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Using the polar decomposition of a bounded linear operator 
A defined on a complex Hilbert space, we obtain several 
numerical radius inequalities of the operator A, which 
generalize and improve the earlier related ones. Among other 
bounds, we show that if w(A) is the numerical radius of A, 
then

w(A) ≤ 1
2
‖A‖1/2 ∥∥|A|t + |A∗|1−t

∥∥ ,
for all t ∈ [0, 1]. Also, we obtain some upper bounds for the 
numerical radius involving the spectral radius and the Aluthge 
transform of operators. It is shown that

w(A) ≤ ‖A‖1/2
(

1
2

∥∥∥∥ |A| + |A∗|
2

∥∥∥∥ +
1
2

∥∥∥Ã∥∥∥)1/2
,

where Ã = |A|1/2U |A|1/2 is the Aluthge transform of A and 
A = U |A| is the polar decomposition of A. Other related 
results are also provided.
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1. Introduction

The purpose of the article is to develop numerical radius inequalities of bounded lin-
ear operators defined on a complex Hilbert space. The study of numerical range and 
the associated inequalities is useful in investigating many properties of linear opera-
tors and has various applications in numerous fields of sciences. In recent times the 
numerical radius has found its application in quantum information theory, in particu-
lar, quantum error correction [14], additive uncertainty relations [25], multi-observable 
quantum uncertainty relations [18]. Applying the numerical radius inequalities one can 
also estimate the roots of polynomials using the notion of the Frobenius companion 
matrix, see [7]. Before proceeding further we introduce the necessary notations and 
terminologies.

Let B(H) denote the C∗-algebra of all bounded linear operators on a complex Hilbert 
space H, with inner product 〈·, ·〉 and the corresponding norm ‖ · ‖. For A ∈ B(H), let 
|A| = (A∗A)1/2 and |A∗| = (AA∗)1/2, where A∗ is the adjoint of A. For t ∈ [0, 1], the 
t-Aluthge transform (generalized Aluthge transform) of A ∈ B(H) is Ãt = |A|tU |A|1−t, 
where A = U |A| is the polar decomposition of A and U is the partial isometry. In 
particular, for t = 1

2 , Ã = Ã 1
2

= |A|1/2U |A|1/2 is the Aluthge transform of A.
Let ‖A‖, w(A) and r(A) denote the operator norm, the numerical radius and the spectral 
radius of A, respectively. The numerical radius of A is defined as

w(A) = sup{|〈Ax, x〉| : x ∈ H, ‖x‖ = 1}

and it is the radius of the smallest disc with center at origin that contains the numerical 
range. Note that the numerical range W (A) is defined as W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ =
1}. It is well known that the numerical radius w(·) : B(H) → R defines a norm on B(H)
and is equivalent to the operator norm. For every A ∈ B(H),

1
2‖A‖ ≤ w(A) ≤ ‖A‖, (1.1)

holds. The spectral radius of A is defined as r(A) = sup {|λ| : λ ∈ σ(A)}, where σ(A) is 
the spectrum of A. Since, the spectrum σ(A) is contained in the closure of the numerical 
range (i.e., σ(A) ⊂ W (A)), we have

r(A) ≤ w(A).

Therefore, for every A ∈ B(H), r(A) ≤ w(A) ≤ ‖A‖ holds, and r(A) = w(A) = ‖A‖, 
when A ∈ B(H) is a normal operator. Also, note that r(A) = r(Ã), w(Ã) ≤ w(A) and 
‖Ã‖ ≤ ‖A2‖1/2 ≤ ‖A‖. For more details about the numerical range, the numerical radius 
and related inequalities, the readers can follow the books [7,26]. Various refinements of 
the numerical radius bounds in (1.1) have been studied over the years. Kittaneh in [21, 
2003] and [20, 2005], respectively, developed the following bounds
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w(A) ≤ 1
2‖A‖ + ‖A2‖1/2 (1.2)

and

w2(A) ≤ 1
2
∥∥|A|2 + |A∗|2

∥∥ . (1.3)

