dt,

so that (I + Gκ)−b/2 f (x) = Jb f (x) + Kb f (x).
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Note first that

|Jb f (x)| ≤ 1

�(b/2)
MGκ

f (x)
∫ δ0

0
t
b
2−1 dt = CbMGκ

f (x)δ0
b
2 .

On the other hand, making use of the following trivial estimate

e−t |B(x, 1)|1/p∣∣B(x,
√
t)
∣∣1/p � e−t

(
1 + 1√

t

)Q/p

�p

(
1√
t

)Q/p

,

where the first inequality follows from the doubling measure property, we get

|Kb f (x)| ≤ 1

�(a/2)

∫ ∞

δ0

e−t t
b
2−1 |Tt f (x)| dt

�b

∫ ∞

δ0

e−t t
b
2−1

∣∣∣B(x,
√
t)
∣∣∣−1/p ‖ f ‖p dt

= |B(x, 1)|−1/p ‖ f ‖p

∫ ∞

δ0

t
b
2−1

(
e−t |B(x, 1)|1/p∣∣B(x,

√
t)
∣∣1/p

)
dt

�p |B(x, 1)|−1/p ‖ f ‖p

∫ ∞

δ0

t
b
2− Q

2p −1 dt

∼b,p,q |B(x, 1)|−1/p ‖ f ‖p δ0
b
2− Q

2p .

Combining the above estimates of |Jb f (x)| and |Kb f (x)|, we get
∣∣∣(I + Gκ)−b/2 f (x)

∣∣∣ �b,p,q MGκ
f (x)δ0

b
2 + |B(x, 1)|−1/p ‖ f ‖p δ0

b
2− Q

2p .

Now, in order to optimize in δ0 > 0, we choose δ0 =
( |B(x,1)|−1/p‖ f ‖p

MGκ
f (x)

)2p/Q
, and

then
∣∣∣(I + Gκ)−b/2 f (x)

∣∣∣ �b,p,q |B(x, 1)|−b/Q ‖ f ‖bp/Qp
(
MGκ

f (x)
)1−bp/Q

= |B(x, 1)|−b/Q ‖ f ‖bp/Qp
(
MGκ

f (x)
)p/q

,

implying that

∫
R
n1+n2

(
|B(x, 1)|b/Q

∣∣∣(I + Gκ)−b/2 f (x)
∣∣∣
)q

dx �b,p,q ‖ f ‖bpq/Q
p

∫
R
n1+n2

(MGκ
f (x)

)p dx
�p,κ ‖ f ‖bpq/Q

p ‖ f ‖p
p

= ‖ f ‖qp.

This completes the proof of Theorem 2.6. ��
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2.3 Weighted Calderón–Vaillancourt Results

In this section, we shall prove a result which can be thought of as a weighted analogue
of Calderón–Vaillancourt type theorem for Grushin pseudo-multipliers.

In order to do so, we first show that the ideas of [7] allow one to have a Calderón–
Vaillancourt type theorem even in the presence of Hermite-type shifts. More precisely,
given m ∈ S 0

ρ,δ(Gκ) and �c ∈ R
n1 , let us consider symbol functions m̃ : R

n1+n2 ×
(R+)n1 → C and M�c : R

n1+n2 × (R+)n1 × (Rn2\{0}) → C defined by

m̃(x, τ ) = m(x, |τ |1) and M�c(x, τ, κ) = m̃ (x, τ + |κ|�c) . (2.8)

We have the following L2-boundedness result.

Lemma 2.7 Given a compact set K ⊂ R
n1 , there exists a constant C = CK such that

the following holds true. For any m ∈ S 0
ρ,δ(Gκ), define m̃(x, τ ) and M�c as in (2.8).

Then,

‖M�c(x, L,U)‖op ≤ CK‖m‖S 0
ρ,δ

, (2.9)

for all �c ∈ K.

Proof Choose and fix φ ∈ C∞
c (Rn2) such that φ(κ) = 1 for all |κ| ≤ 1/2 and

φ(κ) = 0 for all |κ| ≥ 1, and decompose M�c = M1,�c + M2,�c, where

M1,�c(x, τ, κ) = M�c(x, τ, κ) φ(κ) and M2,�c(x, τ, κ) = M�c(x, τ, κ) (1 − φ(κ)).

Let usfirst analyse the operatorM2,�c(x, L,U) corresponding to the symbol function
M2,�c(x, τ, κ). It follows directly from the definition of M2,�c and the support condition
on φ that M2,�c satisfies the symbol condition

∣∣X�∂θ
τ ∂β

κ M2,�c(x, τ, κ)
∣∣ ≤�,θ,β,K (1 + |τ |)−(1+ρ)

|θ |
2 +δ

|�|
2 , (2.10)

and the cancellation condition CancelCond for all � ∈ N
n1+n1n2 , θ ∈ N

n1 and β ∈
N
n2 .
It then follows from Remark 1.11 of [7] that M�c satisfies (2.9), that is, for all �c ∈ K,

‖M2,�c(x, L,U)‖op ≤ CK‖m‖S 0
ρ,δ

. (2.11)

Next, we analyse the operator M1,�c(x, L,U). Using the Taylor series expansion
(see also the discussion around (9.7) of [7]), for every N ∈ N we can write

M1,�c(x, τ, κ) = φ(κ) m̃ (x, τ + |κ|�c)
= φ(κ)

∑
|α|≤N

�cα

α! |κ||α|∂α
τ m̃ (x, τ )
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+ φ(κ)
∑

|α|=N+1

N + 1

α!
∫ 1

0
(1 − t)N |κ||α| ∂α

τ m̃ (x, τ + t |κ|�c) dt

= M1,N
1,�c (x, τ, κ) + M2,N

1,�c (x, τ, κ).

We shall fix N in just a while. But, let us first show that M1,N
1,�c (x, τ, κ) corresponds

to an L2-bounded operator with operator norm satisfying (2.9). For this, note that
since (τ, κ) �→ |κ||α|φ(κ) is bounded, it follows from Plancherel’s theorem that it
corresponds to an L2-bounded operator, with operator bound depending only on N
and the function φ. On the other hand, we have that each of ∂α

τ m̃ (x, τ ) ∈ S 0
ρ,δ(L). It

then follows from the work of [7] that ∂α
τ m̃ (x, L), and hence M1,N

1,�c (x, L,U), satisfies
(2.9) with the implicit constant may also be depending on N and the function φ.

Finally, in order to argue for M2,N
1,�c (x, τ, κ), let us take one piece of the finite sum in

its definition, say, φ(κ)|κ||α|∂α
τ m̃ (x, τ + |κ|�c) with |α| = N + 1. Taking N to be suf-

ficiently large, one can ensure that not only (x, τ, κ) �→ φ(κ)|κ||α|∂α
τ m̃ (x, τ + t |κ|�c)

satisfies the symbol condition (2.10), but it also satisfies the cancellation condition

CancelCond for all |β| ≤ 4
(
� Q
4 � + 1

)
. With these conditions at hand, the result

follows from Remark 1.11 of [7]. ��
We have the following weighted analogue of Calderón–Vaillancourt type theorem.

Proposition 2.8 Let m ∈ S 0
ρ,δ(G) with δ < ρ. Then, for every b ≥ 0, we have

∫
R
n1+n2

|m(x,G) f (x)|2|B(x, 1)|b dx �b ‖m‖2
S 0

ρ,δ

∫
R
n1+n2

| f (x)|2|B(x, 1)|b dx .

Proof Note that
∫

R
n1+n2

|m(x,G) f (x)|2|B(x, 1)|b dx

�
∫

|x ′|≤1
|m(x,G) f (x)|2 dx +

∫
|x ′|>1

|m(x,G) f (x)|2|x ′|bκn2 dx

:= I + I I .

For term I , since m ∈ S 0
ρ,δ(G), we can invoke Theorem 1.13 to conclude that

I ≤
∫

R
n1+n2

|m(x,G) f (x)|2 dx � ‖m‖2
S 0

ρ,δ

∫
R
n1+n2

| f (x)|2 dx

�b ‖m‖2
S 0

ρ,δ

∫
R
n1+n2

| f (x)|2|B(x, 1)|b dx .

Now, for term I I , if we could prove that

∫
|x ′|>1

|m(x,G) f (x)|2|x ′|4k dx �k ‖m‖2
S 0

ρ,δ

∫
R
n1+n2

| f (x)|2(1 + |x ′|)4k dx (2.12)
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for all k ∈ N, then we will have by interpolation that (2.12) holds true with k replaced
by arbitrary b > 0. In particular, that would imply

∫
|x ′|>1

|m(x,G) f (x)|2|x ′|bκn2 dx �b ‖m‖2
S 0

ρ,δ

∫
R
n1+n2

| f (x)|2|B(x, 1)|b dx .

Now, to establish (2.12), it suffices to prove that

∫
|x ′|>1

|x ′αm(x,G) f (x)|2 dx �k ‖m‖2
S 0

ρ,δ

∫
R
n1+n2

| f (x)|2(1 + |x ′|)4k dx , (2.13)

where |α| = 2k.
With ψ j ’s as in (2.2), let us decompose m(x,G) = ∑

j≥0 m j (x,G), where
m j (x, η) = m(x, η)ψ j (η). Also, as earlier, let us write m̃ j (x, τ ) = m j (x, |τ |1).
Then, the kernel of the operator m j (x,G) is given by

m j (x,G)(x, y) = m̃ j (x, L)(x, y)

=
∫

R
n2

∑
μ

m̃ j (x, (2μ + 1̃)|λ|)�λ
μ(x ′)�λ

μ(y′)e−iλ·(x ′′−y′′) dλ,

and writing x ′ = (x ′ − y′) + y′, it suffices to prove that

sup
N∈N

∫
|x ′|>1

∣∣∣∣∣∣
∫

R
n1+n2

y′(α−γ )(x ′ − y′)γ
N∑
j=0

m̃ j (x, L)(x, y) f (y) dy

∣∣∣∣∣∣
2

dx

�k ‖m‖2
S 0

ρ,δ

∫
R
n1+n2

| f (x)|2(1 + |x ′|)4k dx . (2.14)

So, in the rest of the proof, we shall establish the claimed estimate (2.14). Mak-
ing use of Lemma 4.5 of [7], we can express the integral kernel y′(α−γ )(x ′ −
y′)γ m̃ j (x, L)(x, y) as a finite linear combination of terms of the form

y′(α−γ )

∫
R
n2

∫
[0,1]|γ |

∑
μ

Cμ,�c

⎛
⎝τ

1
2 γ2∂

γ1
τ

N∑
j=0

m̃ j

⎞
⎠ (x, (2μ + 1̃ + �c(s))|λ|)�λ

μ(x ′)�λ
μ+μ̃

(y′)

e−iλ·(x ′′−y′′) ds dλ,

where |γ2| ≤ |γ1| ≤ |γ |, |γ1| − 1
2 |γ2| = |γ |

2 , |μ̃| ≤ |γ |, Cμ,�c is a bounded function of
μ and �c, and |�c(s)| ≤ 4|γ |.

