
Applied Mathematics and Computation 465 (2024) 128410

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Entropy conserving/stable schemes for a vector-kinetic model of 

hyperbolic systems

Megala Anandan ∗, S.V. Raghurama Rao
Indian Institute of Science, C.V. Raman Road, 560012, Bangalore, India

A R T I C L E I N F O A B S T R A C T

Keywords:

Vector-kinetic model

Entropy conservation

Entropy stability

Hyperbolic system

The moment of entropy equation for vector-BGK model results in the entropy equation for 
macroscopic model. However, this is usually not the case in numerical methods because the 
current literature consists mostly of entropy conserving/stable schemes for macroscopic model. 
In this paper, we attempt to fill this gap by developing an entropy conserving scheme for vector-

kinetic model, and we show that the moment of this results in an entropy conserving scheme 
for macroscopic model. With the numerical viscosity of entropy conserving scheme as reference, 
the entropy stable scheme for vector-kinetic model is developed in the spirit of Tadmor [40]. We 
show that the moment of this scheme results in an entropy stable scheme for macroscopic model. 
The schemes are validated on several benchmark test problems for scalar and shallow water 
equations, and conservation/stability of both kinetic and macroscopic entropies are presented.

1. Introduction

The connection between entropy functions and symmetrisability of hyperbolic systems was explained in [18,19], and this led 
to entropy-based non-linear stability analysis of numerical schemes. In the seminal work in [40,41], a general condition to con-

serve/dissipate entropy of a semi-discrete scheme for hyperbolic system was introduced. Following this, many developments on 
fluxes satisfying entropy conservation/dissipation condition for various hyperbolic systems were made. These include developments 
specific for shallow water equations [16,43,29], Euler’s equations [2,20,32,8,35,36,17,11,10,45], Navier-Stokes equations [44,27,33]

and magneto hydro-dynamics equations [9]. Recently, several interesting studies such as, entropy stability for conservation laws with 
non-convex flux functions [24], and characterisation of stability [15] and robustness (for under-resolved flows) [7] of high order 
entropy stable schemes were carried out.

On the other hand, kinetic entropy formulations were introduced for hyperbolic equations like multi-dimensional scalar conservation 
laws, isentropic Euler and full Euler equations [30,25,26,12]. Discrete kinetic models with entropy considerations were also proposed 
for hyperbolic systems [1,28,4,5,3,6]. Specifically, in [4] it was shown that the entropy inequalities for a hyperbolic system can be 
derived as minimisation of entropies of vector-kinetic equation with BGK model. This approach of obtaining entropy inequalities 
from kinetic-BGK models is a promising strategy to characterise weak solutions of hyperbolic systems [31]. Hence, in this paper, 
we attempt to develop entropy stable schemes (in the sense of [40,41]) for a kinetic model based on [4] and show that they yield 
entropy stability for the hyperbolic system. This is in contrast to shock capturing schemes [38] based on discrete kinetic models.

A kinetic entropy stable scheme for continuous velocity Boltzmann’s equation was recently developed in [21]. Although this scheme 
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Table 1

Table of symbols.

Symbol Description

𝐔 Conserved variable vector in macroscopic model

𝐆(𝑑)(𝐔) Flux vector (along direction d) in macroscopic model

𝜂(𝐔) Entropy function for macroscopic model

𝜔(𝑑)(𝐔) Entropy flux function for macroscopic model

𝜓 (𝑑) Entropy flux potential for macroscopic model

𝐆(𝑑)⋆

𝑖𝑑±
1
2

Entropy conserving interface flux for macroscopic model

𝐐(𝑑)⋆

𝑖𝑑±
1
2

Numerical viscosity corresponding to entropy conserving flux for macroscopic model

𝐆(𝑑)
𝑖𝑑±

1
2

Entropy stable interface flux for macroscopic model

𝐅𝑚 Dependent variable vector in vector-kinetic model

𝑣(𝑑)
𝑚

Discrete velocities in vector-kinetic model

𝑣(𝑑)
𝑚
𝐅𝑚 Flux (along direction d) of the dependent variable vector in vector-kinetic model

