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A B S T R A C T   

The secular variation of the geomagnetic field suggests that there are anticyclonic polar vortices in the Earth’s 
core. Under the influence of a magnetic field, the polar azimuthal flow is thought to be produced by one or more 
coherent upwellings within the tangent cylinder, offset from the rotation axis. In this study, convection within 
the tangent cylinder in rapidly rotating dynamos is investigated through the analysis of forced magnetic waves. 
The first part of the study investigates the evolution of an isolated buoyancy disturbance in an unstably stratified 
rotating fluid subjected to an axial magnetic field. It is shown that the axial flow intensity of the slow Magnetic- 
Archimedean-Coriolis (MAC) waves becomes comparable to that of the fast MAC waves when |ωM/ωC| ∼ 0.1, 
where ωM and ωC are the Alfvén wave and inertial wave frequencies respectively. In spherical shell dynamo 
simulations, the isolated upwellings within the tangent cylinder are shown to originate from the localized 
excitation of slow MAC waves in the dipole-dominated regime. Axial flow measurements in turn reveal the 
approximate parity between the slow and fast wave intensities in this regime, which corresponds to the existence 
of strong polar vortices in the Earth’s core. To obtain the observed peak azimuthal motions of 0.6–0.9∘ yr− 1 , the 
Rayleigh number in the low-inertia geodynamo must be ∼ 103 times the Rayleigh number for the onset of 
nonmagnetic convection. However, if the forcing is so strong as to cause polarity reversals, the field within the 
tangent cylinder decays away, and the convection takes the form of an ensemble of plumes supported entirely by 
the fast waves of frequency ω ∼ ωC. The resulting weak polar circulation is comparable to that obtained in 
nonmagnetic convection.   

1. Introduction 

Convection in the Earth’s outer core is separated into two regions by 
rapid rotation, inside and outside the tangent cylinder (TC). The TC is an 
imaginary cylinder tangent to the inner core boundary (ICB) and parallel 
to the Earth’s rotation axis z. It cuts the core–mantle boundary (CMB) at 
approximately latitude 70◦. Inside the TC, the heat and compositional 
flux have a substantial component in the z direction, so fluid motions are 
strongly z-dependent. Because ageostrophic motions are needed to 
transport heat and light elements from the ICB to the CMB inside the TC 
(Jones, 2015), the forcing needed to initiate convection inside the TC is 
much higher than that outside it. 

The convection inside the TC is thought to be instrumental in the 
generation of anticyclonic polar vortices in the core, suggested by ob-
servations of secular variation (Olson and Aurnou, 1999; Hulot et al., 
2002). Nonmagnetic laboratory experiments that simulate the TC region 
(Aurnou et al., 2003; Aujogue et al., 2018) suggest that an ensemble of 
convection plumes extending from the ICB to latitudes greater than 70◦

would make the poles warmer than the equator, resulting in an anticy-
clonic circulation near the poles. Numerical simulations of the geo-
dynamo (Sreenivasan and Jones, 2005, 2006), on the other hand, show 
that the structure of convection inside the TC is often dominated by an 
isolated off-axis plume that generates a strong anticyclonic flow near the 
poles. The fluid inside the rising plume is systematically warmer than 
the cold descending fluid outside the plume. The Coriolis force then acts 
to turn the radially outward flow at the top of the plume into an anti-
cyclonic vortex. The intensity of polar vortices in the dynamo is much 
greater than that in nonmagnetic convection (Sreenivasan and Jones, 
2005), which indicates that the vortices are magnetically enhanced. 

The tangent cylinder may be approximated by a rotating plane layer 
in which convection takes place under a predominantly z magnetic field. 
The onset of magnetoconvection in a rotating plane layer occurs either 
as thin viscously controlled columns or large-scale magnetic rolls 
(Chandrasekhar, 1961). For a field that is either uniform or of a length 
scale comparable to the depth of the fluid layer, large-scale magnetically 
controlled convection sets in at relatively small Elsasser numbers Λ =
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O
(
E1/3) (Zhang, 1995; Jones et al., 2003), where Λ is the square of the 

scaled mean magnetic field and E is the Ekman number that measures 
the ratio of viscous to Coriolis forces. However, for the spatially inho-
mogeneous magnetic field in a dynamo (e.g. Schaeffer et al., 2017), the 
viscous–magnetic mode transition may not take place even at Λ = O(1)
(Gopinath and Sreenivasan, 2015). In a dipole-dominated dynamo, the 
field generated outside the TC diffuses into the TC and gets concentrated 
on scales comparable to that of the thin plumes that form at the onset of 
convection. The lateral inhomogeneity of the magnetic flux gives rise to 
an instability where convection is entirely confined to the peak-field 
region (Sreenivasan and Gopinath, 2017). This pattern of convection 
inside the TC may be understood in terms of fast and slow Magnetic- 
Archimedean-Coriolis (MAC) waves that form in a rapidly rotating 
Bénard layer permeated by a magnetic field. The fast waves are linear 
inertial waves weakly modified by the magnetic field and buoyancy 
while the slow waves are magnetostrophic waves produced by the bal-
ance between the magnetic, Coriolis and buoyancy forces (Braginsky, 
1967; Acheson and Hide, 1973). The magnetic flux concentrations 

within the TC may locally produce unstable stratification, thereby sup-
porting convection through slow MAC waves. In regions where the 
magnetic flux is weak, the fast MAC waves generated at the base of the 
TC are rendered ineffectual in transporting heat and light elements 
through the neutrally buoyant layer. In this way, a laterally varying 
magnetic field can give rise to an isolated off-axis plume within the TC. If 
the buoyant forcing in the dynamo is so strong as to cause the collapse of 
the axial dipole field outside the TC, the field intensity within the TC 
would be considerably reduced. Consequently, the convection may take 
the form of an ensemble of plumes supported by fast waves, akin to that 
found in the nonmagnetic state. 