The bounds in (1.2) and (1.3) improve the same in (1.1). Dragomir in [16, 2008] proved 
that

w2(A) ≤ 1
2‖A‖2 + 1

2w(A2). (1.4)

Clearly, the bound in (1.4) improves the same in (1.1). After that, Abu-Omar and Kit-
taneh in [1, 2015] developed

w2(A) ≤ 1
4
∥∥|A|2 + |A∗|2

∥∥ + 1
2w(A2), (1.5)

which improves both the bounds in (1.2), (1.3) and (1.4). Further, Bhunia and Paul in 
[12, 2021] proved that

w2(A) ≤ 1
4
∥∥|A|2 + |A∗|2

∥∥ + 1
2w(|A||A∗|) (1.6)

and

w(A) ≤ 1√
2
w(|A| + i|A∗|). (1.7)

The bound in (1.6), is incomparable with the bound in (1.5), refines both the bounds 
in (1.2) and (1.3). The bound in (1.7) refines the bound (1.3). The same authors in [10, 
2021] obtained an improvement of (1.2) by using the spectral radius, namely,

w(A) ≤ 1
2‖A‖ + 1

2r
1/2(|A||A∗|). (1.8)

Further, Bhunia [5, 2023] obtained an improvement of the second inequality in (1.1), 
namely,

w(A) ≤ ‖A‖1/2∥∥α|A| + (1 − α)|A∗|
∥∥1/2

, (1.9)

for all α ∈ [0, 1]. Recently, Kittaneh, Moradi and Sababheh [19, 2023] also developed the 
following nice improvement of the second inequality in (1.1):

w(A) ≤ 1‖A‖1/2
∥∥∥|A|1/2 + |A∗|1/2

∥∥∥ . (1.10)
2
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Some generalizations of the inequalities in (1.3), (1.5) (1.6) and (1.7) and the other 
improvements also studied, see [2–4,9,11–13,17,27].

In this paper, we obtain various numerical radius inequalities of bounded linear op-
erators, which generalize and improve on the bounds in (1.1), (1.2), (1.3), (1.6), (1.7), 
(1.8), (1.9) and (1.10). Other bounds are also developed which refine the existing ones.

2. Main results

We begin our study with the following known lemmas. First lemma is known as 
McCarthy inequality.

Lemma 2.1. [24] Let A ∈ B(H) be positive, and let x ∈ H with ‖x‖ = 1. Then

〈Ax, x〉p ≤ 〈Apx, x〉,

for all p ≥ 1.

Second lemma involves 2 × 2 positive operator matrix.

Lemma 2.2. [23, Lemma 1] Let A, B, C ∈ B(H), where A and B are positive. Then the 

operator matrix 
[
A C∗

C B

]
∈ B(H⊕H) is positive if and only if

|〈Cx, y〉|2 ≤ 〈Ax, x〉〈By, y〉.

Third lemma is named as Buzano’s inequality.

Lemma 2.3. [15] Let x, y, z ∈ H, where ‖z‖ = 1. Then

|〈x, z〉〈z, y〉| ≤ ‖x‖‖y‖ + |〈x, y〉|
2 .

By using the above lemmas we first prove the following proposition.

Proposition 2.4. Let A, B, C ∈ B(H), where A and B are positive. If 
[
A C∗

C B

]
∈ B(H⊕

H) is positive, then the following bounds hold:
(i) w2(C) ≤ 1

2
∥∥A2 + B2

∥∥.
(ii) w2(C) ≤ 1

2 ‖A‖ ‖B‖ + 1
2w(AB).

(iii) w2(C) ≤ 1
4
∥∥A2 + B2

∥∥ + 1
2w(AB).

(iv) w2(C) ≤ ‖αA + (1 − α)B‖ ‖A‖1−α‖B‖α, for all α ∈ [0, 1].
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Proof. Take x ∈ H with ‖x‖ = 1.
(i) From Lemma 2.2, we have

|〈Cx, x〉|2 ≤ 〈Ax, x〉〈Bx, x〉

≤ 1
2
(
〈Ax, x〉2 + 〈Bx, x〉2

)
≤ 1

2
(
〈A2x, x〉 + 〈B2x, x〉

)
(by Lemma 2.1)

≤ 1
2
∥∥A2 + B2∥∥ .

