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We determine masses of light quarks (mu;md;ms) using Borel-Laplace sum rules and renormalization
group summed perturbation theory (RGSPT) from the divergence of the axial vector current. The RGSPT
significantly reduces the scale dependence of the finite-order perturbative series for the renormalization
group invariant quantities such as spectral function, the second derivative of the polarization function of the
pseudoscalar current correlator, and its Borel transformation. In addition, the convergence of the spectral
function is significantly improved by summing all running logarithms and kinematical π2-terms.
Using RGSPT, we find msð2 GeVÞ ¼ 104.34þ4.32

−4.21 MeV and mdð2 GeVÞ ¼ 4.21þ0.48
−0.45 MeV leading to

muð2 GeVÞ ¼ 2.00þ0.33
−0.38 MeV.

DOI: 10.1103/PhysRevD.108.094016

I. INTRODUCTION

The light quark masses are important parameters for
quantum chromodynamics (QCD) and electroweak phys-
ics. Because of confinement, they are not freely observed,
and their values depend on the scheme used. They are taken
as input in various quantities related to flavor physics and
play a key role in the proton-neutron mass difference and
the strong CP violating observable ϵ0=ϵ, etc. Precise
determination of their values has been of constant interest
in the past three decades. These masses can be precisely
obtained using the lattice QCD simulations, and for recent
development, we refer to Ref. [1].
Theoretical tools such as the QCD sum rules [2,3] have

played a key role in their precise determination. These sum
rules use both theoretical and experimental input on the
spectral function and are based on the assumption of the
quark-hadron duality [4]. On the hadronic side, the spectral
functions for the pseudoscalar channel in the case of the
strange and nonstrange channels do not have experimental
data, and therefore, inputs from chiral perturbation theory
(ChPT) [5–7] become very important. For reviews, we refer
to [8–10] and references therein.
On the theoretical side, operator product expansion (OPE)

[11] is used, which has perturbative and nonperturbative
contributions. The perturbative corrections are calculated by

evaluating the Feynman diagrams, and nonperturbative
corrections are the condensates of higher-dimensional
operators of quarks and gluons fields. The condensates
can be determined from lattice QCD, ChPT, or using QCD
sum rules [12].
Fixed-order perturbation theory (FOPT) is the most

commonly used prescription in the literature. In this
prescription, the perturbative series is a polynomial in
the strong coupling constant [αsðμÞ], quark masses [mqðμÞ],
and the running renormalization group (RG) logarithms
[logðμ2=Q2Þ]. The RG invariance of an observable (O),
known to a finite order in perturbation theory, is enforced
using the RG equation (RGE),

μ2
d
dμ2

O ¼ 0; ð1Þ

which results in a cancellation among the coefficients of
different orders in αs. The solution to Eq. (1) can be used to
generate the RG logarithms.
Renormalization group summed perturbation theory

(RGSPT) is a perturbative prescription in which the running
RG logarithms arising from a given order of the perturbation
theory are summed in a closed form to all orders using
RGE. As a result, we get an analytical expression for the
perturbative series in which αsðμÞ logðμ2=Q2Þ ∼Oð1Þ. This
scheme is useful in reducing the theoretical uncertainties
arising from renormalization scale dependence. The pro-
cedure is described in Sec. III and some of the applications
can be found in Refs. [13–26].
The Borel-Laplace sum rule is one of the important

methods widely used in the literature, especially for the
determinations of quark mass [27–35] and in the extraction
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of hadronic parameters [36–39], etc. However, the depend-
ence of an unphysical Borel parameter (u) and free
continuum threshold s0 parameter is present in these
determinations. In principle, any determination using this
sum rule should be independent of the choice of these
parameters, but they are tuned to get reliable results. In
addition, the determination of the light quark masses from
these sum rules is found to be very sensitive to the
renormalization scale, and a linear behavior has been
reported in Refs. [28,40]. Also, suppression to the hadronic
spectral function using pinched kernels [27,41], mainly
used in the finite energy sum rules (FESR), cannot be
implemented in these sum rules.
With the limitations in hand, our interest in this sum rule

is because of two reasons:
(1) The formalism developed in Ref. [23] can be used to

improve the convergence and reduced renormaliza-
tion scale dependence for the spectral function by
summing kinematical π2-terms using RGSPT.

(2) All-order summation of the Euler’s constant (γE) and
ζ functions arising as a result of the Borel trans-
formation of the RG invariant second derivative of
the polarization function using RGSPT.

It should be noted that these improvements are very crucial
and can be used in any Borel-Laplace sum-rule-based
studies. On the theoretical side, the leading perturbative
Oðα4sÞ corrections to the pseudoscalar two-point function
are now available in Refs. [42–44] and other OPE correc-
tions from Refs. [28,35,45–47]. For the low-energy region,
there is no experimental information for the pseudoscalar
spectral density in the resonance region, but it can be
modeled using the experimental values of the resonances
[48–50]. We have used the results of previous studies on the
hadronic spectral function from Refs. [29,48–51] for the
strange and nonstrange channel.
Hadronic τ decays are also found to be very useful in the

determination of strange quark mass, Cabibbo-Kobayashi-
Maskawa element jVusj, and strong coupling constant, and
more details can be found in Refs. [15,52–57]. These
studies use experimental data on the spectral function.
Commonly used prescriptions for the perturbative series in
these FESR-based studies use FOPT and contour improved
perturbation theory (CIPT). Recently, CIPT has been
found to be in conflict with the OPE expectations, and
for more details, we refer to Refs. [58–64]. For other light
quark mass determinations using sum rules, we refer to
Refs. [34,40,48,65].
It should be noted that only the MS definition of αs and

mq is used in this article. The value of αsðMzÞ ¼ 0.1179�
0.0009 has been taken from the PDG [66] and evolved to
different scales using the five-loop β function for three
flavors using packages REvolver [67] and RunDec [68,69]. Its
value at τ lepton mass (Mτ) scale is αsðMτÞ ¼ 0.3139�
0.0083 and has been used in this article. Also, we have used

couplant xðμÞ≡ αsðμÞ
π as an expansion parameter in the

perturbation series and if explicit energy scale is not shown,
then x are assumed to be evaluated at renormalization
scale μ.
In Sec. II, we briefly introduce the quantities needed for

the Borel-Laplace sum rule. In Sec. III, we give a short
review of RGSPT. In Sec. IV, hadronic parametrization of
the spectral function for the strange and nonstrange channel
is discussed. In Sec. V, OPE contribution and its results in
FOPT and RGSPT prescription are discussed. In Sec. VI,
results from the previous sections are used for the light
quark mass determinations. In Sec. VII, we give the
summary and conclusion of this article, and supplementary
information is provided in Appendixes A and B.

II. FORMALISM

The current correlator for the divergence of the axial
currents is defined as

Ψ5ðq2Þ≡ i
Z

d4xeiqxh0jT fj5ðxÞj†5ð0Þgj0i; ð2Þ

where j5 is given by

j5 ¼ ∂
μðq̄1γμγ5q2Þ ¼ iðm1 þm2Þðq̄1γ5q2Þ

¼ iðm1 þm2Þj0; ð3Þ

and quark masses mi as well as quark fields qi ≡ qiðxÞ are
bare quantities.
Using Eq. (3), the correlation function in Eq. (2)

after renormalization in the MS scheme is related to the
pseudoscalar polarization function [ΠPðq2; μ2Þ] by relation

Ψ5ðq2Þ ¼ ðm1 þm2Þ2ΠPðq2; μ2Þ; ð4Þ

where mi ≡miðμÞ. The polarization function ΠPðq2; μ2Þ is
given by

ΠPðq2; μ2Þ ¼ i
Z

d4xeiqxh0jT fj0ðxÞj†0ð0Þgj0i; ð5Þ

where j0 is a renormalized current in the MS scheme.
Because of the above relation, the sum rule determinations
from the correlator in Eq. (2) are sometimes known as
pseudoscalar determinations.
Using OPE, a theoretical expression for Ψ5ðq2Þ is

calculated in the deep Euclidean spacelike regions in the
limitm2

q ≪ q2, and the resulting expansion can be arranged
as expansion in 1=ðq2Þ. At low energies ∼1 GeV2, instan-
ton effects become relevant, and their contribution is
not captured by OPE and therefore are added to it.
Further details on the OPE contributions are presented
in Sec. V.
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The Borel-Laplace sum rules are based on the double-
subtracted dispersion relation for the correlation function.
Therefore, it involves the double derivative of Ψ5ðq2Þ and
the dispersion relation is given by

