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ABSTRACT

The coalescence of liquid lenses represents a fundamental challenge within the domains of fluid dynamics and statistical physics, particularly
in the context of complex multi-phase flows. We demonstrate that the three-phase Cahn–Hilliard–Navier–Stokes (CHNS3) system provides
a natural theoretical framework for studying liquid-lens coalescence, which has been investigated in recent experiments. Our extensive direct
numerical simulations of lens coalescence, in the two and three dimensional (2D and 3D) CHNS3, uncover the rich spatiotemporal evolution
of the fluid velocity u and vorticity x, the concentration fields c1; c2; and c3 of the three liquids, and an excess pressure PG

‘ , which we define
in terms of these concentrations via a Poisson equation. We find, in agreement with experiments, that as the lenses coalesce, their neck height
hðtÞ � tav , with av ’ 1 in the viscous regime, and hðtÞ � tai , with ai ’ 2=3 in the inertial regime. We obtain the crossover from the viscous
to the inertial regimes as a function of the Ohnesorge number Oh, a dimensionless combination of viscous stresses and inertial and surface
tension forces. We show that a vortex quadrupole, which straddles the neck of the merging lenses, and PG

‘ play crucial roles in distinguishing
between the viscous- and inertial-regime growths of the merging lenses. In the inertial regime, we find signatures of turbulence, which we
quantify via kinetic-energy and concentration spectra. Finally, we examine the merger of asymmetric lenses, in which the initial stages of coa-
lescence occur along the circular parts of the lens interfaces; in this case, we obtain power-law forms for the h(t) with inertial-regime expo-
nents that lie between their droplet-coalescence and lens-merger counterparts.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0172631

I. INTRODUCTION

Coalescence—of droplets, in general, and liquid lenses, in
particular—is a fundamental problem in the fluid dynamics and statis-
tical physics of multi-phase flows.1–22 Such droplet merging is of direct
relevance in engineering applications, such as ink-jet printers23,24 and
atmospheric physics, e.g., the merger of rain drops in a cloud.25–27

When two droplets coalesce, a bridge forms, and its height h grows
with time t. Experiments,2–6 theory, and numerical simulations7–11

show that in the early stage of coalescence of two, initially static, spher-
ical droplets, there is self-similar growth with hðtÞ � t and hðtÞ � t1=2

in the viscous and inertial regimes, respectively.4,5,28 Three-phase fluid
systems can exhibit the coalescence of two liquid lenses, as we show
schematically in Fig. 1; recent experiments have shown that, for such a
lens merger,29 hðtÞ � t1 and hðtÞ � t2=3 in the viscous and inertial

regimes, respectively. We show that the three-phase Cahn–Hilliard–
Navier–Stokes (CHNS3), which couples the fluid velocity u with the
concentration fields c1; c2; and c3, which distinguish between the three
coexisting phases that form the lens, provides a natural theoretical
framework for the study of liquid-lens coalescence in the viscous and
inertial regimes and in the crossover region from the former to the lat-
ter. Our direct numerical simulations (DNSs), in both two and three
dimensions (2D and 3D), for the coalescence of two nearby, initially
static, liquid lenses in this CHNS3 system uncover the complete spatio-
temporal evolution of u; c1; c2; and c3 during lens mergers. In addi-
tion, we obtain a variety of new and interesting results that we
summarize qualitatively below. We find, in agreement with experi-
ments, that hðtÞ � tav , with av ’ 1 in the viscous regime, which is fol-
lowed by a region in which the growth of h(t) with t is less steep, and,
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finally, hðtÞ � tai , with ai ’ 2=3 in the inertial regime; we obtain the
crossover from the viscous to the inertial regimes as a function of the
Ohnesorge number Oh, a dimensionless ratio of viscous stresses to
the inertial and surface tension forces.1,30,31 {Oh � �½q=ðrR0Þ�1=2,
where q, �, r and R0 are, respectively, the density, viscosity, surface
tension, and initial droplet’s radius.} We use the top view of the merger
of biconvex lenses in 3D [see the planar section in Fig. 1(b)] to define
the neck width w(t) and show that wðtÞ � tav and wðtÞ � tai in vis-
cous and inertial regions, respectively. From the spatiotemporal evolu-
tion of u; c1; c2; and the vorticity x ¼ r� u, we demonstrate the
crucial role played by a vortex quadrupole that straddles the neck of
the merging lenses: the spatial extent of this quadrupole grows with
this neck, uniformly in the viscous regime but with distortions in the
inertial case, where we see signatures of turbulence, which we quantify
by obtaining kinetic-energy and concentration spectra. Such turbu-
lence during the coalescence of lenses has not previously been observed
in either experimental or numerical studies. We show that the gradient
of an excess pressure PG

