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A B S T R A C T

For turbulent reacting flow systems, identification of low-dimensional representations of the thermo-chemical
state space is vitally important, primarily to significantly reduce the computational cost of device-scale
simulations. Principal component analysis (PCA), and its variants, are a widely employed class of methods.
Recently, an alternative technique that focuses on higher-order statistical interactions, co-kurtosis PCA (CoK-
PCA), has been shown to effectively provide a low-dimensional representation by capturing the stiff chemical
dynamics associated with spatiotemporally localized reaction zones. While its effectiveness has only been
demonstrated based on a priori analyses with linear reconstruction, in this work, we employ nonlinear
techniques to reconstruct the full thermo-chemical state and evaluate the efficacy of CoK-PCA compared to
PCA. Specifically, we combine a CoK-PCA-/PCA-based dimensionality reduction (encoding) with an artificial
neural network (ANN) based reconstruction (decoding) and examine, a priori, the reconstruction errors of
the thermo-chemical state. In addition, we evaluate the errors in species production rates and heat release
rates, which are nonlinear functions of the reconstructed state, as a measure of the overall accuracy of the
dimensionality reduction technique. We employ four datasets to assess CoK-PCA/PCA coupled with ANN-based
reconstruction: zero-dimensional (homogeneous) reactor for autoignition of an ethylene/air mixture that has
conventional single-stage ignition kinetics, a dimethyl ether (DME)/air mixture which has two-stage (low
and high temperature) ignition kinetics, a one-dimensional freely propagating premixed ethylene/air laminar
flame, and a two-dimensional dataset representing turbulent autoignition of ethanol in a homogeneous charge
compression ignition (HCCI) engine. Results from the analyses demonstrate the robustness of the CoK-PCA
based low-dimensional manifold with ANN reconstruction in accurately capturing the data, specifically from
the reaction zones.
Novelty and significance
The co-kurtosis PCA (CoK-PCA) based encoding method has been

shown to provide a more accurate reduced manifold relative to PCA
in capturing stiff dynamics relevant to combustion datasets. However,
contrary to PCA, the efficacy of the co-kurtosis PCA technique has not
been explored in conjunction with widely used nonlinear reconstruc-
tion methods (decoding). This paper provides a rigorous performance
analysis of CoK-PCA with an artificial neural network (ANN) based
reconstruction for diverse combustion datasets. Further, the accuracy
of both PCA and CoK-PCA in capturing the complex kinetics of two-
stage autoignition is evaluated. Such a priori analyses performed in this
study are foundational towards establishing the accuracy of dimension-
ality reduction techniques and their implementation into reacting flow
solvers for significantly reducing computational costs.

∗ Corresponding author.
E-mail address: konduriadi@iisc.ac.in (K. Aditya).

1. Introduction

The multi-scale, multi-physics nature of turbulent reacting flows ne-
cessitates the use of high-fidelity simulations to accurately model chem-
ical kinetics and turbulence–chemistry interactions. However, when
representing chemical kinetics using first principles, e.g., direct nu-
merical simulations with detailed kinetics, the governing system of
equations has large dimensionality due to tens of chemical species
participating in hundreds of chemical reactions [1–5]. As a result, the
computational costs become prohibitively expensive for simulations of
practical device-scale problems. Indeed, as the chemistry calculations
associated with even the simplest of reaction mechanisms present them-
selves as the main driver of the large computational cost [6], reduced
order modeling techniques become invaluable.
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With the advent of data-driven techniques, low-dimensional mani-
fold (LDM) representations of the thermo-chemical state space, iden-
tified from relevant training data, can effectively model the species
dynamics of an otherwise large chemical system. Among the various
available strategies to obtain these LDMs, principal component analysis
(PCA) and its many flavors have been most widely employed [7–12].
However, the principal components obtained by PCA are optimized
with respect to second-order joint statistical moment, i.e., covariance,
of the training data and may not be sensitive to the presence of extreme-
valued samples characteristic of localized spatiotemporal events such
as the formation of ignition kernels [13]. In contrast, the statistical
signature of such events is shown to be favorably captured by principal
components of higher-order joint statistical moments, specifically the
fourth-order co-kurtosis tensor [13]. Building upon this observation, a
dimensionality reduction procedure that constructs LDMs represented
by principal components of the co-kurtosis tensor, namely the co-
kurtosis PCA (CoK-PCA) method, was proposed [14]. Additionally,
analogous to PCA, a recently proposed online low-rank approximation
algorithm known as dynamically bi-orthogonal decomposition (DBO),
which is based on time-dependent low-dimensional subspaces, has been
shown to effectively characterize strongly transient events in turbulent
compressible reacting flows [15].

It is noteworthy that, while the CoK-PCA method was shown to rep-
resent the thermo-chemical state as well as nonlinear functions of the
thermo-chemical state, such as species production rates (PRs) and heat
release rates (HRRs), better than PCA in the localized spatiotemporal
regions corresponding to strong chemical activity, the transformation
from the principal components of the LDM to the full thermo-chemical
state was performed through linear operators [14]. However, due to
the inherent nonlinear nature of the combustion phenomenon, the use
of linear reconstruction has long been known not to be sufficiently
accurate. Thus, the main objective of the present study is to address
these concerns by studying the CoK-PCA method with nonlinear re-
construction techniques and comparing the accuracy relative to both
PCA and a simple linear reconstruction. While performing an a priori
alidation is one way of assessing the efficacy of CoK-PCA relative to
CA, recent studies have proposed various other techniques that focus
n analyzing the topology and uniqueness of the LDMs to examine their
uality [16–18].

For PCA-based LDMs, several studies have explored nonlinear recon-
truction techniques such as artificial neural networks (ANNs), kernel
ethods, Gaussian process regression (GPR), and their hybrid ap-
roaches [19–23]. Nonlinear reconstruction using ANN models pro-
ides flexibility to capture complex relationships, scalability for large
atasets, meaningful representation learning, robustness to noise and
rregularities, and the ability to generalize well to unseen data [24].
herefore, within the confines of this paper, our primary emphasis

s directed towards nonlinear reconstruction utilizing ANNs. In this
tudy, we compare the reconstruction performance of ANNs with linear
ethods [14] and subsequently aim to evaluate the efficacy and supe-

iority of nonlinear approaches in accurately capturing and predicting
mportant combustion variables. Following Jonnalagadda et al. [14],
he quality of the CoK-PCA-based/PCA-based encoder and ANN-based
ecoder models, hereafter called the CoK-PCA-ANN and PCA-ANN
odels, respectively, are compared via the conventionally considered

econstruction errors of the thermo-chemical scalars as well as more
ensitive PRs and HRRs for four combustion datasets namely pre-
ixed ethylene-air in a homogeneous reactor, two-stage autoignition of
imethyl ether (DME)-air, a one-dimensional freely-propagating planar
aminar flame of premixed ethylene-air, and a homogeneous charge
ompression ignition of ethanol-air mixture. To reiterate, the primary
bjective of this work is to establish, in an a priori setting, the effec-
iveness of the CoK-PCA-ANN method in capturing the thermo-chemical
ignature of data from regions exhibiting strong chemical activity, such
s reaction zones/ignition kernels. Much like the work presented by
2

bdelwahid et al. [25] and Kumar et al. [26], the critical application
of this technique would be to incorporate the CoK-PCA transformation
to solve a reduced set of the CoK-PCA principal components transport
equations, which not only accelerates computations but is also expected
to provide better representations of the reaction zones.

The remainder of this paper is organized as follows. In Section 2,
we briefly illustrate the dimensionality reduction procedure and outline
the PCA and the CoK-PCA methods to obtain the low-dimensional
manifolds (LDMs). Section 3 describes the artificial neural network
(ANN) based nonlinear reconstruction procedure to predict the thermo-
chemical scalars from the principal components of the LDMs. The
results from the a priori analyses to evaluate the performance of the two
LDMs based on ANN reconstruction are presented in Section 4. Finally,
we summarize the paper and provide future directions in Section 5.