Ψ00
5ðq2Þ ¼

d2

dðq2Þ2Ψ5ðq2Þ ¼
2

π

Z
∞

0

ds
ImΨ5ð−s − iϵÞ
ðs − q2 − iϵÞ3 : ð6Þ

The Borel transformation,1 with parameter “u,” is obtained
using the Borel operator B̂u, defined as

B̂u ≡ lim
Q2 ;n→∞
Q2=n¼u

ð−Q2Þn
Γ½n� ∂

n
Q2 ; ð7Þ

where we have used variables Q2 ¼ −q2 > 0 for the
spacelike and s ¼ q2 > 0 for timelike regions.
Borel parameter u has the dimension of GeV2 and the

Borel transform of Eq. (6) is obtained as

Ψ00
5ðuÞ≡ B̂u½Ψ00

5ðq2Þ� ¼
1

u3
B̂u½Ψ5ðq2Þ�ðuÞ

¼ 1

πu3

Z
∞

0

dse−s=uImΨ5ð−s − iϵÞ

¼ 1

u3

Z
∞

0

dse−s=uρ5ðsÞ; ð8Þ

where the spectral density is given by

ρ5ðsÞ ¼
1

π
lim
ϵ→0

½ImΨ5ð−s − iϵÞ�: ð9Þ

It should be noted that the value of the u ≫ Λ2
QCD inΨ5

00ðuÞ
is chosen such that higher-order terms of the OPE remain
suppressed in the Borel transformed OPE.
The Borel-Laplace sum rules on the rhs of Eq. (8)

involve an integration ranging from the low-energy regime
of the strong interactions to the high-energy regime. The
spectral density is approximated with the quark-hadron
duality. For the low-energy regime, the spectral function is
parametrized in terms of pion/kaon poles and resonances
present in the channel, and for the high-energy region,
results from perturbative QCD (pQCD) are used. The
spectral density from these two regimes can be written as

ρ5ðsÞ ¼ θðs0 − sÞρhad5 ðsÞ þ θðs − s0ÞρOPE5 ðsÞ; ð10Þ

where scale s0 separates the two contributions, and its value
should be chosen such that the perturbative treatment is
justified.
Using Eq. (10), the Borel sum rule in Eq. (8) can be

written as

Ψ00
5ðuÞ ¼

1

u3

Z
s0

0

dse−s=uρhad5 ðsÞ

þ 1

u3

Z
∞

s0

dse−s=uρOPE5 ðsÞ; ð11Þ

which is used in this article for the light quark mass
determination.
For clarification, various inputs used in Eq. (11) are as

follows:
(1) TheΨ00

5ðuÞ is obtained from the Borel transformation
of Ψ00ðq2Þ, which involves OPE corrections and
addition to the instanton contributions. The instan-
ton contributions are small for the choice of the
parameters used in this article, but relevant as
pointed out in Ref. [48]. These contributions are
thus obtained using Eqs. (43) and (68).

(2) The hadronic spectral density ρhad5 ðsÞ is obtained by
the parametrization of the experimental information
on the hadrons appearing in the strange and non-
strange channels. These constitutions are discussed
in Sec. IV for nonstrange and strange channels, and
we use Eq. (22) or (25).

(3) ρOPE5 ðsÞ on the rhs of Eq. (11) is obtained from the
discontinuity of the theoretical expression of the
Ψ5ðq2Þ which is calculated using the OPE and
instanton contributions are also added to it. It has
contributions from Eqs. (44) and (67).

(4) Quark mass appears on both sides of Eq. (11) except
for the integral term containing ρhad5 ðsÞ.

It should be noted that the main focus of this article is the
RG improvement for the theoretical quantities relevant for
points 1 and 3 and its impact in the light quark mass
determination.

III. REVIEW OF THE RGSPT

In FOPT prescription, a perturbative series SðQ2; μ2Þ in
pQCD can be written as

SðQ2; μ2Þ≡ Xj≤i
i¼0;j¼0

Ti;jxiLj; ð12Þ

where x ¼ αsðμÞ=π and L ¼ logðμ2=Q2Þ. The RG evolu-
tion of the perturbative series in Eq. (12) is obtained using
its anomalous dimension γSðxÞ by solving

μ2
d
dμ2

SðQ2; μ2Þ ¼ γSðxÞSðQ2; μ2Þ; ð13aÞ

μ2
d
dμ2

xðμÞ ¼ βðxÞ; ð13bÞ

where anomalous dimension γSðxÞ and βðxÞ are given by

γSðxÞ ¼
X
i¼0

γixiþ1; βðxÞ ¼
X
i¼0

βixiþ2: ð14Þ1We use normalization given in Ref. [35], i.e., B̂u½ 1
ðxþsÞa� ¼

1
uaΓ½a� e

−x=u.
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The perturbative series in Eq. (12) has no large logarithms
if we set μ2 ¼ Q2 and various parameters, such as quark
masses and couplings, are evolved to different scales
using their RG equations. To account for renormalization
scale dependence for a series with vanishing anomalous
dimension, we set μ2 ¼ ξQ2 and the parameter ξ is often
varied in the range ξ∈ ½1=2; 2�. The RG logarithms in
Eq. (12) still play a key role in canceling the scale
dependence arising from other parameters, such as from
αs and mq.
In RGSPT, perturbative series in Eq. (12) is arranged as

follows:

SΣðQ2; μ2Þ ¼
X
i¼0

xiSiðxLÞ; ð15Þ

where the goal is to obtain a closed-form expression for
coefficients

SiðzÞ ¼
X∞
j¼0

Tiþj;jzj; ð16Þ

where z≡ xL. SiðzÞ are functions of one variable where
z ∼Oð1Þ. The closed-form solution for them is obtained
using RGE.
The RGE in Eq. (13a) results in a set of coupled

differential equations for SiðzÞ, which in compact form
can be written as

�Xn
i¼0

βi
zn−i−1

d
dz

ðzn−iSn−iðzÞÞ þ γiSn−iðzÞ
�
− S0nðzÞ ¼ 0;

ð17Þ

The first three coefficients can be obtained by solving the
above differential equation and are given by

S0ðzÞ ¼ T0;0w−γ̃0 ;

S1ðzÞ ¼ T1;0w−γ̃0−1 þ T0;0w−γ̃0−1½ð1 − wÞγ̃1 þ β̃1γ̃0ðw − logðwÞ − 1Þ�;
S2ðzÞ ¼ T2;0w−γ̃0−2 − T1;0w−γ̃0−2½ðw − 1Þγ̃1 þ β̃1ðγ̃0ð−wþ logðwÞ þ 1Þ þ logðwÞÞ�

þ 1

2
T0;0w−γ̃0−2f−β̃1γ̃1½1 − w2 þ 2 logðwÞ þ 2ðw − 1Þγ̃0ðw − logðwÞ − 1Þ�

þ ðw − 1Þ½ðw − 1Þβ̃2γ̃0 þ ðw − 1Þγ̃21 − ðwþ 1Þγ̃2� þ β̃21γ̃0ðγ̃0 − 1Þðw − logðwÞ − 1Þ2g; ð18Þ

where w≡ 1 − β0z, and for anomalous dimension and
higher-order beta function coefficients, we have used
X̃ ≡ X=β0. The important feature of the above procedure
is that the most general term of RGSPT is given by

Ωn;a ≡ lognðwÞ
wa ¼ lognð1 − β0xðμÞ logðμ2=Q2ÞÞ

ð1 − β0xðμÞ logðμ2=Q2ÞÞa ; ð19Þ

where n is a positive integer and a ∝ γ0=β0 appearing in
Eq. (14). It should be noted that, for μ2 ¼ Q2, both RG
summed series in Eqs. (15) and (12) agree with each other.
The analytic continuation for them is obtained by taking
discontinuity of logðμ2=Q2Þ ¼ logðμ2=jQj2Þ � iπ. This
procedure results in large “iπ” corrections for FOPT, but
for RGSPT, such corrections are summed to all orders in
the terms like in Eq. (19). For numerical prescriptions such
as CIPT, the analytic continuation is obtained by using
Eq. (46). One important point to note here is that results
from different prescriptions, such as RGSPTand FOPT, are
not the same when μ2 ¼ Q2 is set after operations like
analytic continuation or Borel transformation are per-
formed. The differences arise due to different treatments
of the RG logarithms for finite-order series for which only
a few terms are known. For more details on analytic
continuation using FOPTand RGSPT, we refer to Ref. [23].