𝐻
𝜂
𝑚 Entropy function for vector-kinetic model

𝑣(𝑑)
𝑚
𝐻
𝜂
𝑚 Entropy flux function for vector-kinetic model

𝜒 (𝑑)
𝑚

Entropy flux potential for vector-kinetic model(
𝑣(𝑑)
𝑚
𝐅𝑚

)⋆
𝑖𝑑±

1
2

Entropy conserving interface flux for vector-kinetic model

𝐐(𝑑)⋆
𝑚
𝑖𝑑 ±

1
2

Numerical viscosity corresponding to entropy conserving flux for vector-kinetic model(
𝑣(𝑑)
𝑚
𝐅𝑚

)
𝑖𝑑±

1
2

Entropy stable interface flux for vector-kinetic model

𝐕 Entropy variable

is entropy stable in the Euler limit, it employs huge number of velocities (243 for one dimensional problems) as the velocity space 
must be sufficiently resolved to satisfy the collision invariance. In our work, due to the usage of discrete kinetic models instead of 
continuous velocity Boltzmann’s equation, we obtain an entropy stable scheme for the vanishing epsilon limit with very few veloci-

ties (as low as 2 for one dimensional problems). Moreover, our formalism is general enough to construct entropy stable scheme for a 
given hyperbolic system, while the work of [21] is specific to the Euler system.

The paper is organised as follows. In section 2, we briefly describe the entropy framework and entropy conservation/stability con-

ditions required to be satisfied by a semi-discrete scheme for hyperbolic system (or macroscopic model). Then, in section 3, we 
provide a brief description of the vector-BGK model in [4]. In section 4, we describe our modification to vector-BGK model, termed 
as the vector-kinetic model. This modification allows us to obtain entropy flux potentials required for developing entropy preserving 
scheme for vector-kinetic model. Then, in sections 5 and 6 we develop entropy conserving and stable schemes for vector-kinetic 
model, and show that these become entropy conserving and stable schemes for macroscopic model upon taking moments. In sec-

tion 7, we describe the time discretisation strategies employed to complete our scheme. Then, in section 8, we verify our schemes on 
various numerical test problems. Section 9 concludes the paper. The list of symbols used in the paper are shown in Table 1.

2. Macroscopic model

Consider the hyperbolic system (or macroscopic model),

𝜕𝑡𝐔+ 𝜕𝑥𝑑𝐆
(𝑑)(𝐔) = 𝟎 (1)

where 𝐔 ∶ Ω × [0, 𝑇 ] →ℝ𝑝 and 𝐆(𝑑)(𝐔) ∶ℝ𝑝→ℝ𝑝, with 𝑑 ∈ {1, 2, .., 𝐷}. Here Ω is a convex subset of ℝ𝐷 .

2.1. Entropy framework

Here, we briefly recall the underlying theory (presented in [40–42]) behind development of entropy conserving/stable scheme 
for eq. (1).

If the macroscopic model in eq. (1) admits convex entropy-entropy flux pair 
(
𝜂(𝐔),𝜔(𝑑)(𝐔)

)
that satisfies,

𝜕𝐔𝜔
(𝑑) = 𝜕𝐔𝜂 ⋅ 𝜕𝐔𝐆(𝑑) ⇔ 𝜕2𝐔𝜂 ⋅ 𝜕𝐔𝐆

(𝑑) is symmetric (2)

then the following entropy inequality holds.

𝜕𝑡𝜂(𝐔) + 𝜕𝑥𝑑𝜔
(𝑑)(𝐔) ≤ 0 (3)

Equality holds in smooth regions, while strict inequality holds in non-smooth regions.