This implies, w2(C) ≤ 1
2
∥∥A2 + B2

∥∥.
(ii) From Lemma 2.2, we have

|〈Cx, x〉|2 ≤ 〈Ax, x〉〈x,Bx〉

≤ 1
2 (‖Ax‖‖Bx‖ + |〈Ax,Bx〉|) (by Lemma 2.3)

≤ 1
2 (‖A‖‖B‖ + w(AB)) .

This gives, w2(C) ≤ 1
2‖A‖‖B‖ + 1

2w(AB).
(iii) From Lemma 2.2, we have

|〈Cx, x〉|2 ≤ 〈Ax, x〉〈x,Bx〉

≤ 1
2 (‖Ax‖‖Bx‖ + |〈Ax,Bx〉|) (by Lemma 2.3)

≤ 1
2

(
‖Ax‖2 + ‖Bx‖2

2 + |〈Ax,Bx〉|
)

≤ 1
4
∥∥A2 + B2∥∥ + 1

2w(AB).

This implies, w2(C) ≤ 1
4
∥∥A2 + B2

∥∥ + 1
2w(AB).

(iv) From Lemma 2.2, we have

|〈Cx, x〉|2 ≤ 〈Ax, x〉〈Bx, x〉

= 〈Ax, x〉α〈Bx, x〉1−α〈Ax, x〉1−α〈Bx, x〉α

≤ (α〈Ax, x〉 + (1 − α)〈Bx, x〉) 〈Ax, x〉1−α〈Bx, x〉α

≤ ‖αA + (1 − α)B‖ ‖A‖1−α‖B‖α.

This implies, w2(C) ≤ ‖αA + (1 − α)B‖ ‖A‖1−α‖B‖α, as desired. �
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By applying Proposition 2.4, we prove the following lemma.

Lemma 2.5. Let B, C ∈ B(H). Then w(BC) satisfies the following bounds:
(i) w2(BC) ≤ 1

2
∥∥|B∗|4 + |C|4

∥∥.
(ii) w2(BC) ≤ 1

2‖B‖2‖C‖2 + 1
2w (B(CB)∗C).

(iii) w2(BC) ≤ 1
4
∥∥|B∗|4 + |C|4

∥∥ + 1
2w (B(CB)∗C).

(iv) w2(BC) ≤
∥∥α|B∗|2 + (1 − α)|C|2

∥∥ ‖B‖2(1−α)‖C‖2α, for all α ∈ [0, 1].

Proof. Following Lemma 2.2, it is easy to observe that the operator matrix[
BB∗ BC
C∗B∗ C∗C

]
∈ B(H⊕H) is positive. Using this positive operator matrix in Proposi-

tion 2.4, we obtain the desired upper bounds of w(BC). �
Now, we are in a position to obtain our first aim result.

Theorem 2.6. If A ∈ B(H), then

w2(A) ≤ 1
2 ‖A‖2 + 1

2w
(
|A|2t|A∗|2(1−t)

)
,

for all t ∈ [0, 1]. In particular, for t = 1
2

w2(A) ≤ 1
2 ‖A‖2 + 1

2w (|A||A∗|) . (2.1)

Proof. Let A = U |A| be the polar decomposition of A. By taking B = U |A|1−t and 
C = |A|t in (ii) of Lemma 2.5, we obtain

w2(A) ≤ 1
2 ‖A‖2 + 1

2w
(
U |A|1−tÃt

∗
|A|t

)
, (2.2)

where Ãt = |A|tU |A|1−t is the t-Aluthge transform of A. Now, it is easy to see that 
U |A|1−tÃt

∗
|A|t = |A∗|2(1−t)|A|2t. This completes the proof. �

Remark 2.7. (i) Since w(|A||A∗|) ≤ ‖A2‖,

w2(A) ≤ 1
2 ‖A‖2 + 1

2w (|A||A∗|)

≤ 1
2 ‖A‖2 + 1

2‖A
2‖

≤ ‖A‖2.