‘ is also of vital importance in the merger of liq-
uid lenses, just as it is in the coalescence of droplets.1,21 Finally, we
examine the merger of two asymmetrical, but identical, liquid lenses,
whose top parts are more curved than their lower ones. For this asym-
metrical case, we exhibit how this proceeds via the coalescence of the
upper concave arcs, which is similar to its counterpart for circular
droplets, so the growth exponent for h(t) lies in between its lens- and
droplet-merger values. To the best of the authors’ knowledge, the geo-
metric dependence of such coalescence phenomena has not been pre-
viously documented in the scientific literature.

The remaining part of this paper is organized as follows. In
Sec. II, we define the CHNS3 partial differential equations (PDEs) and
the numerical methods we use to solve these PDEs. Section III is
devoted to a presentation of our results. We end with concluding
remarks in Sec. IV. See the Appendix that contains additional figures.

II. MODEL AND NUMERICAL METHODS

We define the CHNS3 model in Sec. IIA, discuss the details of
our direct numerical simulations (DNSs) in Sec. II B, and describe the
preparation of the lens-merger initial conditions in Sec. IIC.

A. Three-phase Cahn–Hilliard–Navier–Stokes model

Phase-field or Cahn–Hilliard models have been used extensively
to study multi-phase fluid flows;32–36 in particular, they have been
employed to study droplet coalescence in binary–fluid mixtures.10,37–39

We show that the following ternary-phase-field (CHNS3) model,40–42

for three immiscible fluids, provides a natural framework for

investigations of liquid-lens coalescence; this model uses the varia-
tional free-energy functional in the domain X,

Fðfci;rcigÞ ¼
ð
X

dX
12
�
FðfcigÞ þ 3�

8

X3
i¼1

ciðrciÞ2
" #

; (1)

where the concentration fields ciði ¼ 1; 2; 3Þ are conserved order
parameters that satisfy the constraint

P3
i¼1 ci ¼ 1, � is the thickness

of the interface, the variational bulk free energy FðfcigÞ
¼P3

i¼1 cic
2
i ð1� ciÞ2, and the gradient terms give the surface-tension

penalties for interfaces, with rij ¼ ðci þ cjÞ=2 the bare surface (or
interfacial) tension for the interface between the phases i and j; the
equilibrium values of ci follow from the global minimum (or minima)
of FðfcigÞ. The equilibrium chemical potential of the fluid i is
li � dF=dci þ bðfcigÞ, with bðfcigÞ the Lagrange multiplier that
ensures

P3
i¼1 ci ¼ 1, whence we get40

li ¼ � 3
4
�cir2ci þ 12

�
cicið1� ciÞð1� 2ciÞ � 6c1c2c3ðc1c2c3Þ

c1c2 þ c1c3 þ c2c3

� �
:

(2)

We do not use the summation convention over repeated indices here.
The mean fluid velocity u advects the fields ciði ¼ 1; 2; 3Þ, which affect
the flow, in turn, so that we get40 coupled CHNS-type equations for u
and c1 and c2 (c3 follows from the constraint

P3
i¼1 ci ¼ 1). We con-

sider low-Mach-number flows; hence, we use incompressible fluids. In
2D, it is convenient to use the vorticity-stream-function formulation
for the incompressible Navier–Stokes equation to obtain

@txþ ðu � rÞx ¼ �r2xþr�
X3
i¼1

lirci

 !
; (3)

@tcj þ ðu:rÞcj ¼ M
cj
r2lj; j ¼ 1 or 2; (4)

where we assume, for simplicity, that all the fluids have the same den-
sity q¼ 1, kinematic viscosity �, and mobility M, and that
r12 ¼ r23 ¼ r13 � r. In 3D, we use

@tuþ ðu � rÞu ¼ �r2u�rP þ
X3
i¼1

lirci

 !
; (5)

r � u ¼ 0; (6)

@tcj þ ðu:rÞcj ¼ M
ci
r2lj; j ¼ 1 or 2; (7)

where P is the pressure. The terms with
P3

i¼1 lirci yield the stress on
the fluid because of the fields ci. In addition to the velocity and concen-
tration fields, it is instructive to define and evaluate the following:

(A) The excess pressure PG
‘

r2PG
‘ ¼ r �

X3
i¼1

lirci

 !
: (8)

In equilibrium (i.e., no fluid flow) and in the limit of a zero-
thickness interface, PG

‘ reduces to the conventional Laplace
pressure,40,43 which is inversely related to the interface
curvature.