2. Dimensionality reduction

Following convention, we arrange the scaled training data as a
matrix 𝐗 ∈ R(𝑛𝑔×𝑛𝑣) with 𝑛𝑔 observations (e.g., spatial locations, tem-
poral checkpoints) each having 𝑛𝑣 real-valued variables or features
(e.g., species concentrations, temperature). With respect to the feature
space, 𝐗 can be represented in terms of column vectors as 𝐗 =
{

𝑥𝑖 ∈ R
(𝑛𝑔×1) ∀ 𝑖 ∈ {1,… , 𝑛𝑣}

}

. The purpose of dimensionality reduc-
tion, within the context of combustion, is to find a column subspace of
dimension 𝑛𝑞 < 𝑛𝑣, representing an LDM of the feature space by some
measure of optimality. Note that dimensionality reduction could also
denote techniques that seek an optimal row subspace, which reduces
the size of 𝑛𝑔 , but our interest here is strictly on reducing 𝑛𝑣.

2.1. Principal component analysis (PCA) based low-dimensional manifold

For PCA, the principal vectors align in the directions of maximal
variance as captured by the second order data covariance matrix, 𝐂 ∈
R(𝑛𝑣×𝑛𝑣), represented using index notation as:

(𝐂)𝑖𝑗 ≡ 𝐶𝑖𝑗 = E(𝑥𝑖𝑥𝑗 ), 𝑖, 𝑗 ∈ {1,… , 𝑛𝑣}, (1)

where E is the expectation operator. The required principal vectors
(𝐀) are the eigenvectors of the covariance matrix obtained through
an eigenvalue decomposition, 𝐂 = 𝐀𝐋𝐀𝑇 . It should be noted that the
data used in the definition of joint moments is assumed to be centered
around the mean.

2.2. Co-kurtosis tensor based low-dimensional manifold

Similarly, with the higher order moment of interest, i.e., the fourth-
order co-kurtosis tensor, the principal vectors represent the directions
of maximal kurtosis in the data. The co-kurtosis tensor is defined as:

𝑖𝑗𝑘𝑙 = E(𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙), 𝑖, 𝑗, 𝑘, 𝑙 ∈ {1,… , 𝑛𝑣} (2)

By drawing an analogy to independent component analysis (ICA) [13],
for a non-Gaussian data distribution, the fourth-order cumulant tensor,
i.e., co-kurtosis 𝐊 is computed by subtracting the excess variance given
as:

𝐾𝑖𝑗𝑘𝑙 = 𝑖𝑗𝑘𝑙 − 𝐶𝑖𝑗𝐶𝑘𝑙 − 𝐶𝑖𝑘𝐶𝑗𝑙 − 𝐶𝑖𝑙𝐶𝑗𝑘 (3)

Again note that as the data is centered around the mean, only the
second moment terms appear in the evaluation of the cumulant tensor.

The next step involves a suitable decomposition of the co-kurtosis
tensor 𝐊 to obtain the required principal components. Directly comput-
ing the higher-order joint moment tensors is expensive due to the curse
of dimensionality, i.e., in our case for the co-kurtosis tensor, computa-
tional complexity would be 𝑛4𝑣 where 𝑛𝑣 is the number of features. The
symmetric nature of the co-kurtosis tensor can be leveraged to result
in roughly half of 𝑛4𝑣 computations. However, the existing well-defined
matrix decomposition techniques cannot be directly extended to higher-

order tensors. Therefore, alternate tensor decomposition methods, such
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as symmetric canonical polyadic (CP), higher order singular value
decomposition (HOSVD), etc., should be explored to obtain the prin-
cipal kurtosis vectors and values. Following [27,28], Aditya et al. [13]
showed that the cumulant tensor 𝐊 could be reshaped into a 𝑛𝑣 × 𝑛3𝑣
matrix 𝐓 following which the principal vectors 𝐔 are determined from
the SVD of 𝐓 = 𝐔𝐒𝐕𝑇 .

After obtaining the principal components, we can reduce the dimen-
sionality of the original data by projecting it onto a low-dimensional
manifold. This is typically performed by selecting the most informative
subset of principal vectors to project 𝐗 ∈ R(𝑛𝑔×𝑛𝑣) onto the reduced
space represented as 𝐙𝑞 ∈ R(𝑛𝑔×𝑛𝑞 ), where 𝑛𝑞(< 𝑛𝑣) corresponds to
the number of principal vectors retained. The conventional forward
projection procedure in PCA employs a simple matrix transformation,

𝐙𝑞 = 𝐗𝐀𝑞 , (4)

where 𝐀𝑞 ∈ R
(𝑛𝑣×𝑛𝑞 ) represents the truncated subset of principal vectors

eigenvectors of the covariance matrix). For CoK-PCA, we obtain 𝐀𝑞
s the 𝑛𝑞 leading left singular vectors of 𝐔 as described above. The

contrast between PCA and CoK-PCA has been illustrated using a syn-
thetic bivariate dataset with a few extreme-valued samples collectively
representing anomalous events [13,14]. It was observed that while the
first PCA principal vector aligned in the direction of maximal variance,
the first CoK-PCA principal vector aligned itself in the direction of the
anomalous cluster, supporting the hypothesis that CoK-PCA is more
sensitive to extreme-valued samples than PCA.

3. Reconstruction methodology

To assess the quality of the reduced manifold, we need to evalu-
ate the reconstruction accuracy of the original state space from the
low-dimensional subspace. Note that errors in the reconstructed vari-
ables are incurred at two stages: while projecting data into the low-
dimensional space and during the reconstruction.

3.1. Linear reconstruction

The standard procedure of obtaining the original thermo-chemical
state is a linear reconstruction through a matrix inversion, given as:

𝐗𝑞 = 𝐙𝑞𝐀𝑇
𝑞 , (5)

where 𝐗𝑞 denotes the reconstructed data in the original feature space.
Now, a comparison between 𝐗𝑞 and 𝐗 would provide a quantitative
measure of the quality of the two reduced manifolds obtained by
CoK-PCA and PCA, respectively. Jonnalagadda et al. [14] analyzed
the maximum and average values of the absolute reconstruction er-
ror

(

𝜀 = |𝐗 − 𝐗𝑞|
)

, 𝜀𝑚 = max(𝜀) and 𝜀𝑎 = mean(𝜀), respectively to
uantify the accuracy in each reconstructed variable. Specifically, they
xamined the error ratio,

𝑖 = ln

{

𝜀PCA
𝑖

𝜀CoK-PCA
𝑖

}

, (6)

to analyze the performance of CoK-PCA relative to PCA; the subscript
𝑖 can represent either the maximum (𝑟𝑚) or average (𝑟𝑎) errors.

3.2. Nonlinear reconstruction through ANNs

It is clear that while CoK-PCA exhibits improved accuracy in cap-
turing stiff dynamics compared to PCA [14], both methods incur sig-
nificant errors while employing a linear reconstruction of the original
thermo-chemical state from the reduced manifold, particularly for an
aggressive truncation (low 𝑛𝑞). Therefore, to fully establish the efficacy
of CoK-PCA relative to PCA in capturing stiff dynamics, it is imperative
to investigate its efficacy coupled with a nonlinear reconstruction ap-
proach. In this paper, we employ fully-connected deep neural networks
to accomplish the required nonlinear reconstruction task. Since strong
dependencies or relationships exist between different thermo-chemical
3

scalars, it is appropriate to consider a fully-connected network where
every subsequent layer is fully connected with the previous layer,
ensuring the flow of information (of dependencies) across the network.
In this regard, we also hypothesize that the use of a skip connection,
i.e., introducing a sort of regularization in deeper networks by skipping
some of the layer outputs during backpropagation, would not be suit-
able. However, it should be noted that using artificial neural networks
(ANNs) is an intuitive choice. Alternate nonlinear regression methods,
such as Gaussian process regression (GPR), polynomial regression, least
squares, etc., exist and can be incorporated in a similar manner as
described in this study.