Therefore, it boils down to estimating the norm of the operator having integral
kernel

∫
R
n2

∑
μ

Cμ,�c

⎛
⎝τ

1
2 γ2∂

γ1
τ

N∑
j=0

m̃ j

⎞
⎠ (x, (2μ + 1̃ + �c(s))|λ|)�λ

μ(x ′)�λ
μ+μ̃

(y′)e−iλ·(x ′′−y′′) dλ.
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But, ifwedefine theoperatorT on L2(Rn1+n2)by
(
(T g)λ,�λ

μ

)=Cμ,�c
(
gλ,�λ

μ+μ̃

)
,

then it follows from the Plancherel theorem that the operator T is bounded on
L2(Rn1+n2) with the operator norm depending on γ (and hence on k). Therefore,
we are led to establishing L2-boundedness of operators with kernels

∫
R
n2

∑
μ

⎛
⎝τ

1
2 γ2∂γ1

τ

N∑
j=0

m̃ j

⎞
⎠ (x, (2μ + 1̃ + �c(s))|λ|)�λ

μ(x ′)�λ
μ(y′)e−iλ·(x ′′−y′′) dλ.

But, the same holds true by Lemma 2.7, duly keeping in mind that

∥∥∥∥∥∥τ
1
2 γ2∂γ1

τ

N∑
j=0

m̃ j

∥∥∥∥∥∥
S 0

ρ,δ

�γ ‖m‖S 0
ρ,δ

.

This completes the proof of Proposition 2.8. ��
Remark 2.9 Analogues of Lemma 2.7 and Proposition 2.8 also hold true for the joint
functional calculus, for m ∈ S 0

ρ,δ(L,U), in any of the following situations:

• if δ < ρ, or
• if δ = ρ and m satisfies the cancellation condition CancelCond for all β ∈ N

n2

with |β| ≤ 4
(
� Q
4 � + 1

)
.

3 Kernel Estimates

In this section we shall prove kernel estimates for Grushin pseudo-multiplier operators
which are among the essential tools to proveourmain results in the subsequent sections.
These kernel estimates follow from theweightedPlancherel estimates proved in [3] and
[7].We recall them here for our ready reference. As usual, let Km(x,Gκ) and Km(x,L,U)

denote the kernels of pseudo-multipliers m(x,Gκ) and m(x, L,U) respectively.

3.1 For Pseudo-multipliers Associated with Gκ

We begin with recalling the following estimates from [3].

Lemma 3.1 [3, Corollary 4.4 and 4.5] For 2 ≤ p ≤ ∞, r ≥ 0 and ε > 0, we have

|B(x, R−1)|1/2
∥∥∥|B(·, R−1)|1/2−1/p (1 + Rd(x, ·))rX�

x Km(x,Gκ)(x, ·)
∥∥∥
p

��,p,r,ε sup
x0

∑
�1+�2=�

R|�1|‖X�2
x m(x0, R

2·)‖W∞
r+ε

,

|B(x, R−1)|1/2
∥∥∥|B(·, R−1)|1/2−1/p (1 + Rd(x, ·))rX�

y Km(x,Gκ)(x, ·)
∥∥∥
p
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��,p,r,ε sup
x0

R|�|‖m(x0, R
2·)‖W∞

r+ε
,

for all � ∈ N
n0 and for every bounded Borel function m : R

n1+n2 × R → C whose
support in the last variable is in [0, R2] for any R > 0.

In order to apply Lemma 3.1, we decompose the operator m(x,Gκ) with the help
of ψ j ’s (given by (2.2)) as follows:

m(x,Gκ) =
∑
j≥0

m j (x,Gκ), where m j (x,Gκ) = m(x,Gκ)ψ j (Gκ).

If K j (x, y) denotes the integral kernel of m j (x,Gκ), then we have the following
estimates.

Corollary 3.2 Let m ∈ S σ
1−a,δ(Gκ). Then, for all j, r ≥ 0 and ε > 0, we have

sup
x∈R

n1+n2

|B(x, 2− j/2)|
∫

R
n1+n2

d(x, y)2r|K j (x, y)|2 dy

�r,ε 2 jσ2− jr(1−a)2 jaε, (3.1)

sup
x∈R

n1+n2

|B(x, 2− j/2)|
∫

R
n1+n2

d(x, y)2r|Xx K j (x, y)|2 dy

�r,ε 2 jσ2− jr(1−a)2 jaε2 j (3.2)

sup
x,y∈R

n1+n2

|B(x, 2− j/2)|1/2|B(y, 2− j/2)|1/2d(x, y)r|K j (x, y)|

�r,ε 2 jσ/22− jr(1−a)/22 jaε/2, (3.3)

sup
x,y∈R

n1+n2

|B(x, 2− j/2)|1/2|B(y, 2− j/2)|1/2d(x, y)r|Xx K j (x, y)|

�r,ε 2 jσ/22− jr(1−a)/22 j/22 jaε/2, (3.4)

sup
x,y∈R

n1+n2

|B(x, 2− j/2)|1/2|B(y, 2− j/2)|1/2d(x, y)r|XyK j (x, y)|

�r,ε 2 j/22− jr(1−a)/22 j/22 jaε/2. (3.5)

Proof Let us show how to estimate (3.1) by Lemma 3.1. To see this, let us apply
Lemma 3.1 with p = 2, R = 2 j/2 and � = 0, to get that

∫
R
n1+n2

d(x, y)2r|K j (x, y)|2 dy �r ,ε |B(x, 2− j/2)|−12− jr sup
x0

∥∥∥m j (x0, 2
j ·)
∥∥∥2
W∞

r+ε

�r,ε 2 jσ2− jr(1−a)2 jaε,

where the last inequality follows from the fact that m ∈ S σ
1−a,δ(Gκ). This completes

the proof of estimate (3.1).
Similarly, estimate (3.2) follows from the first estimate of Lemma 3.1 with p = 2,

R = 2 j/2 and |�| = 1, estimate (3.3) follows fromLemma 3.1 with p = ∞, R = 2 j/2
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and |�| = 0, estimate (3.4) follows from thefirst inequality ofLemma3.1with p = ∞,
R = 2 j/2 and |�| = 1, and estimate (3.5) follows from the second inequality ofLemma
3.1 with p = ∞, R = 2 j/2 and |�| = 1. ��

3.2 For Pseudo-multipliers Associated with Joint Functional Calculus

In this subsection we shall prove weighted Plancherel estimates for the joint func-
tional calculus of L and U . In fact, assuming the extra condition CancelCond, we get
conditions of types (3.1) to (3.5) without the extra growth of 2 jaε . More precisely,

Lemma 3.3 [7, Theorem 1.15] Let 2 ≤ p ≤ ∞ and r0 ∈ N. For all R > 0 and
0 ≤ r ≤ 4� r04 � we have
∣∣∣B(x, R−1)

∣∣∣1/2
∥∥∥∥∥
∣∣∣B(·, R−1)

∣∣∣
1
2− 1

p
(1 + Rd(x, ·))r Km(L,U)(x, ·)

∥∥∥∥∥
p

�p,r

∥∥∥m
(
R2·
)∥∥∥

W r∞
.

for any bounded Borel function m : R
n1 × R

n2 → C such that suppm ⊆
[−R2, R2]n1+n2 , and limκ→0 ∂

β
κ m(τ, κ) = 0 for all |β| ≤ r0.

One can use the methodology of the proof of Corollary 4.2 of [3] to prove a result
analogous to Lemma 3.3 for pseudo-multipliers m(x, L,U).

Corollary 3.4 Let 2 ≤ p ≤ ∞ and r0 ∈ N. For all R > 0 and 0 ≤ r ≤ 4� r04 � we have
∣∣∣B(x, R−1)

∣∣∣1/2
∥∥∥∥
∣∣∣B(·, R−1)

∣∣∣
1
2− 1

p
(1 + Rd(x, ·))r Km(x,L,U)(x, ·)

∥∥∥∥
p

�p,r sup
x0

∥∥∥m
(
x0, R

2·
)∥∥∥

W r∞
.

for any bounded Borel function m : R
n1+n2 × R

n1 × R
n2 → C whose support in the

last two variables is in [−R2, R2]n1+n2 and limκ→0 ∂
β
κ m(x, τ, κ) = 0 for all |β| ≤ r0.

One can then modify the proof of Lemma 3.3 and prove the following weighted
Plancherel estimate for the gradient of the integral kernel.

Lemma 3.5 Let 2 ≤ p ≤ ∞ and r0 ∈ N. For all R > 0 and 0 ≤ r ≤ 4� r04 � we have
∣∣∣B(x, R−1)

∣∣∣1/2
∥∥∥∥
∣∣∣B(·, R−1)

∣∣∣
1
2− 1

p
(1 + Rd(x, ·))r Xx Km(L,U)(x, ·)

∥∥∥∥
p

�p,r R
∥∥∥m
(
R2·
)∥∥∥

W r∞
.

for any bounded Borel function m : R
n1 × R

n2 → C such that suppm ⊆
[−R2, R2]n1+n2 , and limκ→0 ∂

β
κ m(τ, κ) = 0 for all |β| ≤ r0.

123



34 Page 22 of 49 S. Bagchi et al.

Corollary 3.6 Let 2 ≤ p ≤ ∞ and r0 ∈ N. For all R > 0 and 0 ≤ r ≤ 4� r04 � we have

∣∣∣B(x, R−1)

∣∣∣1/2
∥∥∥∥
∣∣∣B(·, R−1)

∣∣∣
1
2− 1

p
(1 + Rd(x, ·))r Xx Km(x,L,U)(x, ·)

∥∥∥∥
p

�p,r sup
x0

(
R
∥∥∥m
(
x0, R

2·
)∥∥∥

W r∞
+ ‖Xxm(x0, R

2·)‖W∞
r

)
.

for any bounded Borel function m : R
n1+n2 × R

n1 × R
n2 → C whose support in the

last two variables is in [−R2, R2]n1+n2 and limκ→0 ∂
β
κ m(x, τ, κ) = 0 for all |β| ≤ r0.

Choose ψ j as in (2.2) and for j ≥ 0, we define m j (x, τ, κ) := m(x, τ, κ)ψ j

(|(τ, κ)|1). Then we decompose the pseudo-multiplier operator T = m(x, L,U) =∑∞
j=0 Tj where Tj = m(x, L,U)ψ j (|(τ, κ)|1) = m j (x, L,U). For convenience, let

us denote the kernel of the operator Tj by K j (x, y) itself.
Using Corollaries 3.4 and 3.6, one can essentially repeat the proof of Corollary 3.2

to obtain the following analogous result for integral kernels K j .

Corollary 3.7 Let m ∈ S
−Qa/2
1−a,δ (L,U) satisfy condition CancelCond for all β ∈ N

n2

with |β| ≤ r0. Then for all j ≥ 0 and 0 ≤ r ≤ r0, we have

sup
x∈R

n1+n2

|B(x, 2− j/2)|
∫

R
n1+n2

d(x, y)2r|K j (x, y)|2 dy �r0 2
− j Qa/22− jr(1−a),

(3.6)

sup
x∈R

n1+n2

|B(x, 2− j/2)|
∫

R
n1+n2

d(x, y)2r|Xx K j (x, y)|2 dy �r0 2
− j Qa/22− jr(1−a)

(3.7)

4 Unweighted Boundedness forS −Qa/q
1−a,ı (Gκ)with 1 ≤ q < 2

This section is dedicated to prove Theorem 1.9, using which we shall obtain
unweighted boundedness for pseudo-multipliersm(x,Gκ)with symbols coming from
S

−Qa/q
1−a,δ (Gκ) with 1 < q < 2 as an application of Fefferman–Stein interpolation

theorem between symbol classes S −Qa
1−a,δ(Gκ) and S

−Qa/2
1−a,δ (Gκ).