FIG. 1. Schematic diagrams illustrating liquid-lens coalescence: (a) 2D or in 3D (a
planar section containing the principal axes of the coalescing lenticular biconvex
lenses) and (b) top view in 3D (a planar section perpendicular to the principal axes
of the coalescing lenticular biconvex lenses).
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(B) At time t, the energy and concentration spectra, the integral
scale, and the Reynolds number are, respectively,32,38,44,45

Eðk; tÞ ¼ 1
2

X
k�1=2<k0<kþ1=2

ûðk0; tÞ � ûð�k0; tÞ� �
;

S1ðk; tÞ ¼
X

k�1=2<k0<kþ1=2

ĵc1ðk0; tÞj2 ;

S2ðk; tÞ ¼
X

k�1=2<k0<kþ1=2

ĵc2ðk0; tÞj2 ;

LIðtÞ ¼ 2p

X
k

k�1Eðk; tÞX
k

Eðk; tÞ ;

ReðtÞ ¼ UrmsðtÞLIðtÞ
�

;

(9)

where UrmsðtÞ ¼ ½Pk Eðk; tÞ�1=2 is the root-mean-square veloc-
ity of the fluid; ûðk0; tÞ and ĉiðk0; tÞ are, respectively, the spatial
discrete Fourier transforms (DFT) of uðx; tÞ and ciðx; tÞ; and k
and k0 are the moduli of the wave vectors k and k0.

B. Numerical methods

We carry out Fourier-pseudospectral DNSs38,46 of Eqs. (3) and (4) and
Eqs. (5)–(7) in square (N2 collocation points) and cubical (N3 colloca-
tion points) domains, respectively, with sides L ¼ 2p, and periodic
boundary conditions in all spatial directions. To eliminate aliasing
errors, because of the cubic nonlinearity, we use the 1/2-dealiasing
scheme47 at each time step before we compute the nonlinear terms in
physical space. For time integration, we employ the semi-implicit
exponential-time-difference ETDRK2method.48 In the CHNS3 model,
the fluid velocity and the concentrations ci change smoothly at fluid
interfaces, so we do not have to implement boundary conditions at
sharp interfaces. To resolve the interface, we take three grid points in
the interface region and choose M ’ �2, so that our phase-field
description can approach the sharp-interface limit.49–51 The Cahn
number Cn � �=L, a non-dimensional measure of the interface width,
R0=L, the non-dimensional initial radius of curvature of the lens, and
the dimensionless Ohnesorge number Oh � �½q=ðrR0Þ�1=2 are given
in Table I along with the numbers of collocation points and other
parameters for our DNS runs in 2D and 3D.

Despite the global conservation of the phase-field variable, drops
spontaneously undergo shrinking while experiencing shifts from their
expected bulk phase values, and these alterations are proportionate to
the interfacial thickness.52 The Cahn numbers we used in all our simu-
lations are very small, for the given computer resolutions; this allows
us to preserve the mass conservation of lenses and droplets, to three-
decimal-place accuracy. We illustrate area preservation in Fig. 9 (see
the Appendix) for Oh¼ 0.025 (run 2D-R1), where we plot the ratio
AðtÞ=A0, where A(t) is the area of the lenses at time t and A0 is the
area at the initial time t¼ 0.