The reduced sensitivity on the renormalization scale in
RGSPT prescription is due to the cancellation between
running parameters [coupling and masses by numerically
solving Eqs. (13a) and (13b)] and coefficients SiðzÞ at
different orders. For a simpler case, in which series Eq. (12)
with vanishing anomalous dimension [γi ¼ 0 in Eq. (18)],
there is a perfect cancellation between S1ðzÞ in Eq. (18) and
exact one-loop running of the strong coupling constant

[xð ffiffiffi
ξ

p
μÞ ¼ xðQÞ

1−xðQÞβ0 logðQ2=ðξμ2ÞÞ þOðx2Þ]. It is not easier to
such perfect cancellation for higher orders, as the exact
analytical solution to x, using Eq. (13b), is not known.
An alternate way to achieve RG improvement and access

would be to rearrange the original series in Eq. (12) by
replacing running logarithms as

log

�
μ2

Q2

�
¼− logðξÞþ log

�
ξ
μ2

Q2

�
¼− logðξÞþLξ; ð20Þ

and get a closed-form summation, similar to Eq. (15), that
has the form

SΣξ ¼
X
i

xðμÞiSiðξ; xðμÞLξÞ: ð21Þ
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Such a summation is not performed for RGSPT in the
literature and is left for future studies.2

IV. HADRONIC SPECTRAL FUNCTION

The hadronic spectral functions are constructed using the
contributions from the pion/kaon pole and the data from the
experiments on the resonances in a given channel. At low
energies, they are dominated by the pion/kaon pole con-
tributions. This section discusses the parametrization of the
unknown pseudoscalar spectral function for the nonstrange
and strange channels.

A. Nonstrange channel

For the nonstrange pseudoscalar channel, two phenom-
enological parametrizations are often used in the literature.
In Ref. [49], Dominguez and de Rafael provided a ChPT-
based parametrization that is normalized to unity at the
threshold. Later, some corrections are reported for this
parametrization in Ref. [50]. Another parametrization often
used is by Maltman and Kambor [48], which requires
masses and decay constants for the higher resonances. In
this article, we have used Dominguez and de Rafael’s
parametrization, which was recently used in Ref. [65] for
the up/down-quark mass determination. We have used their
results for the nonstrange spectral function (ρNS) and the
hadronic parametrization is given by:

ρNS ¼ f2πM4
πδðs −M2

πÞ þ ρ3π
BW1ðsÞ þ κ1BW2ðsÞ

1þ κ1
; ð22Þ

wherefπ andMπ are the decay constant andmass of the pion.
The value of κ1 ≃ 0.1 is used in the Ref. [65] and it controls
the relative importance of the resonances. The 3π resonance
contributions are received from the πð1300Þ and πð1800Þ
states. Their contributions are encoded in the ρ3π , which is
given by

ρ3π ¼
1

π
ImΨ5ðsÞ

���
3π

¼ 1

9

M2
π

f2π

1

27π4
θðs − 9M2

πÞIπðsÞ; ð23Þ

where IπðsÞ is the phase space integral given in Eq. (29).
In the chiral limit, the phase integral reduces to IπðsÞ ¼
3s that confirms the prediction for ρ3π in Ref. [70]. The
BW1;2ðsÞ is the Breit-Wigner distribution given by

BWiðsÞ ¼
ðM2

i − sthÞ2 þM2
iΓ2

i

ðs −M2
i Þ2 þM2

iΓ2
i
; ð24Þ

which is normalized to unity at the threshold, i.e.,
BW1;2ðsthÞ ¼ 1. For the nonstrange spectral function,
we use the following data from the PDG [66] as input:

Mπ ¼ 134.9768ð5Þ; fπ ¼ 130.2ð1.2Þ MeV;

Mπ;1 ¼ 1300ð100Þ; Γπ;1 ¼ 260ð36Þ MeV;

Mπ;2 ¼ 1810þ11
−9 ; Γπ;2 ¼ 215þ7

−8 MeV:

Using the above values as input, the nonstrange spectral
function in the two parametrizations discussed above is
plotted in Fig. 1.

B. The strange channel

We use the hadronic parametrization presented in
Ref. [29] for the strange channel. This parametrization is
equivalent to the one we have used in the nonstrange
channel. The hadronic spectral function is given by

ρSðsÞ ¼
1

π
ImΨ5ðsÞ

���
Had:

¼ f2KM
2
Kδðs −M2

KÞ þ
1

π
ImðΨ5ðsÞÞ

���
Res:

; ð25Þ

where the spectral function for the resonance region is
given by

FIG. 1. Hadronic spectral function in the resonance region for strange and nonstrange channels using Dominguez and de Rafael’s
parametrization [49].

2We thank the referee for pointing out this alternate method to
explore the scale dependence in RGSPT.
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1

π
ImðΨ5ðsÞÞ

���
Res:

¼ ρKππðsÞ
BW1ðsÞ þ κ2BW2ðsÞ

1þ κ2
: ð26Þ

The Breit-Wigner profile is constructed from Kð1460Þ and
Kð1830Þ resonances. The value κ2 ≃ 1 is found to be a
reasonable choice in Ref. [29] to control the contributions
from the resonances. In addition, due to its narrow width,
there is a significant contribution from the resonant sub-
channel K�ð892Þ − π. Its contributions are also included in
the ρKππðsÞ and has the form:

ρKππðsÞ ¼
M2

K

2f2π

3

27π4
θðs −M2

KÞ
IKðsÞ

sðM2
K − sÞ ; ð27Þ

and the integral IKðsÞ is defined in Eq. (31). For the strange
channel, precise values of the resonance masses and the

decay width do not exist. We are using the values used in
Ref. [51] with additional uncertainties of 50 MeV to
resonance masses and 10% to the decay widths. For kaons,
we use PDG [66] values, and the following values for the
parameters for the strange channel are used as input:

MK ¼ 497.611ð13Þ; fK ¼ 155.7ð3Þ MeV;

MK;1 ¼ 1460ð50Þ; Γ1 ¼ 260ð26Þ MeV;

MK;2 ¼ 1830ð50Þ; Γ1 ¼ 250ð25Þ MeV;

MK� ¼ 895.55ð2Þ; ΓK� ¼ 47.3ð5Þ MeV: ð28Þ

Using the above inputs, the strange spectral function in the
resonance region is plotted in Fig. 1,

IπðsÞ ¼
Z ð ffiffi

s
p

−MπÞ2

4M2
π

du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
π

u

r
λ1=2ðs; u;M2

πÞ
s

�
5þ 1

ðs −M2
πÞ
½3ðu −M2

πÞ − sþ 9M2
π�

þ 1

2ðs − 4M2
πÞ2

�
ðs − 3uþ 3M2

πÞ2 þ 3λðs; u;M2
πÞ
�
1 − 4

M2
π

u

�
þ 20M4

π

�	
; ð29Þ

where λðs; u;M2
πÞ is given by

λðs; u;M2
πÞ ¼ ðs − ð ffiffiffi

u
p

−MπÞ2Þðs − ð ffiffiffi
u

p þMπÞ2Þ; ð30Þ

IKðsÞ ¼
Z

s

M2
K

du
u
ðu −M2

KÞðs − uÞ
�
ðM2

K − sÞ
�
u −

ðsþM2
KÞ

2

�
−

1

8u
ðu2 −M4

KÞðs − uÞ þ 3

4
ðu −M2

KÞ2jFK� ðuÞj2
	
; ð31Þ

and

jFK� ðuÞj2 ¼ ðM2
K� −M2

KÞ2 þM2
K�Γ2

K�

ðM2
K� − uÞ2 þM2

K�Γ2
K�

: ð32Þ

V. THE OPE CORRECTIONS

The OPE corrections are calculated in large Q2 limit and
organized as expansion in 1=Q2,

Ψ5ðQ2Þ ¼ Q2ðm1 þm2Þ2
X
i¼0

Ψ2iðQ2Þ
ðQ2Þi ; ð33Þ

and Ψ2nðQ2Þ are termed as the contributions from 2n-
dimensional operators for n ¼ 0; 1; 2; 3;…. Quantities
Ψ0ðQ2Þ and Ψ2ðQ2Þ are purely perturbative, while addi-
tional nonperturbative condensate corrections start from
Ψ4ðQ2Þ. The leading term in the OPE,Ψ0ðQ2Þ, is known to
Oðα4sÞ [42–44], which has an expansion in terms of αs and
logðμ2=Q2Þ. The dimension-two term of OPE, Ψ2ðQ2Þ,
receives massive corrections ð∝ m2

i Þ and it is known
to Oðα1sÞ [35,45–47]. Additional strange quark mass

corrections [∝ Oðm2
sα

2
s Þ] to it are included from

Ref. [28]. The nonlogarithmic terms appearing in Ψ0ðQ2Þ
andΨ2ðQ2Þ are irrelevant for the sum rule in Eq. (11). This is
due to the fact that the contributions calculated from the
Borel operator, in Eq. (7), vanish for any non-negative
integer powers of Q2. For the spectral function case, non-
logarithmic terms vanish when analytic continuation is
performed using Eq. (9). The relevant expressions for these
quantities for FOPTandRGSPTcan be found inAppendixB
and Sec. B 2.
The OPE contributions from the dimension-four term,