The present study builds on earlier work (Sreenivasan and Maurya, 
2021) that investigated the evolution of an isolated buoyancy distur-
bance in a rapidly rotating fluid under a uniform axial magnetic field. Of 
particular interest is the regime where the ratio of Alfvén wave to in-
ertial wave frequencies |ωM/ωC| ∼ 0.1, thought to be relevant to dipole- 
dominated dynamos. Subsequently, Majumder et al. (2023) demon-
strated that the collapse of the axial dipole in rapidly rotating dynamos 
occurs when the slow MAC waves disappear under strong forcing. Here, 
TC convection in dipole-dominated and polarity-reversing dynamos is 
understood through the analysis of forced magnetohydrodynamic waves 
in the inertia-free limit, where the ratio of nonlinear inertia to Coriolis 
forces is small not only on the core depth but also on the length scale of 
convection. It is shown that slow MAC waves are essential for the gen-
eration of strong polar vortices in dipole-dominated dynamos. 

In Section 2, a simplified linear model of the TC is considered 
wherein a buoyancy disturbance evolves in an unstably stratified 
rotating fluid subject to an axial magnetic field. It is shown that the 
intensity of the slow MAC waves would be at least as high as that of the 
fast waves for Le ∼ 0.1, where Le measures the ratio of Alfvén wave to 
inertial wave frequencies. Section 3 investigates TC convection in 
spherical dynamo simulations at progressively increasing forcing span-
ning the dipole-dominated regime up to the onset of polarity reversals. 
The measurement of wave motions within the TC enables a comparison 
of the dynamics with that predicted by the simplified linear model. The 
main results of this paper are summarized in Section 4. 

Fig. 1. A density perturbation ρ′ evolves in an unstably stratified fluid layer 
under a uniform axial magnetic field B and background rotation Ω. 

Fig. 2. Evolution of the poloidal velocity streamfunction ψ with time (measured in units of the magnetic diffusion time tη) for Le = 0.09 and Eη = 2× 10− 5. The 
snapshots are at (a) t/tη = 1× 10− 3, (b) t/tη = 5 × 10− 3 and (c) t/tη = 1× 10− 2. The ratio |ωA/ωM| = 0.05 at times after the formation of the waves. 
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2. A tangent cylinder model: evolution of an isolated buoyancy 
disturbance 

Since the dominant magnetic field within the tangent cylinder is 
known to be axial, we consider the evolution of a density perturbation ρ′ 

under gravity g = − g êz, a uniform axial magnetic field B = Bêz and 
background rotation Ω = Ωêz (Fig. 1). In cylindrical polar coordinates 
(s,ϕ, z), this perturbation is symmetric about its own axis, or in other 
words, independent of ϕ. Since ρ′ is related to a temperature perturba-
tion θ by ρ′ = − ραθ, where ρ is the ambient density and α is the coef-
ficient of thermal expansion, an initial temperature perturbation is 
chosen in the form 

θ0 = Aexp
[
− 2

(
s2 + z2)/δ2 ], (1)  

where A is a constant and δ is the length scale of the perturbation. 

2.1. Governing equations and solutions 

In the Boussinesq approximation, the following linearized MHD 
equations describe the evolution of u, b and θ: 

∂u
∂t

= −
1
ρ∇p* − 2Ω×u+

1
μρ (B⋅∇)b − gαθ+ ν∇2u, (2)  

∂b
∂t

= (B⋅∇)u+ η∇2b, (3)  

∂θ
∂t

= − βêz⋅u+ κ∇2θ, (4)  

∇⋅u = ∇⋅b = 0, (5)  

where ν is the kinematic viscosity, κ is the thermal diffusivity, η is the 
magnetic diffusivity, μ is the magnetic permeability, p* = p − (ρ/
2)|Ω × x|2 + (B⋅b)/μ and β = ∂T0/∂z < 0 is the mean axial temperature 
gradient in the unstably stratified fluid. 

In a quiescent fluid, the initial velocity u0 is zero, and since the 
magnetic field perturbation takes finite time to develop by induction, 
the initial induced field b0 is also zero. The initial temperature pertur-
bation (1) produces a poloidal flow which interacts with Ω to generate a 
toroidal flow, so that the instantaneous state of the flow is defined by 
(Sreenivasan and Maurya, 2021) 

u = uϕ êϕ +∇×
[
(ψ/s)êϕ

]
, (6)  

∇2
*ψ =

∂2ψ
∂z2 + s

∂
∂s

(
1
s

∂ψ
∂s

)

= − sζϕ, (7)  

where ψ is the Stokes streamfunction of the velocity and ζ is the 
vorticity. Likewise, the instantaneous state of the induced magnetic field 
is defined by, 

b = bϕ êϕ +∇×
[
(ξ/s)êϕ

]
, (8)  

∇2
*ξ = − sμjϕ, (9)  

where ξ is the Stokes streamfunction of the induced magnetic field and j 
is the electric current density. 

Algebraic simplifications of the governing equations give an equa-
tion for the evolution of ψ in the form (Sreenivasan and Maurya, 2021) 

Fig. 3. (a) Variation of absolute values of the frequencies with Lehnert number Le. (b) Variation of the kinetic energy of fast and slow MAC waves (normalized by the 
nonmagnetic kinetic energy) with |ωM/ωC|. The range of |ωM/ωC| in (b) corresponds to the range of Le in (a). Here, |ωA/ωM| = 0.1. (c) Variation of the peak values of 
the fast and slow wave parts of the z velocity (normalized by its nonmagnetic value) with |ωM/ωC|. (d) Variation of the peak z velocity of fast and slow MAC waves 
with |ωA/ωM | for Le = 0.09. All calculations are performed for Eη = 2 × 10− 5 and t/tη = 5× 10− 3. 
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[(
∂
∂t
− ν∇2

*

)(
∂
∂t
− η∇2

*

)

− V2
M

∂2

∂z2

]2( ∂
∂t
− κ∇2

*

)
(
∇2

*ψ
)