With significant advancements in deep learning in recent times,
ANNs have proven their potential to model highly complex nonlinear
relationships between any set of inputs and outputs. The goal of an ANN
or, specifically, a deep feedforward neural network is to approximate
some underlying function 𝑓 ∗. For example, for a classifier, 𝐲 = 𝑓 ∗(𝐱)

aps an input 𝐱 to a category 𝐲, but more generally in case of regression
roblems 𝐱 is a vector of real numbers and 𝐲 output of a vector-valued

function. A feedforward network defines a mapping 𝐲 = 𝑓 (𝐱;𝜽) and
learns the value of the parameters 𝜽 that result in the best function
approximation. The nonlinear reconstruction step in a dimensionality
reduction algorithm can be viewed as a nonlinear mapping from the
reduced manifold (or input PCs) to the original feature space (or output
features). We leverage the property of ANNs being universal function
approximators [24] to achieve this task.

Consider a reduced data representation of the original state space 𝐗
iven by the score matrix, 𝐙𝑞 = 𝐗𝐀𝑞 , where 𝐀𝑞 ∈ R(𝑛𝑣×𝑛𝑞 ) comprises
he chosen subset of principal vectors (kurtosis or variance). Now,
he objective is to use an ANN to predict (or reconstruct) 𝐗𝑞 from
𝑞 where 𝐗𝑞 represents the reconstructed data in the original feature
pace, which is as close to 𝐗 as possible. This is a supervised learning

problem where for every 𝑘th feature vector from (𝑘th row of) the design
matrix 𝐙𝑞 , 𝑧𝑘∗ ∈ R𝑛𝑞 , the network should accurately predict the target
vector (𝑘th row of 𝐗) 𝑥𝑘∗ ∈ R𝑛𝑣 , i.e., the ANN should provide the
mapping 𝑧𝑘∗ ↦ 𝑥𝑘∗, ∀𝑘 ∈ {1, 2,… , 𝑛𝑔}. In other words, the goal of
training a neural network is to drive its prediction 𝐗𝑞 to match 𝐗. Since
it is a regression problem, we evaluate the performance or accuracy of
the model by using a mean squared error (MSE) loss defined as:

𝑀𝑆𝐸 = 1
𝑚

𝑚
∑

𝑘=1
(�̂�𝑘∗ − 𝑥𝑘∗)2 (7)

where �̂�𝑘∗, 𝑥𝑘∗, and 𝑚 are the model prediction, ground truth, and
the number of samples, respectively. Note that 𝑚 can differ from 𝑛𝑔
depending on how the entire dataset is split into training and test sets.

A simple feedforward neural network or ANN computes the output
of a neuron by a linear combination of all weights and biases associated
with it followed by a nonlinear activation function. From our numer-
ous experiments, we found that employing Tanh for the hidden layer
activations provides better stability, robustness, and smoother training
of the network than ReLU, and exhibits minimal sensitivity to different
random seeds. Additionally, Tanh can map inputs to spaces with both
positive and negative values, unlike ReLU and sigmoid. Further, we
use a custom sigmoid-based activation function at the output layer
to ensure the model predictions are within the same limits as the
original state. To obtain an optimal solution for the non-convex loss
function, we employ the widely used Adam optimization algorithm,
which is a variant of stochastic gradient descent (SGD). The network
is implemented in the TensorFlow framework along with the use of
techniques such as stochastic weight averaging, model averaging, and
ensemble averaging in the network training phase to ensure consistency
in model predictions.

3.3. Error metrics

Once trained, the network is used to predict the thermo-chemical

scalars, which include species mass fractions and temperature. The
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species production rates and heat release rate are also computed based
on these reconstructed thermo-chemical scalars. The motivation behind
calculating the species production rates and heat release rate is their
nonlinear dependence on the species mass fractions and temperature,
which provides a more stringent metric for assessing the reconstruction
accuracy of the full thermo-chemical state and the overall dimension-
ality reduction strategy. Further, apart from having a tangible physical
meaning, the reconstruction error associated with the heat release
rate also provides an overall assessment of the quality of the reduced
manifold since the heat release rate represents an aggregate effect of
all the quantities of interest. A key point to note is that the network
predictions correspond to a scaled version of the original state since
the network is trained with scaled input feature vectors. Hence, we
suitably unscale the network outputs before calculating the errors in
the reconstruction of thermo-chemical scalars. Analogous to the error
metrics in [14], we examine the following error ratios,

𝑟𝑖 = log10

{

𝜀CoK-PCA
𝑖

𝜀CoK-PCA-ANN
𝑖

}

, (8)

𝑟𝑖 = log10

{

𝜀PCA
𝑖

𝜀PCA-ANN
𝑖

}

, (9)

𝑟𝑖 = log10

{

𝜀PCA-ANN
𝑖

𝜀CoK-PCA-ANN
𝑖

}

, (10)

to compare the relative performance of different methods such as
CoK-PCA, PCA, CoK-PCA-ANN, and PCA-ANN considered in our study.
Again, the subscript 𝑖 can represent either the maximum (𝑚) or average
𝑎) errors. The value of 𝑟𝑖 will be positive if the ratio inside the
ogarithm is greater than unity (the error in the denominator is lower),
ndicating that the technique represented by the denominator is more
ccurate than that represented by the numerator. In the results to be
hown, following [14], we will denote positive 𝑟𝑖 by blue and negative
y brown colored bars.

. Results

To investigate the accuracy of the proposed reconstruction method-
logy for combustion datasets, we consider four test cases representa-
ive of various physical and chemical phenomena (e.g., autoignition,
lame propagation) ubiquitous in such scenarios:

• autoignition of a premixed ethylene/air mixture in a homoge-
neous reactor,

• autoignition, with two-stage ignition kinetics, of a dimethyl ether
(DME)/air mixture in a homogeneous reactor,

• one-dimensional freely propagating planar laminar premixed
flame of an ethylene/air mixture,

• two-dimensional turbulent autoignition of an ethanol/air mixture
at homogeneous charge compression ignition (HCCI) conditions.

The datasets represent an increasing order of complexity of chemical
inetics and flow-chemistry interactions. The first two cases represent
omogeneous (spatially zero-dimensional) autoignition, albeit ethy-
ene/air with conventional ignition kinetics, while DME/air has more
omplex low and high temperature ignition kinetics. The third case
ncorporates spatial variation, including convection and diffusion ef-
ects in the canonical planar laminar premixed flame configuration.
he fourth case represents complex turbulence–chemistry interactions

n a spatially two-dimensional configuration under conditions relevant
o practical devices.