4.1 The Case ofS −Qa
1−a,ı(Gκ)

Recall that C0 is the constant appearing in the triangle inequality (2.1) of the quasi-
distance and C1,κ is the constant appearing in Lemma 2.1. Let us start with the
following lemma which will be useful in our purpose.
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Lemma 4.1 Let m ∈ S −Qa
1−a,δ(Gκ). Fix any ball B = B(z, r) with r < 1. Then for any

arbitrarily small ε > 0 there exists a constant C := Cε,n1,n2,κ,m > 0 such that

sup
y∈B

∫
R
n1+n2\B′

|K j (x, y) − K j (x, z)| dx ≤ Cr−(1−a0)/22− j(1−a0)/4, if j > j0,

(4.1)

sup
y∈B

∫
R
n1+n2\B′

|K j (x, y) − K j (x, z)| dx ≤ Cr (1+a0)/22 j(1+a0)/4, if j ≤ j0,

(4.2)

where a0 = a(1 + 2ε), B ′ = B(z, 2C0C1,κr1−a0), and j0 is the integer such that
2 j0 ≤ r−2 < 2 j0+1. As a consequence, we have

∑
j

sup
y∈B

∫
R
n1+n2\B′

|K j (x, y) − K j (x, z)| dx ≤ C .

Proof For each l ∈ N, let us write

Al =
{
x : 2C0C1,κ2

lr1−a0 ≤ d(x, z) ≤ 2C0C1,κ2
l+1r1−a0

}
.

We shall first prove estimate (4.1) and then estimate (4.2).

Proof of estimate (4.1): Fix y ∈ B and let j be an integer such that j > j0. Now,

∫
R
n1+n2\B′

|K j (x, y) − K j (x, z)| dx ≤
∫

R
n1+n2\B′

|K j (x, y)| dx

+
∫

R
n1+n2\B′

|K j (x, z)| dx,

and since the estimation of both of the above terms is similar, we shall only pursue
the first one.

Let us decompose the integral
∫

R
n1+n2\B′ |K j (x, y)| dx as∑∞

l=0

∫
Al

|K j (x, y)| dx .
Now, there are two possibilities to consider, for two different ranges of l.

First, if l is such that 2C0C1,κ2l+1r1−a0 ≥ 1
2 |z′|, then using (3.3) we have

∫
Al

|K j (x, y)| dx =
∫
Al

d(x, y)−(Q+ 1
2 )d(x, y)Q+ 1

2 |K j (x, y)| dx

�
∫
Al

d(x, z)−(Q+ 1
2 ) 2− j Qa/22− j( Q

2 + 1
4 )(1−a)2 jaε/2

|B(x, 2− j/2)|1/2|B(y, 2− j/2)|1/2 dx

� 2 j Q/22− j Qa/22− j( Q
2 + 1

4 )(1−a)2 jaε/2 |B(z, 2C0C1,κ2l+1r1−a0)|
(2lr1−a0)Q+ 1

2

� 1

2l/2
r−(1−a0)/22− j(1−a0)/4,
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where in the second inequality we have used the fact that d(x, y) ∼ d(x, z)
for all x ∈ Al , y ∈ B(z, r) and in the fourth inequality we used the fact
|B(z, 2C0C1,κ2l+1r1−a0)| � (2C0C1,κ2l+1r1−a0)Q because 2C0C1,κ2l+1r1−a0 ≥
1
2 |z′|.

On the other hand, when l is such that 2C0C1,κ2l+1r1−a0 < 1
2 |z′|, then d(x, z) <

1
2 |z′|, implying that |z′| ≤ 2|x ′| for all x ∈ Al . Similarly, we can show that in this case
we have |z′| ≤ 2|y′|. Now, using condition (3.3) we obtain

∫
Al

|K j (x, y)| dx

=
∫
Al

d(x, y)−(n1+n2+ 1
2 )d(x, y)n1+n2+ 1

2 |K j (x, y)| dx

�
∫
Al

1

(2l r1−a0 )n1+n2+1/2
2− j Qa/22− j(

n1+n2
2 + 1

4 )(1−a)2 jaε/2

|B(x, 2− j/2)|1/2|B(y, 2− j/2)|1/2 dx

� 2− j(n1+n2)a/22− j(
n1+n2

2 + 1
4 )(1−a)2 jaε/2 1

(2l r1−a0 )n1+n2+1/2

|B(z, 2C0C1,κ2l+1r1−a0 )|
|B(z, 2− j/2)|

� 2− j(n1+n2)a/22− j(
n1+n2

2 + 1
4 )(1−a)2 jaε/2 1

(2l r1−a0 )n1+n2+1/2
(2l+1r1−a0 )n1+n2 |z′|κn2

2− j(n1+n2)/2|z′|κn2

� 1

2l/2
r−(1−a0)/22− j(1−a0)/4,

where in the third inequality we have used the condition 2C0C1,κ2l+1r1−a0 < 1
2 |z′|

implying that |B(z, 2C0C1,κ2l+1r1−a0)| � (2l+1r1−a0)n1+n2 |z′|κn2 .
Considering both cases in l, and summing over l ≥ 0, one gets the claimed estimate

(4.1).

Proof of estimate(4.2) : Fix y ∈ B and let j be such that j ≤ j0 and fix y ∈ B. This
time, we make use of the mean-value estimate from Lemma 2.1 to get

|K j (x, y) − K j (x, z)| � d(z, y)
∫ 1

0

∣∣XyK j (x, γ0(t))
∣∣ dt

≤ r
∫ 1

0

∣∣XyK j (x, γ0(t))
∣∣ dt,

where γ0(t) ∈ B(z,C1,κ r), and therefore it suffices to estimate, the integral

r
∫

R
n1+n2\B′

∣∣XyK j (x, γ0(t))
∣∣ dx,

uniformly in t ∈ [0, 1].
In order to do this, let us fix γ0(t) ∈ B(z,C1,κr), and as earlier, analyse in two

different ranges of l.
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First, if l is such that 2C0C1,κ2l+1r1−a0 ≥ 1
2 |z′|, then using estimate (3.5), we get

r
∫
Al

∣∣XyK j (x, γ0(t))
∣∣ dx = r

∫
Al

d(x, γ0(t))
−(Q+ 1

2 )d(x, γ0(t))
Q+ 1

2 |XyK j (x, γ0(t))| dx

� r
∫
Al

d(x, z)−(Q+ 1
2 ) 2− j Qa/22− j( Q

2 + 1
4 )(1−a)2 jaε/22 j/2

|B(x, 2− j/2)|1/2|B(γ0(t), 2− j/2)|1/2 dx

� r2 j Q/22− j Qa/22− j( Q
2 + 1

4 )(1−a)2 jaε/22 j/2 B(z, 2C0C1,κ2l+1r1−a0 )

(2l r1−a0 )Q+ 1
2

� 1

2l/2
r (1+a0)/22 j(1+a0)/4,

where in the first inequality we have used the fact d(x, γ0(t)) ∼ d(x, z) whenever
x ∈ Al and γ0(t) ∈ B(z,C1,κ).

Finally, if l is such that 2C0C1,κ2l+1r1−a0 < 1
2 |z′| then we have |z′| < 2|x ′| and

|z′| < 2|γ0(t)′| for all x ∈ Al . Then, using estimate (3.5), we obtain

r
∫
Al

∣∣XyK j (x, γ0(t))
∣∣ dx

= r
∫
Al

d(x, γ0(t))
−(n1+n2+ 1

2 )d(x, γ0(t))
n1+n2+ 1

2 |XyK j (x, γ0(t))| dx

� r
∫
Al

1

(2kr1−a0 )n1+n2+1/2

2− j Qa/22− j(
n1+n2

2 + 1
4 )(1−a)2 jaε/22 j/2

|B(x, 2− j/2)|1/2|B(γ0(t), 2− j/2)|1/2 dx

� r2− j(n1+n2)a/22− j(
n1+n2

2 + 1
4 )(1−a)2 jaε/22 j/2 1

(2l r1−a0 )n1+n2+1/2

|B(z, 2C0C1,κ2l+1r1−a0 )|
|B(z, 2− j/2)|

� 2− j(n1+n2)a/22− j(
n1+n2

2 + 1
4 )(1−a)2 jaε/22 j/2 1

(2l r1−a0 )n1+n2+1/2

(2l+1r1−a0 )n1+n2 |z′|κn2

2− j(n1+n2)/2|z′|κn2

� 1

2l/2
r (1+a0)/22 j(1+a0)/4.

As earlier, the claimed estimate (4.2) follows upon summing over l, duly using
the estimates in the two different regions in l as above. This completes the proof of
Lemma 4.1. ��

We are now in a position to prove Theorem 1.9.

Proof (Proof of Theorem 1.9) We shall show that under the assumptions of Theorem
1.9, the operator T = m(x,Gκ) extends as a bounded linear operator, say T̃ , from
H1
(
R
n1+n2

)
to L1

(
R
n1+n2

)
. But then in view of Proposition 4.2 of [31], we will also

have that T̃ coincides with T on H1
Gκ

(
R
n1+n2

)∩ L2
(
R
n1+n2

)
. Therefore, we can use

the notation T itself in place of T̃ , and the boundedness of T on L p
(
R
n1+n2

)
, for

1 < p < 2, would follow from Lemma 2.5.
Thanks to Theorem 4.1 of [31], in order to show that m(x,Gκ) is (H1, L1), it

suffices to show that there exists some C > 0 such that ‖m(·,Gκ)h‖L1 ≤ C for all
(1, 2)-atoms h.

So, let us take an arbitrary (1, 2)-atom h such that supp h ⊆ B = B(z, r),
∫
B h = 0,

and ‖a‖L2 ≤ |B|−1/2. We shall analyse the following two cases.
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Case 1(r ≥ 1) : Let B̃ denote the ball B(z, 2C0C1,κr). Then,

∫
R
n1+n2

|m(x,Gκ)h(x)| dx =
∫
B̃

|m(x,Gκ)h(x)| dx

+
∫

R
n1+n2\B̃

|m(x,Gκ)h(x)| dx =: J1 + J2,

and

J1 ≤ |B̃| 12
(∫

B̃
|m(x,Gκ)h(x)|2 dx

) 1
2

�m |B̃| 12
(∫

B
|h(x)|2 dx

) 1
2

≤ |B̃| 12 |B|− 1
2 ≤ C .

Recall thatm(x,Gκ) =∑ j m j (x,Gκ). Using
∫
B h = 0, and Hölder’s inequality,

we get

J2 ≤
∑
j≥0

∫
R
n1+n2\B̃

∫
B

|K j (x, y) − K j (x, z)||h(y)| dy dx

≤
∑
j≥0

(
sup
y∈B

∫
R
n1+n2\B̃

|K j (x, y) − K j (x, z)| dx
)∫

B
|h(y)| dy

≤
∑
j≥0

(
sup
y∈B

∫
R
n1+n2\B̃

|K j (x, y) − K j (x, z)| dx
)

|B| 12
(∫

B
|h(y)|2 dy

) 1
2

�
∑
j≥0

(
sup
y∈B

∫
R
n1+n2\B̃

|K j (x, y) − K j (x, z)| dx
)

.