= − 4Ω2
(

∂
∂t
− κ∇2

*

)(
∂
∂t
− η∇2

*

)2∂2ψ
∂z2

− gαβs
(

∂
∂t
− η∇2

*

)[(
∂
∂t
− ν∇2

*

)(
∂
∂t
− η∇2

*

)

− V2
M

∂2

∂z2

]
∂
∂s

(
1
s

∂ψ
∂s

)

,

(10)  

where VM = B/ ̅̅̅̅̅μρ√ is the Alfvén wave velocity. 
By applying the Hankel–Fourier transform 

H1{ψ(s, z)/s} = ψ̂ (ks, kz)

=
1

2π2

∫ ∞

0

∫ ∞

0
ψ
(

s, z
)

J1(kss)e− ikzz ds dz
(11)  

to (10), where J1 is the first-order Bessel function of the first kind, we 
obtain, 

[(
∂
∂t
+ νk2

)(
∂
∂t
+ ηk2

)

+ V2
Mk2

z

]2( ∂
∂t
+ κk2

)

ψ̂

= −
4Ω2k2

z

k2

(
∂
∂t
+ ηk2

)2( ∂
∂t
+ κk2

)

ψ̂

−
gαβk2

s

k2

(
∂
∂t
+ ηk2

)[(
∂
∂t
+ νk2

)(
∂
∂t
+ ηk2

)

+ V2
Mk2

z

]

ψ̂ .

(12) 

Considering plane wave solutions of the form ψ̂ ∼ eiλt, we obtain the 
relation 

Fig. 4. Streamfunction ψ of the fast wave part of the solution ((a)–(c)), and that for the slow wave part ((d)–(f)) for |ωA/ωM| = 0.1,0.6,0.95 (shown left to right). The 
plots are generated at time t/tη = 5 × 10− 3 for the parameters Le = 0.09 and Eη = 2× 10− 5. 
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λ5 − 2iωηλ4 −
(
ω2

A + ω2
η + 2ω2

M + ω2
C

)
λ3 + 2iωη

(
ω2

A + ω2
M + ω2

C

)
λ2

+
(
ω2

Aω2
η + ω2

Aω2
M + ω4

M + ω2
ηω2

C

)
λ − iω2

Aωηω2
M = 0.

(13)  

for a system where both viscous and thermal diffusion are much smaller 
than magnetic diffusion (ν, κ→0). 

The fundamental frequencies in (13) are given by, 

ω2
C =

4Ω2k2
z

k2 ,ω2
M = V2

Mk2
z ,ω2

A = gαβ
k2

s

k2,ω
2
η = η2k4, (14a-d)  

representing linear inertial waves, Alfvén waves, internal gravity waves 
and magnetic diffusion respectively. In unstable density stratification, 
ω2

A < 0. Here, k2 = k2
s + k2

z . 
For the frequency inequality ∣ωC∣≫∣ωM∣≫∣ωA∣≫∣ωη∣, the roots of Eq. 

(13) are approximated by (Sreenivasan and Maurya, 2021) 

λ1,2 ≈ ±

(

ωC +
ω2

M

ωC

)

+ i
ω2

Mωη

ω2
C

, (15)  

λ3,4 ≈ ±

(
ω2

M

ωC
+

ω2
A

2ωC

)

+ iωη

(

1 −
ω2

A

2ω2
M

)

, (16)  

λ5 ≈ i
ω2

Aωη

ω2
M

, (17)  

representing damped fast MAC waves (λ1,2), damped slow MAC waves 
(λ3,4), and the overall growth of the perturbation (λ5). 

The general solutions for ψ̂ , ûϕ, ξ̂, b̂ϕ are then given by 

[
ψ̂ , ûϕ, ξ̂, b̂ϕ

]
=

∑5

m=1
[Dm,Gm,Pm,Qm]eiλmt, (18) 

Fig. 5. Variation with |ωA/ωM| of the ϕ component of the kinetic energy, Ek,ϕ 

normalized by its nonmagnetic value. The calculations are performed for Eη =

2× 10− 5, t/tη = 5 × 10− 3 and |ωM/ωC| = 0.225. 

Fig. 6. Cylindrical section (z − ϕ) plots within the tangent cylinder of Bz (a-c), uz (d-f) and ∂T/∂z (g-i) for E = 6× 10− 5,Pr = Pm = 5. The figures are shown from the 
saturated state of the dynamo simulation. The Rayleigh number Ra in the simulation is given above the panels. 
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where the coefficients Dm, Gm, Pm and Qm are evaluated from the initial 
conditions for ψ̂ , ûϕ, ξ̂, b̂ϕ and their time derivatives. The poloidal ve-
locity is obtained from its streamfunction using the relations 

ûz = ks ψ̂ , ûs = − ikz ψ̂ . (19a-b)  

2.2. MAC waves in unstable stratification 

The analysis of the solutions is limited to times much shorter than the 
time scale for the exponential increase of the perturbations. When the 
buoyancy force is small compared with the Lorentz force (∣ωA/ωM∣≪1), 
the parameter regime is determined by the Lehnert number Le and the 
magnetic Ekman number Eη, 

Le =
VM

2Ωδ
, Eη =

η
2Ωδ2, (20a-b)  

based on the length scale of the initial perturbation (1). 
Fig. 2 shows the evolution in time of the poloidal velocity stream-

function, obtained from the inverse Hankel–Fourier transform 

ψ(s, z) = 4πs
∫ ∞

0

∫ ∞

0
ψ̂ (ks, kz)J1(kss)eikzzksdksdkz, (21)  

computed by setting the upper limits of the integrals (the truncation 
values of ks and kz) to 3/δ. The formation of a columnar structure from 
the initial perturbation through wave motions is evident. 