C. Initial conditions

To prepare the lens-merger initial condition in 2D for a symmet-
ric and neutrally buoyant lens, we start our DNSs with the following

configuration for a single circular droplet of fluid 1, with radius R0 and
center ðp; pÞ, placed at the interface between fluids 2 and 3:

c1ðx; y; 0Þ ¼ 1
2

1� tan h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � pÞ2 þ ðy � pÞ2

q
� R0

2
ffiffiffi
2

p
�

0
@

1
A

2
4

3
5
;

c2ðx; y; 0Þ ¼ 1
2

1� tan h
y � p

2
ffiffiffi
2

p
�

� �� �
� c1ðx; y; 0Þ:

(10)

The initial and equilibrium configurations are similar in 3D. As time
evolves in our DNSs, the initial droplet relaxes to its equilibrium-lens
(biconvex-lens in 3D) shape as shown in Fig. 2 for 2D, with the angle
h ¼ 120� [Fig. 1(a)], because we choose r12 ¼ r23 ¼ r13 � r. We
then place two such static lenses (biconvex lenses) close to each other
and set the velocity field to zero everywhere. The initial distance
between the proximate edges of the two lenses is greater than the grid
spacing dx and less than the interface width �.

III. RESULTS

We illustrate the fascinating spatiotemporal evolution of liquid-
lens coalescence by representative pseudocolor plots [Figs. 3(a)
(Multimedia view), 3(b) (Multimedia view), 3(d) (Multimedia view), 3(e)

TABLE I. The parameters �, r, and Oh for our DNS runs. From 2D-R1 to 2D-R8
and 2D-T1 to 2D-T7, N2 ¼ 10242; for runs 2D-S1 to 2D-S2, N2 ¼ 20482; for runs
2D-P1 to 2D-P4, N3 ¼ 5123. For all runs, we use the mobility M ¼ 10�4 except for
runs 3D-P1 to 3D-P4, for which we take M ¼ 10�3. The contact angle h ¼ 120� for
all our symmetric-lens simulations. {	 In run 2D-K1, with asymmetric lenses, we use
ðr12; r23;r13Þ ¼ ð1:4; 1; 0:6Þ;Ohij ¼ �½q=ðrijR0Þ�1=2.}

Run � r R0=L Cn Oh

2D-R1 0.025 1.0 0.2 0.003 0.025
2D-R2 0.05 1.0 0.2 0.003 0.04
2D-R3 0.1 1.0 0.2 0.003 0.09
2D-R4 0.25 1.0 0.2 0.003 0.2
2D-R5 0.5 1.0 0.2 0.003 0.4
2D-R6 1.0 1.0 0.2 0.003 0.9
2D-R7 5.0 1.0 0.2 0.003 4.3
2D-R8 10 1.0 0.2 0.003 8.7
2D-S1 3.0 1.0 0.2 0.001 2.6
2D-S2 10 1.0 0.2 0.001 8.7
2D-T1 0.01 1.0 0.15 0.003 0.01
2D-T2 0.05 1.0 0.15 0.003 0.05
2D-T3 0.1 1.0 0.15 0.003 0.1
2D-T4 0.3 1.0 0.15 0.003 0.3
2D-T5 0.5 1.0 0.15 0.003 0.5
2D-T6 1.0 1.0 0.15 0.003 1.0
2D-T7 2.0 1.0 0.15 0.003 2.0
3D-P1 0.01 1.0 0.1 0.006 0.01
3D-P2 0.1 1.0 0.1 0.006 0.12
3D-P3 1.0 1.0 0.1 0.006 1.25
3D-P4 1.25 1.0 0.1 0.006 1.6
2D-K1 0.025 	 0.2 0.003 	
2D-K2 0.025 1.0 0.2 0.003 0.025
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(Multimedia view), 3(g), and 3(h)] from our DNS studies of the
symmetrical mergers of two liquid lenses in 2D and of two lenticu-
lar biconvex lenses in 3D. In particular, Figs. 3(a) and 3(b) show,
for the viscous and inertial regimes, respectively, pseudocolor plots
of x, with overlaid velocity vectors and the magenta c1 ¼ 0:5 con-
tour, which is a convenient indicator of the lens interface in 2D. In
Figs. 3(d) and 3(e), we show results from our DNS of lens mergers
in 3D; we use a green isosurface of c1 and an overlaid brown isosur-
face of jxj; we present z ¼ p planar sections of the c1 isosurface
(black curve) and of jxj (pseudocolor plots) in Figs. 3(g) and 3(h).
We see from these figures and videos that initially static lenses,
which are placed close to each other, gradually coalesce by forming
a bridge, whose neck height h(t) [and, in 3D, the width w(t) also]
increases with time t. This lens coalescence depends on the
Ohnesorge number Oh. We find, in agreement with experiments,29

that liquid-lens coalescence is influenced principally by viscous
stresses, at high values of Oh (high �), but by inertial forces, at low
values of Oh (low �), with surface tension forces being the domi-
nant driving factor. We carry out a systematic study of the Oh
dependence of this coalescence process.