Ψ4ðQ2Þ, contain both massive corrections (∝ m4
i ) as well as

nonperturbative condensates of quarks and gluon fields.
These corrections are known to Oðα1sÞ [35,47,71]. Their
RG running should also be taken into account when
coupling and masses are evolved with the scale.
However, we use the results provided in Refs. [72,73] to
form an RG invariant combination of these condensates.
For the quark condensates, this relation is given by

hmiqjqjiinv ¼ hmiq̄jqji þmim3
j

�
3

7π2x
−

53

56π2

�
: ð34Þ

M. S. A. ALAM KHAN PHYS. REV. D 108, 094016 (2023)

094016-6



The RG invariant combinations of the condensates [72]
also introduce inverse powers of the αs [35,74]. For the
gluon condensate, we use the following relation:

βðxÞ
x2



αs
π
G2

�
inv

≡ βðxÞ
x2



αs
π
G2

�
− 4γmðxÞ

X
k¼u;d;s

hmiq̄iqii

−
3

4π2
γvac

X
k¼u;d;s

m4
k; ð35Þ

where γvac ¼ −1 − ð4xÞ=3þ x2ð−223=72þ 2=3ζð3ÞÞ is
the vacuum anomalous dimension [73]. The expression
for Ψ4 in RGSPT and FOPT are provided in Appendix B
and Sec. B 3.
We also consider the dimension-six contribution to the

OPE, Ψ6ðQ2Þ, for which only condensate terms are known.
These corrections can be written as

Ψ6ðQ2Þ ¼ ðI6Þ12
6

;

where

ðI6Þij¼−3ðmihq̄jqjGiþmjhq̄iqiGiÞ

−
32

9
π2xðhq̄iqii2þhq̄jqji2−9hq̄iqiihq̄jqjiÞ: ð36Þ

Subscripts i and j stand for the quark flavors in the strange
and nonstrange channels. It should be noted that the
structure of the dimension-six condensate is rather com-
plicated and, in deriving Eq. (36), vacuum saturation
approximation is used to relate dimension-six four-quark
condensate terms to dimension-four quark condensates. For
more details, we refer to [2,35].
The numerical values used for the nonperturbative

quantities are as follows [75,76]:

hūui ¼ −
f2πM2

π

2ðmu þmdÞ
; ð37Þ

hs̄si ¼ ð0.8� 0.3Þhs̄si ½28�; ð38Þ


αs
π
G2

�
¼ 0.037� 0.015 GeV4; ð39Þ

hq̄iqiGi ¼ M2
0hq̄iqii ½12�; ð40Þ

M2
0 ¼ 0.8� 0.2 GeV2 ½12�: ð41Þ

We neglect the contributions to OPE beyond this order.
From Eq. (33), we can obtain Ψ00

5ðQ2Þ, which has
following form:

Ψ00
5ðQ2Þ ¼ ðm1 þm2Þ2

Q2

X
i¼0

Ψ̃00
i ðQ2Þ
ðQ2Þi ; ð42Þ

and the Borel transform as

Ψ00
5ðuÞ ¼

ðm1 þm2Þ2
u

X
i¼0

Ψ̃00
i ðuÞ
ui

: ð43Þ

The spectral function from Eq. (33) is obtained by using
Eq. (9), and it can be organized as

ρOPE5 ðsÞ ¼ sR0ðsÞ þR2ðsÞ þ
1

s
R4ðsÞ

þ 1

s2
R6ðsÞ þ � � � ; ð44Þ

where Rn are calculated from Ψn using (46) and analytical
expressions for R0 can be found in Ref. [28]. It should be
noted that ρOPE5 ðsÞ and Ψ00

5ðQ2Þ are RG invariant perturba-
tive quantities that enter in the Borel-Laplace sum rule
in Eq. (11).
The Ψnðq2Þ for the pseudoscalar current appearing in the

OPE of Eq. (33) are not a RG invariant quantity. The Adler
function DnðQ2Þ is obtained from it using the relation

DnðQ2Þ≡ −Q2
d

dQ2
½ðm1 þm2Þ2ΨnðQ2Þ�; ð45Þ

which is RG invariant, and mi ¼ miðQÞ as mentioned
before in the text below Eq. (4). Both ΨnðQ2Þ and DnðQ2Þ
have a cut Q2 ¼ −q2 < 0 due to the term logð μ2

−q2Þ. The
spectral density in Eq. (44) is obtained in the timelike
regions (s ¼ q2 > 0) from the discontinuity of the polari-
zation function,

RnðsÞ≡ 1

2πi
lim
ϵ→0

½Ψnð−s − iϵÞ −Ψnð−sþ iϵÞ�

¼ 1

2πi

Z
−s−iϵ

−sþiϵ
dq2

d
dq2

Ψnðq2Þ

¼ −1
2πi

Z
−s−iϵ

−sþiϵ

dq2

q2
Dnðq2Þ

¼ −1
2πi

I
jxcj¼1

dxc
xc

Dnð−xcsÞ: ð46Þ

The contour integral in the above equation has to be
evaluated without crossing the cut for q2 > 0. It should
be noted that for FOPT and RGSPT prescriptions, the
imaginary part can be obtained trivially by replacing
the logðμ2=Q2Þ ¼ logðμ2=jQj2Þ � iπ across the cut. For
the numerical evaluation methods, such as in the CIPT
prescriptions, Eq. (46) can be very useful for analytic
continuation in the complex plane. To sum π2-terms in
RGSPT, we first perform the RG improvement of the
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Ψnðq2Þ or Dnðq2Þ. The resulting perturbative has the
most general term given in Eq. (19) for which the imaginary
part can be taken by simply setting logðμ2=Q2Þ ¼
logðμ2=jQj2Þ � iπ. This process results in an analytic
expression for which the renormalization scale can be
set μ2 ¼ s, but the iπ terms are left behind, which results in
improved convergence. For more details about their effects
on the summation of kinematical terms, we refer to [23].
It should be noted that the analytic continuation using

the RGSPT expressions for the Rn are rather lengthy.
Therefore, we provide expressions for corresponding Adler
functions in Appendix B.

A. Analytic continuation in FOPT and RGSPT

The RiðsÞ are obtained from Ψnðq2Þ by its analytic
continuation from spacelike regions to timelike regions
[using Eq. (46)], which results in the large kinematical π2

corrections. These corrections, however, can be summed to
all orders using RGSPT, and a good convergence is
obtained for the perturbative series. As a demonstration,
we define R0 from R0 as

R0 ≡ 8π2

3ðmsð2ÞÞ2
R0: ð47Þ

Using αsð2 GeVÞ ¼ 0.2945 and msð2 GeVÞ ¼ 93.4 MeV
and setting mu ¼ 0, the R0 at different orders of αs has the
following contributions:

RFOPT
0 ¼ 1.0000þ 0.6612þ 0.4909þ 0.2912

þ 0.1105; ð48Þ

RRGSPT
0 ¼ 1.0038þ 0.4175þ 0.1760þ 0.0581

− 0.0152: ð49Þ

We can see that summation of the π2-terms enhances the
convergence of the perturbation series when RGSPT is
employed. The scale dependence of the R0 and truncation
uncertainty at different scales are significantly improved,
which can be seen in Fig. 2(a).
We can also test the RG improvement for the Ψ̃00

0ðq2Þ by
defining Ψ̄00

0ðq2Þ, analogous to Eq. (47), as

Ψ̄00
0ðq2Þ≡ 8π2

3ðmsð2 GeVÞÞ2 Ψ̃0; ð50Þ

and using quark masses and αs the same as R0 and
setting q ¼ 2 GeV, we get the following contributions to
Ψ̄00;FOPT

0 ðq2Þ:

Ψ̄00;FOPT
0 ¼ 1.0000þ 0.4737þ 0.2837þ 0.1917

þ 0.1405; ð51Þ

Ψ̄00;RGSPT
0 ¼ 1.1508þ 0.5280þ 0.2621þ 0.1670

þ 0.1244: ð52Þ

In the case of Ψ̄00
0ðq2Þ, we get slightly better convergence

than FOPT. The scale dependence of Ψ̄00
0ðq2Þ normalized to

unity at 2 GeV is plotted in Fig. 2(b).