In Fig. 3 (a), the fundamental frequencies are based on the mean 
wavenumbers obtained from ratios of L2 norms, 

k̄s =
‖ks ψ̂ k‖
‖ψ̂ k‖

, k̄z =
‖kz ψ̂ k‖
‖ψ̂ k‖

, k̄ =

⃦
⃦ψ̂ k2

⃦
⃦

‖ψ̂ k‖
. (22a-c) 

For Le > 0.005, the inequality ∣ωC∣ > ∣ωM∣ > ∣ωA∣ exists, indicating 
the MAC wave regime. To obtain the relative intensities of the fast and 
slow MAC waves, the fast and slow MAC wave parts of the general so-
lution are separated, as in earlier studies (Sreenivasan and Narasimhan, 
2017; Sreenivasan and Maurya, 2021). 

The kinetic energy is calculated using the Parseval’s theorem, 

Ek = 16π4
∫ ∞

0

∫ ∞

0

(
û2

s + û2
z + û2

ϕ

)
ks dks dkz, (23)  

separately for the fast and slow MAC waves, with the upper limits of the 
integrals set to 10/δ in the computations. 

Fig. 3 (b) shows the variation of the total kinetic energy Ek of the two 
waves with |ωM/ωC|. The range of |ωM/ωC| in Fig. 3 (b) corresponds to 
the range of Le in Fig. 3 (a). Both Le and |ωM/ωC| are of the same order of 
magnitude when the magnetic field and rotation axes are parallel 
(Sreenivasan and Maurya, 2021). (Since the initial wavenumber k0 =
̅̅̅
6

√
/δ, |ωM/ωC| =

̅̅̅
6

√
Le.) The slow MAC waves appear when |ωM|

exceeds |ωA|, and their energy becomes comparable to that of the fast 
waves for Le ∼ 0.1. Fig. 3 (c) shows that the peak value of the slow wave 
z velocity is approximately equal to that of fast waves when 
|ωM/ωC| ≈ 0.2, where uz = s− 1 ∂ψ/∂s. Fig. 3 (d) shows the peak value of 
uz for both fast and slow waves against |ωA/ωM| at Le = 0.09 (|ωM/ωC| =

0.22). The slow wave velocity decreases appreciably and tends to zero 
as |ωA/ωM| ≈ 1. The fast wave velocity, on the other hand, does not 
change much with increasing buoyancy. Figs. 3 (a)–(d) indicate that the 
intensity of slow MAC wave motions would be comparable to that of the 
fast waves in the regime thought to be relevant to dipole-dominated 
dynamos, |ωM/ωC| ∼ 0.1 and |ωA/ωM| < 1. In the regime |ωA/ωM| ∼ 1, 
where dipole collapse is found to happen (Majumder et al., 2023), the 
slow MAC wave velocity goes to zero. The effect of increasing buoyancy 
on the fast and slow MAC waves are shown graphically in Fig. 4. Here, 
the magnitudes of the fast and slow waves are comparable at |ωA/ωM| =

0.1, whereas the slow waves are severely attenuated for |ωA| ∼ |ωM|. 
The fast waves are practically unaffected by the increased forcing. 

Fig. 5 shows the variation of the ϕ component of kinetic energy, 
normalized by its nonmagnetic value, with progressively increasing 
forcing for a given |ωM/ωC|. As |ωA/ωM| tends to unity, the energy tends 
to the nonmagnetic value, consistent with the suppression of the slow 
waves. This result has implications for the intensity of polar vortices in 
strongly forced dynamos where |ωA/ωM| ∼ 1 within the tangent 
cylinder. 

In Section 3, we examine whether slow MAC waves are influential in 
the generation of strong polar vortices in dipole-dominated spherical 
dynamos. We also study the regime of dipole collapse, wherein we 
expect TC convection to be supported by only the fast waves, resulting in 
much weaker polar circulation. 

3. Nonlinear dynamo simulations 

We consider an electrically conducting fluid located between two 
concentric, co-rotating spherical surfaces with a radius ratio of 0.35. 
These surfaces correspond to the inner core boundary (ICB) and the 
core-mantle boundary (CMB). Our model is based on the codensity 
formulation, where thermal and compositional buoyancy are combined 
(Braginsky and Roberts, 1995). The other two body forces are the Lor-
entz force, which arises from the interaction between the induced 
electric current and the magnetic field, and the Coriolis force, which 
originates from the background rotation. 

In the dynamo models, lengths are scaled by the thickness of the 
spherical shell L and the time is scaled by magnetic diffusion time L2/η, 
where η is magnetic diffusivity. The velocity field u is scaled by η/L, 
while the magnetic field B is scaled by (2Ωρμη)1/2, where Ω represents 
the rotation rate, ρ represents fluid density, and μ represents magnetic 
permeability. The temperature is scaled by βL, where β denotes the 
radial temperature gradient at the outer boundary. 

Fig. 7. Cylindrical section (z − ϕ) plots within the tangent cylinder of uz (a) and ∂T/∂z (b) for the nonmagnetic convection simulation at E = 6× 10− 5, Ra = 12000 
and Pr = 5. 
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The non-dimensional equations for velocity, magnetic field, and 
temperature in MHD under the Boussinesq approximation are given by, 

EPm− 1
(

∂u
∂t

+ (∇ × u) × u
)

+ ẑ × u = − ∇p⋆ + RaPmPr− 1 T r

+(∇ × B) × B + E∇2u,
(24)  

∂B
∂t

= ∇×(u×B)+∇2B, (25)  

∂T
∂t

+(u⋅∇)T = PmPr− 1 ∇2T, (26)  

∇⋅u = ∇⋅B = 0. (27) 

The modified pressure p* in Eq. (24) is given by p+ 1
2 EPm− 1 |u|2. The 

dimensionless parameters in the above equations are the Ekman number 
E = ν/2ΩL2, the Prandtl number, Pr = ν/κ; the magnetic Prandtl 
number, Pm = ν/η; and the modified Rayleigh number, given by 
gαβL2/2Ωκ. The parameters g, ν, κ, and α denote the gravitational ac-
celeration, kinematic viscosity, thermal diffusivity, and coefficient of 

Fig. 8. Horizontal (z) section plots within the tangent cylinder of the axial magnetic field Bz at z = 0.9 (left panels), uz at z = 1.4 (middle panels) and uϕ at z = 1.4 
(right panels) for Ra = 12000 (a-c), Ra = 18000 (d-f), Ra = 21000 (g-i). The other dynamo parameters are E = 6× 10− 5,Pm = Pr = 5. The figures are shown from 
the saturated state of the dynamo simulation. 
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Fig. 9. Horizontal (z) section plots at height z = 1.4 above the equator of the time and azimuthally averaged flow uϕ within the TC at E = 6× 10− 5, Pm = Pr = 5. (a) 
Ra = 12000, (b) Ra = 18000, (c) Ra = 21000, (d) nonmagnetic run at Ra = 12000. All figures represent the saturated state of the simulations. 