In Figs. 3(c), 3(f), and 3(i), we quantify the remarkable difference
between the growth of h(t) in the viscous and inertial regimes. In both
2D and 3D, our DNSs yield hðtÞ=l� � ðt=t�Þav and hðtÞ=l� � ðt=t�Þai
with distinctly different viscous- and inertial-range exponents av ’ 1
and ai ’ 2=3, respectively; here, l� ¼ q�2=r and t� ¼ q2�3=r2 are
the viscous length and time scales.3 Our results are in consonance with
recent experiments on the coalescence of liquid lenses.29 Figures 3(c)
and 3(f) demonstrate clearly that, if we plot the scaled neck height
hðtÞ=l� vs the scaled time t=t� , then the curves for different values of
Oh collapse, to a significant degree, onto a single curve, whose asymp-
totes are the above-mentioned viscous- and inertial-range scaling
forms; these asymptotes are separated by a broad crossover region.
Within the accuracy of our measurements (and those in experiments),
the scaling exponents av and ai are universal insofar as they do not
depend on Oh and the linear size and the spatial dimension of the sym-
metrical lenses (see Fig. 7 in the Appendix). Furthermore, as we show
in Fig. 3(i), in 3D, the scaled width wðtÞ=l� also shows the collapse, for
different values of Oh, and the same scaling forms as hðtÞ=l� .

We find that, in viscous-regime coalescence, neck growth is
guided by the large gradient of PG

‘ [see Figs. 4(a) and 4(c) for 2D and
the top view for 3D, respectively]. In contrast, in the inertial regime,
the gradient of PG

‘ [Eq. (8)] in the region of the neck is smaller than it
is in the viscous case [see Figs. 4(b) and 4(d) for 2D and the top view
for 3D, respectively]. This leads to faster neck growth in the viscous
case than in the inertial one, with av ’ 1 > ai ’ 2=3.

The following heuristic dimensional argument53 suggests why the
exponents av and ai are different from each other. On dimensional
grounds,rPG

‘ � PG
‘ =hðtÞ. The velocity of growth of the neck height is

_hðtÞ. In the viscous regime, �r2u � � _hðtÞ=h2; if we balance this by
rPG

‘ � PG
‘ =hðtÞ and note that PG

‘ � r=h, we obtain � _hðtÞ � r,
whence hðtÞ � t and av ¼ 1. If we equate the inertial term u � $u with
_h
2
=h, the balance with rPG

‘ � PG
‘ =hðtÞ yields hðtÞ � t2=3, i.e.,

ai ¼ 2=3. The exponent ai ¼ 2=3, for inertial-range liquid-lens coales-
cence, is distinct from its counterpart in the coalescence of spherical
droplets, where ai ¼ 1=2 (see, e.g., Refs. 2–5, 7–11, and 39). This indi-
cates that the geometry of the coalescing droplets plays a major role in
the coalescence process, as has been noted in recent experiments.29

The superimposition of the vorticity and velocity fields, which we
present in Figs. 3(a), 3(b), 3(d), 3(e), 3(g), and 3(h), shows clearly that
in the viscous regime, a vortex quadrupole is present in the region of
the neck of the vortex. In the inertial case, this quadrupole stretches
out with some subsidiary small vortices; the neck of the lens stretches
out also in this case. In the inertial case, the presence of numerous vor-
tices, spread over the interface, is indicative of turbulence,44,45 whose
properties we explore below.

We investigate the spreading of the vortex quadrupole and its
distortion into a pair of dipoles by computing the ratio QðtÞ=hðtÞ,
where Q(t) is the distance between the vortex and anti-vortex cores
[see the top inset of Fig. 4(e)]. In the log –log plots of Fig. 4(e), we
show how QðtÞ=hðtÞ varies with time t for different values of Oh.
In the viscous regime, QðtÞ=hðtÞ decreases as t increases; by con-
trast, in the inertial regime, QðtÞ=hðtÞ increases with t. At the high-
est (lowest) value of Oh that we consider, this decrease (increase) is
characterized by a power-law exponent ’ �1=4 (’ þ1=4); for
intermediate values of Oh, the ratio QðtÞ=hðtÞ first decreases and
then increases as t progresses.