.1. Premixed ethylene-air in a homogeneous reactor

In this section, we consider the dataset that characterizes sponta-
eous ignition in a simple homogeneous (zero-dimensional) reactor.
or dataset generation, we simulate a constant pressure reactor with
4

Fig. 1. Illustration of train–test split in ensemble training. Training states:
𝐷1 , 𝐷2 , 𝐷4 , 𝐷6 , 𝐷8 and testing states: 𝐷3 , 𝐷5 , 𝐷7 , 𝐷9. To generate the LDMs, PCs are
computed based on the reference state 𝐷1.

a premixed ethylene-air mixture at a pressure 𝑃 = 1.72 atm for a suite
of nine different thermo-chemical states, i.e., 𝐷𝑖 ∀𝑖 ∈ {1, 2,… , 9},
each with a different initial temperature (𝑇 ) and equivalence ratio (𝜙)
as illustrated in Fig. 1. Specifically, we perturb the initial conditions
(𝑇 , 𝜙) from a reference state of 𝐷1 ≡ (𝑇 = 1200K, 𝜙 = 0.4) by
𝑇 = ±50K and 𝛥𝜙 = ±0.25. Thus, each state is parameterized by a

combination of initial (𝑇 , 𝜙) where 𝑇 ∈ {1150K, 1200K, 1250K} and
𝜙 ∈ {0.375, 0.4, 0.425}. The chemistry is represented by a 32-species,
206-reactions mechanism [29]. The homogeneous reactor simulations
are performed with Cantera [30], and each state is computed for
different duration to ensure that the profiles remain nearly similar. For
the reference state, the reactor is evolved for 2.5ms with a time step of
1 μs to yield 2501 data samples. Hence, in this case, the original design
matrix 𝐃 consists of 𝑛𝑔 = 2501 points and 𝑛𝑣 = 33 variables, comprising
32 species mass fractions and temperature. The next step involves a
data preprocessing stage where the design matrix for each state is zero-
centered by subtracting with the mean feature vector and normalized
with the absolute maximum feature vector to obtain the scaled data
matrix, 𝐗. This ensures an unbiased data representation with equal
weight to all the features. This scaling procedure is followed for the
other remaining test cases as well. To generate the low-dimensional
manifolds, i.e., using PCA and CoK-PCA, we compute the principal
vectors and values based on the scaled reference state (𝑋1), which
eventually forms the basis for constructing the training/validation data.
Next, we perform an aggressive truncation of the reduced manifolds
by retaining 𝑛𝑞 = 5 dominant principal vectors out of the 𝑛𝑣 = 33
vectors that capture approximately 99% of the variance and 98% of
the kurtosis in the dataset, respectively. Using the principal vectors
computed on the scaled reference state (𝑋1), we obtain the LDM
representation (score matrices) 𝐙4

𝑞 and 𝐙2
𝑞 through the dimensionality

reduction procedure discussed in Section 2 for the CoK-PCA and PCA
reduced manifolds, respectively. It should be noted that this projection
is a linear operation.

After obtaining the LDMs with PCA and CoK-PCA, the next step in
the a priori analysis is to evaluate the reduced manifolds in conjunction
with the nonlinear reconstruction of the original thermo-chemical state
through ANNs. For the ANN training phase, the input feature vectors
are the rows of the score matrices (𝐙4

𝑞 ,𝐙
2
𝑞) and the output vectors are

the corresponding rows of the scaled original thermo-chemical state
matrix 𝐗; these matrices are arranged based on the different states
(𝐷𝑗s) using train–test split shown in Fig. 1 (states 𝐷1, 𝐷2, 𝐷4, 𝐷6,
and 𝐷8 are used for ANN training only). The split between training
and validation data is kept at 60/40. Through hyperparameter tuning,
the best network architecture is ascertained with four hidden layers
of widths of 40, 64, 40, and 32 neurons, respectively. In addition, the
widths of input and output layers correspond to 𝑛𝑞 = 5 and 𝑛𝑣 = 33 neu-
rons, respectively. Further, hyperbolic tangent activation in the hidden
layers, custom sigmoid-based activation at the output layer, and Adam
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Fig. 2. Training and validation loss curves for (a) CoK-PCA-ANN and (b) PCA-ANN,
espectively, for the premixed ethylene-air homogeneous reactor dataset.

ptimizer (learning rate = 1 × 10−3) are used. Fig. 2 depicts the loss
curves obtained for CoK-PCA-ANN and PCA-ANN, where convergence is
achieved at around 100 epochs with a validation loss of about 2×10−5.
Notably, the close alignment of the validation loss with the training loss
signifies a well-performing model capable of effectively generalizing to
unseen states.

Having trained on a subset of the states, we use the neural net-
work to predict (or reconstruct) the scaled species mass fractions and
temperature for the test states, i.e., 𝐷𝑗 ∀𝑗 ∈ {3, 5, 7, 9}. To ensure
that the reconstructed thermo-chemical state results in a unit sum of
species mass fractions, as is the standard practice, all reconstructed
species mass fractions which yield negative values (that are slightly
smaller than zero) are taken to be zero, after which any deviation
from the sum equaling unity is adjusted for in the non-participating or
bath species. Using the reconstructed thermo-chemical scalars, 𝐃𝐪, we
proceed to compute the species production rates and heat release rates.
The reconstructed quantities are compared against the original thermo-
chemical state, 𝐃, and their derived quantities (species production
rates, heat release rates) using the error metrics, 𝑟𝑎 and 𝑟𝑚.

In Fig. 3, we compare error ratios of linear and ANN reconstruction
(based on Eqs. (8) and (9)) of thermo-chemical scalars for both the
dimensionality reduction methods. N2 being an inert species has not
been included here. For most variables, ANN reconstruction performs
better than linear reconstruction (demonstrated by blue bars) with
respect to the average (𝑟𝑎) and maximum (𝑟𝑚) error metrics. An excep-
tion is temperature, where linear reconstruction performs marginally
better in terms of 𝑟𝑚 (demonstrated by brown bars). This observation
is consistent for both methods, i.e., PCA and CoK-PCA. In general,
as 𝑛𝑞 increases, the accuracy improvements obtained with ANN in
comparison to linear reconstruction decrease as the reduced manifold
becomes an increasingly better linear approximation of the original
state; in the limit of 𝑛𝑞 = 𝑛𝑣 linear reconstruction is exact, which is
a scenario with no reduction in dimensionality. This is evident from
Fig. 4, which presents the variation of the maximum error ratio (𝑟𝑚)
in the reconstruction of heat release rate with different values of 𝑛𝑞 for
CoK-PCA and CoK-PCA-ANN methods. The figure shows that for 𝑛 ≤ 8,
5

𝑞 i
Table 1
Cumulative errors in the normalized heat release rates (up to a progress variable of
0.99) from the two dimensionality reduction methods for the ethylene-air homogeneous
reactor case. The error is computed individually for each of the four test states.

Method Cumulative 𝜖𝐻𝑅𝑅

𝐷3 𝐷5 𝐷7 𝐷9

PCA-ANN 29.626 1.867 19.966 13.767
CoK-PCA-ANN 9.414 1.666 14.710 9.166

positive values of 𝑟𝑚 are obtained, which indicates a better accuracy
of ANN reconstruction than linear reconstruction. However, for 9 ≤
𝑛𝑞 ≤ 22, there is a steep decrease in the magnitude of 𝑟𝑚; it becomes
largely negative, demonstrating the improved reconstruction accuracy
of linear methods over ANN reconstruction. For 𝑛𝑞 ≥ 23, we observe
an increase in the value of 𝑟𝑚 towards the positive side, indicating the
gain in reconstruction performance of ANNs and eventually matching
that of linear methods. As dimensionality needs to be reduced as
aggressively as possible, one can conclude that ANN is better suited
for reconstructing data from aggressively-truncated low-dimensional
manifolds.

Next, we compare the two dimensionality reduction techniques
against each other, both with ANN reconstruction. Fig. 5 shows the
error ratios comparing PCA-ANN and CoK-PCA-ANN (see Eq. (10)) in
reconstructing the thermo-chemical scalars (parts (a) and (b)), and
species production rates and heat release rates (parts (c) and (d)). For
the scalars, it can be clearly seen that CoK-PCA-ANN performs better
than PCA-ANN in predictions of 19 and 24 (out of 32) variables for
𝑟𝑎 and 𝑟𝑚 metrics, respectively. The trend becomes more prominent in
the case of species production rates and heat release rates where CoK-
PCA-ANN predicts production rates more accurately for 22 out of the
31 species with the 𝑟𝑎 metric and 23 out of the 31 species with the 𝑟𝑚
metric. Notably, CoK-PCA-ANN captures heat release rate better than
PCA-ANN in terms of both error metrics.