Table 1 
Summary of the main input and output parameters used in the dynamo simulations considered in this study. Here, Ra is the modified Rayleigh number, Rac is the 
critical Rayleigh number for the onset of nonmagnetic convection, Nr is the number of radial grid points, lmax is the maximum spherical harmonic degree, Rm is the 
magnetic Reynolds number based on the shell thickness and Rol is the local Rossby number. The mean ϕ, s, and z wavenumbers are denoted by k̄ϕ, k̄s and k̄z 

respectively. In addition, B2
peak is the square of the peak field inside the TC in the saturated dynamo, B2

rms is the measured mean square value of the field in the spherical 
shell, and uϕ,sc is the scaled peak magnitude of the time and azimuthally averaged ϕ velocity inside the TC, with its nonmagnetic value given in brackets.  

Ra Ra/Rac Nr lmax Rm Roℓ k̄ϕ k̄s k̄z B2
peak B2

rms |ωM/ωC| |ωA/ωM | uϕ,sc 

E = 6× 10− 5,Pm = Pr = 5 
300 10.34 88 96 67 0.002 4.56 5.03 4.18 0.01 0.52 0.00 18.8 0.00 (0.00) 
500 17.24 88 96 74 0.002 4.21 4.72 4.53 0.30 1.13 0.03 4.27 0.01 (0.02) 
800 27.58 88 96 74 0.002 4.61 4.53 4.27 1.8 1.75 0.06 2.34 0.02 (0.07) 
1000 34.48 128 120 98 0.004 4.14 4.12 4.48 26 2.48 0.21 0.67 0.08 (0.11) 
2000 68.96 128 120 123 0.007 5.39 3.81 4.79 72 2.95 0.39 0.53 0.14 (0.11) 
3000 103.45 160 160 169 0.009 6.21 3.97 4.72 112 3.26 0.55 0.53 0.15 (0.11) 
6000 206.90 160 160 243 0.014 6.49 4.71 4.95 156 3.28 0.74 0.58 0.35 (0.11) 
8000 275.86 160 180 288 0.020 6.34 4.58 5.96 180 3.29 0.73 0.55 0.41 (0.12) 
12000 413.79 160 180 365 0.024 6.01 3.51 5.70 222 3.27 0.71 0.65 0.53 (0.15) 
14000 482.76 160 180 402 0.026 5.87 4.09 5.13 227 3.18 0.76 0.75 0.65 (0.17) 
16000 551.68 160 180 435 0.028 6.25 4.71 5.42 231 3.12 0.84 0.74 0.72 (0.18) 
18000 620.69 160 180 456 0.032 6.59 4.53 5.30 234 3.04 0.88 0.79 0.81 (0.19) 
20000 689.66 160 180 505 0.035 5.97 4.45 5.19 225 2.55 0.77 0.91 0.79 (0.20) 
21000 724.14 160 180 549 0.039 6.21 4.17 5.24 65 0.62 0.43 1.63 0.19 (0.21)  

E = 1.2× 10− 5,Pm = Pr = 1 
300 10.34 90 96 78 0.004 4.07 2.89 4.76 0.01 0.31 0.00 18.4 0.00 (0.00) 
700 24.14 90 96 102 0.005 4.71 3.76 5.11 0.69 2.11 0.03 3.13 0.01 (0.02) 
1000 34.48 132 144 112 0.006 5.59 3.87 4.48 55 2.46 0.35 0.46 0.02 (0.03) 
2500 86.21 168 160 174 0.011 5.37 4.14 5.30 90 3.59 0.44 0.49 0.08 (0.07) 
4000 137.93 180 168 224 0.017 6.33 3.84 4.79 135 4.01 0.61 0.55 0.18 (0.11) 
7000 241.38 192 180 312 0.026 6.35 4.04 5.58 194 4.69 0.72 0.53 0.34 (0.24) 
10000 344.83 192 180 384 0.033 6.21 3.09 4.43 248 5.04 0.76 0.70 0.73 (0.32) 
15000 517.24 192 180 500 0.045 7.21 3.79 4.70 260 5.35 0.88 0.79 0.78 (0.37) 
20000 689.66 192 180 573 0.052 7.07 3.13 5.37 258 5.46 0.85 0.82 0.93 (0.45) 
25000 862.07 192 180 655 0.061 7.67 3.03 5.34 255 5.84 0.90 0.93 1.07 (0.51) 
27000 931.03 192 180 698 0.065 8.87 3.51 5.62 223 4.87 0.91 0.98 1.15 (0.50) 
28000 965.52 192 180 775 0.073 8.82 3.39 5.76 89 0.82 0.62 1.52 0.31 (0.52)  
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thermal expansion respectively. 
The temperature distribution in the basic state is described by a basal 

heating profile given by T0(r) = riro/r, where ri and ro are the inner and 
outer radii of the spherical shell respectively. The velocity and magnetic 
fields satisfy the no-slip and electrically insulating conditions at their 
respective boundaries. The inner boundary is isothermal, whereas the 
outer boundary maintains a constant heat flux. The calculations are 
performed using a pseudospectral code that applies spherical harmonic 
expansions to the angular coordinates (θ,ϕ) and finite differences to the 
radius r (Willis et al., 2007). 