FIG. 2. Pseudocolor plots of c2 � c1 showing the three co-existing phases and the interfaces between them for (a) the initial condition given in Eq. (10) and (b) the final equilib-
rium configuration. (c) Plot of the temporal evolution of the kinetic energy eðtÞ ¼Pk Eðk; tÞ during lens formation for Oh¼ 0.09. The energy is normalized with the viscous
scale velocity u� ¼ r=ðq�Þ. [We obtain the final equilibrium configuration shown in (b) after the kinetic energy reaches zero.].
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Significant turbulence is generated during liquid-lens coalescence
in the inertial regime. We quantify this turbulence by considering the
temporal evolution of the energy spectrum E(k, t), which yields the
energy distribution across different wave numbers k, the integral
length scale LIðtÞ, which is the typical length scale of energy-
containing eddies, and the Reynolds number Re(t) that characterizes
the degree of turbulence [see Eq. (9)].

In Figs. 5(a) (2D run T1) and 5(b) (3D run P1), we present
log–log plots of E(k, t) vs k for several representative times t; the
embedded figures on the top right corners show the growth of Re(t)
with t. From these figures, we see that the energy is spread over at least

two decades over k; this is a clear signature of lens-merger-induced tur-
bulence. The arrows in Figs. 5(a) and 5(b) indicate the direction of
time evolution of the energy spectra during coalescence, suggesting
inverse cascades of energy in both 2D and 3D. [The concentration
spectra S1ðk; tÞ and S2ðk; tÞ are also spread over at least two decades of
k because of this turbulence (see Fig. 8 in the Appendix), but their
dependence on t is less than that of E(k, t).] The time evolution of
the scaled integral length scale LIðtÞ=l� , shown in Fig. 5(c),
indicates power-law scaling with LIðtÞ=l� � ½t=t� �aL , with the scaling
exponent aL ’ 2=3 [this is like the neck-growth exponent shown in
Figs. 3(c), 3(f), and 3(i)].

FIG. 3. 2D DNSs: Pseudocolor plots of x with overlaid velocity vectors for the coalescence of lenses in (a) the viscous regime (from run 2D-R6) and (b) the inertial regime
(from run 2D-R1); the c1 ¼ 0:5 contour (magenta line) indicates the lens interface. The field is normalized with its absolute value for ease of visualization. 3D DNSs: Isosurface
plots of c1 (green) and jxj (brown) for (d) the viscous regime (from run 2D-P3) and (e) the inertial regime (from run 2D-P1). 3D DNSs (top view) pseudocolor plots of
xðx; y; z ¼ pÞ overlaid with the c1 ¼ 0:5 contour line (black line) for (g) the viscous regime (from run 2D-P3) and (h) the inertial regime (from run 2D-P1). Plots of the scaled
neck height hðtÞ=l� vs the scaled time t=t� for different Ohnesorge numbers Oh for (c) 2D lenses (runs 2D-R1 to 2D-R8, 2D-S1 to 2D-S2) and (f) 3D lenses (runs 3D-P1 to
3D-P4). (i) Plots of the scaled neck width wðtÞ=l� vs the scaled time t=t� for different values of Oh for the above 3D lenses (top view). The time and length axes are scaled by
the corresponding viscous time and length scales. The plots show a clear crossover from the viscous regime, with exponent av ’ 1, to the inertial regime, with exponent
ai ’ 2=3. In 3D, we measure h(t) and w(t) in the z and y directions, respectively. Multimedia available online.
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In Fig. 6 we compare log –log plots of hðtÞ=l� vs t=t� for the
mergers of (A) symmetric lenses [see Fig. 6(A) (Multimedia view)],
(B) asymmetric lenses [Fig. 6(B) (Multimedia view)], and (C) circular
droplets [Fig. 6(C) (Multimedia view)]. [See the pseudocolor plots of
c2 � c1 in the insets. Symmetric lenses, as illustrated in Fig. 6(A),
exhibit top-down symmetry; in contrast, asymmetric lenses, as
depicted in Fig. 6(B), do not display this symmetry.] These plots dem-
onstrate the geometry dependence of the power-law-growth exponent
ai in the inertial regime. Specifically, we find: for the coalescence of
symmetric lenses (run 2D-R1) ai ’ 2=3 (green line); this value
shows a smooth crossover to ai ’ 1=2 (blue line) for the coalescence
of circular droplets (from run 2D-K2); the coalescence of asymmetric
lenses (from run 2D-K1) shows a crossover from ai ’ 2=3 to
ai ’ 1=2 (red line).