Now the proof will follow if we can establish

sup
y∈B

∫
R
n1+n2\B̃

|K j (x, y) − K j (x, z)| dx ≤ 2− j(1−a0)/4, (4.3)

where a0 = a(1 + 2ε) with ε > 0 being very small such that a0 < 1.
The rest of the proof is devoted to prove the claimed estimate (4.3). For the same,

let us fix y ∈ B, then

∫
R
n1+n2\B̃

|K j (x, y) − K j (x, z)| dx ≤
∫

R
n1+n2\B̃

|K j (x, y)|dx +
∫

R
n1+n2\B̃

|K j (x, z)|dx .

The estimation of both of the above terms is similar and therefore it is sufficient to
estimate the first one. For each l ∈ N, let us write

Al =
{
x : 2C0C1,κ2

lr ≤ d(x, z) ≤ 2C0C1,κ2
l+1r

}
,
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and decompose the integral
∫

R
n1+n2\B̃ |K j (x, y)| dx as

∑∞
l=0

∫
Al

|K j (x, y)| dx .
As earlier, there are two possibilities to consider. If l is such that 2C0C1,κ2l+1r >

|z′|
2 , then using (3.3), with ε very small so that a0 < 1, we get

∫
Al

|K j (x, y)| dx =
∫
Al

d(x, y)−(Q+ 1
2 )d(x, y)Q+ 1

2 |K j (x, y)| dx

�
∫
Al

1

(2lr)Q+ 1
2

2− j Qa/22− j( Q
2 + 1

4 )(1−a)2 jaε/2

|B(x, 2− j/2)|1/2|B(y, 2− j/2)|1/2 dx

� 2 j Q/22− j Qa/22− j( Q
2 + 1

4 )(1−a)2 jaε/2 |B(z, 2C0C1,κ2l+1r)|
(2lr)Q+ 1

2

� 1

2l/2
2− j(1−a0)/4,

where we have used the fact that r ≥ 1.
Next, for l such that 2C0C1,κ2l+1r ≤ |z′|

2 , we have |z′| < 2|x ′| for all x ∈ Al .
Therefore, using again condition (3.3), with ε very small so that a0 < 1, we obtain

∫
Al

|K j (x, y)| dx =
∫
Al

d(x, y)−(n1+n2+ 1
2 )d(x, y)n1+n2+ 1

2 |K j (x, y)| dx

�
∫
Al

1

(2l r)n1+n2+1/2

2− j(n1+n2)a/22− j(
n1+n2

2 + 1
4 )(1−a)2 jaε/2

|B(x, 2− j/2)|1/2|B(y, 2− j/2)|1/2 dx

� 2− j(n1+n2)a/22− j(
n1+n2

2 + 1
4 )(1−a)2 jaε/2 1

(2l r)n1+n2+1/2

|B(z, 2C0C1,κ2l+1r)|
|B(z, 2− j/2)|

� 2− j(n1+n2)a/22− j(
n1+n2

2 + 1
4 )(1−a)2 jaε/2 1

(2l r)n1+n2+1/2

(2l+1r)n1+n2 |z′|κn2

2− j(n1+n2)/2|z′|κn2

� 1

2l/2
2− j(1−a0)/4,

where again we have used the fact that r ≥ 1.
Using the above two estimates in different regimes of l, we get the claimed estimate

(4.3).

Case 2(r < 1) : Let us write B ′ = B(z, 2C0C1,κr1−a0) with a0 = a(1+ 2ε) be such
that a0 < min{1, 2a}. We decompose

∫
R
n1+n2

|m(x,Gκ)h(x)| dx =
∫
B′

|m(x,Gκ)h(x)| dx

+
∫

R
n1+n2\B′

|m(x,Gκ)h(x)| dx =: I + I I .

Let us first estimate I . For b ∈ R, denote by Jb the potential operator (I + G)b/2.
Since a0 ≤ 2a we havem(x, η)(1+η)Qa0/4 ∈ S 0

ρ,δ(Gκ) and hence assumption (1.7)

implies that m(x,Gκ) ◦ JQa0/2 ∈ B
(
L2(Rn1+n2 , ωb)

)
, where ωb = |B(x, 1)|b for

0 ≤ b < 1. Therefore,
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I =
∫
B′

|m(x,Gκ)h(x)| dx

≤ |B ′|1/2
(∫

B′
|m(x,Gκ)h(x)|2 dx

)1/2

= |B ′|1/2|B(z, 1)|−a0/2
(∫

B′
|B(x, 1)|a0 |m(x,Gκ)JQa0/2 J−Qa0/2h(x)|2 dx

)1/2

� |B ′|1/2|B(z, 1)|−a0/2
(∫

B′
|B(x, 1)|a0 |J−Qa0/2h(x)|2 dx

)1/2

,

and then using the Hardy–Littlewood–Sobolev inequality (2.7) with p = 2
1+a0

, q = 2

and b = Qa0
2 , the above estimate implies

I � |B ′|1/2|B(z, 1)|−a0/2‖h‖
L

2
1+a0

� |B ′|1/2|B(z, 1)|−a0/2|B|−(1−a0)/2.

Now, we estimate the quantity |B ′|1/2|B(z, 1)|−a0/2|B|−(1−a0)/2 as follows. Note
that if r1−a0 > |z′|, then

|B ′|1/2|B(z, 1)|−a0/2|B|−(1−a0)/2 � |B ′|1/2|B|−(1−a0)/2

�
(
r1−a0

)Q/2 (
r Q
)−(1−a0)/2 = 1,

whereas, if r1−a0 ≤ |z′|, then

|B ′|1/2|B(z, 1)|−a0/2|B|−(1−a0)/2

�
{(

r1−a0
)n1+n2 |z′|κn2

}1/2
|z′|−a0κn2/2

{
rn1+n2 |z′|κn2

}−(1−a0)/2

= 1.

Combining the above estimates, we get that I ≤ C .

To estimate I I , we also make use of the cancellation of h to have

I I ≤
∑
j

∫
B

∫
R
n1+n2\B′

|K j (x, y) − K j (x, z)||h(y)| dy dx

≤
∑
j

(
sup
y∈B

∫
R
n1+n2\B′

|K j (x, y) − K j (x, z)| dx
)∫

B
|h(y)| dy

�
∑
j

sup
y∈B

∫
R
n1+n2\B′

|K j (x, y) − K j (x, z)| dx ≤ C,

where the last inequality is true in view of Lemma 4.1.
This completes the proof of Theorem 1.9. ��
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4.2 The Case ofS −Qa/q
1−a,ı (Gκ)with 1 < q < 2

Theorem 4.2 Let m ∈ S
−Qa/q
1−a,δ (Gκ) with σ = −Qa/q and 1 < q < 2. Then, the

operator m(x,Gκ) is bounded on Lq
(
R
n1+n2

)
.

Proof We shall prove the theorem using Fefferman–Stein complex interpolation

method. For T = m(x,Gκ), we shall also make use of the fact that T ◦(I + Gκ)
Qa
2q ∈

B(L2(Rn1+n2)).
Let us write S = {z ∈ C : 0 < Rez < 1}, and for each z ∈ S̄, consider the symbol

function

mz(x, η) = ez
2
m(x, η)(1 + η)

Qa
2q − Qa

4 (1+z)
,

and denote by Tz the associated operator Tz = mz(x,Gκ).
Observe that

‖Tz‖L2→L2 = ‖ez2T ◦ (I + Gκ)
Qa
2q − Qa

4 (1+z) ‖L2→L2

=
∣∣∣ez2
∣∣∣ ‖T ◦ (I + Gκ)

Qa
2q ◦ (I + Gκ)−

Qa
4 (1+z) ‖L2→L2

≤
∣∣∣ez2
∣∣∣ ‖T ◦ (I + Gκ)

Qa
2q ‖L2→L2‖ (I + Gκ)−

Qa
4 (1+z) ‖L2→L2

�T

∣∣∣ez2
∣∣∣ ‖ (I + Gκ)−

Qa
4 (1+z) ‖L2→L2 .

But, Plancherel’s theorem implies that

‖ (I + Gκ)−
Qa
4 (1+z) ‖L2→L2 = sup

η>0

∣∣∣(1 + η)−
Qa
4 (1+z)

∣∣∣ = sup
η>0

∣∣∣(1 + η)−
Qa
4 (1+Re(z))

∣∣∣ ,

and therefore we get that supz∈S̄ ‖Tz‖L2→L2 < ∞.

Next, define the following set which is dense in L2(Rn1+n2):

V =
⎧⎨
⎩ f ∈ L2(Rn1+n2) : ∃ l ∈ N such that f λ(x ′)

=
∑
k≤l

C(λ, νκ,k)h
λ
κ,k(x

′), where C(λ, k) iscompactly supported in λ-variable

⎫⎬
⎭ .

It can be easily verified that for each f , g ∈ V , the map z �→ ∫
R
n1+n2 (Tz f ) g, is

holomorphic in the open strip S and continuous in S̄, and we leave the details.
Let us claim that

sup
{z : Re(z)=1}

‖Tz‖H1→L1 < ∞. (4.4)
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If the claimed estimate (4.4) holds true, then it shall follow from the Fefferman–
Stein interpolation theorem that for every for t ∈ (0, 1), the operator Tt is bounded on
L pt (Rn1+n2) where pt = 2

1+t . In particular, choosing t = 2
q − 1, one would get that

T = T 2
q −1 is bounded on Lq(Rn1+n2). So, let us prove estimate (4.4). Note that for

any z = 1 + iu2, we have

∣∣∣X�
x ∂ lηmz(x, η)

∣∣∣ � e−u22 P(|z|) (1 + η)−
Qa
2 − l(2−a)

2 +δ
|�|
2 �l (1 + η)−

Qa
2 − l(2−a)

2 +δ
|�|
2 ,

where P is a polynomial in one complex variable, of degree at most l, and in the last
inequality we have used the simple fact that supu2∈R e−u22 P(|z|) = Cl < ∞.

We have thus shown that m1+iu2(x, η) ∈ S −Qa
1−a,δ(Gκ) with seminorm of symbols

m1+iu2 being uniform in u2. One can then invoke Theorem 1.9 to conclude the bound
as claimed in (4.4). This completes the proof of the Theorem 4.2. ��

5 Sparse Domination Results forS −Qa/q
1−a,ı (Gκ)with 1 ≤ q < 2

In this section we shall prove our sparse domination result that is Theorem 1.10.
The proof of Theorem 1.10 requires the sparse domination principle Theorem 1.1
of [25] (we also refer Theorem 2.7 of [3], where we have stated this result particu-
larly for the homogeneous space associated to the Grushin metric). The mentioned
principle depends on two intermediate conditions. First is an appropriate unweighted
boundedness for the pseudo-multiplier operators associated with the symbol classes
S

−Qa/q
1−a,δ (Gκ)with1 ≤ q < 2. Forq = 1, the unweightedboundednesswas addressed

in Theorem 1.9, and in the case of 1 < q < 2 the same was addressed in Theorem
4.2. Secondly, we need end-point bounds for the grand maximal truncated operator,
and this will be established in Lemma 5.2.