B. Borel transform in FOPT and RGSPT

The perturbative series in the FOPT prescription is a
polynomial form containing αs, m2

q=Q2, and logðμ2Q2Þ. For
Borel transforms in FOPT, only terms logðμ2Q2Þ and Q2 are

relevant, and we get an analytical expression containing

Euler’s constant, ζ functions in addition to terms logðμ2u Þ,
and powers of u. To obtain the Borel transform, we use the
relation from Ref. [35] for the operator in Eq. (7),

FIG. 2. Renormalization scale dependence of (a) R0ðsÞ and (b) Ψ̄00
0ðq2Þ normalized to unity at 2 GeV in RGSPT and FOPT. The bands

represent the truncation uncertainty.
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B̂u

�
1

ðQ2Þα log
n

�
μ2

Q2

��

¼ 1

ðuÞα
Xn
k¼0

ð−1ÞknCklogk
�
μ2

u

�
∂
n−k
α

�
1

Γ½α�
�
; ð53Þ

where nCk ¼ n!
k!ðn−kÞ! is the binomial coefficient. The

derivative of the Γ function results in the appearance of
the Euler’s constant and ζ functions that can be seen
in Eq. (64).
For RGSPT, Borel transform is not a trivial task; it

involves a transcendental function as encountered in
Ref. [77] and is evaluated numerically. The most general
term in RGSPT, from Eq. (19), can be written as

lognðwÞ
wα ¼ ½∂nδwδ−α�δ→0; ð54Þ

where w ¼ 1 − β0x logðμ2=sÞ and α is some real number
depending upon the anomalous dimension of the quantity
under consideration.
Using Schwinger parametrization, we can write

1

wα ¼
1

Γ½α�
Z

∞

0

dttα−1e−tw

¼ 1

Γ½α�
Z

∞

0

dttα−1e−tð1−β0x logðμ2=sÞÞ

¼ 1

Γ½α�
Z

∞

0

dttα−1ðμ2=sÞβ0xte−t

¼ 1

Γ½α�
X∞
n¼0

ð−1Þn
Γ½nþ 1�

Z
∞

0

dttαþn−1ðμ2=sÞβ0xt: ð55Þ

Using the above relation, we can easily perform the Borel
operator as follows:

B̂u

�
1

sz
1

wα

�
¼ 1

ðμ2ÞzΓ½α�
X∞
n¼0

ð−1Þn
Γ½nþ 1�

×
Z

∞

0

dt
tαþn−1

Γ½zþ β0xt�
ðμ2=uÞβ0xtþz; ð56Þ

where we have used the identity

B̂u

�
1

sα

�
¼ 1

Γ½α�uα : ð57Þ

Now, we rescale the integral in Eq. (56) by substituting
t̃ ¼ β0xt and rewrite it as

B̂u

�
1

sz
1

wα

�
¼ 1

ðμ2ÞzΓ½α�
X∞
n¼0

ð−1Þn
Γ½nþ 1�ðβ0xÞnþα

×
Z

∞

0

dt̃
t̃αþn−1

Γ½zþ t̃� ðμ
2=uÞt̃þz: ð58Þ

We can see that integral in the above relation cannot be
evaluated analytically [78]. We use

μ̃ðz; b; aÞ≡
Z

∞

0

dt
xaþttb

Γ½bþ 1�Γ½aþ tþ 1� ð59Þ

to rewrite Eq. (58) as

B̂u

�
1

sz
1

wα

�
¼ 1

ðμ2ÞzΓ½α�
X∞
n¼0

ð−1ÞnΓ½αþ n − 1�
Γ½nþ 1�ðβ0xÞnþα

× μ̃ðμ2=u; αþ n − 1; zÞ: ð60Þ

We have to rely on numerical methods beyond this point.
However, the identity

Z
∞

0

e−stμ̃ðt; b; aÞdt ¼ s−α−1ðlogðsÞÞ−β−1; ð61Þ

allows us to recover the original function using Laplace
transform.
Now, we can demonstrate the impact of the resummation

for the Borel transformation. Consider leading mass cor-
rections at different dimension to Ψ̃00

j ðsÞ from RGSPT,
which has the following form:

ARGSPT
j ¼ 1

sð1 − β0xLÞð2jþ2Þγ0=β0 ; ð62Þ

where L ¼ logðμ2=sÞ is used here for the discussion. Its
series expansion to Oðα4sÞ in FOPT is given by

AFOPT
j ¼ 1

s

�
1þ 2γ0Lðjþ 1Þxþ γ0L2ðjþ 1Þx2ðβ0 þ 2γ0ð1þ jÞÞ

þ 2

3
γ0L3ðjþ 1Þx3ðβ0 þ ð1þ jÞγ0Þðβ0 þ 2γ0ð1þ jÞÞ

þ 1

6
γ0L4ðjþ 1Þx4ðβ0 þ γ0ð1þ jÞÞðβ0 þ 2γ0ð1þ jÞÞð3β0 þ 2γ0ð1þ jÞÞ

�
þOðα5sÞ: ð63Þ
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Now, the Borel transformation of the above series can be
obtained by substituting the following values:

B̂u

�
1

s

�
¼ 1

u
; B̂u

�
logðμ2s Þ

s

�
¼ logðμ2u Þ þ γE

u
;

B̂u

�
log2ðμ2s Þ

s

�
¼ log2ðμ2u Þ þ 2γE logðμ

2

u Þ þ γ2E − ζð2Þ
u

;

B̂u

�
log3ðμ2s Þ

s

�
¼ ð3γ2E − 3ζð2ÞÞ logðμ2u Þ þ 3γElog2ðμ

2

u Þ
u

þ log3ðμ2u Þ þ 2ζð3Þ þ γ3E − 3γEζð2Þ
u

;

B̂u

�
log4ðμ2s Þ

s

�
¼ 8γEζð3Þ þ γ4E þ 3=2ζð4Þ − 6γ2Eζð2Þ

u

þ logðμ2u Þð8ζð3Þ þ 4γ3E − 12γEζð2ÞÞ
u

þ ð6γ2E − 6ζð2ÞÞlog2ðμ2u Þ þ log4ðμ2u Þ
u

þ 4γElog3ðμ
2

u Þ
u

; ð64Þ

where γE is Euler’s constant, and ζðiÞ are the ζ functions.
These induced terms as a property of Borel-Laplace sum
rules are first pointed in Ref. [79].3 It is interesting to note
that all the γE can be absorbed in the logarithms, i.e.,

logðμ2eγEu Þ, but not the ζ functions. A similar case for the
Fourier transform of the static potential from momentum to
the position space can be found in Ref. [80].
Now, we obtain the Borel transform for A0 using Eq. (64)

and by setting μ2 ¼ u ¼ 2.5 GeV2 that resums the loga-
rithms in the case ofFOPT.Usingxð ffiffiffiffiffiffiffi

2.5
p Þ ¼ αsð

ffiffiffiffiffiffiffi
2.5

p Þ=π ¼
0.3361=π, the Borel transformation of A0 has the following
contributions:

B̂u½ARGSPT
0 � ¼ 0.4256;

B̂u½AFOPT
0 � ¼ 0.4000þ0.0494−0.0255−0.0011þ0.0042

¼ 0.4270: ð65Þ

It is clear from these numerical contributions that numerical
contributions from leading logarithms are oscillatory, and the
Borel transformation has poor convergence. These oscilla-
tions are due to the nonlogarithmic terms of Eq. (64) [as we

have set logðμ2u Þ ¼ 0]. The convergence gets worse for higher
j values, which can be inferred from Eq. (63), and the first
three are plotted in Fig. 4. The RGSPT value is all-order

results, but for FOPT, it oscillates and slowly converges to the
RGSPT value.
We can use the above results to study the renormalization

scale dependence of Ψ̃00
0ðuÞ. To compare FOPT and RGSPT

results, we use values of Ψ̃00
0ðuÞju¼2.5 GeV2 in these pre-

scriptions, normalized to unity at μ ¼ 2.5 GeV, and present
our results in Fig. 3. Again, results for RGSPT are very
stable for a wide range of renormalization scales.