Due to the convexity of 𝜂(𝐔), there exists one-one correspondence 𝐔 →𝐕 ∶= 𝜕𝐔𝜂 such that the following equivalent symmetric form 
2

of eq. (1) holds true.
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𝜕𝐕𝐔 𝜕𝑡𝐕+ 𝜕𝐔𝐆(𝑑) 𝜕𝐕𝐔 𝜕𝑥𝑑𝐕 = 𝟎 (4)

Here, 𝜕𝐕𝐔 =
(
𝜕2𝐔𝜂(𝐔)

)−1
is symmetric positive-definite (due to the convexity of 𝜂(𝐔)) and 𝜕𝐕𝐆(𝑑) = 𝜕𝐔𝐆(𝑑) 𝜕𝐕𝐔 is symmetric (refer 

Harten [18] for theorems due to Godunov and Mock).

Further, the compatibility condition in eq. (2) can be re-written in terms of entropy variable 𝐕, thanks to the convexity of 𝜂(𝐔) that 
assures existence of 

(
𝜕𝐔𝐕

)−1
.

𝜕𝐕𝜔
(𝑑) =𝐕 ⋅ 𝜕𝐕𝐆(𝑑) (5)

Due to the symmetric nature of 𝜕𝐕𝐆(𝑑), there exist potentials 𝜓 (𝑑)(𝐕) such that 𝜕𝐕𝜓 (𝑑) =𝐆(𝑑)(𝐕). Therefore, according to eq. (5), there 
exist entropy flux potentials,

𝜓 (𝑑)(𝐕) =𝐕 ⋅𝐆(𝑑)(𝐕) −𝜔(𝑑)(𝐕) (6)

2.2. Entropy conserving scheme

Consider a structured grid with grid size Δ𝑥𝑑 along each direction 𝑑. Then, a three-point (along each direction 𝑑) semi-discrete 
conservative scheme for eq. (1) is,

𝑑

𝑑𝑡
𝐔𝑖 +

1
Δ𝑥𝑑

(
𝐆(𝑑)⋆

𝑖𝑑+
1
2

−𝐆(𝑑)⋆

𝑖𝑑−
1
2

)
= 𝟎 (7)

Here 𝑖 denotes the index for cell centre of each cell/finite volume, and 𝑖𝑑 ±
1
2 denote indices for right/left interfaces of cell 𝑖 along 

direction 𝑑. For consistency, the numerical flux 𝐆(𝑑)⋆

𝑖𝑑±
1
2

∶= 𝐆(𝑑)⋆

𝑖𝑑±
1
2

(
𝐔𝑖,𝐔𝑖𝑑±1

)
is such that 𝐆(𝑑)⋆

𝑖𝑑±
1
2

(𝐔, 𝐔) =𝐆(𝑑)(𝐔), where 𝑖𝑑 ± 1 denote 

indices for the cell centres of cells to the right/left of cell 𝑖 along direction 𝑑.

The scheme in eq. (7) is entropy conserving iff the interface numerical fluxes satisfy the entropy conserving condition (derived in 
[40,41]),⟨

[[𝐕]]
𝑖𝑑+

1
2
,𝐆(𝑑)⋆

𝑖𝑑+
1
2

⟩
=
[[
𝜓 (𝑑)]]

𝑖𝑑+
1
2

(8)

Here, [[(.)]]
𝑖𝑑+

1
2

denotes the jump (.)𝑖𝑑+1 − (.)𝑖. Then, the following three-point (along each direction 𝑑) entropy equality holds true.

𝑑

𝑑𝑡
𝜂
(
𝐕𝑖

)
+ 1

Δ𝑥𝑑

(
𝜔
(𝑑)⋆

𝑖𝑑+
1
2

−𝜔(𝑑)⋆

𝑖𝑑−
1
2

)
= 0 (9)

The interface numerical entropy flux consistent with eq. (6) is given by

𝜔
(𝑑)⋆

𝑖𝑑±
1
2

= 1
2

(
𝐕𝑖 +𝐕𝑖𝑑±1

)
⋅𝐆(𝑑)⋆

𝑖𝑑±
1
2

− 1
2

(
𝜓

(𝑑)
𝑖

+𝜓 (𝑑)
𝑖𝑑±1

)
(10)