In the following lemma we establish some kernel estimates which are essential for
the proof of the sparse domination. In the Euclidean setting similar estimates were
obtained in [29]. In [29] the authors have heavily relied on the Hausdorff–Young
theorem. However, in our context of the Grushin operator, in the absence of an exact
Hausdorff–Young theorem, we perform very delicate modifications of ideas of [29].

Lemma 5.1 Let m ∈ S
−Qa/q
1−a,δ (Gκ) with σ = −Qa/q and 1 ≤ q < 2. Let B =

B(z, r) be any ball with 0 < r ≤ 1. Then for 1 ≤ p ≤ 2, l ≥ 1, s ≥ 3C2
0C1,κ ,

0 ≤ θ ≤ 1 and for sufficiently small ε > 0, the following estimates hold:

sup
y∈B

∞∑
j=0

(∫
2l srθ≤d(v,z)≤2l+1srθ

|K j (y, v) − K j (z, v)|p′
dv

)1/p′

�L,θ,p,q (2l)−Lr L(1−a−θ)+ Qa
q − Q

p −aε
, (5.1)
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whenever − Qa
q + Q

p < L (1 − a) < − Qa
q + Q

p + (1 + aε), and

sup
y∈B

∞∑
j=0

(∫
2l srθ≤d(v,z)≤2l+1srθ

|K j (y, v) − K j (z, v)|p′
dv

)1/p′

�L,θ,p,q (2l)−Lr L(1−a−θ)+ (n1+n2)a
q − n1+n2

p −aε |z′|−κn2/p, (5.2)

whenever − (n1+n2)a
q + n1+n2

p < L (1 − a) < − (n1+n2)a
q + n1+n2

p + (1 + aε) and
1
2 |z′| ≥ 2l+1sr θ .

Proof Fix s ≥ 3C2
0C1,κ . We shall first prove estimate (5.1) and then estimate (5.2).

Proof of estimate (5.1) : Fix y ∈ B, and let j0 be the integer such that 2 j0r2 � 1.
Write Al := {v ∈ R

n1+n2 : 2l sr θ ≤ d(v, z) ≤ 2l+1sr θ }, and denote

I1 :=
∑
j≤ j0

(∫
Al

|K j (y, v) − K j (z, v)|p′
dv

)1/p′

,

I2 :=
∑
j> j0

(∫
Al

|K j (y, v)|p′
dv

) 1
p′

, and I3 :=
∑
j> j0

(∫
Al

|K j (z, v)|p′
dv

) 1
p′

.

Estimate of I1 : Using mean-value estimate from Lemma 2.1 we obtain

|K j (y, v) − K j (z, v)| � r
∫ 1

0

∣∣(Xx K j
)
(γ0(t), v)

∣∣ dt,

with γ0(t) ∈ B(z,C1,κ r). Therefore, using (3.2) and (3.4) and subsequently the
estimate |B(y, 2− j/2)| � 2− j Q/2 for all y ∈ R

n1+n2 , we obtain

I1 � r
∑
j≤ j0

(∫
Al

(∫ 1

0
|Xx K j (γ0(t), v)| dt

)p′

dv

) 1
p′

� r
∑
j≤ j0

∫ 1

0

(∫
Al

|Xx K j (γ0(t), v)|p′
dv

) 1
p′

dt

�L r
∑
j≤ j0

∫ 1

0

(∫
Al

{
(2l sr θ )−Ld(γ0(t), v)L |Xx K j (γ0(t), v)|

}p′
dv

) 1
p′

dt

�L r(2l sr θ )−L
∑
j≤ j0

∫ 1

0

(
sup
v∈Al

{
d(γ0(t), v)L |Xx K j (γ0(t), v)|

}p′−2

∫
Al

{
d(γ0(t), v)2L |Xx K j (γ0(t), v)|2

}
dv

) 1
p′

dt
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�L,ε r(2
l sr θ )−L

∑
j≤ j0

({
2− j Qa/2q2− j L(1−a)/22 j Q/22 jaε/2

} p′−2
p′

{
2− j Qa/q2− j L(1−a)2 j Q/22 jaε

}) 1
p′ 2

j
2 (

p′−2
p′ + 2

p′ )

�L,ε r(2
l sr θ )−L

∑
j≤ j0

2− j Qa
2q 2− j L(1−a)

2 2
j Q
2 (

p′−2
p′ + 1

p′ )2
j
2 2

jaε
2

�L,ε r(2
l sr θ )−L

∑
j≤ j0

2− j Qa
2q 2− j L(1−a)

2 2
j Q
2p 2

j
2 2

jaε
2 .

Now, if L(1−a)
2 −

(−Qa
2q + Q

2p

)
− 1+aε

2 < 0, which is same as L <
−Qa
q + Q

p
1−a + 1+aε

1−a ,

then the above sum is convergent and

I1 �L,ε r(2
l sr θ )−L2

j0
{(−Qa

2q + Q
2p

)
− L(1−a)

2 + 1+aε
2

}
�L,s,θ (2l)−Lr L(1−a−θ)+ Qa

q − Q
p −aε

.

Estimate of I2 : Note that

I2 =
∑
j> j0

(∫
Al

|K j (y, v)|p′
dv

) 1
p′

�L

∑
j> j0

(∫
Al

{
(2l sr θ )−Ld(y, v)L |K j (y, v)|

}p′
dv

) 1
p′

�L (2l sr θ )−L
∑
j> j0

(∫
Al

{
d(y, v)L |K j (y, v)|

}p′−2 {
d(y, v)2L |K j (y, v)|2

}
dv

) 1
p′

�L (2l sr θ )−L
∑
j> j0

(
sup

v∈R
n1+n2

{
d(y, v)L |K j (y, v)|

}p′−2
∫
Al

{
d(y, v)2L |K j (y, v)|2

}
dv

) 1
p′

,

and thenmaking use of estimates (3.1) and (3.3) togetherwith |B(y, 2− j/2)| � 2− j Q/2

and |B(v, 2− j/2)| � 2− j Q/2, we get

I2 �L,ε

∑
j≥ j0

(2l sr θ )−L

({
2− j Qa/2q2− j L(1−a)/22 j Q/22 jaε/2

}p′−2 {
2− j Qa/q2− j L(1−a)2 j Q/22 jaε

}) 1
p′

�L,ε (2l sr θ )−L
∑
j≥ j0

2− j Qa/2q2− j L(1−a)/22
j Q
2

(
p′−2
p′ + 1

p′
)
2 jaε/2

�L,ε (2l sr θ )−L
∑
j≥ j0

2− j Qa/2q2− j L(1−a)/22 j Q/2p2 jaε/2.
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Clearly, the above some converges when L >
−Qa
q + Q

p
1−a and ε > 0 is sufficiently

small, and in that case we get

I2 �L,ε (2l sr θ )−L2− j0Qa/2q2− j0L(1−a)/22
j0Q
2p 2 j0aε/2

�L,ε (2l sr θ )−Lr
Qa
q +L(1−a)− Q

p −aε �L,θ,ε (2l)−Lr (1−a−θ)L+ Qa
q − Q

p −aε
.

Performing similar calculations, one can show that

I3 �L,θ,ε (2l)−Lr (1−a−θ)L+ Qa
q − Q

p −aε
,

provided that L >
−Qa
q + Q

p
1−a .

The above estimates of I1, I2, and I3 together imply estimate (5.1).

Proof of estimate (5.2) : Let us decompose the left hand side of (5.2) into three parts
I1, I2, and I3 exactly as we did in the proof of (5.1). We shall only show the changes
in the estimate of I1. Similar arguments can be carried out for I2 and I3. We here
use the fact that if d(z, v) ∼ 2l sr θ and 1

2 |z′| ≥ 2l+1sr θ then |z′| ≤ 2|v′|. Similarly,

|z′| ≤ 2|γ0(t)′ |. Then,

I1 �L r(2l srθ )−L
∑
j≤ j0

∫ 1

0
sup

v∈Al

{
d(γ0(t), v)L |Xx K j (γ0(t), v)|

} p′−2
p′

(∫
Al

{
d(γ0(t), v)2L |Xx K j (γ0(t), v)|2

}
dv

) 1
p′

dt

�L,ε r(2l srθ )−L
∑
j≤ j0

∫ 1

0
sup

v∈Al

{
2− j Qa/2q2− j L(1−a)/22 jaε/22 j/2

|B(γ0(t), 2− j/2)|1/2|B(v, 2− j/2)|1/2
} p′−2

p′

(
2− j Qa/q2− j L(1−a)|B(γ0(t), 2

− j/2)|−12 jaε2 j
) 1

p′ dt

�L,ε r(2l srθ )−L
∑
j≤ j0

∫ 1

0
sup

v∈Al

{
2− j Qa/2q2− j L(1−a)/22 j(n1+n2)/2|γ0(t)′ |− κn2

2 |v′|− κn2
2 2

j(1+aε)
2

} p′−2
p′

(
2− j Qa/q2− j L(1−a)2 j(n1+n2)/2|γ0(t)′ |−κn22 jaε2 j

) 1
p′ dt

�L,ε r(2l srθ )−L
∑
j≤ j0

{
2− j Qa/2q2− j L(1−a)/22 j(n1+n2)/22 jaε/2|z′|−κn2

} p′−2
p′

{
2− j Qa/q2− j L(1−a)2 j(n1+n2)/22 jaε |z′|−κn2

} 1
p′ 2

j
2 (

p′−2
p′ + 2

p′ )

�L,ε r(2l srθ )−L
∑
j≤ j0

2− j Qa/2q2− j L(1−a)
2 2

j(n1+n2)

2 (
p′−2
p′ + 1

p′ )2
j
2 2

jaε
2 |z′|−κn2(

p′−2
p′ + 1

p′ )
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�L,ε r(2l srθ )−L
∑
j≤ j0

2− j(n1+n2)a/2q2− j L(1−a)
2 2

j(n1+n2)

2p 2
j
2 2

jaε
2 |z′|−

κn2
p .

Now, if we take L such that L (1 − a) < − (n1+n2)a
q + n1+n2

p + 1 + aε, then the
above sum is convergent, and

I1 � r(2l sr θ )−L2
j0
{(

− (n1+n2)a
2q + n1+n2

2p

)
− L(1−a)

2 + 1+aε
2

}
|z′|− κn2

p

�L,ε,θ (2l)−Lr
(1−a−θ)L+(n1+n2)a

q − n1+n2
p −aε |z′|− κn2

p .

Similarly, in estimating terms I2 and I3, wewould require the condition L (1−a) >

− (n1+n2)a
q + n1+n2

p , and with that one can show that

I2, I3 �L,ε,θ (2l)−Lr
(1−a−θ)L+(n1+n2)a

q − n1+n2
p −aε |z′|− κn2

p ,

completing the proof of (5.2).
This completes the proof of Lemma 5.1. ��

5.1 Estimates for the GrandMaximal Truncated Operator

Now we focus on the following pointwise estimates for the grand maximal truncated
operator which is among the key ingredients for the sparse domination.

Lemma 5.2 Let m ∈ S
−Qa/q
1−a,δ (Gκ) with 1 ≤ q < 2 and take s ≥ 3C2

0C1,κ . Then, for
the operator T = m(x,Gκ), and for any q < p < ∞, we have

M

T ,s f (x) �T ,s,p Mp f (x),

for every f ∈ C∞
c (Rn1+n2).