Therefore, the bound in (2.1) refines the second bound in (1.1).
(ii) It follows from (2.2) that

w2(A) ≤ 1 ‖A‖2 + 1 ∥∥∥|A|tÃt|A|1−t
∥∥∥ , (2.3)
2 2
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for all t ∈ [0, 1]. In particular, for t = 1
2

w2(A) ≤ 1
2 ‖A‖2 + 1

2

∥∥∥|A|1/2Ã|A|1/2
∥∥∥ , (2.4)

where Ã = Ã 1
2

= |A|1/2U |A|1/2 is the Aluthge transform of A.
(iii) From (i) and (ii) we deduce that if w(A) = ‖A‖, then

‖A2‖ = ‖A‖2 =
∥∥∥|A|1/2Ã|A|1/2

∥∥∥ = ‖A‖
∥∥∥Ã∥∥∥ .

Next theorem reads as:

Theorem 2.8. If A ∈ B(H), then

w2(A) ≤ 1
4

∥∥∥|A|4t + |A∗|4(1−t)
∥∥∥ + 1

2w
(
|A|2t|A∗|2(1−t)

)
,

for all t ∈ [0, 1]. In particular, for t = 1
2

w2(A) ≤ 1
4
∥∥|A|2 + |A∗|2

∥∥ + 1
2w (|A||A∗|) . (2.5)

Proof. Let A = U |A| be the polar decomposition of A. By taking B = U |A|1−t and 
C = |A|t in (iii) of Lemma 2.5 and using similar arguments as in the proof of Theorem 2.6, 
we obtain the desired results. �
Remark 2.9. (i) The bound in (2.5) was also developed in [12, Theorem 2.5] using different 
technique.
(ii) Using similar arguments as (2.3) and (2.4), we can obtain

w2(A) ≤ 1
4

∥∥∥|A|4t + |A∗|4(1−t)
∥∥∥ + 1

2

∥∥∥|A|tÃt|A|1−t
∥∥∥ , (2.6)

for all t ∈ [0, 1]. In particular, for t = 1
2

w2(A) ≤ 1
4
∥∥|A|2 + |A∗|2

∥∥ + 1
2

∥∥∥|A|1/2Ã|A|1/2
∥∥∥ . (2.7)

Next result reads as follows:

Theorem 2.10. If A ∈ B(H), then

w(A) ≤
∥∥∥α|A|2(1−t) + (1 − α)|A∗|2t

∥∥∥1/2
‖A‖(1−α)(1−t)+αt,

for all α, t ∈ [0, 1]. In particular, for t = 1

2
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w(A) ≤ ‖α|A| + (1 − α)|A∗|‖1/2 ‖A‖1/2, (2.8)

for all α ∈ [0, 1]. Also, in particular, for α = 1
2

w(A) ≤
∥∥∥∥ |A|2t + |A∗|2(1−t)

2

∥∥∥∥1/2

‖A‖1/2, (2.9)

for all t ∈ [0, 1].

Proof. Let A = U |A| be the polar decomposition of A. The proof follows from (iv) of 
Lemma 2.5 by taking B = U |A|1−t and C = |A|t. �

Note that, the bound in (2.8) was also obtained in [5, Theorem 2.8] using different 
technique. For our next result we need the following lemma.

Lemma 2.11. [8, Theorem 2.5] Let B, C ∈ B(H) be such that |B|C = C∗|B|. If f, g :
[0, ∞) → [0, ∞) are continuous functions with f(λ)g(λ) = λ, for all λ ≥ 0, then

wp(BC) ≤ rp(C)w
([

0 f2p(|B|)
g2p(|B∗|) 0

])
= 1

2r
p(C)

∥∥f2p(|B|) + g2p(|B∗|)
∥∥ ,

for all p ≥ 1.