IV. CONCLUSION AND DISCUSSIONS

We have shown that the three-phase Cahn–Hilliard–Navier–
Stokes (CHNS3) provides a natural theoretical framework for the study
of liquid-lens coalescence in the viscous and inertial regimes and in
the crossover region from the former to the latter. By carrying out
extensive DNSs, we have shown, in agreement with experiments, that
(a) hðtÞ � tav , with av ’ 1 in the viscous regime; (b) in the crossover
region, the growth of h(t) with t is less steep; and (c) hðtÞ � tai , with
ai ’ 2=3 in the inertial regime. Our study of the viscous, crossover, and
inertial regimes as a function of Oh and R0 has demonstrated that
these exponents are universal and do not depend on the sizes of the
merging lenses. From the top view of the merger of biconvex lenses in
3D [Fig. 1(b)], we have shown that wðtÞ � tav and wðtÞ � tai in viscous
and inertial regions, respectively. By monitoring the spatiotemporal

FIG. 4. Pseudocolor plots of the excess pressure PG
‘ : For 2D in (a) viscous and (b) inertial regimes. In 3D top view of PG

‘ in (c) viscous and (d) inertial regimes. (e) Plots vs
time t of the ratio of the horizontal width Q(t) of the vortex-quadrupole and the bridge height h(t) (see the top-right schematic figure), for different Ohnesorge numbers Oh, show-
ing decay and growth with time (see the text) in viscous and inertial regimes.

FIG. 5. Time evolution [at t=t� ¼ 160 ð� t	Þðred lineÞ; 10t	ðblue lineÞ; 50t	ðgreen lineÞ; and 300t	ðmagenta lineÞ] of the inertial-regime-kinetic-energy spectra E(k, t) for (a)
run 2D-T1 in 2D and (b) run 3D-P1 in 3D; the insets on the top right show the Reynolds number Re(t). (c) In the inertial regime, plots of LIðtÞ=l� vs t=t� collapse significantly
and indicate power-law scaling with LIðtÞ=l� � ½t=t� �aL with the scaling exponent aL ’ 2=3.
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evolution of u; c1; c2; and x, we have uncovered the crucial role played
by a vortex quadrupole in this merger, and we have characterized the
growth and distortion of this quadrupole. In the inertial case, we have
unveiled signatures of lens-merger-induced turbulence, which we have
quantified via the spectra Eðk; tÞ; S1ðk; tÞ; and S2ðk; tÞ, and LIðtÞ and
Re(t). We have shown that the gradient of PG

‘ is of importance in lens

mergers, just as it is in the coalescence of droplets.1,21 Our examination
of the merger of two asymmetrical lenses has elucidated how this pro-
ceeds via the coalescence of the upper concave arcs, so the growth expo-
nent ai lies in between its lens- and droplet-merger values. We hope that
our detailed study of the spatiotemporal evolution of concentration and
velocity fields during liquid-lens mergers will lead to experimental inves-
tigations of this evolution and of lens-merger-induced turbulence.

We note that liquid-lens coalescence is often studied for sessile
droplets on solid substrates in many experiments.53–56 It is possible to
study the spatiotemporal evolution of such coalescence by combining
our CHNS framework with a volume-penalization scheme as we will
show elsewhere.

As we were preparing our paper for publication, we became
aware of another paper, which has just been published recently,57 that
has carried out a lattice-Boltzmann study of symmetric liquid-lens
mergers in 2D and 3D. This study obtains results that are similar to
those that are summarized in our Fig. 3.
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APPENDIX: CONCENTRATION SPECTRA

The concentration spectra S1ðk; tÞ and S2ðk; tÞ are also spread
over at least two decades of k because of lens-merger-induced turbu-
lence (see Fig. 8), but their dependence on t is less than that of E(k, t).
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