C. Convergence of Borel transformed OPE
using FOPT and RGSPT

We use the ratio rd¼0;2
n , defined in Ref. [28], from

Eq. (43) as

rd¼0;2
n ðuÞ ¼

�
1
u Ψ̃

00
0ðuÞ þ 1

u2 Ψ̃
00
2ðuÞ

ðOðαns ÞÞ

Ψ00ðuÞ : ð66Þ

The numerator in the above equation is evaluated using the
contributions fromOðαnsÞ from dimension-zero and dimen-
sion-two corrections to Ψ00ðuÞ. Using PDG values for the
msð2 GeVÞ ¼ 93.4, mdð2 GeVÞ ¼ 4.67 MeV and setting
u ¼ 2.5 GeV2, we get the following contributions to rd¼0;2

n :

rd¼0;2
n jFOPT¼f53.45%;27.46%;13.30%;3.51%;−0.22%g;

rd¼0;2
n jRGSPT¼f59.25%;23.52%;8.34%;4.04%;2.35%g:

From these numerical values, one may suspect that the
FOPT has better convergence than RGSPT. This behavior
can be attributed to the fact that there are large negative
corrections from the Borel transform of the logarithmic
logn ðμ2=Q2Þ terms as depicted in Fig. 4. The behavior of rn
for different values of the Borel parameter can be found
in Fig. 5.
These findings clearly show that RGSPT has the poten-

tial to reduce theoretical uncertainty significantly and has
been the primary goal of this article.

FIG. 3. Scale dependence of the Ψ̃00
0ðuÞju¼2.5 GeV2 in RGSPTand

FOPT.

3We thank Professor Narison for bringing this reference to our
attention.
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D. Instanton contribution

In addition to the OPE correction, the QCD vacuum
structure becomes relevant at low energy, and contributions
from the instantons become relevant at energy range
∼1 GeV. Their contributions are estimated using the
instanton liquid model (ILM) [81–83] and are added to
the pseudoscalar current correlator. These contributions are
parametrized in terms of the instanton size ρc and number
density nc. For the spectral density, we use the results from
Refs. [31,48,84],

ρinsti;j ¼ 1

2π
ImðΨðsÞinstÞ

¼ −3ηijðmi þmjÞ2
4π

J1ðρc
ffiffiffi
s

p ÞY1ðρc
ffiffiffi
s

p Þ; ð67Þ

where ρc ¼ 1=0.6 and ηud=us ¼ 1=0.6 [83]. In addition, we
also need the Borel transform of the second derivative of
the polarization function for the instanton, which is given
by [32]

Ψ00
5;ijðuÞinst ¼ B̂u½ðΨ00

5ðsÞÞinst�

¼ 3ηijρ
2
cðmi þmjÞ2
8π2

e−
1
2
ρ2cu

×

�
K0

�
1

2
ρ2cu

�
þ K1

�
1

2
ρ2cu

��
; ð68Þ

where K0 and K1 are the modified Bessel functions. These
contributions are numerically relevant for low values of the
Borel parameter u ∼ 1 GeV2.
Now, we have all the theoretical and phenomenological

quantities needed as input for the Borel sum rule in
Eq. (11). In the next section, light quark mass determination
using FOPT and RGSPT is performed.

VI. LIGHT QUARK MASS DETERMINATION

In this section, we determine that masses of the strange
quark mass using the Borel-Laplace sum rule in Eq. (11)
from the divergences of the axial vector current. It should
be noted that the mu is determined using the ratio ϵud ≡
mu=md ¼ 0.474þ0.056

−0.074 [66].
Before moving to mass determination from the Sum rule,

we need to fix the values for the continuum threshold s0 and
Borel parameter u. In principle, any determination from the
Borel-Laplace sum rule should be independent of the
choice of these parameters in the limit u ≫ s0. However,
in practical cases, there is a dependence on the determi-
nations of light quark masses on these parameters. For
practical purposes, these parameters are tuned to get stable
results for a given range. The Borel parameter is chosen
large enough to suppress the contributions from non-
perturbative condensate terms and resonances. However,
the continuum threshold s0 is chosen in a region where
contributions from the higher resonances are negligible and
spectral function can be approximated with the continuum
pQCD correction. A proper window for s0 and u is crucial
for the stable determination of the Borel-Laplace sum rule,
and we have discussed them for FOPT and RGSPT and in
this section for the individual as well as simultaneous md
and ms determination.
We can also perform quark mass determination by choos-

ing the value of s0 for which both hadronic and perturbative
spectral functions are in agreement. However, these deter-
minations are going to be very sensitive to the second

FIG. 4. An calculated at different orders using μ2 ¼ u ¼
2.5 GeV2.
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resonance present in the hadronic spectral function. Another
issue is the absence of information about higher resonances,
which are already neglected in this study. Various contribu-
tions to the spectral functions are presented in Fig. 6 for
nonstrange and strange channels. For these channels, this
agreement is found in the range s0 ∈ ½3.38; 3.79�, for which
we have taken s0¼3.58�0.20GeV2 in such determinations.
However, such determinations are not taken in our final
average due to the issues discussed above.

A. ms determination

To fix the free s0 and u parameters, we first perform ms
determination at different values. In the FOPT prescription,
there is a crossover around s0 ¼ 4.5 GeV2 for different
values of the Borel parameter that can be seen in Fig. 10(a).
Therefore, we choose s0 ¼ 4.5� 0.5 GeV2 to minimize
variation in the ms determination with respect to the Borel
parameter from FOPT determinations. However, this is
not the case for RGSPT as there is no crossing point
in Fig. 10(b). There is a stability window for the
s0 ∈ ½3.5; 4.2� GeV2 region for RGSPT, but we do not
use this value as

ffiffiffiffiffi
s0

p
is close to the mass of the second

resonance. This results in slightly more uncertainty from
the variation of u in the ms determination compared to
FOPT, which can be seen in Fig. 10(c). However, we find
that there is a linear increase in the difference of maximum
and minimum values of strange quark mass [ΔðmsÞ]
determination for s0 ∈ ½3; 5� GeV2 with u∈ ½2; 3�, which
can be seen in Fig. 10(d). This linear behavior is milder in
the case of RGSPT compared to FOPT.
Now, we move on to our final determination, for

which we adopt the choice of parameters used in
Ref. [28]. For the Borel parameter, we use u ¼ 2.5�
0.5 GeV2 and the renormalization scale is varied in the
range u=2 ≤ μ2 ≤ 2u. We take the continuum threshold
value s0 ¼ 4.5� 0.5 GeV2 and mu ¼ 2.16þ0.49

−0.26 MeV [66]
as input in our determination. We obtain the following
value of msð2 GeVÞ, using FOPT:

msð2 GeVÞ ¼ 103.64þ6.45
−4.61 MeV; ð69Þ

and for RGSPT, we obtain

msð2 GeVÞ ¼ 104.20þ4.37
−4.29 MeV: ð70Þ

The details of significant sources of uncertainties can be
found in Table I. The pQCD uncertainties contain uncer-
tainties arising from uncertainties present in the quark and

s

FIG. 6. Hadronic and theoretical spectral functions in the
strange and nonstrange channel.

FIG. 5. rd¼0;2
n from FOPT and RGSPT. The lines from top to bottom correspond to n ¼ 0; 1; 2; 3; 4.
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gluon condensates, αs, renormalization scale variation, and
truncation uncertainty. The truncation uncertainty is calcu-
lated from the contribution of the last terms present in the
expansion of αs in the perturbative series. Uncertainties
from other parameters are included in the hadronic uncer-
tainties (abbreviated as Had. Tables I and II).
It is worth mentioning that the uncertainties coming from

scale variation in RGSPT are significantly smaller than in
FOPT, leading to small pQCD uncertainties compared to
the hadronic uncertainties. It is important to note from
Table I is that the total theoretical uncertainty from pQCD
parameters is smaller than the hadronic uncertainties when
RGSPT is used. We present the scale dependence in our
determinations in Fig. 8(b). Another point to note is that the
exclusion of the instanton term for the RGSPT and FOPT
series leads to a decrease of strange quark mass about 1.26
and 1.24 MeV, respectively.
Now, we also present our results for the value of s0 at

which theoretical and hadronic spectral functions are in
agreement. Using s0 ¼ 3.58� 0.20 GeV2 and taking the
rest of the parameters discussed above, we get the following
determinations for the FOPT and RGSPT schemes:

msð2 GeVÞ ¼ 107.29þ7.57
−5.83 MeV ðFOPTÞ; ð71Þ

msð2 GeVÞ ¼ 106.02þ4.36
−4.57 MeV ðRGSPTÞ: ð72Þ

The dependence of these determinations on the Borel
parameter is presented in Fig. 7.