Further, the entropy conserving numerical flux 𝐆(𝑑)⋆

𝑖𝑑+
1
2

satisfying eq. (8) can be evaluated along the path 𝐕
𝑖𝑑+

1
2
(𝜉) =𝐕𝑖 + 𝜉Δ𝐕𝑖𝑑+ 1

2
as,

𝐆(𝑑)⋆

𝑖𝑑±
1
2

= 1
2

(
𝐆(𝑑)
𝑖

+𝐆(𝑑)
𝑖𝑑±1

)
− 1

2
𝐐(𝑑)⋆

𝑖𝑑±
1
2

[[𝐕]]
𝑖𝑑±

1
2

(11)

with

𝐐(𝑑)⋆

𝑖𝑑+
1
2

=

1

∫
0

(2𝜉 − 1)𝜕𝐕𝐆(𝑑)
(
𝐕
𝑖𝑑+

1
2
(𝜉)

)
𝑑𝜉 (12)

The term 𝐐(𝑑)⋆

𝑖𝑑±
1
2

which is symmetric (need not be positive-definite) is considered as numerical viscosity coefficient matrix. This 

counterbalances dispersion from the average flux. Further, the entropy conserving scheme is second order accurate in space (refer 
[40,41]). Construction of higher order entropy conserving fluxes as linear combinations of second order accurate entropy conserving 
fluxes 𝐆(𝑑)⋆

𝑖𝑑±
1
2

is discussed in [23].

2.3. Entropy stable scheme

The three-point (along each direction 𝑑) consistent flux,

𝐆(𝑑)
𝑖𝑑±

1
2

=𝐆(𝑑)⋆

𝑖𝑑±
1
2

− 1
2
𝐃(𝑑)
𝑖𝑑±

1
2

[[𝐕]]
𝑖𝑑±

1
2

(13)

with 𝐃(𝑑)
𝑖𝑑±

1
2

=𝐐(𝑑)
𝑖𝑑±

1
2

−𝐐(𝑑)⋆

𝑖𝑑±
1
2

is entropy stable if and only if 𝐃(𝑑)
𝑖𝑑±

1
2

is positive-definite. Here 𝐐(𝑑)
𝑖𝑑±

1
2

is the numerical viscosity coefficient 
3

matrix corresponding to entropy stable scheme. The scheme then satisfies the three-point entropy inequality,
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𝑑

𝑑𝑡
𝜂
(
𝐕𝑖

)
+ 1

Δ𝑥𝑑

(
𝜔
(𝑑)
𝑖𝑑+

1
2

−𝜔(𝑑)
𝑖𝑑−

1
2

)
= − 1

4Δ𝑥𝑑

(
[[𝐕]]

𝑖𝑑+
1
2
⋅𝐃(𝑑)
𝑖𝑑+

1
2

[[𝐕]]
𝑖𝑑+

1
2
+ [[𝐕]]

𝑖𝑑−
1
2
⋅𝐃(𝑑)
𝑖𝑑−

1
2

[[𝐕]]
𝑖𝑑−

1
2

)
≤ 0 (14)

Here, the consistent numerical entropy flux at interface is given by,

𝜔
(𝑑)
𝑖𝑑+

1
2

= 𝜔(𝑑)⋆

𝑖𝑑+
1
2

− 1
4

(
𝐕𝑖 +𝐕𝑖𝑑+1

)
⋅𝐃(𝑑)
𝑖𝑑+

1
2

[[𝐕]]
𝑖𝑑+

1
2

(15)

The entropy stable flux 𝐆(𝑑)
𝑖𝑑±

1
2

given by eq. (13) is first order accurate in space (refer Tadmor [40,41]). To achieve higher order 

accuracy in space, the term [[𝐕]]
𝑖𝑑+

1
2

in eq. (13) must be replaced by ⟨⟨𝐕⟩⟩
𝑖𝑑+

1
2
= 𝐕−

𝑖𝑑+1
−𝐕+

𝑖
where 𝐕−

𝑖𝑑+1
and 𝐕+

𝑖
are higher order 

reconstructions of 𝐕 at interface 𝑖𝑑 +
1
2 (refer [14]).

