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Ecological filtering shapes the impacts of 
agricultural deforestation on biodiversity

The biodiversity impacts of agricultural deforestation vary widely across 
regions. Previous efforts to explain this variation have focused exclusively 
on the landscape features and management regimes of agricultural systems, 
neglecting the potentially critical role of ecological filtering in shaping 
deforestation tolerance of extant species assemblages at large geographical 
scales via selection for functional traits. Here we provide a large-scale test 
of this role using a global database of species abundance ratios between 
matched agricultural and native forest sites that comprises 71 avian 
assemblages reported in 44 primary studies, and a companion database 
of 10 functional traits for all 2,647 species involved. Using meta-analytic, 
phylogenetic and multivariate methods, we show that beyond agricultural 
features, filtering by the extent of natural environmental variability and 
the severity of historical anthropogenic deforestation shapes the varying 
deforestation impacts across species assemblages. For assemblages 
under greater environmental variability—proxied by drier and more 
seasonal climates under a greater disturbance regime—and longer 
deforestation histories, filtering has attenuated the negative impacts of 
current deforestation by selecting for functional traits linked to stronger 
deforestation tolerance. Our study provides a previously largely missing 
piece of knowledge in understanding and managing the biodiversity 
consequences of deforestation by agricultural deforestation.

As the earliest and most dominant form of human land use1, agriculture 
has transformed almost 40% of the Earth’s ice-free land area2. Among its 
many environmental impacts3, deforestation for agriculture poses one 
of the gravest direct threats to biodiversity via habitat loss, fragmenta-
tion and degradation4, with existing evidence overwhelmingly show-
ing negative biodiversity responses5,6. However, the severity of these 
impacts appears to vary widely7, with reports of substantial biodiversity 
loss following even small-scale forest conversions8 contrasted with cases 
of agricultural landscapes providing positive conservation outcomes9. 
Understanding which factors underlie this apparent variation is fun-
damental in predicting the future biodiversity impacts of agricultural 
land use and informing conservation planning, including associated 
forest protection and restoration6. The urgency of such an understand-
ing is evident given the ongoing global expansion of agriculture (with  
~107 million hectares of deforestation and natural vegetation conver-
sion to croplands in 2003–2019 alone10) and the competing demands 
on limited land resources from food security and forest conservation11.

Studies have traditionally focused on the landscape features and 
management regimes of agricultural systems to explore reasons for 
the varying biodiversity impacts of agricultural deforestation7,12,13. 
These efforts have generated a broad consensus on the ameliorating 
roles of higher landscape heterogeneity14,15 and lower management 
intensities16, providing useful guidance to minimize the biodiversity 
impacts of agriculture at the local scale17. However, these findings are 
focused on present-day factors and have neglected the potentially criti-
cal roles of natural and anthropogenic filtering in shaping biodiversity 
responses. At large geographical scales, natural habitat features and 
historical human impacts are well known to determine current spe-
cies distributions via the selection for certain combinations of func-
tional traits that govern species’ persistence in the local environment  
(Fig. 1a)18–23. If such filtering affects species’ inherent tolerance to habi-
tat change because of their pre-existing or acquired functional traits, it 
could conceivably render inherently different tolerance to agricultural 
deforestation in extant species and their assemblages across different 
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are more tolerant of forest conversion to agriculture24,25. In contrast, 
historical deforestation may further select against species sensitive 
to deforestation via extinction and adaptation26,27. In both cases, there 
should be a trait signature of filtering, whereby species assemblages 
under greater environmental variability or historical deforestation 
assume trait profiles corresponding to greater deforestation tolerance 
(Fig. 1b). Filtering linked to this trait signature would thus predict less 
severe biodiversity impacts of current agricultural deforestation at the 
assemblage level, independent of the features of agricultural systems. 
Despite strong theoretical underpinnings18 and empirical evidence 
of their influence on biodiversity responses to other anthropogenic 
threats28,29, these filtering mechanisms, and particularly the trait sig-
nature of such filtering, have not been tested in large-scale assessments 
of the biodiversity impacts of agricultural deforestation.

In this study, we combine meta-analytic, phylogenetic and multi-
variate methods to test the hypothesis that filtering by environmental 
variability and historical deforestation explains global variations in the 
biodiversity impacts of agricultural deforestation, and that these filter-
ing effects are reflected by the trait signatures of species assemblages. 
We use birds as a single, most data-rich representative taxon to avoid 
taxonomic identity confounding biodiversity responses, considering 
that different taxa may have inherently different responses to habitat 
change30. Through extensive compilation of paired data between 

ecosystems. Yet despite the wide recognition of filtering18–23, how it may 
underlie the tolerance of extant species and assemblages to agricultural 
deforestation has not been explicitly assessed beyond a handful of 
local studies21,24, severely limiting the scope of inference attainable. 
Overall, the lack of a filtering perspective in existing large-scale assess-
ments potentially omits a key process responsible for the observed  
variation in biodiversity responses to agricultural deforestation.

At large geographical scales, two sets of factors with clear 
geographical patterns are particularly likely to shape biodiversity 
responses to agricultural deforestation via filtering: natural variability 
of environmental conditions and historical anthropogenic defor-
estation (‘environmental variability’ and ‘historical deforestation’, 
respectively, hereafter). In forest ecosystems where the environment 
is variable in such a way that vegetation bears natural resemblance 
to non-forest habitat, such as sparse canopy (whose interspersion 
of forest and non-forest conditions results in spatial environmental 
variability) or recurrent structural changes (for example, seasonal 
defoliation or other structural changes linked to disturbance regime), 
species assemblages are naturally exposed to non-forest conditions. 
As such, they may be pre-adapted to deforestation, including defor-
estation associated with conversion to agriculture. This possibility 
has been shown for avian assemblages in Central America and the 
Himalayas, where those in drier or more seasonal forest ecosystems 
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Fig. 1 | How natural and anthropogenic filtering can shape the observed 
biodiversity responses to agricultural deforestation. a, Filtering by natural 
habitat features (natural filtering; also termed habitat filtering18,20) and historical 
human impacts (anthropogenic filtering)—both of which can operate via biotic 
and abiotic mechanisms23—can select for species with certain functional trait 
profiles (pre-existing or acquired in the process of adaptation) that allow them 
to persist in the local environment, such that present-day species assemblages 
studied for deforestation impacts contain only a subset of species that (could) 
have existed. Different-coloured circles represent species with different trait 
profiles. b, The trait signature of natural and anthropogenic filtering. Species 
of hypothetical assemblages (grey circles) are shown in three-dimensional 
(3D) trait space along with the trait centroid of each assemblage (pink circles), 

calculated as the abundance-weighted mean for each trait. Compared with 
species assemblages under low filtering (top left), assemblages under high 
natural or anthropogenic filtering (assemblages within the dashed box) should 
in theory occupy trait spaces that correspond to greater deforestation tolerance. 
This contrast can be achieved through different mechanisms, such that strongly 
filtered assemblages (1) occupy a larger trait space, particularly in regions of  
the trait space that correspond to greater tolerance (trait space expansion);  
(2) shift collectively towards regions of the trait space that correspond to greater 
tolerance while assuming the same trait space size (trait shift); and/or (3) occupy 
the same trait space in size and location, but have a considerable portion of 
constituent species clustering in the regions of trait space that correspond to 
greater tolerance (trait clustering).
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matched agricultural and reference native forest sites (‘agriculture–for-
est pair’ hereafter), we constructed a global database of species-specific 
abundance records (in individuals per hectare; corrected for sampling 
effort) for entire avian assemblages31; we broadly defined agricul-
tural land to include croplands, pastures and agroforestry (Methods, 
Extended Data Fig. 1 and Extended Data Table 1). For each record, 
we calculated an abundance response ratio (RR) of agricultural to 
native forest sites (on the natural log scale) to represent the impact 
of agricultural deforestation on each species (and, by extension, spe-
cies’ tolerance to agricultural deforestation), with more negative RRs 
indicating stronger negative impacts and lower deforestation toler-
ance (Methods).