While 𝑟𝑎 and 𝑟𝑚 are global error metrics, it is instructive to exam-
ine the temporal distribution of reconstruction errors and determine
whether the errors are low/high in the unburnt, igniting, or fully burnt
portions of the flame. Fig. 6 presents the normalized reconstruction
error of heat release rate plotted against time for the four test states:
𝐷3, 𝐷5, 𝐷7, and 𝐷9. The normalized error in the reconstructed heat
release rate, (𝜖HRR), is defined as:

𝜖HRR =
|HRR𝑞 − HRR𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙|

max(|HRR𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙|)
, (11)

For reference, the progress variable, which is computed based on
he temperature, is plotted on the right 𝑦-axis of each figure. Both
ethods incur significant error in the reaction zones, with the peak at

ntermediate values of the progress variable, which occurs at 0.8ms,
.4ms, 1ms, and 1.9ms for 𝐷3, 𝐷5, 𝐷7, and 𝐷9, respectively. As ex-
ected, the error is much lower on the unburnt and the fully burnt
ortions. Further, for 𝐷3 and 𝐷9, CoK-PCA-ANN incurs a significantly
ower peak reconstruction error than PCA-ANN (demonstrated by the
lue peaks smaller in magnitude than the red peaks), which is reflected
n the 𝑟𝑚 error presented in Fig. 5(d). However, the peak error for 𝐷7
s higher for CoK-PCA-ANN. For 𝐷5, both the methods incur essentially
he same magnitude of errors and perform at par with each other.
onetheless, across the four test states, CoK-PCA-ANN yields an overall

maller average reconstruction error than PCA-ANN, as reflected in the
𝑎 error presented in Fig. 5(c). An alternative measure of the accuracy
s the cumulative error in normalized heat release rate (𝜖HRR) summed
ver each individual state. Table 1 shows this cumulative error for each
f the states, and these comparisons provide further evidence that the
roposed CoK-PCA-ANN method predicts the overall chemical kinetics
n the reaction zone better than PCA-ANN.

It has been well established in the literature that the reduced man-
folds identified by PCA are highly sensitive to the data subsampling
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Fig. 3. Comparison of the reconstruction errors in thermo-chemical scalars between CoK-PCA and CoK-PCA-ANN (parts (a), (b)) as well as between PCA and PCA-ANN (parts (c),
d)) for the premixed ethylene-air homogeneous reactor dataset.
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Fig. 4. Variation of maximum error ratio (𝑟𝑚) in the reconstruction of heat release
rate between CoK-PCA and CoK-PCA-ANN for different values of 𝑛𝑞 .

strategy adopted, particularly in large DNS datasets where there is an
absence of an equitable distribution of samples in the igniting and non-
igniting regions [31]. This leads to the biasing of average errors (𝑟𝑎)
because of a significantly high number of data samples representing
zero reaction rates. Among several studies to address this issue, Cousse-
ment et al. [23] performed a kernel density-based sampling approach
for PCA. However, the optimal sampling strategy in combustion is
highly dataset-dependent and, therefore, remains an open research
problem [31]. In this study, we adopt a simple sampling strategy as
performed in [14], which considers a uniform sampling of data points
from the zones of unburnt reactants, chemical reactions, and burnt
products. To segregate the temporal domain into different regions of
varying chemical activity, we assume that the start/end of reactions
occurs when the instantaneous heat release rate increases/decreases
below 1% of the peak heat release rate. The number of samples con-
sidered in the non-igniting regions is one-third of those in the reacting
region. Thereafter, we obtain the score matrix (𝐙2

𝑞) for PCA using a new
set of principal vectors computed based on this subsampled data. In
contrast, the CoK-PCA score matrix (𝐙4

𝑞), obtained based on the entire
dataset, remains unchanged. The next step involves reconstructing the
original thermo-chemical state using the full score matrices for PCA
and CoK-PCA as computed above. Fig. 7 presents the comparison of
6

reconstruction errors in the species production rates and heat release
rates between PCA-ANN performed on the subsampled dataset and CoK-
PCA-ANN performed on the entire dataset. It can be observed that
CoK-PCA-ANN performs better than PCA-ANN in predicting production
rates accurately for 22 out of 31 species in terms of 𝑟𝑎 error metric.
However, in the case of 𝑟𝑚 error metric, both methods perform at par
with each other. Moreover, CoK-PCA-ANN performs a more accurate
reconstruction of the overall heat release rate in terms of both the error
metrics.

4.2. Two-stage autoignition of dimethyl ether-air mixture

In contrast to ethylene, which has conventional single-stage ignition
chemistry, a class of hydrocarbon fuels characterized by more complex
two-stage ignition (a low-temperature and a high-temperature) chem-
istry are increasingly considered suitable for novel combustion concepts
such as homogeneous charge compression ignition (HCCI) [32]. HCCI
relies on volumetric autoignition of a (nearly) homogeneous fuel charge
and realizes the benefits of low emissions due to fuel-lean combustion
while also achieving high efficiencies. However, controlling the ignition
timing is the biggest challenge since the charge ignites spontaneously
due to compression heating. Consequently, modeling the ignition pro-
cesses of two-stage ignition fuels under engine-relevant conditions is an
open challenge. Dimethyl ether (DME) is a prominent example, and its
ignition behavior resulting from turbulence–chemistry interactions at
engine-relevant conditions has been widely studied using DNS [32–34].
From a dimensionality reduction perspective, DME ignition presents
distinct challenges from that of ethylene; the chemical pathways and
the participating chemical species for the low-temperature ignition
chemistry are different from high-temperature chemistry. This mo-
tivates us to test the capability of CoK-PCA-ANN in reconstructing
the original state space from the reduced manifold for the two-stage
ignition of DME.

We consider a constant pressure zero-dimensional homogeneous
reactor of a stoichiometric mixture of hydrogen-enriched DME fuel
and air. The ratio of hydrogen to DME is 3:2 in the fuel mixture,
similar to that in [33]. The initial pressure is 1 atm while the initial
temperature is varied from 600K to 800K in increments of 25K, for a
otal of nine flames. This range of initial temperatures is such that the
lames contain both two-stage as well as single-stage ignition behavior.
inite rate chemistry is specified using the 39-species, 175-reactions
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Fig. 5. Comparison of the reconstruction errors in thermo-chemical scalars (parts (a), (b)), species production rates and heat release rate (parts (c), (d)) between PCA-ANN and
CoK-PCA-ANN for the premixed ethylene-air homogeneous reactor dataset.

Fig. 6. Temporal evolution of normalized errors (see Eq. (11)) in reconstructed heat release rate for the test states (a) 𝐷3, (b) 𝐷5, (c) 𝐷7, and (d) 𝐷9 for the premixed ethylene-air
homogeneous reactor dataset. The progress variable is plotted in solid gray for reference.

Fig. 7. Comparison of the average (part (a)) and maximum (part (b)) error ratios in the reconstruction of species production rates and heat release rate for the premixed ethylene-air
homogeneous reactor dataset using PCA-ANN on sub-sampled data and CoK-PCA-ANN on the entire dataset.
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skeletal mechanism developed in [33], and the flames are simulated
with Cantera [30] for a duration of 1 s with a fixed time step of 0.1ms.
In this case, the original design matrix 𝐃 consists of 𝑛𝑔 = 10001 points
and 𝑛𝑣 = 40 variables, comprising 39 species and temperature.