Using the above lemma we obtain the following bound.

Theorem 2.12. Let f, g : [0, ∞) → [0, ∞) be continuous functions with f(λ)g(λ) = λ, for 
all λ ≥ 0. If A ∈ B(H), then

wp(A) ≤ 1
2‖A‖pt

∥∥f2p (|A|1−t
)

+ g2p (|A∗|1−t
)∥∥ ,

for all p ≥ 1, and for all t ∈ [0, 1]. In particular, for p = 1

w(A) ≤ 1
2‖A‖t

∥∥f2 (|A|1−t
)

+ g2 (|A∗|1−t
)∥∥ , (2.10)

for all t ∈ [0, 1].

Proof. Let A = U |A| be the polar decomposition of A. By taking B = U |A|1−t and 
C = |A|t in Lemma 2.11, we get

wp(A) ≤ 1
2r

p(|A|t)
∥∥f2p (|A|1−t

)
+ g2p (|A∗|1−t

)∥∥ .
Since r(|A|t) = ‖|A|t‖ = ‖A‖t, we obtain the desired results. �
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Considering f(λ) = λα and g(λ) = λ1−α, 0 ≤ α ≤ 1, in (2.10) we obtain the following 
corollary.

Corollary 2.13. If A ∈ B(H), then

w(A) ≤ 1
2‖A‖t

∥∥∥|A|2α(1−t) + |A∗|2(1−α)(1−t)
∥∥∥ ,

for all α, t ∈ [0, 1]. In particular, for t = 1
2

w(A) ≤ 1
2‖A‖1/2 ∥∥|A|α + |A∗|1−α

∥∥ , (2.11)

for all α ∈ [0, 1].

Remark 2.14. (i) Let A ∈ B(H). In particular, considering α = 1
2 in (2.11) we obtain the 

following bound

w(A) ≤ 1
2‖A‖1/2

∥∥∥|A|1/2 + |A∗|1/2
∥∥∥ , (2.12)

which was recently proved by Kittaneh et al. [19].
(ii) It follows from the bound in (2.11) that

w(A) ≤ 1
2‖A‖1/2 min

α∈[0,1]

∥∥|A|α + |A∗|1−α
∥∥ , (2.13)

for every A ∈ B(H). Clearly, the bound in (2.13) is sharper than that of the bound 

in (2.12). Considering A =
[0 2 0

0 0 3
0 0 0

]
⊕ [1] (defined on C3 ⊕ C), we have, 

∥∥|A|α +

|A∗|1−α
∥∥ = max

{
21−α, 2α + 31−α, 3α, 2

}
. Clearly,∥∥∥|A|1/2 + |A∗|1/2

∥∥∥ =
√

2 +
√

3 � 3.14626436994

and ∥∥|A|α0 + |A∗|1−α0
∥∥ = 2α0 + 31−α0

� 2.98118458519, where α0 = 87
100 .

Hence,

min
α∈[0,1]

∥∥|A|α + |A∗|1−α
∥∥ <

∥∥∥|A|1/2 + |A∗|1/2
∥∥∥ .

This implies that the bound in (2.13) is a non-trivial refinement of the bound in (2.12).
(iii) From the bound in (2.13) we conclude that if w(A) = ‖A‖, then

min
∥∥|A|α + |A∗|1−α

∥∥ =
∥∥∥|A|1/2 + |A∗|1/2

∥∥∥ = 2‖A‖1/2.

α∈[0,1]
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Next, we need the following lemma.

Lemma 2.15. [8, Corollary 2.7] Let B, C ∈ B(H) be such that |B|C = C∗|B|. Then

w(BC) ≤ 1
4
(∥∥|B|2 + |B∗|2

∥∥ + 2‖B2‖
)1/2 (∥∥|C|2 + |C∗|2

∥∥ + 2‖C2‖
)1/2

.

Now, we obtain an upper bound of w(A) using the Aluthge transform of A.