For each assemblage, we also calculated the means of RR across 
all species (‘assemblage RR’ hereafter) to represent assemblage-level 
impacts. For the agricultural sites in each study, we also quantified 
remnant forest cover, distance to the nearest continuous forest and 
surrounding human population density (people per km2) to represent 
their landscape features. Our compilation yielded 7,625 RRs covering 
2,647 bird species31. These records contained 71 agriculture–forest 
pairs (each involving an entire avian assemblage) reported in 44 pri-
mary studies from 25 countries, and they accounted for ~72% of all 
suitable primary studies identified (Fig. 2 and Extended Data Table 2). 
For each bird species, we also compiled data on ten functional traits31 
(spanning the morphological, life-history, behavioural and other 
ecological dimensions) that are considered predictive of species 
tolerance to forest loss or degradation29,32–36 (Extended Data Tables 3  
and 4 and Methods).

To represent environmental variability, we used mean annual 
precipitation (MAP; in mm y−1), the s.d. of mean monthly temperature 
(‘seasonality’ hereafter; in °C) and the frequency of forest disturbance 
regime involving any of four disturbance types: storm, wildfire, flood 

and drought (‘disturbance regime’ hereafter; in the two categories no 
disturbance versus with regular disturbance)28. Native forests under 
lower MAP tend to have sparser canopy cover37, whereas those under 
more seasonal climates or a more frequent disturbance regime typi-
cally show more pronounced defoliation or other structural change 
cycles24,28—both are features that resemble non-forest habitat condi-
tions associated with environmental variability. To represent the sever-
ity of historical deforestation, we calculated the length of agricultural 
history (’agricultural history’ hereafter; in years), considering that 
agricultural land use constitutes the dominant agent of anthropogenic 
deforestation1,18, and that its filtering effect would most likely begin 
with the onset of agricultural land conversion38. We obtained data on 
MAP, seasonality and agricultural history from existing databases39,40, 
and we scored disturbance regime by consulting authors of the primary 
studies and the literature (Methods). The study systems included in our 
database spanned wide ranges of variable values representing environ-
mental variability (100–4,964 mm y−1 in MAP, 0.2–14.1 °C in seasonality 
and varying disturbance regime scores; the 100 mm y−1 MAP and 14.1 °C 
seasonality were both from a desert ecosystem with riparian forests), 
agricultural history (142–9,018 y) and agricultural landscape features 
(Fig. 2, Extended Data Figs. 2 and 3, and Extended Data Table 2; ref. 31).

Results
Biodiversity impacts of agricultural deforestation are 
less severe in study systems under greater environmental 
variability and historical deforestation
Meta-analyses of assemblage RR indicated that although the impacts 
of agricultural deforestation on avian abundance were negative over-
all, they depended on the type of agriculture and species considered  
(Fig. 3a,b and Methods). Whereas average impacts on whole assem-
blages were hardly negative (Fig. 3a, top), this pattern was a result of the 
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Fig. 2 | The geographical distribution of paired abundance data in our 
database. Circles represent datasets of entire avian assemblages for agriculture–
forest pairs contributed by each primary study, with sizing proportional to 
the number of assemblages (each representing an agriculture–forest pair) and 
colours representing the agricultural history of the study system. Symbols 
accompanying each circle indicate the type of agriculture (cropland, pasture 
or agroforestry) involved in each primary study. Distributions of MAP and 

seasonality for primary studies are shown as box plots (n = 44 primary studies). 
For each box plot, the box demarcates the first quartile (that is, Q1; left edge), 
median value (middle line) and third quartile (that is, Q3; right edge), and the 
lower and upper whiskers reach the most extreme data points within the 1.5× 
interquartile range (that is, 1.5× the difference between Q3 and Q1) as measured 
below Q1 and above Q3, respectively.
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mostly positive impacts of agroforestry (Fig. 3a, middle) counteracting 
the overall negative impacts of open agriculture (Fig. 3a, bottom). More 
importantly, this pattern was clearly driven by a set of ‘winner’ species 
that were absent from native forests but were found at agricultural sites: 
a separate set of meta-analyses on subassemblages that comprised only 
species present at the native forest sites showed clear negative impacts 
of agriculture (Fig. 3b, top), regardless of whether it was agroforestry 
(Fig. 3b, middle) or open agriculture (Fig. 3b, bottom).

The above meta-analyses also showed that the impacts of agricul-
tural deforestation on avian assemblages varied widely across study 
systems, as indicated by the consistently high values of I2, the measure 
of heterogeneity of meta-analytic data41 (Fig. 3a,b and Methods). Apply-
ing meta-regressions on assemblage RR to further assess such variation, 
we found that impacts were less negative in assemblages under higher 
remnant forest cover (meta-regression slope β = 0.205; 95% confidence 
interval (CI), 0.064–0.347) and in fact tended to be positive at high 
cover (Fig. 3c and Methods). Crucially, impacts were also less negative 
at lower MAP (β = −0.320; 95% CI, −0.650 to 0.009; Fig. 3d) and longer 
agricultural history (β = 0.227; 95% CI, 0.033–0.420; Fig. 3e). These 
results were robust to potential confounding effects of the types of 
agriculture and native forests being compared and the season of study 
(Extended Data Fig. 4), to publication bias (Extended Data Fig. 4 and 
Supplementary Table 1), and to a set of sensitivity analyses involving 

map-extracted data, data scaling, outlier handling and weighting 
schemes (Supplementary Tables 2–4 and Methods). In sum, the nega-
tive biodiversity impacts of current agricultural deforestation were 
less severe in study systems subjected to greater filtering by historical 
deforestation and, to a lesser extent, environmental variability.

Functional traits predict species tolerance to agricultural 
deforestation
We further assessed the trait signature of filtering effects by testing 
whether avian assemblages under greater environmental variability 
and historical deforestation had trait profiles predictive of greater 
tolerance to agricultural deforestation (Fig. 1b). To do this, we first 
asked what traits would predict species’ greater tolerance to agricul-
tural deforestation (represented by larger species-level RRs) using 
phylogenetically controlled mixed-effect modelling and accounting 
for the potential influence of covariates as informed by preliminary 
analyses (Methods). Our analyses showed all ten traits tested to be 
relevant in ways consistent with expectations (Extended Data Table 3): 
species’ greater tolerance to deforestation was clearly associated with 
larger clutch sizes, shorter generation lengths, lower diet specializa-
tion, lower foraging heights, weaker forest associations, larger natural 
ranges, and lower dependence on forest structures for nest placement, 
and to a lesser extent were associated with lower body masses, larger 
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Fig. 3 | Variation in assemblage-level impacts of agricultural deforestation 
across studies and their underlying factors. a, Assemblage-level impacts of 
agricultural deforestation (top; n = 71 assemblages), distinguished between 
agroforestry (middle; n = 16 assemblages) versus open agricultural (cropland 
or pasture; bottom; n = 55 assemblages) systems. Scattered points represent 
assemblage-level RRs (that is, the RRs of agricultural over native forest sites on 
the natural log scale, averaged across all species within an assemblage), with 
those involving pasture in the bottom row indicated by darker dots. See b for 
symbol legend. b, Impacts of agricultural deforestation on subassemblages 
that comprised species present at the native forest sites (top), shown separately 
for agroforestry (middle) and open agricultural systems (bottom). The clear 
contrasts between agricultural and native forest sites suggested that the less 
marked contrasts in a were driven by a set of winner species, which were absent 

from native forests but were found at agricultural sites. Sample sizes and symbols 
are the same as in a. c–e, The relationship between assemblage-level RR and 
remnant forest cover (c), MAP (d) and agricultural history (e), the three variables 
identified by model selection to be predictive of assemblage-level RR; MAP and 
agricultural history were analysed on a natural log scale (Methods). Sample 
size of n = 60 assemblages, after removing records with missing information on 
remnant forest cover. Each point represents an avian assemblage, with sizing 
proportional to its weight in analysis. Lines and coloured bands represent fitted 
curves along with their 95% confidence bands, based on the mean (that is, β in 
the top right) and 95% CI (that is, range in parentheses after β) estimated for the 
slope of each focal variable, according to the model with the most complete set of 
predictor variables from within the top model set identified by model selection.
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hand–wing indices (representing stronger dispersal abilities29) and 
being migratory (Fig. 4a and Supplementary Table 5). These ‘tolerance 
traits’ thus depicted a clear trait profile of species that were more toler-
ant of agricultural deforestation.