B. md determination

Similar toms determination, there is a crossover point for
md in FOPT, but near to πð1800Þ resonance mass as we can
see in Fig. 9. Because of this, we choose s0 ¼ 4.5�
0.5 GeV2 as in the previous subsection. Using the same
parameters and ϵud [66] for FOPT, we obtain the following
values:

mdð2 GeVÞ ¼ 4.18þ0.51
−0.44 MeV; ð73Þ

⇒ muð2 GeVÞ ¼ 1.98þ0.34
−0.37 MeV; ð74Þ

and for RGSPT, we obtain the following value:

mdð2 GeVÞ ¼ 4.21þ0.48
−0.39 MeV; ð75Þ

⇒ muð2 GeVÞ ¼ 2.00þ0.33
−0.36 MeV: ð76Þ

We present the scale dependence in our determinations in
Fig. 8(a). The details of the sources of uncertainties can be
found in Table I. Exclusion of the instanton terms leads to a
decrease in the central value of mdð2 GeVÞ by 0.20 and
0.13 MeV in determinations using FOPT and RGSPT
prescriptions, respectively.
Now, using s0 ¼ 3.58� 0.20 GeV2 and taking the rest

of the parameters discussed above, we get the following
determinations for FOPT and RGSPT schemes:

mdð2 GeVÞ ¼ 4.30þ0.52
−0.46 MeV ðFOPTÞ; ð77Þ

⇒ muð2 GeVÞ ¼ 2.04þ0.35
−0.40 MeV; ð78Þ

mdð2 GeVÞ ¼ 4.26þ0.46
−0.39 MeV ðRGSPTÞ; ð79Þ

⇒ muð2 GeVÞ ¼ 2.02þ0.32
−0.40 MeV: ð80Þ

The dependence of these determinations on the Borel
parameter can be found in Fig. 7.

TABLE I. md and ms determination using FOPT and RGSPT and the sources of uncertainties denoted in the column.

Quark mass

FOPT RGSPT

Final value μ αs u s0 pQCD Had. Final value μ αs u s0 pQCD Had.

mdð2 GeVÞ 4.18þ0.51
−0.44

þ0.18 þ0.06 þ0.07 þ0.08 þ0.20 þ0.47
4.21þ0.48

−0.39
þ0.02 þ0.06 þ0.10 þ0.05 þ0.10 þ0.47

−0.07 −0.06 −0.05 −0.09 −0.11 −0.43 −0.01 −0.06 −0.08 −0.07 −0.10 −0.38

msð2 GeVÞ 103.64þ6.45
−4.61

þ4.59 þ1.40 þ0.76 þ2.59 þ5.14 þ3.91
104.20þ4.37

−4.29
þ0.55 þ1.42 þ1.40 þ1.76 þ2.45 þ3.61

−1.66 −1.40 −0.52 −2.66 −2.85 −3.62 −0.52 −1.40 −1.48 −2.13 −2.43 −3.54

FIG. 7. Borel parameter dependence of the individual deter-
minations of mdð2 GeVÞ assuming quark-hadron duality is
obeyed at s0 ¼ from FOPT and RGSPT prescriptions.
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C. Simultaneous md and ms determination

We can also perform the simultaneous determination of
thems andmd using the sum rule in Eq. (11) for strange and
nonstrange channels. Using FOPT, we obtain

msð2 GeVÞ ¼ 103.80þ6.14
−4.22 MeV; ð81Þ

mdð2 GeVÞ ¼ 4.18þ0.50
−0.44 MeV; ð82Þ

⇒ muð2 GeVÞ ¼ 1.98þ0.33
−0.37 MeV; ð83Þ

and for RGSPT, we obtain the following values:

msð2 GeVÞ ¼ 104.34þ4.32
−4.24 MeV; ð84Þ

mdð2 GeVÞ ¼ 4.21þ0.48
−0.45 MeV; ð85Þ

⇒ muð2 GeVÞ ¼ 2.00þ0.33
−0.38 MeV: ð86Þ

The details of sources of uncertainties in the determination of
quark masses can be found in Table II. In this case,
uncertainty in ms determination is smaller than the one
obtained in Sec. VI A. The values obtained forms andmd are
very close to the determination from Secs. VI A and VI B.
Using s0 ¼ 3.58� 0.20 GeV2 for FOPT, we obtain

msð2 GeVÞ ¼ 107.39þ6.95
−5.08 MeV; ð87Þ

mdð2 GeVÞ ¼ 4.30þ0.51
−0.44 MeV; ð88Þ

⇒ muð2 GeVÞ ¼ 2.04þ0.34
−0.40 MeV; ð89Þ

FIG. 9. mdð2 GeVÞ calculated at different values of Borel parameter and s0 using (a) FOPT and (b) RGSPT prescriptions.

FIG. 8. The scale dependence in the individual (a) md and (b) ms determinations using FOPT and RGSPT. The bands in the plot
represent truncation uncertainty at different scales.
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and for RGSPT, we obtain the following values:

msð2 GeVÞ ¼ 106.14þ4.32
−4.52 MeV; ð90Þ

mdð2 GeVÞ ¼ 4.26þ0.46
−0.43 MeV; ð91Þ

⇒ muð2 GeVÞ ¼ 2.02þ0.32
−0.40 MeV: ð92Þ

VII. SUMMARY AND CONCLUSION

We have used the Borel-Laplace sum rule to determine
the light quark masses from the correlator of the divergence
of the axial vector current. The sum rule uses both hadronic
as well as perturbative contributions. In Sec. III, we briefly
reviewed the procedure of RG summation in RGSPTand its
importance in the RG improvement for the theoretical
quantities used in the Borel-Laplace sum rule.

TABLE II. md and ms determination using FOPT and RGSPT and the sources of uncertainties denoted in the column.

FOPT RGSPT

Quark mass Final value μ αs u s0 pQCD Had. Final value μ αs u s0 pQCD Had.

mdð2 GeVÞ 4.18þ0.50
−0.44

þ0.18 þ0.06 þ0.07 þ0.08 þ0.19 þ0.47
4.21þ0.48

−0.45
þ0.02 þ0.06 þ0.10 þ0.05 þ0.10 þ0.47

−0.07 −0.06 −0.05 −0.09 −0.09 −0.43 −0.01 −0.06 −0.08 −0.07 −0.10 −0.43

msð2 GeVÞ 103.80þ6.14
−4.22

þ4.54 þ1.38 þ0.72 þ2.56 þ4.77 þ3.87
104.34þ4.32

−4.24
þ0.55 þ1.41 þ1.34 þ1.74 þ2.42 þ3.57

−1.66 −1.38 −0.49 −2.62 −2.24 −3.58 −0.52 −1.38 −1.44 −2.11 −2.40 −3.50

FIG. 10. msð2 GeVÞ calculated at different values of Borel parameter and s0 using (a) FOPT and (b) RGSPT schemes. In Fig. (c),
msð2 GeVÞ and mdð2 GeVÞ at different values of the Borel parameter in the range u∈ ½2; 3� GeV2. In (d), Δmsð2 GeVÞ obtained by
varying s0 ∈ ½3; 5� GeV2 at different values of Borel parameter u.
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In Sec. IV, we discussed the hadronic pseudoscalar
spectral function for which no experimental information
is available. However, these contributions can be para-
metrized in terms of the information available on the
masses and decay width of the spectral function. We use
commonly used hadronic parametrization from Dominguez
and de Rafael [49] in this article for the light quark mass
determination, and it has a good agreement with another
parametrization by Maltman and Kambor [48], which can
be seen in Fig. 1.
In Sec. V, the continuum contributions are discussed in

detail. The most commonly used FOPT prescription results
are already available in the literature. These determinations
have large uncertainties from the variation of the renormal-
ization scale. RGSPT can reduce such uncertainties and is
inspired by the findings of Ref. [23]; we first sum the
kinematical π2-terms appearing due to analytic continuation
of the spectral function in Sec.VA.The analytic continuation
using RGSPT also results in better convergence of the
perturbation series for the dimension-zero contribution.
We also find better convergence and improved scale depend-
ence for theΨ00ðQ2Þ, which is also an RG invariant quantity.
These improvements can be seen in Fig. 2.
In Sec. V B, we first calculated the Borel transformation

for the Ψ00ðQ2Þ in the RGSPT prescription. The Borel
transformation for RGSPT can only be performed numeri-
cally, and it resums all the Euler’s constant and various ζ
functions that arise due to Borel transformation for RGSPT.
The FOPT results are found to be poorly convergent and
oscillate around the all-order result from the RGSPT.
RGSPT also improves the scale dependence of the Borel
transformed Ψ00ðQ2Þ which is used as input in the Borel-
Laplace sum rule in Eq. (11). These improvements can be
seen in Figs. 3 and 4. The result obtained is used in Sec. V
C to test the convergence of Ψ00ðuÞ. The FOPT series is
found to be slightly more convergent than RGSPT, but it is
argued that RGSPT results are more trustworthy as Borel
transformation in FOPT has oscillatory behavior for the
known results. We also include small instanton contribu-
tions using results from ILM in Sec. V D.
We determined the light quark masses in Sec. VI using