Theorem 2.16. If A ∈ B(H), then

w(A) ≤ ‖A‖1/2
(

1
2

∥∥∥∥ |A| + |A∗|
2

∥∥∥∥ + 1
2

∥∥∥Ã∥∥∥)1/2

,

where Ã = |A|1/2U |A|1/2 is the Aluthge transform of A and A = U |A| is the polar 
decomposition of A.

Proof. By taking B = U |A|1/2 and C = |A|1/2 in Lemma 2.15, we obtain the desired 
inequality. �
Remark 2.17. (i) Clearly,

‖A‖1/2
(

1
2

∥∥∥∥ |A| + |A∗|
2

∥∥∥∥ + 1
2

∥∥∥Ã∥∥∥)1/2

≤ ‖A‖1/2
(

1
2‖A‖ + 1

2

∥∥∥Ã∥∥∥)1/2

.

Since ‖Ã‖ ≤ ‖A2‖1/2,

‖A‖1/2
(

1
2‖A‖ + 1

2‖Ã‖
)1/2

≤ ‖A‖1/2
(

1
2‖A‖ + 1

2‖A
2‖1/2

)1/2

≤ ‖A‖.

Therefore, the bound obtained in Theorem 2.16 refines the second bound in (1.1).
(ii) Following [22, Corollary 2], we have ‖|A| + |A∗|‖ ≤ ‖A‖ +

∥∥|A|1/2|A∗|1/2
∥∥. Also, it 

is easy to observe that 
∥∥|A|1/2|A∗|1/2

∥∥ = r1/2 (|A||A∗|). Therefore, from Theorem 2.16, 
we derive that

w(A) ≤ ‖A‖1/2
(

1
2

∥∥∥∥ |A| + |A∗|
2

∥∥∥∥ + 1
2

∥∥∥Ã∥∥∥)1/2

≤ ‖A‖1/2
(

1
2

(
1
2‖A‖ + 1

2r
1/2 (|A||A∗|)

)
+ 1

2‖Ã‖
)1/2

≤ ‖A‖1/2
(

1
2

(
1
2‖A‖ + 1

2w
1/2 (|A||A∗|)

)
+ 1

2‖Ã‖
)1/2

≤ ‖A‖1/2
(

1
(

1‖A‖ + 1 ∥∥A2∥∥1/2
)

+ 1‖Ã‖
)1/2

.
2 2 2 2
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Based on the inequalities in (ii) of Remark 2.17 and the first inequality in (1.1), we 
obtain the following proposition.

Proposition 2.18. Let A ∈ B(H). If A2 = 0, then

w(A) = 1
2‖A‖ and ‖|A| + |A∗|‖ = ‖A‖.

The converse of the above proposition may not hold. For example, considering A =[
0 2
0 0

]
⊕ [1] (defined on C2 ⊕ C), we see that w(A) = 1 = 1

2‖A‖ and ‖|A| + |A∗|‖ =

2 = ‖A‖, but A2 = 0. To develop our next result we need the following lemma.

Lemma 2.19. [10, Corollary 2.13] Let B, C ∈ B(H) be such that |B|C = C∗|B|. Then

w(BC) ≤ 1
2r(C)

(
‖B‖ + r1/2(|B||B∗|)

)
.

Now, we prove the following theorem.

Theorem 2.20. If A ∈ B(H), then

w(A) ≤ 1
2‖A‖ + 1

2‖A‖tr1/2 (|A|1−t|A∗|1−t
)
,

for all t ∈ [0, 1]. In particular, for t = 1
2

w(A) ≤ 1
2‖A‖ + 1

2‖A‖1/2r1/2
(
|A|1/2|A∗|1/2

)
. (2.14)

Proof. Let A = U |A| be the polar decomposition of A. By putting B = U |A|1−t and 
C = |A|t in Lemma 2.19, we get the desired results. �
Remark 2.21. Let A ∈ B(H). For 0 ≤ t ≤ 1, we see that

r1/2 (|A|1−t|A∗|1−t
)
≤ w1/2 (|A|1−t|A∗|1−t

)
≤

∥∥|A|1−t|A∗|1−t
∥∥1/2

≤ ‖|A||A∗|‖(1−t)/2 =
∥∥A2∥∥(1−t)/2

.