Traditional dimensionality reduction techniques, such as PCA, may
ot effectively capture the nonlinear interactions present in the data.
he data associated with the two-stage ignition of DME is high-
imensional and contains intricate patterns. This includes time-
ependent or transient behavior, multiple ignition modes, and varia-
ions under different operating conditions. This complexity makes it
ifficult to find a low-dimensional representation that captures the
ssential information while discarding irrelevant or redundant features.
he reconstruction of two-stage ignition dataset using ANNs is ex-
ected to improve the overall accuracy of the dimensionality reduction
echniques used, which will be demonstrated next.

CoK-PCA and PCA are performed using the data of all nine flames,
nd dimensionality is reduced to 𝑛𝑞 = 5. To train the ANNs for

reconstructing the full thermo-chemical state from the reduced state,
the data is split into training and testing sets, with five flames (initial
temperatures of 600K, 650K, 700K, 750K, 800K) comprising the for-
mer, and the rest, the latter. We randomly shuffle the training dataset
and set aside 20% for the validation process. Hyperparameter tuning
for the network width and depth and learning rate optimization were
performed prior to defining the network architecture. The optimal
network architecture is ascertained with two hidden layers of widths
10 and 20 neurons, respectively, with a learning rate of 1 × 10−3. The
nput and output layers have a width of 𝑛𝑞 = 5 and 𝑛𝑣 = 40 neurons,
espectively. A hyperbolic tangent activation function for the hidden
ayers, a custom sigmoid-based activation function for the output layer,
nd the Adam optimizer are used as before. The intricate nature of
he two-stage DME dataset manifests complicated relationships, making
t prone to overfitting when NN with greater width and depth are
mployed. However, a streamlined network architecture, comprising
olely of two hidden layers, demonstrates exceptional efficacy and ef-
iciency in accurately predicting outcomes for unseen instances within
his complex dataset. While the best NN architecture for this case might
ppear simpler than that of the previous ethylene-air dataset, it was
rrived at after a careful tuning of the hyperparameters, and it reflects
he tradeoff between the data complexity, NN generalizability, and
voiding overfitting.

Fig. 8 shows the training and validation loss for PCA-ANN and CoK-
CA-ANN. It is evident that the validation loss remains consistently
nly slightly higher than the training loss (∼ 2.5 × 10−4) for a sig-
ificant number of epochs (200–500), and the model has converged.
e employ early stopping to achieve this convergence, thereby sav-

ng computational resources and preventing overfitting. This indicates
hat the model is generalizing well to unseen data. Despite a minor
ifference in loss, the model demonstrates robustness and reliability
n its predictions. This suggests that the model has learned complex
atterns present in the two-stage ignition dataset and features from the
raining data that allow it to make accurate predictions on unseen data,
esulting in a reliable and effective model.

Fig. 9 illustrates the relative error ratios between PCA-ANN and
oK-PCA-ANN for thermo-chemical scalars (parts (a) and (b)), species
roduction rates, and heat release rates (parts (c) and (d)). The errors
n reconstructed thermo-chemical scalars show mixed trends, unlike
he ethylene-air dataset for which CoK-PCA-ANN was consistently more
ccurate than PCA-ANN. However, the accuracy of species production
ates and, more importantly, the heat release rate for CoK-PCA-ANN
s better than PCA-ANN. This result reinforces the notion that error
etrics based only on thermo-chemical state reconstruction may not

e sufficient measures of accuracy. Going beyond the error ratios,
nd similar to the ethylene-air case, we plot the normalized errors
n reconstructed heat release rates (Eq. (11)) for one of the DME-air
lames from the test set with an initial temperature of 625K as shown in
8

ig. 10. Since this mixture has two-stage ignition, the heat release rate
Fig. 8. Training and validation loss curves for (a) PCA-ANN and (b) CoK-PCA-ANN,
respectively, for the DME two-stage autoignition dataset.

for the second stage (at ∼ 0.25ms) is orders of magnitude larger than
the first stage (at ∼ 0.047ms). To make the comparison clearer, insets in
Fig. 10 show the regions zoomed on the two stages. It is evident that
the normalized errors in reconstructed heat release rates are greater
by up to an order of magnitude with linear reconstruction (part (a))
compared with ANN-based reconstruction (part (b)). Moreover, while
the errors for the first stage are comparable between PCA-ANN and
CoK-PCA-ANN, for the second stage, CoK-PCA-ANN is more accurate.

4.3. Premixed ethylene-air laminar flame

The third case we consider is a one-dimensional freely-propagating
planar laminar premixed flame of the ethylene-air mixture. In addition
to the chemical reactions that govern the evolution of homogeneous
reactors of the previous two cases, this case has effects of convection
and diffusion that influence the thermo-chemical evolution. The chem-
istry is represented by the same 32-chemical species, 206-reactions
mechanism [29], resulting in 𝑛𝑣 = 33 variables. The freely-propagating
flame is simulated in a one-dimensional domain of 0.02m discretized
with a grid of around 550 points. The pressure is kept at 1 atm, and a
parametric variation is considered for the unburnt mixture conditions.
Analogous to the ensemble training performed in Section 4.1, to con-
struct the required training and testing data, we perturb the unburnt
mixture temperature and equivalence ratio, (𝑇 , 𝜙) by 𝛥𝑇 = ±50K and
𝛥𝜙 = ±0.25 from the reference state, i.e., 𝐷1 ≡ (𝑇 = 300K, 𝜙 = 0.6). This
effectively results in nine configurations, 𝐷𝑖 ∀𝑖 ∈ {1, 2,… , 9}, one for
each combination of (𝑇 , 𝜙) where 𝑇 ∈ {250K, 300K, 350K} and 𝜙 ∈
{0.575, 0.6, 0.625}. Again, to generate the CoK-PCA and PCA reduced
manifolds, the principal components are computed with respect to the
scaled reference state, 𝑋1, by selecting 𝑛𝑞 = 5 leading principal vectors
out of the 𝑛𝑣 = 33 vectors that capture approximately 99% of the
variance and 98% of the kurtosis in the dataset, respectively. Following

the dimensionality reduction procedure in Section 2, we compute the
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Fig. 9. Comparison of the reconstruction errors in thermo-chemical scalars (parts (a), (b)), species production rates and heat release rate (parts (c), (d)) between PCA-ANN and
CoK-PCA-ANN for the DME two-stage autoignition dataset.
Fig. 10. Temporal evolution of normalized errors (see Eq. (11)) in the reconstruction of
eat release rate for the DME two-stage autoignition flame with an initial temperature
f 625K.

score matrices, 𝐙4
𝑞 and 𝐙2

𝑞 for the CoK-PCA and PCA low-dimensional
manifolds, respectively.

For the ANN training, a similar split of the data into training and
testing sets, as described in Section 4.1, is performed here; 𝐷1, 𝐷2,

4, 𝐷6, and 𝐷8 are used for training and the rest for testing. Again,
he training–validation split of data is kept at 60/40. Accordingly, we
onstruct the input feature vectors and ground truths to train a neural
9

Fig. 11. Training and validation loss curves for (a) CoK-PCA-ANN and (b) PCA-
ANN, respectively, for the one-dimensional planar laminar premixed ethylene-air flame
dataset.

network with four hidden layers of widths 48, 48, 48, and 56 neurons.
The widths of input and output layers are 𝑛𝑞 = 5 and 𝑛𝑣 = 33 neurons,
respectively. The layer activation functions remain the same as before
with the use of Adam optimizer (learning rate = 1 × 10−4) for training.
Figs. 11(a) and (b) depict the loss curves obtained for CoK-PCA-ANN
and PCA-ANN, respectively. Again, it should be emphasized that the
training and validation losses are comparable to each other, indicating
that the model has effectively learned the underlying training data
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Fig. 12. Comparison of the reconstruction errors in thermo-chemical scalars (parts (a), (b)), species production rates and heat release rate (parts (c), (d)) between PCA-ANN and
CoK-PCA-ANN for the one-dimensional planar laminar premixed ethylene-air flame dataset.
distribution and exhibits low generalization error in making predictions
on unseen states.