Assemblage trait profiles are related to environmental 
variability and historical deforestation
On the basis of the above trait profile, we next derived the ‘tolerance 
trait profile’ for individual assemblages, and assessed its relation-
ship with environmental variability and historical deforestation. We 
represented the tolerance trait profile of a given assemblage by its 
‘centroid’ of each trait, that is, the mean trait value weighed by the 
relative abundance of each species (pooled across agricultural and 
native forest sites, after correcting for potentially unequal sampling 
effort between the two habitat types; Methods). Thus, an assemblage 
more tolerant of agricultural deforestation had a trait profile involving 
lower assemblage-level centroid values for six traits (body mass, gen-
eration length, diet specialization, foraging height, forest association 
and dependence on forest structures for nest placement) and higher 

centroid values for the four other traits (hand–wing index, clutch size, 
migratory status and natural range size) (Fig. 4a). Mixed-effect models 
for the assemblage-level centroid of each trait indicated that they had 
clear relationships with seasonality and, to a lesser extent, MAP, distur-
bance regime and agricultural history (Fig. 4b and Methods). Impor-
tantly, the directions of these relationships predominantly linked more 
tolerant assemblage trait profiles to greater environmental variability 
and historical deforestation. Take forest association as an example: 
its lower centroid values—indicating greater assemblage tolerance of 
deforestation (top dashed box in Fig. 4a)—were linked to lower MAP, 
higher seasonality and more frequent disturbance, all corresponding 
to greater environmental variability; they were also to a lesser extent 
linked to longer agricultural history that signifies more severe histori-
cal deforestation (Fig. 4b, the row corresponding to the top dashed 
box in Fig. 4a).

These relationships were not an artefact of multiple testing, 
according to a further analysis of the top principal component (PC1) 
of all 10 trait centroids, which accounted for 49.0% of the total variance 
in principal component analysis (PCA; Supplementary Table 6 and 
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Fig. 4 | The trait signature of filtering by environmental variability and 
historical deforestation. a, Relationship of species-level RR with functional 
traits and other covariates, based on phylogenetically controlled mixed-effect 
models (n = 5,866 RRs, after removing records with missing information). The 
vertical dashed line indicates a slope of zero for predictor variables (that is, no 
relationship); the horizontal dashed line separates functional trait variables 
(below the line) from other covariates (above the line). For the three categorical 
traits (shown in dashed boxes) and study season, this relationship was based on 
the baseline of open-country, non-migratory, ground-nesting species during 
non-breeding season; for all continuous variables, this relationship was based  
on ordinal values for remnant forest cover (0–5) and centred-and-scaled values 
for others. Because of collinearity between body mass and generation length, 
effects shown for all traits other than generation length were from the set of 
analyses dropping generation length, and they were similar to estimates by  
the alternative set of analyses dropping body mass (Supplementary Table 5).  
b, Relationships between the assemblage-level centroid of individual traits and 
filtering factors, based on model selection (n = 71 assemblages). Relationships 
are expressed as the coefficients of filtering factors, shown in circles that are 

sized proportionally to the absolute coefficient value, with colours representing 
coefficient sign and the overlap of its 95% CI with zero (noted as ‘significant’ if 
not overlapping with zero, and ‘non-significant’ otherwise); dashes (–) indicate 
that the filtering factor concerned did not enter the top model set. Categorical 
traits were analysed as ordinal variables, with higher values corresponding to 
stronger forest association, being migratory and stronger forest dependence 
for nest placement. c, Relationships between PC1 of the assemblage-level trait 
centroids and filtering factors based on model selection (n = 71 assemblages). 
Each point represents an avian assemblage. Lines and coloured bands represent 
fitted curves and their 95% confidence bands, based on the mean (that is, β in 
the top right) and 95% CI (that is, range in parentheses after β) estimated for the 
slope of each filtering factor; assemblages and fitted lines are shown separately 
for study systems deemed to not have (slate blue) or regularly have (purplish red) 
a disturbance regime. *According to variable loadings of PCA (Supplementary 
Information Table 6), PC1 had an overwhelmingly negative relationship with 
traits that predicted greater tolerance to deforestation, thus higher PC1 values 
corresponded to lower deforestation tolerance.
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Methods). Variable loadings of PCA indicated that a lower PC1 over-
whelmingly corresponded to assemblage trait profiles more tolerant 
of agricultural deforestation, as evidenced by the negative loadings 
of traits that predicted greater tolerance to agricultural deforestation 
(for example, hand–wing index) and vice versa (for example, forest 
association; Supplementary Table 6). Mixed-effect models indicated 
that MAP, seasonality, disturbance regime and agricultural history were 
all predictive of PC1 (Fig. 4c and Methods) in ways that linked a lower 
PC1 to greater environmental variability—as represented by lower MAP 
(Fig. 4c, top), higher seasonality (Fig. 4c, middle) and more frequent 
disturbance (Fig. 4c, slate blue over pink data points and fitted line)—
and more severe historical deforestation (that is, longer agricultural 
history; Fig. 4c, bottom).

Taken together, the above analyses (also robust to a suite of sensi-
tivity analyses; Supplementary Tables 7–10 and Methods) showed that 
the observed filtering effects of greater environmental variability and 
historical deforestation had a clear trait signature of ‘shifting’ avian 
assemblages towards trait profiles that correspond to greater toler-
ance to deforestation. Such shifts could occur in a number of ways. 
First, they could be the result of the filtered assemblages occupying 
a larger, more divergent trait space, particularly in regions of the trait 
space that correspond to greater tolerance of deforestation (trait space 
expansion in Fig. 1b). Alternatively, and in the absence of trait space 
expansion, such shifts could occur by constituent species in filtered 
assemblages collectively shifting towards or clustering in the regions 
of the same trait space that correspond to greater tolerance (trait shift 
and trait clustering, respectively, in Fig. 1b).

To assess how the above shift in assemblage trait profiles could 
have occurred, we used a set of multivariate trait metrics to measure the 
trait space occupation of each avian assemblage, which we then related 
to the PC1 of assemblage trait centroids, the metric we used in the above 
analyses to measure the trait profile and its shift for each assemblage. 
We used functional richness (corrected for species richness) to measure 
the hypervolume of the trait space occupied42, functional dispersion to 
measure the divergence of trait profiles among species43 and functional 
redundancy to measure the clustering of species around certain trait 
profiles44 (Methods). Linear regressions indicated that a lower PC1—cor-
responding to more tolerant assemblage trait profiles (Supplementary 
Table 6) and associated with filtering by greater environmental vari-
ability and historical deforestation (Fig. 4c)—was strongly correlated 
with an increase in both functional richness and functional dispersion, 
but it was unrelated to functional redundancy (Fig. 5). These results 
suggested that in assemblages subjected to filtering by greater envi-
ronmental variability and historical deforestation, the trait signature 
of filtering most likely occurred by constituent species showing more 
divergent trait profiles, particularly those corresponding to greater 
tolerance of deforestation (that is, via trait space expansion).

Discussion
Drawing on an extensive database of species abundance responses 
to agricultural deforestation for entire avian assemblages compiled 
from 25 countries, we showed high levels of variation in the severity 
of assemblage-level deforestation impacts across a large collection of 
primary studies. Crucially, beyond features of the agricultural systems, 
this variation was linked to the filtering effects of environmental vari-
ability and historical anthropogenic deforestation, which operated on 
species’ functional traits to render inherently different tolerances to 
deforestation across extant assemblages. Previous efforts to explain 
the varying impacts of agricultural deforestation on biodiversity were 
overwhelmingly limited to the features of agricultural systems7,12, 
or were regionally focused so as to severely limit the ranges of test-
able filter types or filtering intensities21,24. Building on theoretical 
underpinnings18,20 and empirical evidence in other contexts19,28,29, our 
study provides a large-scale test of the roles of natural and anthro-
pogenic filtering in shaping biodiversity responses to agricultural 

deforestation. The evidence we uncovered for such roles highlighted 
a previously largely neglected explanation for the observed variation 
in biodiversity responses, including the apparently more negative 
responses found in tropical assemblages7, the reasons for which were 
yet to be formally tested.