Therefore, it follows from Theorem 2.20 that, for all t ∈ [0, 1],

w(A) ≤ 1
2‖A‖ + 1

2‖A‖tr1/2 (|A|1−t|A∗|1−t
)

≤ 1‖A‖ + 1‖A‖tw1/2 (|A|1−t|A∗|1−t
)

2 2
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≤ 1
2‖A‖ + 1

2‖A‖t
∥∥|A|1−t|A∗|1−t

∥∥1/2

≤ 1
2‖A‖ + 1

2‖A‖t
∥∥A2∥∥(1−t)/2

.

In particular, considering t = 0, we get

w(A) ≤ 1
2‖A‖ + 1

2r
1/2 (|A||A∗|)

≤ 1
2‖A‖ + 1

2‖A
2‖1/2,

which was also proved in [10, Theorem 2.1 and Remark 2.2] by using different approach.

The next lemma that is needed for our purpose is as follows.

Lemma 2.22. [12, Corollary 2.17] Let B, C ∈ B(H). Then

wr(BC) ≤ 1
2w

2 (|C|r + i|B∗|r) ,

for all r ≥ 2.

Using the above lemma we prove the following theorem.

Theorem 2.23. If A ∈ B(H), then

wr(A) ≤ 1
2w

2
(
|A|rt + i|A∗|r(1−t)

)
≤ 1

2

∥∥∥|A|2rt + |A∗|2r(1−t)
∥∥∥ ,

for all t ∈ [0, 1] and for all r ≥ 2. In particular, for r = 2

w(A) ≤ 1√
2
w
(
|A|2t + i|A∗|2(1−t)

)
(2.15)

≤ 1√
2

∥∥∥|A|4t + |A∗|4(1−t)
∥∥∥1/2

.

for all t ∈ [0, 1].

Proof. Let A = U |A| be the polar decomposition of A. By considering B = U |A|1−t and 
C = |A|t in Lemma 2.22, we obtain the desired first inequality. The next inequalities 
follow easily. �
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In particular, considering t = 1
2 in the inequality (2.15), we get

w2(A) ≤ 1
2w

2 (|A| + i|A∗|)

≤ 1
2
∥∥|A|2 + |A∗|2

∥∥ ,
which was also proved in [12, Corollary 2.15 and Remark 2.16] using different technique. 
To prove our final result we need the following lemma.

Lemma 2.24. [6, Corollary 2.11] Let B, C ∈ B(H) be such that |B|C = C∗|B|. Then

w(BC) ≤ 1√
2
r(C)w (|B| + i|B∗|) .

Theorem 2.25. If A ∈ B(H), then

w(A) ≤ 1√
2
‖A‖tw

(
|A|1−t + i|A∗|1−t

)
≤ ‖A‖t

∥∥∥∥ |A|2(1−t) + |A∗|2(1−t)

2

∥∥∥∥1/2

,

for all t ∈ [0, 1]. In particular, for t = 1
2

w(A) ≤ 1√
2
‖A‖1/2w

(
|A|1/2 + i|A∗|1/2

)
(2.16)

≤ ‖A‖1/2
∥∥∥∥ |A| + |A∗|

2

∥∥∥∥1/2

.

Proof. Let A = U |A| be the polar decomposition of A. By considering B = U |A|1−t and 
C = |A|t in Lemma 2.24, we obtain the desired first inequality. The next inequalities 
follow easily. �
Remark 2.26. We would like to remark that the bound (2.16) is sharper than the bound

w(A) ≤ ‖A‖1/2
∥∥∥∥ |A| + |A∗|

2

∥∥∥∥1/2

. (2.17)

The bound (2.17) follows from the bounds w(A) ≤ ‖A‖ (see in (1.1)) and w(A) ≤∥∥∥ |A|+|A∗|
2

∥∥∥ (see in [21]).
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