For two values of the Ekman number E, a series of simulations at 
progressively increasing Rayleigh number Ra are performed, spanning 
the dipole-dominated regime up to the start of polarity reversals. For 
each E, the value of Pm = Pr is chosen such that the local Rossby number 
Roℓ, which gives the ratio of the inertial to Coriolis forces on the char-
acteristic length scale of convection (Christensen and Aubert, 2006) is <
0.1 (Majumder et al., 2023). Thus, the dynamo simulations lie in the 
rotationally dominant, or low-inertia, regime. For Pm = Pr, the dynamo 
obtained by solving Eqs. (24)–(27) is compared with its nonmagnetic 
counterpart, obtained by solving Eqs. (A.1)–(A.3), Appendix A. 

3.1. TC convection and polar vortices 

In Fig. 6, a cylindrical (z-ϕ) section at selected cylindrical radii s of 
the axial field Bz, axial flow uz and axial temperature gradient ∂T/∂z are 
shown. The dynamo parameters are E = 6 × 10− 5 and Pm = Pr = 5. At 
Ra = 1000, the magnetic flux that diffuses into the TC from outside 
appears to concentrate on length scales comparable to that at convective 
onset. Because of the convergent flow at the base of an upwelling 
(Sreenivasan and Jones, 2006), Bz typically concentrates near the base 
of the TC. A plume appears at the same location as the flux concentration 
(Figs. 6 (a) and (d)), and the same behaviour is reproduced at much 
stronger forcing (Figs. 6 (b) and (e)). Outside the plume, where the 
magnetic flux is weak, convection is absent except at the base of TC. This 
suppression of convection, also noted in linear magnetoconvection with 
a laterally varying field (Sreenivasan and Gopinath, 2017), can be 
explained by a localized unstable stratification produced by the mag-
netic field through a magnetic-Coriolis balance (Figs. 6 (g) and (h)). 
Elsewhere, the fluid layer is neutrally buoyant. There are stably strati-
fied regions with ∂T/∂z > 0 at the top of TC, where warm fluid carried 
upward by the plume builds up. When buoyant forcing is increased to 
the point of polarity reversals outside the TC, there is no coherent 
magnetic flux concentration within the TC (Fig. 6 (c)); then convection 
takes the form of an ensemble of plumes (Fig. 6 (f)), similar to that found 
in nonmagnetic simulations (see Fig. 7 (a)). In both nonmagnetic and 
reversing simulations, the entire fluid layer is unstably stratified (Figs. 7 
(b) and 6 (i)). 

The polar vortices produced by the pattern of convection within the 
TC are shown in the z-section plots in Figs. 8. For a wide range of Ra in 
the dipole-dominated regime, the correlation between uz and Bz exists 
(Figs. 8 (a), (b) and (d), (e)); the radially outward motion at the top of 
the plume is turned into a strong anticyclonic vortex by the Coriolis force 
(Figs. 8 (c), (f)). In the strongly driven regime of dipole collapse, the 
absence of a coherent field results in multi-column convection (Fig. 8 
(g), (h)) and a much weaker anticyclonic circulation near the poles 
(Fig. 8 (i)). On time and azimuthal average, the polar vortex intensity 
increases with Ra (Figs. 9 (a) and (b)); however, at the point of reversals, 
the vortex intensity significantly diminishes (Fig. 9 (c)), resembling that 
in the nonmagnetic runs (Fig. 9 (d)). 

The maximum dimensionless time and azimuthally averaged value 
of uϕ is measured within the TC, with its radial distance from the rota-
tion axis. For example, for Ra = 12000 (E = 6× 10− 5, Pm = Pr = 5), 
this magnitude of uϕ is 508, at radius 0.33. This could be scaled up to its 
value in the Earth’s core (Sreenivasan and Jones, 2005), giving 

uϕ,sc =
uϕη
L

= 2.2478 × 10− 4 m s− 1 ≈ 0.535∘ yr− 1, (28)  

where η and L have the values 1 m2 s− 1 and 2.26 × 106 m respectively. 
The values of uϕ,sc in the simulations and their respective values in 
nonmagnetic simulations are given in Table 1. Increasing the strength of 
forcing in the nonmagnetic simulations does not result in stronger polar 
vortices, which indicates the crucial role of the magnetic field in 
generating strong polar circulation. 

3.2. Magnetic waves in the TC 

Isolated density disturbances within the TC evolve as fast and slow 
MAC waves in the presence of the rapid rotation and magnetic field. 
Since the frequency of these waves depends on the fundamental fre-
quencies ωC, ωM and ωA (Section 2.1), we look at their magnitudes in 
dimensionless form (Varma and Sreenivasan, 2022), 

ω2
C =

Pm2

E2

k2
z

k2,ω2
M =

Pm
E
(B⋅k)2

, − ω2
A =

Pm2Ra
PrE

k2
h

k2, (29a-c)  

where the Alfvén frequency is based on the three components of the 
magnetic field at the peak field location and the frequencies are scaled 
by η/L2. Here, ks, kϕ and kz are the radial, azimuthal and axial wave-
numbers in cylindrical coordinates, kh is the horizontal wavenumber 
inside the TC given by k2

h = k2
s + k2

ϕ, and k2 = k2
s + k2

ϕ + k2
z . The 

wavenumbers are calculated within the TC as the focus of this study is to 
investigate the role of MAC waves inside the TC. In Fig. 10, the 
dimensionless frequencies in the saturated dynamo are calculated using 
the mean values of the wavenumbers. For example, real space 

Fig. 10. (a, b) Absolute values of the measured frequencies ωC, ωM , ωA, and ωs inside the tangent cylinder versus the Rayleigh number Ra in the saturated dynamo. 
The dynamo parameters are (a) E = 6× 10− 5, Pm = Pr = 5 and (b) E = 1.2× 10− 5, Pm = Pr = 1. The solid vertical lines indicate the onset of the slow MAC waves 
inside the tangent cylinder while the dashed vertical lines mark the suppression of the slow waves. The onset of the slow waves occurs at Ra = 960 (a) and Ra = 900 
(b) and their suppression occurs at Ra = 20500 (a) and Ra = 27500 (b). 
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integration over (s,ϕ) gives the kinetic energy as a function of z, the 
Fourier transform of which gives the one-dimensional spectrum û2

(kz). 
In turn, we obtain, 

k̄z =

∑
kz û2

(kz)
∑

û2
(kz)

. (30) 

A similar approach gives k̄s and k̄ϕ. Since the flow length scale 
transverse to the rotation axis is comparable to that at convective onset 

within the TC, the mean wavenumbers are calculated over the entire 
spectrum without scale separation. 