3. Vector-BGK model

In this section, we briefly describe the vector-BGK model presented in [4]. Consider,

𝜕𝑡𝐟𝑚 + 𝜕𝑥𝑑
(
𝑣(𝑑)𝑚 𝐟𝑚

)
= −1

𝜖

(
𝐟𝑚 − 𝐅𝑚(𝐔)

)
(16)

where 𝜖 is the relaxation parameter. Here, 𝐟𝑚 ∶= 𝐟𝑚(𝑥1, .., 𝑥𝑑, .., 𝑥𝐷, 𝑣
(1)
𝑚 , .., 𝑣

(𝑑)
𝑚 , .., 𝑣

(𝐷)
𝑚 , 𝑡) ∈ ℝ𝑝, 𝐅𝑚 ∶ ℝ𝑝 → ℝ𝑝, 𝑚 ∈ {1, 2, .., 𝑀} and 𝑀 is 

the number of discrete velocities. Splitting of streaming and relaxation operators in eq. (16) gives,

Streaming: 𝜕𝑡𝐟𝑚 + 𝜕𝑥𝑑
(
𝑣
(𝑑)
𝑚 𝐟𝑚

)
= 𝟎 (17)

Relaxation: 𝑑
𝑑𝑡
𝐟𝑚 = −1

𝜖

(
𝐟𝑚 − 𝐅𝑚(𝐔)

)
(18)

Instantaneous relaxation (i.e., 𝜖 = 0) in the relaxation equation above yields 𝐟𝑚 = 𝐅𝑚(𝐔). This is inserted into the streaming equation 
for its evolution. Now, it can be seen that if the following relations are satisfied,

𝑀∑
𝑚=1

𝐅𝑚(𝐔) =𝐔 and

𝑀∑
𝑚=1
𝑣(𝑑)𝑚 𝐅𝑚(𝐔) =𝐆(𝑑)(𝐔) (19)

then ∑𝑀
𝑚=1 eq. (16) → eq. (1) as 𝜖→ 0.

3.1. Entropy framework

Following the definition of entropy function for vector-BGK model given by equations (E0)-(E2) in [4], let us define the entropy 
function 𝐻𝜂𝑚

(
𝐟𝑚

)
as:

𝐻𝜂𝑚
(
𝐟𝑚

)
is a convex function with respect to 𝐟𝑚 (20)

𝑀∑
𝑚=1
𝐻𝜂𝑚

(
𝐅𝑚(𝐔)

)
= 𝜂(𝐔) (21)

𝑀∑
𝑚=1
𝐻𝜂𝑚

(
𝐅𝑚(𝐔)

) ≤ 𝑀∑
𝑚=1
𝐻𝜂𝑚

(
𝐟𝑚

)
(22)

Then, taking inner product of eq. (16) with the sub-differential of 𝐻𝜂𝑚 at 𝐅𝑚(𝐔) and using (20), (21) and (22), the following is 
obtained.

𝜕𝑡𝐻
𝜂
𝑚(𝐟𝑚) + 𝜕𝑥𝑑

(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚(𝐟𝑚)

) ≤ 1
𝜖

(
𝐻𝜂𝑚

(
𝐅𝑚(𝐔)

)
−𝐻𝜂𝑚

(
𝐟𝑚

))
⇒

𝑀∑
𝑚=1

(
𝜕𝑡𝐻

𝜂
𝑚(𝐟𝑚) + 𝜕𝑥𝑑

(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚(𝐟𝑚)

)) ≤ 0

⇒ 𝜕𝑡𝜂(𝐔) + 𝜕𝑥𝑑

(
𝑀∑
𝑚=1
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚(𝐅𝑚(𝐔))

)
≤ 0 in the limit 𝜖→ 0 (23)

If 𝜔(𝑑)(𝐔) =∑𝑀
𝑚=1 𝑣

(𝑑)
𝑚 𝐻

𝜂
𝑚(𝐅𝑚(𝐔)), then eq. (23) is same as eq. (3). The reader is referred to [4] for details.