Enhancing our understanding enables better anticipation and 
management of biodiversity consequences of future agricultural 
land-use change. Globally, agricultural land use is predicted to shift 
and expand, with deforestation hotspots predicted particularly for 
sub-Saharan Africa, South and Southeast Asia, and to a lesser extent 
Central and South America45. Most of these hotspots are of high pre-
cipitation, low temperature seasonality, little disturbance regime 
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Fig. 5 | How the ‘greater-tolerance shift’ of assemblage trait centroids may 
have occurred under natural and anthropogenic filtering. a–c, We assessed 
possible mechanisms by testing, on the assemblage level, the relationship 
between the PC1 of the PCA on assemblage-level trait centroids and three 
multivariate trait metrics, including functional richness (after correcting for 
species richness) (a), functional dispersion (b) and functional redundancy 
(c) (n = 71 assemblages). Each point represents an avian assemblage, and 
lines and coloured bands represent fitted lines along with their 95% CIs from 
simple linear regressions, based on the mean (that is, β in the top right) and 
95% CI (that is, range in parentheses after β) estimated for the slope of each 
multivariate trait metric.
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and/or short agricultural histories (Extended Data Fig. 3), which likely 
render their extant biodiversity less tolerant to the negative impacts of 
deforestation. Such a prospect, combined with the fact that much of the 
existing agricultural deforestation occurred in more ‘filtered’ ecosys-
tems1,10 (that is, ecosystems less subjected to the filtering effects of high 
environmental variability or long deforestation histories), means that 
global biodiversity loss linked to future agricultural deforestation may 
be even more severe than that which has occurred so far4. This grave 
possibility underscores the need for managing agricultural landscapes 
using the best knowledge and practices available12,17, and, crucially, 
for proactive land-use planning to reduce deforestation in inherently 
high-impact regions in ways sensitive to the livelihood and rights of the 
rural populations involved. Proactive land-use strategies should use a 
range of approaches, including reducing the footprint of agricultural 
land use (via optimizing land allocation among alternative produc-
tion regimes46 and/or relocating production to more cost-efficient 
regions47) and prioritizing already deforested land for agricultural 
expansion in coordination with forest restoration48.

The trait signature of filtering we found provided further insights 
into how natural and anthropogenic filtering occurs to shape current 
biodiversity responses to anthropogenic environmental change, and 
it highlighted several functional traits as key determinants of such 
responses. Previous studies on the role of filtering in explaining the 
geographical variation of biodiversity responses are restricted to 
showing the effects of filtering, stopping short of testing its potential 
trait signatures19,28, although two recent species-level studies on avian 
tolerance of urbanization49 and forest fragmentation29 have gone a 
step further to assess the relevance of traits to such tolerance and, 
crucially, the geographical variation involved in this relevance. These 
studies mark an important step towards understanding varied biodi-
versity responses to environmental change from a filtering perspective. 
Nevertheless, they do not test the signature of filtering on the level of 
entire species assemblages, which is critical for elucidating the role 
of filtering by bridging the logic and expectations of the underlying 
ecological theory18,20,23. In addition, despite growing recognition of 
the links between species’ tolerance to anthropogenic impacts and 
their functional traits32,50, there is yet to be a rigorous large-scale test 
of these links for agricultural deforestation33,35, particularly based on 
globally synthesized empirical data rather than the coarse proxy of 
species threat levels delineated by the International Union for Con-
servation of Nature32,34. Our study filled the above important gaps, 
and expanded current understanding of the conservation relevance 
of ecological filtering23.

Although our study was based on paired data and robust to a suite 
of sensitivity analyses, our conclusions could be affected by several fac-
tors for which we could not account. These include (1) the management 
intensity of agricultural systems7, (2) potential pre-existing differences 
in biophysical conditions or anthropogenic pressures (for example, 
hunting) between agricultural and native forest sites, and (3) biotic 
factors capable of further filtering species assemblages in addition to 
the factors we considered20, notably competition, a process known to 
shape community assembly via functional traits51. The first issue should 
be lessened by the fact that our analyses accounted for remnant forest 
cover at agricultural sites and the types of agriculture and native forests 
being compared, given the tendency for intensive agriculture to be 
associated with reduced remnant forest cover and non-agroforestry 
systems. The influence of the second issue should also be limited to 
that of noise rather than bias, because we have no reason to expect that 
potential differences in within-pair site conditions co-varied with MAP, 
seasonality, disturbance regime or agricultural history to contradict 
our findings. For the third issue, although we were not able to explicitly 
account for the influence of competition and other biotic filters, we 
note that at large geographical scales (which is the scale our study is 
concerned with), these factors and processes are likely to be ultimately 
shaped by similar abiotic factors to those we tested23. Nevertheless, 

conclusions from our study should be interpreted with the caveat that 
we have not explicitly considered some potentially relevant filters. 
Finally, the lack of region-specific data on avian functional traits limited 
our assessment of the trait signature of filtering to the species level, 
regardless of how widely distributed a species may be. This forced us 
to neglect potential intraspecific trait variations across regions that 
may predict different deforestation tolerances even within the same 
species52. As the spatial resolution of trait data improves, future studies 
should incorporate intraspecific trait variations in assessing the trait 
signature of filtering.

Human activities continue to profoundly shape the Earth’s ecosys-
tems and the life forms therein. As we seek to understand the extent 
and nature of such impacts and manage them, it is critical to recognize 
that the observed impacts are influenced not only by current and ongo-
ing human activities but also by the nature and strength of historical 
legacies pertaining to ecosystems’ evolutionary histories and past 
human impacts28, including undocumented historical extinctions53. 
This legacy perspective particularly underscores humans’ obligations 
to conserve the rapidly disappearing ecosystems that have so far been 
spared of human impacts—the Earth’s last strongholds of complete 
species assemblages. The otherwise inevitable filtering and loss of sen-
sitive species not only erodes the integrity of these ecosystems per se 
but also spells further erosion of the Earth’s life forms to aggravate 
the historical legacies humans leave. By illustrating this case for how 
agricultural deforestation—a leading threat to global biodiversity—
impacts extant biodiversity, our study suggests the potentially strong 
relevance of natural and anthropogenic filtering to understanding and 
managing the biodiversity impacts of other forms of anthropogenic 
environmental change.

Methods
Data collection
Data inclusion criteria. We targeted empirically measured abundance 
data for matched agricultural and native forest sites (that is, agricul-
ture–forest pairs) on the level of individual bird species for entire avian 
assemblages. We focused on species-level abundance to allow for more 
nuanced assessment of deforestation impacts on biodiversity than is 
possible from coarser metrics, such as species richness or presence/
absence54, and to relate species responses to functional traits. We 
considered a species part of an assemblage only if it was recorded at 
either the agricultural or native forest sites, or both.

As a benchmark for agricultural land, we included three types of 
native forest: old-growth forests that had not been anthropogenically 
degraded in extended recent history (that is, ≥400 years), ‘generic 
native forests’ that may have been degraded but had not been defor-
ested in extended recent history and secondary forests that had been 
regenerating after deforestation for ≥40 years55. For agricultural land, 
we included cropland of a wide range of food crops (mostly cereal and 
vegetables but also coffee, tea and cocoa; we did not include oil palm 
and other orchard tree crops because, unlike the shrub-like structure 
of coffee, tea or cocoa plantations, plantations of oil palm or other 
orchard trees tend to have a much more tree-cover-like vegetation 
structure), pasture land for domestic livestock grazing, and agrofor-
estry of crops or pasture (that is, silvopasture). We considered coffee, 
tea and cocoa plantations as agroforestry (as opposed to cropland) 
only if they were noted by primary studies to be shade-grown crops, 
considering the generally open vegetation structure of sun-grown 
coffee, tea or cocoa.