Proof Let us fix s ≥ 3C2
0C1,κ , x ∈ R

n1+n2 and a ball B = B(z, r) contain-
ing x . Let y, z ∈ B. Denote r0 = sr . For each l ∈ N, we consider Al ={
v : 2lr0 ≤ d(z, v) ≤ 2l+1r0

}
.

Now, we have

|T ( f χR
n1+n2\B(z,r0))(y) − T ( f χR

n1+n2\B(z,r0))(z)|

≤
∞∑
j=0

∫
R
n1+n2\B(z,r0)

|K j (y, v) − K j (z, v)|| f (v)| dv

�
∞∑
j=0

∞∑
l=0

∫
Al

|K j (y, v) − K j (z, v)|| f (v)| dv (5.3)

We need to consider the following two cases for r0.
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Case 1 (r0 ≥ 1) : First of all, we have
∫
Al

|K j (y, v) − K j (z, v)|| f (v)| dv ≤
∫
Al

|K j (y, v)|| f (v)| dv

+
∫
Al

|K j (z, v)|| f (v)| dv.

Estimation of the above two terms is similar, so we only pursue the first one.
As also seen in the previous section, we perform separate analysis in two regions

for l as follows.
First, let l be such that 2l+1r0 ≥ 1

2 |z′|, then using (3.3) we proceed as follows.

Choose ε1 = aQ
1−a (1 − 1

q ). Then,∫
Al

|K j (y, v)|| f (v)| dv

=
∫
Al

d(y, v)−(Q+ 1
2+ε1)d(y, v)Q+ 1

2+ε1 |K j (y, v)|| f (v)| dv

�ε

∫
Al

(2lr0)
−(Q+ 1

2+ε1)2− j Qa/2q2− j( Q
2 + 1

4+ ε1
2 )(1−a)2 jaε/2

1

|B(x, 2− j/2)|1/2
| f (v)|

|B(y, 2− j/2)|1/2 dv

�ε 2− j(1−a)/4(2lr0)
−(Q+ 1

2+ε1)2ajε/2|B(z, 2lr0)|M f (x)

�s,ε 2− j(1−a)/42 jaε/2 (2lr0)Q

(2lr0)(Q+ 1
2+ε1)

M f (x)

�s,ε 2− j(1−a)/8 1

2l/2
M f (x),

where in the second last inequality we have chosen ε > 0 such that ε < 1−a
4a and the

last inequality follows from the fact that r0 ≥ 1.
Next, if l is such that 2l+1r0 < 1

2 |z′|, then we proceed as follows. Using (3.3) with
r = n1 + n2 + 1

2 + ε2 where ε2 = a(n1+n2)
1−a (1 − 1

q ), we obtain
∫
Al

|K j (y, v)|| f (v)| dv �s,ε 2− j(1−a)/42 jaε/2 (2l r0)n1+n2

(2l r0)
(n1+n2+ 1

2+ε2)
|z′|κn2 |z′|−κn2M f (x)

�s,ε 2− j(1−a)/8 1

2l/2
M f (x),

provided that 0 < ε < 1−a
4a .

Putting the above two estimates in (5.3), we obtain

|T ( f χ
R
n1+n2\B(z,r0)(y) − T ( f χ

R
n1+n2\B(z,r0)(z)| �s,ε

∞∑
j=0

∞∑
l=0

2− j(1−a)/8 1

2l/2
M f (x)

�s,ε M f (x),

123



34 Page 36 of 49 S. Bagchi et al.

completing the proof of Lemma 5.2 in the case of r0 ≥ 1.

Case 2 (r0 < 1) : Again, we consider two regions of l.
To start with, let l0 ≥ 0 be such that 1

2 |z′| ≤ 2l+1r0 for all l > l0. Then,

|T ( f χR
n1+n2\B(z,r0))(y) − T ( f χR

n1+n2\B(z,r0))(z)| ≤ J1 + J2,

where,

J1 :=
∑
l>l0

∞∑
j=0

∫
Al

|K j (y, v) − K j (z, v)|| f (v)| dv,

J2 :=
l0∑
l=0

∞∑
j=0

∫
Al

|K j (y, v) − K j (z, v)|| f (v)| dv.

Estimate for J1 : For l > l0, we proceed as follows.

Using (5.1) with L > 0 such that − Qa
q + Q

p < L (1 − a) < − Qa
q + Q

p + 1 + aε,
we obtain

∞∑
j=0

∫
Al

|K j (y, v) − K j (z, v)|| f (v)| dv

�
∞∑
j=0

(∫
Al

|K j (y, v) − K j (z, v)|p′
dv

)1/p′ (∫
Al

| f (v)|p dv
)1/p

�ε,p (2l )−Lr
−La+ Qa

q − Q
p −aε

0 |B(z, 2l r0)|1/pMp f (x)

�ε,p r
−a(L− Q

q +ε)

0 2−l(L− Q
p )Mp f (x),

and therefore

J1 �ε,p Mp f (x)
∑
l≥l0

r
−a(L− Q

q +ε)

0 2−l(L− Q
p )

. (5.4)

It is straightforward to see that the infinite sum over l > l0 in (5.4) converges and
will be bounded by constant independent of r0 provided

Q
p < L <

Q
q . Actually, we

need L <
Q
q − ε, but that can also be ensured by assuming L <

Q
q and choosing ε

suitably small. Altogether, we have the following conditions on L:

max

{
Q

p
,
− Qa

q + Q
p

1 − a

}
< L < min

{
Q

q
,
− Qa

q + Q
p

1 − a
+ 1

1 − a

}
.
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But, since p > q, we already have Q
p <

Q
q and

−Qa
q + Q

p
1−a ≤ Q

p , and therefore the
only condition to be verified is the following:

Q

p
<

−Qa
q + Q

p

1 − a
+ 1

1 − a
⇐⇒ 1 + aQ

(
1

p
− 1

q

)
> 0,

which is possible by choosing p > q sufficiently close to q.

Estimate for J2 : By definition of l0, we have that 1
2 |z′| ≥ 2l+1r0 for all l ≤ l0.

This time, we use (5.2) with L > 0 such that − (n1+n2)a
q + n1+n2

p < L (1 − a) <

− (n1+n2)a
q + n1+n2

p + 1 + aε, to get

∞∑
j=0

∫
Al

|K j (y, v) − K j (z, v)|| f (v)| dv

�
∞∑
j=0

(∫
Al

|K j (y, v) − K j (z, v)|p′
dv

)1/p′ (∫
Al

| f (v)|p dv
)1/p

�ε,p (2l )−Lr−La+ (n1+n2)a
q − n+1

p −aε |z′|−κn2/p|B(z, 2l r0)|1/pMp f (x)

�ε,p (2l )−Lr−La+ (n1+n2)a
q − n1+n2

p −aε |z′|−κn2/p(2l r0)
n1+n2

p |z′|κn2/p|B(z, 2l r0)|1/pMp f (x)

�ε,p r
−a(L− (n1+n2)

q +ε)

0 2−l(L− n1+n2
p )Mp f (x),

and therefore

J2 �ε,p Mp f (x)
∑
l≤l0

r
−a(L− (n1+n2)

q +ε)

0 2−l(L− n1+n2
p )

. (5.5)

The sumover l ≤ l0 in (5.5) will be bounded by constant independent of r0 provided
n1+n2

p < L < n1+n2
q . Combining the conditions on L we need to ensure the following

max

{
n1 + n2

p
,
− (n1+n2)a

q + n1+n2
p

1 − a

}
< L < min

{
n1 + n2

q
,
− (n1+n2)a

q + n1+n2
p

1 − a
+ 1

1 − a

}
.

As earlier, one notices that the two conditions are simultaneously satisfied if

1 + a(n1 + n2)

(
1

p
− 1

q

)
> 0,

which is possible by choosing p > q sufficiently close to q.
This completes the proof of the Lemma 5.2. ��

5.2 Proof of Theorem 1.10

We are now in a position to prove Theorem 1.10.
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Proof of Theorem 1.10 We divide the proof into two parts.
Let us first prove it for the operator T = m(x,Gκ) with m ∈ S −Qa

1−a,δ(Gκ). It
follows from Theorem 1.9 that T is bounded from L p(Rn1+n2) to itself for 1 < p < 2.
Also, we obtain from Lemma 5.2 that

M

T ,s f (x) �T ,p Mp f (x),

for every for every 1 < p < ∞, f ∈ C∞
c (Rn1+n2), and s = 3C2

0C1,κδ−1
0 , with

δ0 < 1 as mentioned just before (1.9).
The above inequality implies that M


T ,s is weak-type (p, p) for all 1 < p <

∞. Therefore, the sparse domination principle (Theorem 1.1 in [25]) is applicable,
ensuring that for each 1 < r < ∞ and for each f ∈ C∞

c (Rn1+n2), there exist a sparse
family S such that

|T f (x)| � Ar ,S f (x)

for almost every x ∈ R
n1+n2 .

The proof of the sparse domination result for the operator T = m(x,Gκ) with
m ∈ S

−Qa/q
1−a,δ (Gκ) and 1 < q < 2, is similar to that of the previous case. Observe that

Theorem 4.2 implies that T is bounded from Lq(Rn1+n2) to itself and an application
of Lemma 5.2 implies thatM


T ,s is weak-type (p, p) for all q < p < ∞. Hence, the
proof follows from Theorem 1.1 of [25]. ��
Remark 5.3 As mentioned in Sect. 1.4, our techniques of establishing sparse domina-
tion do not extend to classesS −Qa/2

1−a,δ (Gκ). This is because even if one proves refined
weighted Plancherel estimates (of Sect. 3) with the removal of the extra ε > 0 from
the order of differentiability in the Sobolev norm of symbol functions, we note that
with kernel estimates of Lemma 5.1 we can not work in the case of S −Qa/q

1−a,δ (Gκ)

when q = 2. For example, to get the convergence of the infinite sum over l > l0 in
(5.4) (or the sum over l ≤ l0 in (5.5)), we need to have p > q. But, estimates (5.1)
and (5.2) of Lemma 5.1 are valid only for p ≤ 2. So, with these estimates at hand, we
are forced to restrict ourselves to the analysis of classes S −Qa/q

1−a,δ (Gκ) with q < 2.

6 Weighted Boundedness Result forS −Qa/2
1−a,ı (L,U)

In this section, we shall study weighted boundedness for symbol classes
S

−Qa/2
1−a,δ (L,U) with the help of the Fefferman–Stein sharp maximal function, which

is defined as follows. For a locally integrable function f ,

M
 f (x) := sup
x∈B

1

|B|
∫
B

| f − fB |,

where fB := 1
|B|
∫
B f denotes the average of f over the ball B.
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We begin with stating the following kernel estimates which will be crucial for the
proof of Theorem 1.14. The proof follows arguing exactly as in the proof of Lemma
5.1, and we leave those details. As earlier, take s = 3C2

0C1,κ .