Thus, entropy inequality of the macroscopic model (eq. (1)) can be obtained as minimisation of entropies of the vector-BGK model 
(eq. (16)). This inspires one to develop entropy structure preserving numerical schemes for vector-BGK model that recover the 
entropy inequality of equivalent macroscopic scheme. However, the framework of vector-BGK model does not ensure the existence 
of 𝜕2𝐟𝑚𝐻

𝜂
𝑚

(
𝐅𝑚(𝐔)

)
which is crucial in obtaining entropy flux potentials that allow for the consistent definition of interface numerical 

entropy fluxes. Hence, we resort to a much simpler model in the relaxed limit without the stiff relaxation parameter (hereafter 
4

referred as vector-kinetic model), and make the necessary modification to allow for the definition of entropy flux potentials.
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4. Vector-kinetic model

In this model, we consider the evolution of relaxed limit (𝜖 = 0):

𝜕𝑡𝐅𝑚 + 𝜕𝑥𝑑
(
𝑣(𝑑)𝑚 𝐅𝑚

)
= 𝟎 (24)

Let us define 𝐅𝑚(𝐔) as in [4],

𝐅𝑚(𝐔) = 𝑎𝑚𝐔+ 𝑏(𝑑)𝑚 𝐆(𝑑) (𝐔) (25)

with

𝑀∑
𝑚=1
𝑎𝑚 = 1,

𝑀∑
𝑚=1
𝑏(𝑑)𝑚 = 0 (26)

𝑀∑
𝑚=1
𝑣(𝑗)𝑚 𝑎𝑚 = 0,

𝑀∑
𝑚=1
𝑣(𝑗)𝑚 𝑏

(𝑑)
𝑚 = 𝛿𝑗𝑑 (27)

In the light of moment constraints in eqs. (26) and (27), the definition of 𝐅𝑚(𝐔) in eq. (25) satisfies eq. (19).

4.1. Entropy framework

Define 𝐻𝜂𝑚 as in [4],

𝐻𝜂𝑚(𝐔) = 𝑎𝑚𝜂 (𝐔) + 𝑏
(𝑑)
𝑚 𝜔

(𝑑) (𝐔) (28)

Due to the constraints in eqs. (26) and (27), 𝐻𝜂𝑚 satisfies,

𝑀∑
𝑚=1
𝐻𝜂𝑚(𝐔) = 𝜂(𝐔) and

𝑀∑
𝑚=1
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚(𝐔) = 𝜔

(𝑑)(𝐔) (29)

We assume that the eigenvalues of 𝜕𝐔𝐅𝑚 are positive, unlike in [4] where the eigenvalues are considered to be non-negative. It will 
be seen that this modification allows the definition of entropy flux potentials required in the construction of entropy preserving 
numerical scheme. As 𝜕𝐔𝐅𝑚 is now invertible, 𝜕𝐅𝑚𝐻

𝜂
𝑚 satisfying 𝜕𝐔𝐻

𝜂
𝑚 = 𝜕𝐅𝑚𝐻

𝜂
𝑚 ⋅ 𝜕𝐔𝐅𝑚 exists. Therefore, the inner product of eq. (24)

with 𝜕𝐅𝑚𝐻
𝜂
𝑚 gives,

𝜕𝑡𝐻
𝜂
𝑚 + 𝜕𝑥𝑑

(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)
= 0 (30)

It can be seen that ∑𝑀𝑚=1 (eq. (30)) becomes eq. (3) with equality. Motivated by this, in this paper, we develop entropy preserving 
scheme for vector-kinetic model that recovers entropy preservation of equivalent macroscopic scheme.

Lemma 1. If 𝐅𝑚(𝐔) and 𝐻𝜂𝑚(𝐔) respectively follow eqs. (25) and (28) with constants 𝑎𝑚, 𝑏
(𝑑)
𝑚 satisfying the moment constraints in eqs. (26)

and (27) and rendering the eigenvalues of 𝜕𝐔𝐅𝑚 to be positive, then 𝜕𝐅𝑚𝐻
𝜂
𝑚 = 𝜕𝐔𝜂.