Although the true benchmark for agricultural land should be 
old-growth forests, we also accepted generic native forests and sec-
ondary forests as benchmarks because old-growth forests no longer 
existed in many study systems. We ensured that the use of these 
‘degraded’ benchmarks did not bias our findings (see ‘Meta-analyses 
and meta-regressions’), and we note that this use almost certainly 
rendered more conservative estimates of the negative impacts of 
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agricultural deforestation. We considered a native forest as old growth 
only when the primary studies explicitly labelled a forest as ‘primary’, 
‘old growth’, ‘pristine’, or otherwise undisturbed by humans, and when 
we had no reason to doubt such labelling. For secondary forests, we 
used 40 years as the minimum acceptable regeneration age to allow a 
reasonable degree of biodiversity recovery in these forests55. Still, this 
threshold age was young and potentially rendered the native forest 
benchmark a highly degraded one, but secondary forests were involved 
in only 3 out of the 71 avian assemblages studied (Extended Data  
Table 2). Therefore, these forests should not have driven our findings, 
and we tested for their potential influence on our findings via a set of 
sensitivity analyses (see ‘Sensitivity analyses’).

We required the paired agricultural and native forest sites to pro-
vide matching abundance data capable of representing their habitat 
values for entire avian assemblages. Accordingly, we followed five 
criteria to assess the suitability of each primary study. (1) The avian 
assemblages studied (typically termed communities in primary stud-
ies) must not be defined by criteria potentially relevant to species’ 
abundance response to habitat change (for example, large body size or 
needing cavities for nesting). (2) The avian assemblages studied must 
include ≥6 species, and ≥10% of constituent species must have been 
recorded. (3) Sampling efforts for agricultural and native forest sites 
must be equivalent or known, such that abundance raw counts could 
be adjusted for equal sampling effort, or the quality and comparabil-
ity of density estimates could be confirmed. (4) The size of the native 
forest patches sampled must be ≥5 ha, such that the species-specific 
abundance data could be considered as reflecting the habitat value of 
the native forests being studied, although such data are still potentially 
affected by the wider landscapes56 (as explained below, we have accord-
ingly devised a habitat certainty score as part of the weight scheme 
used in meta-analyses and meta-regressions to account for potential 
influences of the wider landscapes: 1 for ‘low habitat certainty’, if the 
native forest sampled were fragmented or otherwise <50 ha in size; 2 
for ‘high habitat certainty’, if it was ≥50 ha in size; see ‘Data search and 
compilation’). Similarly, if the agricultural sites studied were in the form 
of agricultural patches situated in a forest landscape, we required the 
agricultural patches to be ≥5 ha. (5) The matching between agricultural 
and native forest sites concerned all biophysical (for example, elevation, 
slope and landscape context) and study (sampling methods) conditions 
that may affect the measured species abundance. Correspondingly, we 
discarded data pairs that were obviously incomparable (that is, major 
differences in biophysical or study conditions, or different sampling 
methods). Provided the above criteria were met, we allowed a range of 
data formats for species-specific abundance: raw counts, estimated 
density (for example, individuals per hectare) or abundance indices; 
we did not admit indices based on occurrence frequencies because they 
are fundamentally about species’ presence or absence rather than abun-
dance. Because of varied sampling designs and methods, data compiled 
from primary studies did not allow accounting for imperfect detection.

Data search and compilation. We conducted an extensive search 
for suitable primary studies up to 7 December 2021 using a combina-
tion of keyword searches and indexing from published syntheses and 
databases (Extended Data Fig. 1 and Extended Data Table 1). Overall we 
screened 5,899 abstracts and subsequently 451 full-text articles, from 
which we identified 61 suitable primary studies.

We extracted species-specific abundance data directly from these 
studies where available, and we contacted the first and corresponding 
authors of the other studies to request abundance data. Of the 61 suita-
ble primary studies identified, we were able to compile species-specific 
abundance data for entire assemblages for 44 studies. We streamlined 
the resolution of abundance data such that a given primary study 
provided one set of species-specific abundance data (that is, corre-
sponding to an avian assemblage) for each agriculture–forest pair, 
which could consist of multiple sampling units. For abundance data in 

formats other than density, we adjusted their values by sampling effort 
(measured in the unit used in the primary studies) to ensure that data 
for agricultural land and native forests corresponded to equal sampling 
effort54. We assumed that density estimates were already corrected 
for sampling effort, and for studies that simultaneously reported 
raw counts and density estimates, we used the latter, assuming that 
they had accounted for factors that may affect the comparability of 
raw counts. In calculating RR for species-specific abundance, for data 
pairs involving zero abundance values (which would make it impos-
sible to calculate RR), we handled the zero values separately for each 
assemblage by first identifying the smallest non-zero abundance value 
for any species in the assemblage, and adding half of that value to each 
zero value following57.

For each agriculture–forest pair, we recorded three metrics to cal-
culate the weight of its RRs in subsequent analyses (see ‘Meta-analyses 
and meta-regressions’). First, we assigned a ‘match rigour score’ to 
gauge the extent of matching between agricultural and native forest 
sites: 1 for ‘high match rigour’, if matching concerned most or all bio-
physical and methodological conditions; and 2 for ‘likely or uncertain 
match rigour’, if matching was partial or if little information was pro-
vided despite data being presented as matched. We note that primary 
studies often cannot fully eliminate site differences; for example, 
agricultural sites may often be on more productive land than native 
forests in the same area. Second, we scored the duration of fieldwork 
(‘study duration’ hereafter; in months) to approximate the sampling 
effort for abundance data and, in turn, data quality. The fact that pri-
mary studies used a range of sampling designs (for example, point 
counts versus transect surveys) precluded the use of sampling units 
to assess sampling effort. Third, we assigned a ‘habitat certainty score’ 
to represent the extent to which abundance data for native forests 
reflected the habitat value of the forests per se rather than the influ-
ence of the wider landscapes: 1 for ‘low habitat certainty’, if the native 
forest sampled was fragmented or otherwise <50 ha in size; and 2 for 
‘high habitat certainty’, if it was ≥50 ha in size. We gave greater weights 
to records with higher match rigour, longer study durations and higher 
habitat certainty by calculating the weight of the species-level RRs 
(and, correspondingly, the assemblage-level RRs) for each agricul-
ture–forest pair using equation (1) (we ensured the robustness of our 
results to this weight formulation using a set of sensitivity analyses; 
see ‘Sensitivity analysis’):

weight score =
√study duration × habitat certainty score

match rigour score
(1)

For each agriculture–forest pair, we also extracted data on the 
season of study (‘study season’ hereafter), and for the agricultural 
site, the amount of remnant forest cover in the landscape and the 
distance to the nearest large, continuous forest (‘distance to the near-
est continuous forest’ hereafter). For study season, we differentiated 
between studies conducted during the non-breeding season of the 
avian assemblages studied versus those conducted during the breed-
ing season or all year, considering the possible shift of habitat needs 
during the breeding cycle for some species9. We defined the study 
season as ‘non-breeding’ if the primary study explicitly indicated as 
such, and otherwise as ‘breeding or all year’ (tropical studies in our 
database that did not specify their study season relative to the avian 
breeding cycle were therefore classified as the latter). For the amount 
of remnant forest cover at agricultural sites, because of varying and 
limited amounts of information provided across primary studies, we 
used an ordinal system of 6 categories represented by scores 0–5 in 
sequential order: 0 for 0%; 1, (0%–5%]; 2, (5%, 10%]; 3, (10%, 20%]; 4, 
(20%, 40%]; and 5, (40%, 60%]. No study included in our database had 
>60% remnant forest cover in the agricultural landscapes.