Lemma 6.1 Let m ∈ S
−Qa/2
1−a,δ (L,U) be such that it satisfies condition CancelCond

for all |β| ≤ � Q
2 + 1

1−a � + 1. Let B = B(z, r) be any ball with 0 < r ≤ 1. Then for
any y ∈ B,

∞∑
j=0

(∫
2l sr1−a≤d(v,z)≤2l+1sr1−a

|K j (y, v) − K j (z, v)|2 dv
)1/2

�L (2lr1−a)−Ld(y, z)(1−a)(L− Q
2 ), (6.1)

whenever Q
2 < L <

Q
2 + 1

(1−a)
, and

∞∑
j=0

(∫
2l sr1−a≤d(v,z)≤2l+1sr1−a

|K j (y, v) − K j (z, v)|p′
dv

)1/p′

�L (2lr1−a)−Ld(y, z)(1−a)(L− (n1+n2)

2 )|z′|−κn2/2, (6.2)

whenever n1+n2
2 < L < n1+n2

2 + 1
(1−a)

and 1
2 |z′| ≥ 2l sr1−a.

We shall establish pointwise domination of the Fefferman–Stein maximal function
in Sect. 6.1. For the same, we need the following L2-boundedness result, which we
state and prove here.

Theorem 6.2 Let m ∈ S
−Qa/2
1−a,1−a(L,U) satisfies condition CancelCond for all |β| ≤

4
(
� Q
4 � + 1

)
. Then, the operator (I + G)Qa/4m(x, L,U) is L2-bounded.

Proof Note first that in the case of the Euclidean pseudo-differential operators, if we
havem ∈ S

−Qa/2
1−a,1−a(�) thenm(x,�)∗ is also a pseudo-differential operatorwith sym-

bol from the same classS −Qa/2
1−a,1−a(�). Therefore, m(x,�)∗(I + �)Qa/4 is a pseudo-

differential operator with symbol from the class S 0
1−a,1−a(�), and thus it is L2-

bounded. Finally, since
∥∥(I + �)Qa/4m(x,�)

∥∥
op =

∥∥∥((I + �)Qa/4m(x,�)
)∗∥∥∥

op
=∥∥m(x,�)∗(I + �)Qa/4

∥∥
op, it follows that (I + �)Qa/4m(x,�) is L2-bounded.

In the context of the Grushin operator, we need not have the adjoint operator
m(x, L,U)∗ to be a pseudo-multiplier operator, therefore we do not have a direct
argument to conclude the theorem. We therefore write a more detailed analysis to
argue our claim.

Given m ∈ S
−Qa/2
1−a,1−a(L,U), let us write T = m(x, L,U) and T1 = m̃(x, L,U)

where m̃(x, τ, κ) = m(x, τ, κ)(1 + |τ |2 + |κ|2)Qa/8. It can be easily verified that
m̃ ∈ S 0

1−a,1−a(L,U), with the symbol seminorm of m̃ controlled by that of m.
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Furthermore, let us denote byPa the spectral multiplier operator in the joint functional
calculus of (L,U), with symbol (τ, κ) �→ (1+|τ |1)Qa/4(1+|τ |2+|κ|2)−Qa/8. Now,

(I + G)Qa/4T = (I + G)Qa/4T1(I + G)−Qa/4Pa,

and since the operator Pa is L2-bounded (by Plancherel theorem), in order to show
that (I+G)Qa/4T is L2-bounded, it suffices to prove that (I+G)Qa/4T1(I+G)−Qa/4

is L2-bounded.
For any b > 0, let us consider the Sobolev space Hb,2(Rn1+n2) = (I +

G)b/2L2(Rn1+n2). Using the spectral resolution of G, we have

Hb,2(Rn1+n2) =
{
f ∈ L2(Rn1+n2) :

∥∥∥(I + G)b/2 f
∥∥∥
L2

< ∞
}

,

where

∥∥∥(I + G)b/2 f
∥∥∥2
L2

=
∫
Rn2

∑
μ

(1 + (2|μ| + n1)|λ|)b ∣∣( f λ,�λ
μ)
∣∣2 dλ.

It is easy to observe that (I+G)Qa/4T1(I+G)−Qa/4 ∈ B
(
L2(Rn1+n2)

)
if and only

if T1 ∈ B
(
H

Qa
2 ,2(Rn1+n2)

)
. Now, if we can prove that T1 ∈ B

(
H2N ,2(Rn1+n2)

)
for

each N ∈ N+, then we can invoke the interpolation theorem for operators with change
ofmeasures (see, for example, Sect. 5 in [35]) to conclude that T1 ∈ B

(
Hb,2(Rn1+n2)

)
for each b > 0, and our claim would then follow by taking b = Qa

2 . So, we are
left with showing that T1 ∈ B

(
H2N ,2(Rn1+n2)

)
, which is equivalent to proving that

(I + G)N T1(I + G)−N ∈ B
(
L2(Rn1+n2)

)
, and again it is equivalent to proving that

(I + G)N T1 ◦ mN ,0(L,U) ∈ B
(
L2(Rn1+n2)

)
, where mN ,0(τ, κ) = (1 + |τ |21 +

|κ|2)−N/2.
It is enough to show that GN1T1 ◦mN ,0(L,U) ∈ B

(
L2(Rn1+n2)

)
for all 0 ≤ N1 ≤

N . Recall thatG = −∑n1
j=1 X

2
j −
∑n1

j=1

∑n2
k=1 X

2
j,k , where X j = ∂

∂x ′
j
, X j,k = x ′

j
∂

∂x ′′
k
.

So, we shall be done if we could prove that X�T1 ◦ mN ,0(L,U) ∈ B
(
L2(Rn1+n2)

)
,

where |�| ≤ 2N and X = (X j , X j,k) j,k .
With f ∈ S(Rn1+n2), using Leibniz formula we can write

X�T1 ◦ mN ,0(L,U) f (x)

=
∑

�1+�2=�

C�1,�2

∫
Rn2

∑
μ

X�1m̃
(
x, (2μ + 1̃)|λ|, λ

)
{
1 + (2|μ| + n1)2|λ|2 + |λ|2}N/2 ( f λ,�λ

μ)

X�2
{
�λ

μ(x ′)e−iλ·x ′′}
dλ.

Let us carefully look at the action of X�2 on �λ
μ(x ′)e−iλ·x ′′

. In doing so, we shall

make use of the known properties of the annihilation operators A j (λ) = ∂
∂x ′

j
+ |λ|x ′

j ,

and the creation operators A j (λ)∗ = − ∂
∂x ′

j
+ |λ|x ′

j , namely,
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A j (λ)�λ
μ = ((2μ j )|λ|)1/2 �λ

μ−e j and A j (λ)∗�λ
μ = ((2μ j + 2)|λ|)1/2 �λ

μ+e j .

Since X j

{
�λ

μ(x ′)e−iλ·x ′′} = ∂
∂x ′

j

{
�λ

μ(x ′)e−iλ·x ′′} = 1
2

(
A j (λ) − A j (λ)∗

)
{
�λ

μ(x ′)e−iλ·x ′′}
, and X j,k

{
�λ

μ(x ′)e−iλ·x ′′} = λk x ′
j

{
�λ

μ(x ′)e−iλ·x ′′} = λk
2|λ|
(
A j (λ)

+A j (λ)∗
) {

�λ
μ(x ′)e−iλ·x ′′}

, a successive application of gradient fields X j ’s and

X j,k’s implies that X�2

{
�λ

μ(x ′)e−iλ·x ′′}
can be expressed as a finite linear com-

bination of terms of the form

H�2(μ)
λ�3

|λ||�3| {(2|μ| + n1)|λ|} |�2 |
2 �λ

μ+μ̃(x ′),

where |μ̃| ≤ |�2|, |�3| ≤ |�2|, and H�2(μ) is a bounded function of μ.
Summarising, we get that X�T1 ◦ mN ,0(L,U) f (x) can be expressed as a finite

linear combination of

∫
Rn2

∑
μ

{
X�1m̃

(
x, (2(μ − μ̃) + 1̃)|λ|, λ

)}
{(2|μ − μ̃| + n1)|λ|} |�2 |

2

{
1 + (2|μ − μ̃| + n1)2|λ|2 + |λ|2}N/2

((
T̃�2,�3 f

)λ
,�λ

μ

)
�λ

μ(x ′)e−iλ·x ′′
dλ,

where T̃�2,�3 is the operator on defined by
((
T̃�2,�3 f

)λ
,�λ

μ

)
= H�2(μ −

μ̃) λ�3

|λ||�3|
(
f λ,�λ

μ−μ̃

)
.

While the L2-boundedness of T̃�2,�3 follows from Plancherel’s theorem, it is
straightforward to verify that the symbol function M(x, τ, κ) ∈ S 0

1−a,1−a(L,U),
where

M (x, τ, κ) = {X�1m̃ (x, τ, κ)
} |τ |

|�2 |
2

1

{
1 + |τ |21 + |κ|2

}−N/2
,

and it therefore boils down to analysing operators Tμ̃, where

Tμ̃ f (x) =
∫
Rn2

∑
μ

M
(
x, (2(μ − μ̃) + 1̃)|λ|, λ

) (
f λ,�λ

μ

)
�λ

μ(x ′)e−iλ·x ′′
dλ.

(6.3)

But, the same holds true by Lemma 2.7, implying that for all |μ̃| ≤ 2N ,

‖Tμ̃‖op �N ‖M‖S 0
1−a,1−a

�N ‖m‖
S −Qa/2

1−a,1−a
.

This completes the proof of Proposition 2.8. ��
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6.1 Pointwise Domination of the Fefferman–Stein Maximal Function

The following estimate is, in fact, the heart of the proof of Theorem 1.14.

Theorem 6.3 Let m ∈ S
−Qa/2
1−a,δ (L,U) be such that it satisfies condition CancelCond

for all |β| ≤ � Q
2 + 1

1−a � + 1. Then, for the operator T = m(x, L,U), we have

M
(T f )(x) �T ,s M2 f (x),

for every f ∈ C∞
c (Rn1+n2) and almost every x ∈ R

n1+n2 .

Proof Fix f ∈ C∞
c (Rn1+n2), a point x ∈ R

n1+n2 and a ball B = B(z, r) containing
x . As earlier, we take s = 3C2

0C1,κ and consider the two cases in r .

Case 1 (r ≥ 1) : Writing sB = B(z, sr), we decompose f = f1 + f2 where f1 =
f χsB .
Now,

1

|B|
∫
B

|T f (y) − T f2(z)| dy ≤ Ĩ1 + Ĩ2,

where

Ĩ1 = 1

|B|
∫
B

|T f1(y)| dy and Ĩ2 = 1

|B|
∫
B

|T f2(y) − T f2(z)| dy.

First, we consider the term Ĩ1. Using Hölder’s inequality and the L2-boundedness
of the operator T we get

Ĩ1 ≤ 1

|B| 12
(∫

B
|T f1(y)|2 dx

) 1
2

�T
1

|B| 12
(∫

sB
| f1(y)|2 dy

) 1
2

� |sB| 12
|B| 12

M2 f (x)

�s M2 f (x).

Next, we estimate Ĩ2. For this part, we follow the same line of arguments as inCase 1
of the proof of Lemma 5.2. For l ∈ N, we writeAl = {v : 2l sr ≤ d(z, v) ≤ 2l+1sr

}
.

Then

|T f2(y) − T f2(z)| ≤
∞∑
j=0

∞∑
l=0

∫
Al

|K j (y, v) − K j (z, v)|| f2(v)| dv.