the free parameters s0 and u used in Ref. [28]. This
particular choice leads to small u dependence in the
FOPT determinations of the ms, which can be seen in
Fig. 10(a). For the RGSPT determination, the stability
region is closer to the second resonance; therefore, we have
used the choices for these free parameters from FOPT. This
leads to slightly large uncertainty in the ms determination
from the variations of u. In addition to the individual
determination of the ms and md, we have performed
simultaneous determination and found a slightly more
precise value for ms. These results are presented in
Tables I and II. In addition to this, we have also presented
our determination by choosing s0 ¼ 3.58� 0.20 GeV2 in
the resonance region where there is good agreement

between theoretical and hadronic spectral function.
These values result in higher values of the quark masses
which can be seen in Figs. 10(a) and 10(b). Since this value
choice of s0 is sensitive to the parameters of the second
resonance and higher resonances are neglected, we do not
consider them in our final determinations.
Now, we give our final determination for the light quark

masses, which comes from the simultaneous determination
of the ms and md and their values at 2 GeV are

msð2 GeVÞ ¼ 104.34þ4.32
−4.24 MeV; ð93Þ

mdð2 GeVÞ ¼ 4.21þ0.48
−0.45 MeV; ð94Þ

muð2 GeVÞ ¼ 2.00þ0.33
−0.40 MeV: ð95Þ

Corresponding PDG average values [66] are

msð2 GeVÞ ¼ 93.4þ8.6
−3.4 MeV; ð96Þ

mdð2 GeVÞ ¼ 4.67þ0.48
−0.17 MeV; ð97Þ

muð2 GeVÞ ¼ 2.16þ0.49
−0.26 MeV; ð98Þ

which is in agreement with our findings.
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APPENDIX A: RUNNING OF THE STRONG
COUPLING AND THE QUARK MASSES

IN THE pQCD

The running of strong coupling and the quark masses
are computed by solving the following differential
equations:

μ2
d
dμ2

xðμÞ ¼ βðxÞ ¼ −
X
i

xiþ2βi;

μ2
d
dμ2

mðμÞ≡mγm ¼ −m
X
i

γixiþ1; ðA1Þ

where βi are the QCD β function coefficients and γi are the
quark mass anomalous dimension.
The QCD β function coefficients are known to five

loops [85–93] and their analytic expression for nf-active
flavor are
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β0 ¼
11

4
−
1

6
nf; β1 ¼

51

8
−
19

24
nf; β2 ¼

2857

128
−
5033

1152
nf þ

325

3456
n2f;

β3 ¼
149753

1536
−
1078361

41472
nf þ

50065

41472
n2f þ

1093

186624
n3f þ

891

64
ζð3Þ − 1627

1728
nfζð3Þ þ

809

2592
n2fζð3Þ;

β4 ¼
8157455

16384
þ 621885ζð3Þ

2048
−
9801π4

20480
−
144045ζð5Þ

512
þ nf

�
−
336460813

1990656
−
1202791ζð3Þ

20736
þ 6787π4

110592
þ 1358995ζð5Þ

27648

�

þ n2f

�
25960913

1990656
þ 698531ζð3Þ

82944
−
5263π4

414720
−
5965ζð5Þ
1296

�
þ n3f

�
−

630559

5971968
−
24361ζð3Þ
124416

þ 809π4

1244160
þ 115ζð5Þ

2304

�

þ n4f

�
1205

2985984
−
19ζð3Þ
10368

�
: ðA2Þ

The known five-loop quark mass anomalous dimension coefficients [94–101] are

γð0Þm ¼ 1; γð1Þm ¼ 1

42

�
202

3
þ −20

9
nf

�
; γð2Þm ¼ 1

43

�
1249þ nf

�
−
160ζð3Þ

3
−
2216

27

�
−
140n2f
81

�
;

γð3Þm ¼ 1

44

�
135680ζð3Þ
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− 8800ζð5Þ þ 4603055

162
þ nf

�
−
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9
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9
−
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�
800ζð3Þ

9
−
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3
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�
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�
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−
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��
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�
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9
−
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�
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75680ζð3Þ2

9
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−
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�
þ n2f

�
þ 1320742
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−
166300ζð4Þ
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−
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�
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þ 12848ζð3Þ
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9
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�
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�
−
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243
−
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27

��
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APPENDIX B: CONTRIBUTION TO CURRENT CORRELATOR

1. Dimension-zero contributions

The zero-dimensional contribution to OPE is known to five loops (α4s ) [42–44]. We are using the following expression for
Ψ0:

Ψ0ðq2Þ ¼
3

8π2

�
Lþ

�
L2 þ 17L

3

�
xþ x2

�
17L3

12
þ 95L2

6
þL

�
9631

144
−
35ζð3Þ

2

��

þ x3
�
L2

�
4781

18
−
475ζð3Þ

8

�
þ 221L4

96
þ 229L3

6
þL

�
−
91519ζð3Þ

216
þ 715ζð5Þ

12
−
π4

36
þ 4748953

5184

��

þ x4
�
L

�
192155ζð3Þ2

216
−
46217501ζð3Þ

5184
þ 455725ζð5Þ

432
−
52255ζð7Þ

256
−
125π6

9072
−
3491π4

10368
þ 7055935615

497664

�

þL2

�
−
1166815ζð3Þ

576
þ 24025ζð5Þ

96
−
π4

36
þ 97804997

20736

�
þL3

�
3008729

3456
−
5595ζð3Þ

32

�
þ 51269L4

576
þ 1547L5

384

�	
;

ðB1Þ

where x≡ αsðμÞÞ=π and L ¼ logð μ2

−q2Þ. This expression reproduces the results for R0 and Ψ̃00
0ðuÞ in Ref. [28].

For RGSPT, these quantities can be derived using Eqs. (45) and (46) from the Adler function. The RGSPTexpression for
the dimension-zero Adler function is given by
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D0ðq2Þ ¼
3ðmi þmjÞ2
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8
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w

�
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�	
; ðB2Þ

where w ¼ 1 − xðμÞβ0 logð μ2

−q2Þ.

2. Dimension-two corrections

The dimension-two contributions with full mass dependence are available to Oðα1sÞ in Refs. [35,45–47]. Additional
Oðα2sÞ correction is taken from Ref. [28]. For FOPT, we use the following expression for dimension-two contribution to the
current correlator:

Ψ2 ¼
3

8π2

�
ðm2

i þm2
jÞ
�
x2
�
−
25L3

3
−
97L2

2
þ L

�
154ζð3Þ

3
−
5065

36

��
þ
�
−4L2 −

32L
3

�
x − 2L

�

−mimj

�
x

�
−4L2 −

56L
3

þ 8ζð3Þ − 88

3

�
− 2L − 4

�	
: ðB3Þ

For RGSPT, we derive the spectral function from the dimension-two Adler function,

D2 ¼
ðmi þmjÞ2ðm2

i þm2
jÞ

139968π2w34=9 ð8xð729ð20w2 − 251Þxζð3Þ þ 32 logðwÞð8wð290x − 81Þ þ 1600x logðwÞ − 12607xÞÞ
þ 52488w2 þ ð5497360 − wð7643wþ 1797332ÞÞx2 þ 1296ð361 − 145wÞwxÞ

þ ðmi þmjÞ2mimj

216π2w25=9 ðwð290x − 81Þ þ 256x logðwÞ − 1046xÞ: ðB4Þ

3. Dimension-four contributions

The dimension-four contributions can be obtained from Refs. [35,47,71]. For dimension-four contributions, we use an
RG invariant combination of the condensates given in Refs. [72,73]. The constant terms at this order are important for the
Borel-Laplace operator. We give a summed expression for the current correlator,

Ψ4 ¼ −
1

162w17=9 ðwð145x − 81Þ þ 128x logðwÞ − 442xÞ

 X

i¼u;d;s

q̄iqiÞ
�

inv
þ 2x

9w17=9 ðhq̄dqd þ q̄uqdiinv

þ hq̄iqj þ q̄jqjiinv:
81w17=9 ðwð145x − 81Þ þ 128x logðwÞ − 523xÞ − hαsπ G2iinv

1296w17=9 ð2wð145x − 81Þ þ 256x logðwÞ − 1181xÞ

þ 1

1512π2w11=3x

�
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j þm4
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i m
2
jðx2ð−6090ðw − 1Þ − 5376 logðwÞÞ þ 1134wxÞ

þ ðm3
i mj þmim3

jÞðxð−3480w2 þ 5073w − 3072w logðwÞÞ þ 648w2 þ x2ð−8555w − 7552 logðwÞ þ 1877ÞÞÞ

− 81wx
X

k¼u;d;s

m4
k

	
: ðB5Þ

The corresponding FOPT expression is given by
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