Proof. Due to the compatibility condition in eq. (2), it can be seen from differentiation (with respect to 𝐔) of eqs. (25) and (28) that 
𝜕𝐔𝐻

𝜂
𝑚 = 𝜕𝐔𝜂 ⋅ 𝜕𝐔𝐅𝑚. Since 𝜕𝐔𝐅𝑚 is invertible, 𝜕𝐔𝜂 = 𝜕𝐔𝐻

𝜂
𝑚 ⋅

(
𝜕𝐔𝐅𝑚

)−1
. We already saw that 𝜕𝐅𝑚𝐻

𝜂
𝑚 = 𝜕𝐔𝐻

𝜂
𝑚 ⋅

(
𝜕𝐔𝐅𝑚

)−1
. □

This lemma shows that the entropy variables for macroscopic and vector-kinetic models are equal, i.e.,

𝐕 = 𝜕𝐔𝜂 = 𝜕𝐅𝑚𝐻
𝜂
𝑚. (31)

The choice of constants 𝑎𝑚, 𝑏
(𝑑)
𝑚 satisfying assumptions in the above lemma are discussed in Appendix A.

As a consequence of Lemma 1, we have 𝜕2𝐅𝑚𝐻
𝜂
𝑚 = 𝜕2𝐔𝜂 ⋅

(
𝜕𝐔𝐅𝑚

)−1
. Further, 

(
𝜕2𝐔𝜂

)−1
𝜕2𝐅𝑚
𝐻
𝜂
𝑚 =

(
𝜕𝐔𝐅𝑚

)−1
can be expressed as

(
𝜕2𝐔𝜂

)− 1
2
(
𝜕2𝐔𝜂

)− 1
2
(
𝜕2𝐅𝑚
𝐻𝜂𝑚

)(
𝜕2𝐔𝜂

)− 1
2
(
𝜕2𝐔𝜂

) 1
2 =

(
𝜕𝐔𝐅𝑚

)−1
(32)

thanks to the positive-definiteness of 𝜕2𝐔𝜂. Thus, 
(
𝜕2𝐔𝜂

)− 1
2
(
𝜕2𝐅𝑚
𝐻
𝜂
𝑚

)(
𝜕2𝐔𝜂

)− 1
2 and 

(
𝜕𝐔𝐅𝑚

)−1
are similar and therefore their eigenvalues 

are same.

Lemma 2. If 𝜕2𝐔𝜂 is positive-definite and eq. (32) holds true, then 𝜕2𝐅𝑚𝐻
𝜂
𝑚 is positive-definite iff the eigenvalues of 

(
𝜕𝐔𝐅𝑚

)−1
are positive.

Proof.
(
𝜕2𝐔𝜂

)− 1
2
(
𝜕2𝐅𝑚
𝐻
𝜂
𝑚

)(
𝜕2𝐔𝜂

)− 1
2 is symmetric as 𝜕2𝐔𝜂 and 𝜕2𝐅𝑚𝐻

𝜂
𝑚 are symmetric. Further, we have ∀𝐲 ≠ 𝟎 ∈ℝ𝑝,

( ) 1 ( )( ) 1 ( )

5

𝐲 ⋅ 𝜕2𝐔𝜂
− 2 𝜕2𝐅𝑚

𝐻𝜂𝑚 𝜕2𝐔𝜂
− 2 𝐲 = 𝐳 ⋅ 𝜕2𝐅𝑚𝐻

𝜂
𝑚 𝐳 (33)
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where 𝐳 =
(
𝜕2𝐔𝜂

)− 1
2 𝐲 ≠ 𝟎 (as 𝜕2𝐔𝜂 is positive-definite).

⇐ If the eigenvalues of 
(
𝜕𝐔𝐅𝑚

)−1
are positive, then 

(
𝜕2𝐔𝜂

)− 1
2
(
𝜕2𝐅𝑚
𝐻
𝜂
𝑚

)(
𝜕2𝐔𝜂

)− 1
2 is positive-definite due to eq. (32). Then 𝜕2𝐅𝑚𝐻

𝜂
𝑚 is 

rendered positive-definite by eq. (33).