Now, for those l for which 2l+1sr ≥ 1
2 |z′| holds, we make use of condition (3.6)

with r0 = �Q/2� + 1, to obtain

∫
Al

|K j (y, v) − K j (z, v)|| f2(v)| dv
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�
(∫

Al

d(y, v)Q+1|K j (y, v)|2 dv
) 1

2 ×
(∫

Al

1

d(y, v)Q+1 | f2(v)|2 dv
) 1

2

+
(∫

Al

d(z, v)Q+1|K j (z, v)|2 dv
) 1

2 ×
(∫

Al

1

d(z, v)Q+1 | f2(v)|2 dv
) 1

2

�T ,s 2
− j(1−a)

4 (2lr)−(
Q+1
2 )|B(z, 2l sr)| 12M2 f (x)

�T ,s 2
− j(1−a)

4 2−l/2M2 f (x),

where the second last inequality follows using the fact d(y, v) ∼ d(z, v), and in
the last inequality we have used the fact that r ≥ 1 and |B(z, 2l sr)| �s (2lr)Q for
2l+1sr ≥ 1

2 |z′|.
Next, for those l for which 2l+1sr < 1

2 |z′| holds, we have
∫
Al

|K j (y, v) − K j (z, v)|| f2(v)| dv

�
(∫

Al

d(y, v)n1+n2+1|K j (y, v)|2 dv
) 1

2 ×
(∫

Al

1

d(y, v)n1+n2+1 | f2(v)|2 dv
) 1

2

+
(∫

Al

d(z, v)n1+n2+1|K j (z, v)|2 dv
) 1

2 ×
(∫

Al

1

d(z, v)n1+n2+1 | f2(v)|2 dv
) 1

2

�T ,s 2
− j(1−a)

4 |z′|− κn2
2

(2lr)
n1+n2

2

(2lr)(
n1+n2+1

2 )
|z′|κn2

2 M2 f (x)

�T ,s 2
− j(1−a)

4 2−l/2M2 f (x),

where in the second last inequality we have used the fact d(y, v) ∼ d(z, v) and
|B(z, 2l sr)| �s (2lr)n1+n2 |z′|κn2

2 for 2l+1sr < 1
2 |z′|.

In view of the above two estimates, we have

|T f2(y) − T f2(z)| ≤ M2 f (x),

completing the proof in Case 1.

Case 2 (r < 1) :With B ′ = B(z, sr1−a), this time we decompose f = f1+ f2 where
f1 = f χB′ .
Now,

1

|B|
∫
B

|T f (x) − T f2(z)| dx ≤ Ĩ I 1 + Ĩ I 2,

where

Ĩ I 1 = 1

|B|
∫
B

|T f1(x)| dx and Ĩ I 2 = 1

|B|
∫
B

|T f2(x) − T f2(z)| dx .
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Let us first estimate Ĩ I 1. For b ∈ R, denote by Jb the potential operator (I +G)b/2.
Since x ∈ B(z, r) and r < 1, we have |B(z, 1)| ∼ |B(x, 1)|. Now, using Theorem
6.2, and the Hardy–Littlewood–Sobolev inequality (2.7) for J−Qa/2 with q = 2

1−a
and p = 2, we get

Ĩ I 1 = 1

|B|
∫
B

|T f1(x)| dx ≤ 1

|B| |B| 1
q′
(∫

B
|T f1|q dx

) 1
q

= 1

|B| |B| 1
q′
(∫

B
|J−Qa/2 JQa/2T f1|q dx

) 1
q

� 1

|B| |B| 1
q′ |B(z, 1)|− a

2

(∫
B
(|B(x, 1)| a2 |J−Qa/2 JQa/2T f1|)q dx

) 1
q

�a
1

|B| |B| 1
q′ |B(z, 1)|− a

2

(∫
R
n1+n2

|JQa/2T f1|2 dx
) 1

2

�T
1

|B| |B| 1
q′ |B(z, 1)|− a

2 |B ′| 12
(

1

|B ′|
∫
B′

| f1|2 dx
) 1

2

� 1

|B| |B| 1
q′ |B(z, 1)|− a

2 |B ′| 12 M2 f (x).

Now, observe that if sr1−a > |z′|, then

1

|B| |B| 1
q′ |B(z, 1)|− a

2 |B ′| 12 � 1

r Q
r

(1+a)Q
2 r

(1−a)Q
2 s

Q
2 ≤ Cs,

whereas, if sr1−a ≤ |z′|, then

1

|B| |B| 1
q′ |B(z, 1)|− a

2 |B ′| 12 � r
(n1+n2)(a−1)

2 |z′|κn2(a−1)
2 |z′|− κn2a

2 r
(1−a)(n1+n2)

2 s
n1+n2

2 |z′| n22
≤ Cs .

Put together, we get that Ĩ I 1 �T ,s M2 f (x).
Next, we estimate the term Ĩ I 2. Let us write Bl := {v : s2lr1−a ≤ d(v, z) ≤

s2l+1r1−a}, and let l0 ≥ 0 be such that 1
2 |z′| ≥ s2lr1−a for all l ≤ l0.

Now,

|T f2(x) − T f2(z)| �
∞∑
j=0

l0∑
l=0

(∫
Bl

|K j (x, y) − K j (z, y)|2 dy
) 1

2 ×
(∫

Bl

| f2(y)|2 dy
) 1

2

+
∞∑
j=0

∞∑
l>l0

(∫
Bl

|K j (x, y) − K j (z, y)|2 dy
) 1

2 ×
(∫

Bl

| f2(y)|2 dy
) 1

2

=: Ĩ I 2,1 + Ĩ I 2,2.
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On one hand, using (6.2) from Lemma 6.1, we get

Ĩ I 2,1 �T ,L

l0∑
l=0

(2lr1−a)−Lr (1−a)(L− (n1+n2)

2 )|z′|− κn2
2 |B(z, 2l sr1−a)| 12M2 f (x)

�T ,L

l0∑
l=0

(2lr1−a)−Lr (1−a)(L− (n1+n2)

2 )|z′|− κn2
2 (2l sr1−a)

n1+n2
2 |z′|κn2

2 M2 f (x)

�s

l0∑
l=0

2−l(L− n1+n2
2 )M2 f (x)

�L M2 f (x),

provided that L > n1+n2
2 .

On the other hand, using (6.1) from Lemma 6.1, we get

Ĩ I 2,2 �T ,L

∞∑
l=l0

(2lr1−a)−Lr (1−a)(L− Q
2 )|B(z, 2l sr1−a)| 12M2 f (x)

�s

l0∑
l=0

2−l(L− Q
2 )M2 f (x) �L M2 f (x),

provided that L >
Q
2 .

This completes the proof of Theorem 6.3. ��

6.2 Proof of Theorem 1.14

Proof of Theorem 1.14 is a consequence of Theorem 6.3 and good-λ-inequality. The
proof follows from standard arguments. But, for self-containment, we write below a
brief sketch.

Proof of Theorem 1.14 Recall that it was proved in part (i) of Lemma 4.11 in [17] that
the following inequality holds:

∫
R
n1+n2

MF(x)pw(x) dx �
∫

R
n1+n2

M
F(x)pw(x) dx, (6.4)

for any w ∈ A∞(Rn1+n2), 0 < p0 < p < ∞, and for all F ∈ L1
loc such that

MF ∈ L p0,∞(w).
In our case we are concerned with 2 < p < ∞ and w ∈ Ap/2(R

n1+n2). With p
and w fixed, the reverse Hölder’s inequality for Muckenhoupt weights implies there
is p0 > 2 such that w ∈ Ap0/2(R

n1+n2) with p > p0 > 2.
Now, if we can we prove that ‖m(·, L,U) f ‖L p0 (w) ≤ Cm(·,L,U), f ,p0,w < ∞, then

we can apply the above inequality (6.4) to F = |m(·, L,U) f | and Theorem 6.3 to
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conclude that
∫

R
n1+n2

|m(x, L,U) f (x)|p w(x) dx ≤
∫

R
n1+n2

M(m(·, L,U) f )(x)p w(x) dx

�
∫

R
n1+n2

M
(m(·, L,U) f )(x)p w(x) dx

�
∫

R
n1+n2

M2 f (x)
p w(x) dx

�
∫

R
n1+n2

| f (x)|p w(x) dx,

where the last inequality follows from the fact thatM2 : L p(w) → L p(w) is bounded
for w ∈ Ap/2 with p > 2.

So, we are left with showing that ‖m(·, L,U) f ‖L p0 (w) ≤ Cm(·,L,U), f ,p0,w < ∞,

for any compactly supported bounded function f .
Let f ∈ C∞

c (Rn1+n2) be supported on B(z, r). Without loss of generality
we may assume that r > 1. Since m(x, L,U) is bounded on L2(Rn1+n2), we
have m(x, L,U) f ∈ L2(Rn1+n2) implying M(m(x, L,U) f ) ∈ L2(Rn1+n2).
Therefore, an application of (6.4) with w = 1 and the pointwise domination
M
(m(x, L,U) f )(x) � M2 f (x), we obtain m(x, L,U) f ∈ Lq(Rn1+n2) for all
q > 2.

Now,
∫
B(z,2C0r)

|m(x, L,U) f (x)|p0w(x) dx

≤
(∫

B(z,2C0r)
w(x)1+ε dx

) 1
1+ε
(∫

B(z,2C0r)
|m(x, L,U) f (x)|p0 1+ε

ε dx

) ε
1+ε

,

(6.5)

where ε > 0 is chosen such that the reverse Hölder’s inequality is satisfied and the first
term of right side of (6.5) is finite. Since m(x, L,U) f ∈ Lq(Rn1+n2) for all q > 2,
we conclude that the second term in the right side of (6.5) is finite.

Next, in order to estimate
∫

R
n1+n2\B(z,2C0r)

|m(x, L,U) f (x)|p0w(x) dx,

note first that d(x, z) ≥ 2C0r and d(y, z) < r together imply d(x, y) ≥ 1
2C0

d(x, z).

Fix some x , and let l be such that d(x, z) � 2lr . Now, if 2lr ≥ 1
2 |z′| then we proceed

as follows:

|m j (x, L,U) f (x)| ≤
∫
B(z,r)

|K j (x, y)|| f (y)| dy

≤
(∫

B(z,r)
|K j (x, y)|2d(x, y)Q+1

)1/2
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(∫
B(z,r)

d(x, y))−(Q+1)| f (y)|2 dy
)1/2

� 2− j(1−a)
4

|B(z, 2lr)|1/2
(2lr)(Q+1)/2

M2 f (x) � 2− j(1−a)
4 M2 f (x).

Similarly, if 2lr ≤ 1
2 |z′|, we just use d(x, y)n1+n2+1 in place of d(x, y)Q+1 to conclude

that

|m j (x, L,U) f (x)| � 2− j(1−a)
4 |z′|− κn2

2
(2lr)

n1+n2
2

(2lr)(
n1+n2+1

2 )
|z′|κn2

2 M2 f (x)

�T ,s 2
− j(1−a)

4 2−l/2M2 f (x).

In view of the above estimates, we get

∫
d(x,z)≥2C0r

|m(x, L,U) f (x)|p0w(x) dx �
∫
d(x,z)≥2C0r

(M2 f (x))
p0w(x) dx

�
∫

| f (x)|p0w(x) dx

� w(B(z, r)) ‖ f ‖L∞ ,

where again the last inequality follows from the fact thatM2 : L p0(w) → L p0(w) is
bounded for w ∈ Ap0/2 with p0 > 2. This completes the proof of the Theorem 1.14.
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