For distance of agricultural sites to the nearest continuous forest, 
we defined continuous forest as forest expanses ≥50 ha in size, and 
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we measured this distance from the FROM-GLC Plus land-cover map 
(FGP map; covering years 1982–2021, at a 30 m resolution)58 using 
layers matched to the year of the avian surveys. We used land-cover 
maps for extracting this information because of the lack of consistent, 
quantitative information from primary studies on distances between 
agricultural and forested sites. We selected the FGP map because it is 
the highest-resolution land-cover product that adequately covers the 
temporal extent of primary studies in our database. The only other 
land-cover product that covers a sufficiently wide temporal extent 
is the ESA CCI Land Cover time-series map (that is, the global land 
cover map produced by the European Space Agency Climate Change 
Initiative; it covers years 1992–2020)59, but its spatial resolution is 10× 
coarser than that of the FGP map (30 m), which we deemed too coarse 
to provide reliable distance measures. The FGP map also shows higher 
overall accuracies than the ESA CCI maps58. For the three primary stud-
ies whose avian surveys occurred outside the year range of these maps, 
we used the map layers for the years nearest to them. Considering 
potential limitations on data accuracy imposed by map resolution, we 
set all distance values below 30 m (the map pixel size) to 30 m. We also 
used an alternative size criterion of ≥100 ha for continuous forest60 in a 
set of sensitivity analyses (see ‘Sensitivity analysis’). Finally, considering 
potential map inaccuracies and its inclusion of plantations (by nature 
not ‘forests’ that could serve as population sources), we also compiled 
the distance between agricultural sites and their matching native for-
est sites from primary study authors, as a complementary distance 
measure. For this measure, we again adopted a simplified classification 
system because of limited information reliability, based on the smallest 
distance between any sampling unit of the agricultural and native forest 
sites: ‘close’ for a distance ≤1 km, and ‘far’ for a distance >1 km. As data 
on this measure were of coarse resolution and were sometimes noted 
by primary study authors to be uncertain, we only used this measure 
in a corroborative assessment (see ‘Sensitivity analysis’).

For each agriculture–forest pair, we obtained its corresponding 
MAP and the s.d. of mean monthly temperature from WorldClim 2.1 
(ref. 39) based on study coordinates. For disturbance regime, authors 
of primary studies scored the frequency of each of four major distur-
bance types for the forest ecosystems in their studies: storms (including 
hurricanes), wildfires, floods and droughts. Scoring was conducted for 
each agriculture–forest pair and concerned three categories based on 
the following criteria:

	(1)	 (Almost) never, that is, the disturbance (almost) never happens, 
or its incidence is considered exceptional

	(2)	 Occasional, that is, the disturbance sometimes happens, but is 
not considered a regular phenomenon (<50% chance)

	(3)	 Frequent, that is, the disturbance regularly happens (>50% chance)

We opted to obtain first-hand information from primary study 
authors rather than from existing maps because the latter are typi-
cally of coarse resolutions28. Of all 44 primary studies, we were able to 
get author-provided scores of the 4 disturbance types for 35 studies; 
for the remaining 9 studies, 2 co-authors (F.H. and W.W.) indepen-
dently scored the 4 disturbance types by consulting literature and web 
sources, and then discussed to harmonize any discrepancies. For each 
agriculture–forest pair, we then took the highest score across the four 
disturbance types to produce an overall disturbance regime score, 
which represented the extent to which a given ecosystem was subjected 
to regular disturbances of any kind. Finally, because only four primary 
studies had an overall disturbance regime score of two, we converted 
their scores to one to avoid computational problems, thus effectively 
streamlining the disturbance regime variable into a two-category vari-
able: zero (that is, almost no disturbance; ‘no disturbance’ hereafter) 
versus one (that is, occasional or more frequent disturbances; ‘with 
regular disturbance’ hereafter).

We also used study coordinates to derive the length of agricultural 
history for each agriculture–forest pair from the HYDE 3.2 database40 

(which covers the temporal span of year 10,000 bc to 2015 ad) by cal-
culating the number of years that had passed between the year when 
any form of agriculture (cropland or pasture, irrigated or non-irrigated) 
first appeared anywhere within a 10 km radius of the study location and 
the year when the primary study was conducted. We also used the HYDE 
3.2 database to extract the average human population density within 
a 10 km radius of the study location in the year of the primary study.

For each bird species in our database, we compiled data on ten 
functional traits, following the taxonomic nomenclature used in ref. 61.  
These traits are all considered predictive of species sensitivity to for-
est loss and degradation29,32–36, and they include the following: two 
morphological traits (body mass and hand–wing index (a measure 
of the relative elongation of a bird’s wing and a widely used proxy for 
dispersal capability62; Extended Data Table 3)), two life-history traits 
(clutch size and generation length) and six ecological traits (diet spe-
cialization, foraging height, forest association (the extent to which a 
species is associated with forest habitats), migratory status (whether 
or not a species is considered migratory), natural range size and nest 
placement (the extent to which a species depends on forest structures 
for nest placement)). We provide detailed definition, reasons for inclu-
sion into our study and data sources for these traits in Extended Data 
Table 3. Our classification system for forest association went beyond 
the coarse ‘forest versus non-forest’ classification of most studies 
(for example, ref. 33) by distinguishing between four categories: late 
successional forest, early successional forest, generalist and open 
country (Extended Data Tables 3 and 4). These categories allowed for 
finer distinction of species’ forest association that was also specific 
to the study season. To ensure data quality, two co-authors (W.W. and 
S.L.) independently scored forest association for each species and then 
discussed to harmonize any discrepancies, and we double-checked all 
extracted data to minimize data entry error.

For each trait and each species assemblage (that is, corresponding 
to a given agriculture–forest pair), we calculated its assemblage-level 
centroid, that is, the assemblage mean value weighted by the relative 
abundance of each species (pooled across agricultural and native for-
est sites after correcting for sampling effort) following equation (2):

trait centroid =
n
∑
i=1

trait valuei ×
Abuni,agriculture + Abuni,native forest

Abunassemblage
(2)

Where i represents each species in the assemblage that consists of n 
species, Abuni,agriculture and Abuni,native forest refer to the abundance of spe-
cies i at the agricultural and native forest sites (after being corrected 
for potentially unequal sampling effort between the two habitat types), 
respectively, and Abunassemblage refers to the total abundance (corrected 
for sampling effort) of all n species pooled across agricultural and 
native forests.

Statistical analysis
Meta-analyses and meta-regressions. We conducted weighted 
multi-level meta-analyses and meta-regressions63 of assemblage RR 
using the ‘lme()’ function of package nlme (v.3.1-157 (ref. 64)) in pro-
gram R (v.4.2.0 (ref. 65)). For meta-analyses, we used an intercept-only 
fixed effect, and we fitted a group of random intercept variables to 
account for potential shared variation and data non-independence, in 
descending order of nestedness, as below (that is, later variables were 
nested within earlier ones):
•	 Level 1: study season, involving the two categories breeding or 

all year versus non-breeding; random effects with a small num-
ber of categories have been shown to not bias model estimates66, 
and we confirmed that our models did produce reasonable 
estimates for this variable

•	 Level 2: the types of agriculture and native forest being com-
pared (‘comparison type’ hereafter); for native forest, we 
combined generic native forests and secondary forests—both 
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were degraded benchmarks—to form ‘non-old-growth forests’; 
this variable therefore involved six categories (three types of 
agriculture by two types of native forests)

•	 Level 3: the identity of the primary study

Finally, we added one more, lowest-tier variable to estimate I2, the 
measure of the heterogeneity of meta-analytic data that represents 
variation not due to sampling variance arising from differences in 
sampling efforts among effect sizes41, following the method developed 
in ref. 54.

For meta-regressions on the relationship between assemblage 
RR and predictor variables, we conducted model selection based on 
small-sample-corrected Akaike information criterion (AICc)67, and then 
used the model(s) with the most complete set of predictor variables 
from within the top model set (ΔAICc ≤2) to make an inference. We used 
the same random-effect structure as in the above meta-analyses, and we 
calculated marginal R2 (that is, the variance explained by the models) 
based on the lowest-tier random intercept variable68. Fixed effects of 
the global models followed equation (3):

RR ∼ remnant forest cover + distance to nearest continuous forest+

surrounding human populationdensity+

MAP + seasonality + disturbance regime + agricultural history
(3)

where remnant forest cover (in ordinal values of 0–5), distance to the 
nearest continuous forest (in m) and surrounding human population 
density (in 100 persons km−2) represented features of the agricul-
tural landscapes; MAP (in mm y−1), seasonality (in °C) and disturbance 
regime (no disturbance versus with regular disturbance) represented 
natural filtering; and agricultural history (in years) represented anthro-
pogenic filtering. We modelled the effects of all continuous variables 
(that is, all except for remnant forest cover) on the natural log scale, 
considering that the same absolute difference in the lower range of 
their values (for example, 100 m versus 300 m distance, or 300 mm 
versus 600 mm MAP) was most likely of much greater ecological 
magnitude than that in the upper range (for example, 2,100 m versus 
2,300 m distance, or 2,300 mm versus 2,600 mm MAP). Pre-analysis 
assessment of collinearity indicated the absence of strong collinearity 
among all variables (all |rPearson| < 0.52). Therefore, we did not exclude 
any variable from analyses.