Following Section 4.1, we assess the reconstruction accuracy of the
trained models on the test states, i.e., 𝐷𝑗 ∀𝑗 ∈ {3, 5, 7, 9}. Similar to the
trends observed in previous cases, ANN reconstruction performs better
than linear reconstruction for all the quantities of interest, the plots
of which are not presented here for brevity. With reconstruction based
on ANNs, we next focus on the performance of CoK-PCA-ANN against
PCA-ANN in terms of the error ratios (𝑟𝑎, 𝑟𝑚), which are presented in
ig. 12. For the accuracy of thermo-chemical scalars, we observe a
ifferent trend in this case, with PCA-ANN being more accurate than
oK-PCA-ANN for 17 out of the 32 variables for 𝑟𝑎. However, CoK-
CA-ANN performs better than PCA-ANN in terms of the 𝑟𝑚 metric
n accurate predictions of 19 out of the 32 variables. Further, while
omparing errors in the reconstruction of species production rates and
eat release rates, CoK-PCA-ANN dominates over PCA-ANN in both
rror ratios. In particular, CoK-PCA-ANN significantly improves upon
CA-ANN by predicting production rates for 20 out of 31 species in
erms of the 𝑟𝑚 error and 21 out of 31 species in terms of the 𝑟𝑎
rror. More importantly, it incurs lower errors in reconstructing the
eat release rate in both metrics, which is an overall measure of the
idelity of the chemical system. This case clearly illustrates the fact that
rrors in reconstructing the thermo-chemical state alone might not be
sufficient measure of accuracy for a given dimensionality reduction

echnique, and a broader set of metrics might be prudent.
The profile of normalized errors in reconstructed heat release rates

Eq. (11)) obtained for both the methods, CoK-PCA-ANN (dashed blue)
nd PCA-ANN (solid red), is shown in Fig. 13 for the four test states,
3, 𝐷5, 𝐷7, and 𝐷9. We observe that CoK-PCA-ANN performs better

han PCA-ANN in accurately predicting the steady-state flame location
or all the test states, thereby characterizing flame propagation better.
his behavior is consistent with the 𝑟𝑚 errors presented in Fig. 12(d).
urther, both techniques capture the non-reacting regions reasonably
ell in all the test states. However, in these regions, CoK-PCA-ANN
erforms marginally better than PCA-ANN by predicting nearly zero
eat release rates for the test flames, 𝐷5, 𝐷7, and 𝐷9 (Figs. 13 (b)–(d)).

It should be noted that reconstruction errors incurred by the methods in
these regions (i.e., predicting non-zero heat release in the non-reacting
zones) can be attributed to statistical inconsistencies or stochasticity
10

of the ANN training process. Consequently, this is reflected in the 𝑟𝑎
Table 2
Cumulative errors in the normalized heat release rates (up to a progress variable
of 0.99) for the test states obtained from different reduced manifolds for the one-
dimensional freely propagating premixed ethylene-air laminar flame case.

Method Cumulative 𝜖𝐻𝑅𝑅

𝐷3 𝐷5 𝐷7 𝐷9

PCA-ANN 16.601 14.822 21.153 21.089
CoK-PCA-ANN 9.260 4.717 8.926 9.840

metric (average error), which is lesser in the case of CoK-PCA-ANN
than PCA-ANN (demonstrated by blue bars) in Fig. 12(c). Moreover,
as with the homogeneous reactor case, a comparison of the cumulative
normalized heat release rate error for each of the test flames of this data
set, shown in Table 2, quantifies the superior accuracy of CoK-PCA-ANN
over PCA-ANN.

To gain insights into the reconstruction accuracy of selected thermo-
chemical scalars, we choose two chemical species, namely, C2H3 and
CH3CHO, which yield maximum and minimum values for 𝑟𝑚, respec-
tively, and comparatively assess their reconstructed profiles with the
original scalar profile. Fig. 14 presents the original scalar (solid green)
along with PCA-ANN (dashed red) and CoK-PCA-ANN (dashed blue)
reconstructed scalar profiles of the aforementioned species for flamelet
𝐷3. It is evident that the reconstruction of the scalar profiles for species
C2H3 and CH3CHO performed by both the methods, PCA-ANN and
CoK-PCA-ANN, has a strong agreement with their original profiles and
demonstrates the efficacy of the dimensionality reduction procedures.

4.4. Homogeneous charge compression ignition

In this section, we examine a dataset that encompasses the influ-
ence of spatial transport involving convection and diffusion in turbu-
lent flows. The dataset is from a simulation of high-pressure, high-
temperature autoignition of a turbulent mixture composed of premixed
ethanol-air and combustion products, emulating the process of ‘‘ex-
haust gas recirculation’’ (EGR), representative of homogeneous charge
compression ignition (HCCI) engine conditions [35]. The simulation
was performed using S3D solver [36], which solves the reacting com-
pressible flow governing equations. A doubly periodic domain with a
two-dimensional spatial grid of 672 × 672 points was used. The initial
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Fig. 13. Spatial variation of normalized errors (see Eq. (11)) in reconstructed heat release rates for the test states — (a) 𝐷3, (b) 𝐷5, (c) 𝐷7, and (d) 𝐷9 for the one-dimensional
planar laminar premixed ethylene-air flame dataset. The progress variable is plotted in solid gray for reference.
Fig. 14. Original scalar profile (solid green) along with PCA-ANN (dashed red) and CoK-PCA-ANN (dashed blue) reconstructed scalar profiles of the species C2H3 (left) and CH3CHO
(right) for the premixed ethylene-air laminar flame dataset (𝐷3). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
conditions include a nominal pressure of 45 atm and a mean tempera-
ture of 924K. The reactants are set to an equivalence ratio of 0.4. To
account for the uneven mixing caused by EGR, a spatial temperature
fluctuation and a separately computed divergence-free turbulent veloc-
ity field are superimposed onto the system. Furthermore, the simulation
also considers the effects of compression heating resulting from the
motion of the piston. The chemistry is represented by a 28-species
reaction mechanism. Thus, at each simulation snapshot, the design
matrix, 𝐃, consists of 𝑛𝑔 = 672 × 672 data samples and 𝑛𝑣 = 29 thermo-
chemical scalars. For this study, we consider the temporal checkpoint
at 𝑡 = 1.2ms [13], which corresponds to the propagation of the flame
fronts in the bulk of the domain, as shown in the heat release rate
contours in Fig. 15, which has been saturated to a peak heat release
rate of 1 × 109 Jm−3s−1 in order to demonstrate the growth in the size
of the ignition kernels.