As Ra is increased progressively, |ωM| exceeds |ωA|, which is when an 
isolated plume forms within the TC. The inequality ∣ωC∣ > ∣ωM∣ > ∣ωA∣ >
∣ωη∣ exists for wide range of Ra until the point of polarity transitions, 
indicating the active presence of MAC waves within the TC (Fig. 10 (a) & 
(b)). Further increase of forcing results in the state marked by the dashed 
vertical lines where |ωA| ≈ |ωM|, at which the slow wave frequency ωs 
goes to zero. As the slow waves are suppressed, the flow within the TC 

Fig. 11. Contour plots of ∂uz/∂t at cylindrical radius s = 0.3 for small intervals of time in the saturated state. The parallel black lines indicate the predominant 
direction of travel of the waves and their slope gives the group velocity. The Rayleigh number Ra of the simulation is given above each panel. The other dynamo 
parameters are E = 6× 10− 5,Pr = Pm = 5. The estimated group velocity of the fast and slow MAC waves (Uf and Us respectively) and the measured group velocity 
Ug,z are given in Table 2. 
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Table 2 
Summary of the data for MAC wave measurement in the dynamo models at E = 6× 10− 5,Pm = Pr = 5. The sampling frequency ωn is chosen to ensure that the fast 
MAC waves are not missed in the measurement of group velocity. The values of ω2

C, ω2
M and − ω2

A are calculated using the mean values of kϕ, ks and kz. The measured 
group velocity in the z direction (Ug,z) is compared with the estimated fast (Uf ) or slow (Us) MAC wave velocity.  

Ra ω2
n
(
× 1010) ω2

C
(
× 108) ω2

M
(
× 108) − ω2

A
(
× 108) ωf

(
× 104) ωs

(
× 104) Uf Us Ug,z 

800 3.85 21.10 0.002 0.046 4.54 0 7543 0 7954 
1000 3.21 23.27 2.00 0.51 5.16 0.331 7439 293 7141, 343 
12000 1.27 27.87 11.59 6.75 5.98 1.22 6810 2051 8712, 1159 
18000 1.53 21.94 19.39 10.42 6.76 1.95 7729 2477 8350, 1542 
21000 0.53 22.86 3.82 11.17 4.50 0 7090 0 8927  

Fig. 12. FFT spectra of ∂uz/∂t for 0.6 < z < 1 and 1 < z < 1.5 inside tangent cylinder. The spectra are computed at discrete ϕ points and then averaged azimuthally 
from the saturated states of the dynamo runs. The thin vertical lines in (a) and (b) give ω⋆

s = ωs/ωf , where ωf and ωs are the estimated fast and slow MAC wave 
frequencies. The Rayleigh number in the simulation is given above each panel. The other dynamo parameters are E = 6 × 10− 5 and Pm = Pr = 5. 

Fig. 13. Variation of the time-averaged peak value of the axial (z) velocity with z within the TC for (a) Ra = 800 and (b) Ra = 1000. The other dynamo parameters 
are E = 6× 10− 5, Pm = Pr = 5. 
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takes the form of an ensemble of plumes, similar to that in nonmagnetic 
convection. Since fast waves of frequency ω ∼ ωC exist in both magnetic 
and nonmagnetic convection, the excitation of slow MAC waves may be 
crucial in the formation of isolated off-axis plumes, which in turn pro-
duce strong anticyclonic polar vortices. We pursue this idea by 
measuring wave motions within the TC in saturated dynamos. In Fig. 11, 
contours of ∂uz/∂t are plotted for small time windows of approximately 
constant ambient magnetic field and wavenumbers at cylindrical radius 
s = 0.3. The axial motion is measured by considering the full spectrum. 
In Table 2, the measured axial group velocity of the waves, Ug,z is 
compared with the estimated group velocity of the fast and slow MAC 
waves, given by Uf and Us respectively. At Ra = 800, convection is 
initiated within the TC under a weak ambient magnetic field. Conse-
quently, only fast MAC waves are excited within the TC (Fig. 11(a)). At 
Ra = 1000, the onset of slow MAC waves occurs (Fig. 11(b)); however, 
convection near the base of the TC is predominantly produced by the 
excitation of fast MAC waves (Fig. 11 (c)). At the location (s,ϕ) of the 
plume, the measured group velocity (Figs. 11 (b), (d) and (e)) matches 
well with that of the slow MAC waves. At the onset of polarity transi-
tions, the slow waves disappear, and the homogeneous convection 
within the TC is entirely made up of fast waves (Fig. 11 (f)). 

Fig. 12 shows the fast Fourier transform (FFT) of ∂uz/∂t separately for 
the lower (0.6 < z < 1) and upper (1 < z < 1.5) regions of the TC. The 
spectra were computed at discrete ϕ points and then azimuthally aver-
aged. The thin vertical lines in Figs. 12 (a) and (b) give the values of 
ω⋆

s = ωs/ωf , where ωf and ωs are the estimated frequencies of the fast 
and slow MAC waves. In the lower region of the TC, where the fast and 
slow waves coexist, the spectra suggest the dominance of the fast waves. 
However, the slow waves are dominant in the upper region of the TC. In 
the regime of polarity transitions (Ra = 21000), the fast waves are 
dominant throughout the TC. 