For our meta-regression global models (one global model for 
each set of sensitivity analyses), we checked and confirmed that the 
random-effect variables of study season and comparison type did not 
have strong collinearity with the four filtering variables (MAP, seasonal-
ity, disturbance regime and agricultural history), and therefore would 
not have confounded their relationship with assemblage RR (Extended 
Data Fig. 4a–d as an example for the main analysis). We then identified 
the top model set for each global model, that is, models whose ΔAICc 
was ≤2 from the lowest AICc score of the full model set, using the pack-
age MuMIn (v.1.47.5 (ref. 69)) in program R. From the top model set, we 
adopted the model(s) with the most complete set of predictor variables 
to obtain predictor coefficients and their 95% CIs (‘most complete top 
model’ hereafter), admitting as many most complete top models as 
necessary to include all predictor variables present in the top model 
set. In reality, none of our meta-regressions entailed more than one 
most complete top model.

In all meta-analyses and meta-regressions above, we applied the 
weight score calculated above in a weighting scheme (equation (1)).  
Because of the way the function lme() in package nlme works, we 
supplied the above weight scores in the form of ‘weights = ~|(1/weight 
score)’ in running the function lme(). The species-level RR format 
of our data did not allow us to follow the sampling-variance-based 
weighting scheme used in conventional meta-analyses and 
meta-regressions because the species-level abundance data reported 

rarely had sampling variance information. For all meta-analyses and 
meta-regressions, we visually assessed residual and quantile–quantile 
(Q–Q) plots, which indicated general satisfaction of the assumption 
of residual normality (Extended Data Fig. 5). Concerns about any 
potential violation of this assumption should be alleviated by the fact 
that mixed-effect models are known to be generally robust to viola-
tions of model assumptions70. Funnel plots produced using package 
metafor (v.3.4-0 (ref. 71)) in program R and Egger’s test following  
ref. 72 also indicated our meta-analytic findings to be generally free 
of publication bias: any apparent data asymmetry did not appear 
to be linked to studies with lower sampling efforts (Extended Data  
Fig. 4g), and the coefficient for the square root of data weight (inverse 
form, in accordance with the way we supplied weight scores in the 
above meta-analyses) in relation to RR was non-significant for all but 
one meta-analyses (Supplementary Table 1), further indicating a lack 
of data asymmetry.

Other linear mixed models. To assess the relationship of assemblage- 
level trait centroids and their PC1 (from PCA; see ‘Multivariate analysis 
of trait data’) with the filtering factors, we used the same regression 
approach followed by model selection and inference from the most 
complete top model as we used in the meta-regressions above, with 
two modifications. First, we did not include landscape features of 
agricultural sites as fixed effects (that is, remnant forest cover, distance 
to the nearest continuous forest and human population density) or 
the weighting scheme because the response variables concerned the 
profile of the regional species pool rather than the comparison between 
agricultural and native forest sites. Second, we did not include the 
lowest-tier random intercept variable because, conceptually, this set 
of analyses was not for meta-analytic synthesis. Diagnostic residual and 
Q–Q plots showed the general satisfaction of the residual-normality 
assumption for these analyses. Fixed effects of the global models thus 
followed equation (4):

trait centroids or PC1 ∼ MAP + seasonality + disturbance regime+

agricultural history
(4)

Phylogenetically controlled mixed-effect models. We used the 
function ‘MCMCglmm()’ of package MCMCglmm (v.2.34 (ref. 73)) in 
program R to conduct phylogenetically controlled mixed-effect models 
on the relationship between species-level RR and all ten functional 
traits while considering the potential influence of covariates, that is, 
the three variables representing landscape features of agricultural sites 
(remnant forest cover, distance to the nearest continuous forest and 
surrounding human population density). Pre-analysis assessment of 
collinearity using Pearson correlations indicated the absence of strong 
collinearity (all |rPearson| < 0.37) among all variables, except between 
body mass and generation length (rPearson = 0.84 for centred-and-scaled 
values). Therefore, we conducted two sets of analyses, one dropping 
body mass and the other dropping generation length.

As preliminary analyses, we first used regular mixed-effect mod-
els without considering phylogeny to identify relevant covariates 
to include in the formal phylogenetically controlled mixed-effect 
models. We followed the same model building, selection and inference 
approaches as used in previous meta-regressions (see ‘Meta-analyses 
and meta-regressions’). Similarly, we followed the same random-effect 
structures as previous meta-regressions, but we replaced the 
lowest-tier random effect with the identity of the agriculture–for-
est pair (that is, the identity of the assemblage to which each species 
belonged) to account for potential data non-independence among 
records from the same assemblage, and we removed study season 
because its estimates could not be properly produced in subsequent 
phylogenetically controlled mixed-effect models. We instead modelled 
study season as a fixed effect variable. Fixed effects of our global model 
thus followed equation (5):
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RR ∼ remnant forest cover + distance to thenearest continuous forest

+surroundinghumanpopulationdensity

+bodymass (or generation length) + hand-wing index + clutch size

+diet specialization + foragingheight + forest association

+migratory status + natural range size + nest placement
(5)

We centred and scaled all continuous variables and remnant for-
est cover (distance to the nearest continuous forest and surrounding 
human population density were on the natural log scale before being 
centred and scaled). For the three categorical traits (forest associa-
tion, migration status and nest placement) and study season, we used 
open-country, non-migratory and ground nest placement during the 
non-breeding season as baseline. For the two sets of analyses dropping 
either body mass or generation length, model selection indicated that 
all fixed predictors entered the top model set except for the distance 
to the nearest continuous forest; therefore, we included all variables 
except the distance variable in subsequent formal analyses that con-
trolled for phylogenetic correlation. In subsequent sensitivity analyses 
(that is, those involving alternative data on the distance to the nearest 
continuous forest, and on surrounding human population density; see 
‘Sensitivity analysis’), we again conducted model selection to decide 
the predictor variables to be included in phylogenetically controlled 
mixed-effect models.

For phylogenetically controlled mixed-effect models, we similarly 
conducted two sets of analyses, one dropping body mass and the other 
dropping generation length. Our models differed from the above 
preliminary analyses by (1) not including distance to the nearest con-
tinuous forest as a fixed variable, (2) modelling remnant forest cover 
on the original ordinal scale of 0–5, and (3) including the phylogenetic 
relationship between species as an additional random variable. Our 
fixed effects thus followed equation (6):

RR ∼ remnant forest cover + surroundinghumanpopulationdensity

+bodymass (or generation length) + hand-wing index + clutch size

+diet specialization + foragingheight + forest association

+migratory status + natural range size + nest placement
(6)

We used the default uninformative prior for fixed effects, the 
inverse gamma prior (with the following parameter setting: scale matrix 
V = 1, and degree of freedom nu = 0.002) for the residual variance, and 
the parameter-expanded prior (with the following parameter set-
ting: scale matrix V = 1, degree of freedom nu = 1, covariance matrix 
alpha.V = 1,000 and mean alpha.mu = 0) for all random effects. We 
ran 120,000 iterations with a burn-in of 20,000 and a thinning value 
of 50. For each set of analyses, we conducted 100 model runs, each on 
a randomly drawn phylogenetic tree61, and we obtained the coefficient 
and its 95% CIs for each predictor variable by averaging the outputs of 
all 100 model runs (note a previous simulation showed that using 50 
trees is usually sufficient to account for the uncertainty of phylogenetic 
trees74). Diagnostic plots indicated convergence for all model runs 
(Extended Data Fig. 6 for an example of one model).