For the testing state, we consider the simulation snapshot at 1.19ms.
In other words, we are interested in investigating the efficacy of the
proposed CoK-PCA-ANN method in predicting the thermo-chemistry
at an unseen state (𝑡 = 1.19ms) while being trained on a subsequent
checkpoint at 𝑡 = 1.2ms. To obtain the score matrices 𝐙4

𝑞 and 𝐙2
𝑞 , we use

the principal vectors computed on the reference state, i.e., on 𝑡 = 1.2ms.
The low-dimensional manifolds are constructed by retaining 𝑛 = 5 out
11

𝑞

Fig. 15. Instantaneous contour plot of heat release rates (Jm−3s−1) from the two-
dimensional HCCI dataset at 𝑡 =1.2ms.

of 𝑛𝑣 = 29 principal vectors that correspond to approximately 99% of
the variance and kurtosis in the PCA and CoK-PCA reduced manifolds,
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Fig. 16. Training and validation loss curves for (a) CoK-PCA-ANN and (b) PCA-ANN,
espectively, for the two-dimensional HCCI dataset.

espectively. A neural network with three hidden layers of widths 8,
, and 64 neurons is trained till convergence with an Adam optimizer
learning rate = 0.00274). In addition, early stopping is employed to
nsure the network does not lead to overfitting on the training data. The
orresponding loss curves obtained for both the manifolds are presented
n Fig. 16. Although the validation loss is marginally higher than the
raining loss by a magnitude of ∼ 9 × 10−6, the network has reached

convergence at around 100–150 epochs, as shown in Fig. 16. It is worth
noting that we are dealing with a two-dimensional temporally evolving
dataset with complex turbulence–chemistry interactions. Despite this
complexity, the NN successfully learns the underlying intrinsic patterns
and complicated relationships present in the HCCI dataset at 𝑡 = 1.2ms,
enabling the creation of a robust and generalizable model capable of
predicting outcomes on unseen data at a different time, 𝑡 = 1.19ms.
We use the trained network to predict the thermo-chemical scalars
at 𝑡 = 1.19ms for both the CoK-PCA and PCA reduced manifolds.
In a similar manner, using the reconstructed thermo-chemical scalars,
species production rates and heat release rates are computed.

From the comparison in Fig. 17 (parts (a) and (b)), it is evident that
CoK-PCA-ANN performs significantly better than PCA-ANN in the re-
construction of thermo-chemical scalars with more accurate predictions
of 20 out of 29 species in both 𝑟𝑎 and 𝑟𝑚 errors. The superior accuracy
of CoK-PCA-ANN is even more significant for reconstructed species
production rates; it is more accurate than PCA-ANN for 25 and 26 of
the 28 species in terms of 𝑟𝑎 and 𝑟𝑚 metrics, respectively (parts (c) and
(d) in the figure). This results in lower reconstruction errors for heat
release rates in both metrics (𝑟𝑎, 𝑟𝑚) for CoK-PCA-ANN. Contrary to the
observations in [14], where the CoK-PCA based LDM performed poorly
in terms of the average errors (𝑟𝑎) while considering the entire spatial
omain, CoK-PCA, when coupled with ANN, overcomes this issue and
etter represents the stiff chemical dynamics in the average error as
ell. Note that the conclusions drawn from these error plots remain
nchanged when the training is performed with 𝑡 = 1.19ms and testing
s carried out on 𝑡 = 1.2ms. Next, we plot the contours of the normalized
rrors in the reconstructed heat release rate (Eq. (11)) in Fig. 18 to
12

ompare the spatial error distribution for the two methods. Due to the A
nherent ability of excess kurtosis to suitably capture extreme-valued
amples, CoK-PCA-ANN identifies the ignition zones better (e.g., as
bserved in the circled regions of the figure where CoK-PCA-ANN
hows lower peak values) in the entire domain, which is in good
greement with the error metrics in Fig. 17 for heat release rate.

. Conclusions and future work

In this paper, we have proposed an enhanced version of the co-
urtosis PCA (CoK-PCA) based dimensionality reduction method,
amely CoK-PCA-ANN, which leverages the potential of artificial neural
etworks (ANNs) to model complex nonlinear relationships inherent
etween the aggressively truncated low-dimensional manifolds and
he original thermo-chemical state. The rationale behind this work
s (i) to assess the collective effectiveness and performance of the
onlinear reconstruction using ANNs (CoK-PCA-ANN and PCA-ANN)
ith linear reconstruction (CoK-PCA and PCA); (ii) to evaluate the
verall efficacy of CoK-PCA-ANN in comparison with PCA-ANN and
xpand its applicability to chemically reacting systems presenting stiff
ynamics. While other nonlinear reconstruction methods, such as Gaus-
ian process regression (GPR), kernel density methods, autoencoders,
tc., have been used in conjunction with PCA in previous studies, we
ave focused on ANNs in this study.

The framework of the proposed CoK-PCA-ANN dimensionality re-
uction method was presented with a discussion on the generation
f the low-dimensional manifold using linear projection (encoding)
ith CoK-PCA followed by nonlinear reconstruction of the original

hermo-chemical state space (decoding) using ANNs. Sufficient rigor
as followed in the training of ANNs, specifically with regard to the
ppropriate selection of training and testing data, hyperparameter tun-
ng, avoiding overfitting, and ensuring convergence. The performance
f the CoK-PCA-ANN method was evaluated in comparison to the linear
econstruction (CoK-PCA) and PCA-ANN methods across four distinct
ombustion test cases that span conventional single-stage to complex
wo-stage ignition kinetics, different combustion regimes (autoignition,
lame propagation), as well as a simple homogeneous reactor to a
patiotemporally evolving two-dimensional flow.

The training of a NN necessitates adapting to the intricacies inherent
o the data, thereby leading to the potential variation of hyperparam-
ters (such as learning rate, number of layers, number of neurons,
nd regularization strength) in accordance with the level of com-
lexity involved. This process involves iterative experimentation and
ine-tuning to identify the hyperparameter configuration that yields
ptimal performance and generalization for each dataset considered in
his study. Overall, nonlinear reconstruction using ANNs demonstrated
ignificantly high accuracies, as compared to linear reconstruction, for
he CoK-PCA and PCA manifolds in terms of thermo-chemical scalars,
pecies production rates, and heat release rates with aggressive trunca-
ion (low 𝑛𝑞). As expected, and akin to nonlinear reconstruction from
CA manifolds, CoK-PCA-ANN incurred lower reconstruction errors as
ompared to CoK-PCA with a simple linear reconstruction [14] in the
verage error metric (𝑟𝑎). Additionally, CoK-PCA-ANN also presented a
etter representation of the non-igniting regions, i.e., unburnt reactants
nd burnt products in all the test cases. The quality of the PCA and CoK-
CA manifolds in conjunction with ANN reconstruction was further
omparatively assessed using average (𝑟𝑎) and maximum (𝑟𝑚) error
etrics for the reconstruction of the three aforementioned quantities.
e find that CoK-PCA-ANN performs better than PCA-ANN in all the

est cases in terms of both the error metrics for all the considered quan-
ities. Most importantly, the smaller reconstruction errors associated
ith the heat release rates provide further evidence that the chemical
inetics prevalent in the reaction zones representative of stiff dynamics
re captured more accurately by a CoK-PCA manifold than PCA. To
ummarize, the results from the above analyses suggest that CoK-PCA-

NN realizes the advantages of both CoK-PCA as well as ANNs to



Combustion and Flame 259 (2024) 113192D. Nayak et al.
Fig. 17. Comparison of the reconstruction errors in thermo-chemical scalars (parts (a), (b)), species production rates and heat release rate (parts (c), (d)) between PCA-ANN and
CoK-PCA-ANN for the two-dimensional HCCI dataset.
Fig. 18. Instantaneous contour plots of absolute errors in reconstructed heat release
rates normalized by the peak heat release rate (2.55 × 1010 Jm−3s−1) for the two-
dimensional HCCI dataset at 𝑡 = 1.19ms for (a) PCA-ANN and (b) CoK-PCA-ANN,
respectively.

yield a reliable, robust, and generalizable low-dimensional manifold
representation of complex combustion datasets.

However, it should be remarked that the investigation of the CoK-
PCA-based nonlinear reconstruction using ANNs in this paper was
carried out in an a priori setting. It is well known that these data-
driven dimensionality reduction methods are capable of accelerating
13
numerical simulations of reacting flows by solving a reduced set of
principal component transport equations as opposed to solving a very
high-dimensional system of species conservation equations. Such a
posteriori validations, performed by other studies for PCA, remain to
be explored for CoK-PCA and constitute future work.
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