Having understood from Figs. 11 and 12 that convection within the 
TC is made up of fast and slow MAC waves, we examine the magnitude 
of the wave motions in the neighbourhood of convective onset. In 
Fig. 13, the magnitude of the time-averaged peak z velocity within the 
TC is plotted with respect to z in two dynamo simulations near onset. At 
Ra = 800, convection onsets via fast MAC waves, whose velocity does 
not change appreciably with z. At Ra = 1000, the axial magnetic field 
concentrates within the TC, giving |ωM/ωC| ≈ 0.2 (Table 1). Here, the 
fast MAC wave velocity decreases appreciably in the region z > 1, where 
the slow waves propagate as isolated plumes. Interestingly, the peak 
intensities of the fast and slow wave motions are approximately equal 
(see also Table 3). The measurement of wave motions in the dynamo 
model enables meaningful comparisons of the dynamics within the TC 
with that predicted by linear magnetoconvection. 

3.3. Comparisons between the dynamo and linear magnetoconvection 
models 

The TC may be approximated by a rotating layer in which convection 
takes place under an axial (z) magnetic field with gravity pointing in the 
downward z direction. Therefore, a simplified linear model that studies 
the the evolution of a buoyancy disturbance in an unstably stratified 
rotating fluid under an axial magnetic field (Fig. 1) provides an insight 

into the role of wave motions in TC convection. The notable points of 
comparison between the linear and dynamo models are as follows: 

1. Onset of slow MAC waves: The slow waves are detected within the 
TC when |ωM/ωC| ∼ 0.1. This state is characterized by the approximate 
equality between the peak intensities of slow and fast waves (Fig. 13 (b) 
and Table 3), in good agreement with the linear model where the two 
intensities match at |ωM/ωC| ≈ 0.2 (Fig. 3 (c)). Furthermore, both 
models indicate that the parity between the wave motions persists for 
higher |ωM/ωC|. 

2. Suppression of slow MAC waves under strong forcing: The slow 
wave velocity goes to zero within the TC when |ωA/ωM| ≈ 1 (Table 3), in 
agreement with the linear model (Fig. 3 (d)). 

3. Intensity of polar vortices: For |ωM/ωC| ∼ 0.1, the time and 
azimuthally averaged intensity of the polar vortex is much higher than 
that in nonmagnetic convection. However, when |ωA/ωM| ≈ 1, the vor-
tex intensity decreases appreciably to a value comparable to that in 
nonmagnetic convection (see Fig. 9 and Table 1), in agreement with the 
behaviour of the toroidal kinetic energy in the linear model (Fig. 5). 

4. Concluding remarks 

This study investigates convection within the tangent cylinder in 
rapidly rotating spherical dynamos through the analysis of forced MHD 
waves. Early studies (Sreenivasan and Jones, 2006) had shown that the 
polar vortices generated in the dynamo are considerably more intense 
than that in nonmagnetic convection due to the formation of isolated off- 
axis plumes within the TC. It was subsequently shown that convection 
would be localized by a laterally varying z magnetic field (Sreenivasan 
and Gopinath, 2017), and the wavenumber at its onset would be 
determined by the Ekman number. The fact that the magnetic field 
confines convection suggests localized magnetostrophic balances within 
the TC. In this study, it is shown that slow MAC waves generated at the 
length scale of convection support the isolated TC upwellings in the 
dipole-dominated dynamo regime, in turn producing strong anticyclonic 
polar vortices. In regions where the magnetic flux is relatively weak, fast 
MAC waves are excited, although these waves are unable to penetrate 
the neutrally buoyant fluid layer that lies above them. 

The observed secular variation of the Earth’s magnetic field (Olson 
and Aurnou, 1999; Hulot et al., 2002; Amit and Olson, 2006) suggests 
maximum drift rates of the polar vortex in the range 0.6–0.9◦ yr− 1. The 
observed peak values are reached in the present low-inertia dynamo 
models for strongly driven convection with Ra/Rac ∼ 103 (Table 1). If 
the forcing is so strong as to cause polarity reversals, the field within the 
TC decays away, resulting in much weaker circulation in the polar 
regions. 
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Table 3 
Ratio of the peak z velocities of the slow and fast MAC waves, u⋆

z,s/u⋆
z,f , at progressively increasing forcing in two dynamo regimes considered in this study.  

E = 6× 10− 5,Pm = Pr = 5 E = 1.2× 10− 5,Pm = Pr = 1 

Ra |ωM/ωC | |ωA/ωM | u⋆
z,s/u⋆

z,f Ra |ωM/ωC | |ωA/ωM | u⋆
z,s/u⋆

z,f 

1000 0.21 0.67 1.12 1000 0.35 0.46 1.23 
2000 0.39 0.53 1.18 2500 0.44 0.49 1.31 
3000 0.55 0.53 1.27 4000 0.61 0.55 1.28 
18000 0.88 0.79 1.47 25000 0.90 0.93 1.44 
20000 0.77 0.91 1.41 27000 0.91 0.98 1.46 
21000 0.43 1.63 0 28000 0.62 1.52 0  
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Appendix A. Equations for nonmagnetic convection 

For Pm = Pr, the convection-driven dynamo given by Eqs. (24)–(27) is compared with nonmagnetic convection given by the equations 

EPr− 1
(

∂u
∂t

+ (∇ × u) × u
)

+ ẑ × u = − ∇p⋆ + RaT r + E∇2u, (A.1)  

∂T
∂t

+(u⋅∇)T = ∇2T, (A.2)  

∇⋅u = 0, (A.3)  

where lengths are scaled by the thickness of the spherical shell L, time is scaled by L2/κ, the velocity u is scaled by κ/L and p⋆ = 1
2EPr− 1|u|2. 

For a magnetic (dynamo) calculation with the parameters E = 6× 10− 5, Pm = Pr = 5, Ra = 3000, the equivalent non-magnetic calculation has the 
parameters E = 6× 10− 5, Pr = 5, Ra = 3000. 
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