Multivariate analysis of trait data. We calculated the assemblage-level 
centroid for each functional trait using weighted averaging, with 
weights being the abundance of each species summed across the 
agricultural and native forest sites in each agriculture–forest pair. 
For this purpose, we expressed the three categorical traits (forest 
association, migration status and nest placement) in integer values: 
1 to 4, for open-country, generalist, early successional forest and late 
successional forest, respectively, regarding forest association; 1 and 2 
for non-migratory and migratory, respectively, regarding migratory 
status; and 1 to 3 for ground nesting, elevated open nesting and cavity 

nesting, respectively, regarding nest placement. We conducted PCA 
on the assemblage-level trait centroids (centred and scaled) using the 
function ‘princomp()’ in program R.

To calculate functional richness and functional dispersion for 
each species assemblage, we used the function ‘alpha.fd.multidim’ of 
package mFD (v.1.0.1 (ref. 75)) in program R and the first four axes of the 
Gower-based functional distance. As functional richness is by definition 
closely linked to species richness43, we corrected it using equation (7) 
to remove the influence of species richness:

corrected functional richness = raw functional richness × 100
species richness

(7)

Finally, we calculated functional redundancy for each species 
assemblage, following ref. 76, by first classifying each species into 
a ‘unique trait combination’ based on its trait profile. To do this, we 
followed ref. 76 to bin the seven continuous traits using the Sturges 
algorithm. We then calculated functional redundancy by dividing 
species richness for each assemblage by the number of unique trait 
combinations44,76. We conducted simple linear regressions between 
PC1 and the three multivariate trait metrics. Diagnostic residual and 
Q–Q plots showed the general satisfaction of the residual-normality 
assumption for these analyses.

Sensitivity analysis. We conducted six sets of sensitivity analyses where 
applicable. These concerned (1) the radius for data extraction on agri-
cultural history and surrounding human population density from the 
HYDE 3.2 database40 (2 km and 50 km versus the 10 km in main analyses); 
(2) the size criterion for defining continuous forest in measuring the 
distance between agricultural sites and the nearest continuous forest 
(100 ha versus the 50 ha used in main analyses); (3) the mathematical 
scale on which seasonality, MAP, agricultural history, distance to the 
nearest continuous forest and surrounding human population den-
sity were analysed (original scale versus the natural log scale in main 
analyses; we divided MAP, agricultural history, distance to the nearest 
continuous forest and surrounding human population density by 100 so 
that results represented the effect of every 100 mm, 100 year, 100 m and 
100 person increase); (4) the removal of two primary studies, containing 
four avian assemblages, with extreme MAP77,78 or seasonality78 (versus 
their inclusion in main analyses); (5) the removal of two primary studies, 
containing three avian assemblages, that had secondary forest as the 
baseline against which agricultural sites were compared79,80 (versus their 
inclusion in main analyses); and (6) weighting schemes in mixed-effect 
models (using simply the inverse of the match rigour score as weights 
and not using weights altogether versus using equation (1)-derived 
weight scores in main analyses). The last set of sensitivity analyses was 
in light of the potential subjectivity and varying standards of reporting 
from primary studies involved in the calculation of the weight scores, 
and it applied only to the meta-analyses and meta-regressions.

Finally, considering the potential data quality issue for the distance 
between agricultural sites and the nearest continuous forest extracted 
from the FGP maps, we checked whether greater assemblage RR was 
associated with lower distance between agricultural sites and their 
matching native forests, our complementary distance measure com-
piled from primary study authors. This assessment was to corroborate 
our formal analyses using distance data from the FGP maps (which 
may have potentially low data quality), and to rule out the possibility 
that variation in the impacts of agricultural deforestation found in our 
database was linked to the proximity of agricultural sites to native for-
ests7. We conducted this assessment with simple visualization in light 
of the limited data quality of this complementary distance measure 
(Extended Data Fig. 4h).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Data availability
All data used in this study have been uploaded to a public repository, and 
can be accessed at https://doi.org/10.5281/zenodo.10031327 (ref. 31).

Code availability
All code used in this study have been uploaded to a public repository, and 
can be accessed at https://doi.org/10.5281/zenodo.10031327 (ref. 31).
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Extended Data Fig. 1 | PRISMA plot for data compilation. Reference information for the two databases and reviews consulted is provided in Extended Data Table 1.
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Extended Data Fig. 2 | Additional information on the range of data covered 
by our database. As with Fig. 2, circles represent datasets of entire avian 
assemblages for agriculture-forest pairs contributed by each primary study, 
sized proportional to the number of avian assemblages and colored by (a) MAP, 

(b) seasonality, and (c) disturbance regime of the study system, as well as (d) 
remnant forest cover, distance to (e) the nearest continuous forest and (f) native 
forest surveyed for the agricultural sites in each primary study.
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Extended Data Fig. 3 | Geographical patterns of three filtering factors  
across the world. (a) MAP, (b) temperature seasonality, and (c) agricultural 
history. Data for temperature seasonality and MAP are from WorldClim 2.139.  

Map boundaries in c show the centres of origin and areas of expansion of the 
Neolithic Agricultural Revolution, as reproduced with permission from ref. 81, 
Monthly Review Press.
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Extended Data Fig. 4 | Evidence that the influence of filtering on the observed 
impacts of agricultural deforestation was not an artefact of confounding 
variables or publication bias. (a–d) The relationship between the four filtering 
variables and comparison type (left part) or study season (right part). While 
none of the filtering factors had no strong collinearity with comparison type, 
for at least MAP and agricultural history, there appeared to be some difference 
between breeding/all-year versus non-breeding seasons. (e, f) We therefore 
focused on a subset of data concerning the breeding season only (80% of all 
data) to visually assess the relationship between assemblage RR with MAP and 
agricultural history, using the same graph format as in Fig. 3. This subset of 
data also showed the negative effect of MAP (Fig. 3d) and the positive effect 
of agricultural history (Fig. 3e) on assemblage RR that were found by formal 
meta-regressions, suggesting that these effects were not spuriously driven by 

possible collinearity between filtering variables and study season. (g) Funnel 
plot for meta-analysis, based on effect size (RR) and study size (sampling effort; 
measured as the study duration in months). The dotted vertical line represents 
the mean effect size indicated by meta-analysis (that is corresponding to the 
mean of Fig. 3A, upper row). (h) The relationship between assemblage RR and the 
distance of agricultural sites to their matching native forests. We represented 
distance by the smallest distance from any sampling unit of the agricultural sites 
to matching native forest sites, with ‘close’ representing distances ≤1 km and ‘far’ 
those >1 km. This visual assessment showed that greater assemblage RR was not 
associated with shorter distances between agricultural sites and native forests, 
corroborating our main findings based on the FGP map data that distance to 
nearest continuous forest did not drive variation in biodiversity responses to 
agricultural deforestation.
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Extended Data Fig. 5 | Diagnostic plots for meta-analyses and meta-
regressions corresponding to (a) Fig. 3a, (b) Fig. 3b, and (c) Fig. 3c–e. For (a) 
and (b), residual plots (upper) and Q-Q plots (lower) are displayed for each of 
the meta-analyses concerning all agricultural types (left column), agroforestry 

(middle column), and open agricultural systems (right column) displayed in  
Fig. 3a, b. For (c), the residual plot (upper) and Q-Q plot (lower) correspond to  
the meta-regression global model.
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Extended Data Fig. 6 | Diagnostic plots for the phylogenetically controlled 
mixed-effect model on the relationship between species-level RR and 
predictor variables, run on one randomly drawn phylogenetic tree. Plots 
for all variables other than generation length were from a model that dropped 

generation length, while the plot for generation length was from a model 
that dropped body mass. Pairs of plots on the trace (left) and density (right) 
of posterior estimates are displayed for each fixed factor and random factor 
including residual variance, or ‘Units’ (in dashed box).
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Extended Data Table 1 | List of syntheses, databases, and other studies consulted for identifying suitable primary studies. 
These studies are listed by type82–93
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Extended Data Table 2 | Full list of primary studies included in our database. These studies are listed in  
alphabetical order94–130
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Extended Data Table 3 | List of species functional traits considered in this study. Traits are listed by type (morphological, 
life history, and ecological), along with information on their definition, rationale for consideration in our study, and data 
sources131–135
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Extended Data Table 4 | Two criteria that must be met simultaneously for classifying species into forest association categories
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