⇒ If 𝜕2𝐅𝑚𝐻
𝜂
𝑚 is positive-definite, then by eq. (33)

(
𝜕2𝐔𝜂

)− 1
2
(
𝜕2𝐅𝑚
𝐻
𝜂
𝑚

)(
𝜕2𝐔𝜂

)− 1
2 is positive-definite. Then, the eigenvalues of 

(
𝜕𝐔𝐅𝑚

)−1
are positive due to eq. (32). □

Thus, as consequence of Lemma 1 and Lemma 2, eq. (31) and positive-definiteness of 𝜕2𝐅𝑚𝐻
𝜂
𝑚 are guaranteed iff the eigenvalues of 

𝜕𝐔𝐅𝑚 are positive. Using the one-to-one correspondence between 𝐔 and 𝐕, we consider 𝐅𝑚 (𝐔) = 𝐅𝑚 (𝐔 (𝐕)). Hence the vector-kinetic 
model in eq. (24) can be expressed in the equivalent symmetric form

𝜕𝐕𝐅𝑚𝜕𝑡𝐕+ 𝜕𝐕
(
𝑣(𝑑)𝑚 𝐅𝑚

)
𝜕𝑥𝑑𝐕 = 𝟎 (34)

Here 𝜕𝐕𝐅𝑚 =
(
𝜕2𝐅𝑚
𝐻
𝜂
𝑚

)−1
is symmetric positive-definite. Due to the linearity of vector-kinetic model, 𝜕𝐕

(
𝑣
(𝑑)
𝑚 𝐅𝑚

)
= 𝑣(𝑑)𝑚 𝜕𝐕𝐅𝑚 is sym-

metric. As a result, there exist potentials 𝜒 (𝑑)
𝑚 (𝐕) such that

𝜕𝐕𝜒
(𝑑)
𝑚 = 𝑣(𝑑)𝑚 𝐅𝑚 (35)

Further, the compatibility condition

𝜕𝐅𝑚
(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)
= 𝜕𝐅𝑚𝐻

𝜂
𝑚 ⋅ 𝜕𝐅𝑚

(
𝑣(𝑑)𝑚 𝐅𝑚

)
(36)

is also satisfied rendering 𝐻𝜂𝑚 as the convex entropy function for vector-kinetic model. Note that this compatibility condition is 
always true for any convex 𝐻𝜂𝑚 satisfying eq. (28) due to the linear nature of vector-kinetic model, unlike the compatibility condition 
(eq. (2)) for macroscopic model. In terms of 𝐕, the above compatibility condition for vector-kinetic model becomes,

𝜕𝐕
(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)
=𝐕 ⋅ 𝜕𝐕

(
𝑣(𝑑)𝑚 𝐅𝑚

)
(37)

thanks to the inverse of 𝜕𝐅𝑚𝐕. Therefore, due to eqs. (35) and (37), there exist entropy flux potentials

𝜒 (𝑑)
𝑚 (𝐕) =𝐕 ⋅ 𝑣(𝑑)𝑚 𝐅𝑚 − 𝑣(𝑑)𝑚 𝐻

𝜂
𝑚 = 𝜕𝐅𝑚𝐻

𝜂
𝑚 ⋅ 𝑣(𝑑)𝑚 𝐅𝑚 − 𝑣(𝑑)𝑚 𝐻

𝜂
𝑚 (38)

Thus, we have obtained the entropy flux potentials that are crucial in the construction of entropy preserving numerical scheme for 
vector-kinetic model.

5. Entropy conserving scheme for vector-kinetic model

The three-point (along each direction 𝑑) semi-discrete conservative scheme for vector-kinetic model in eq. (24) on a structured 
grid is given by,

𝑑

𝑑𝑡
𝐅𝑚𝑖 +

1
Δ𝑥𝑑

((
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑+

1
2
−
(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑−

1
2

)
= 𝟎 (39)

Here, 𝐅𝑚𝑖 (𝑡) = 𝐅𝑚
(
𝐕𝑖(𝑡)

)
and consistent 

(
𝑣
(𝑑)
𝑚 𝐅𝑚

)⋆
𝑖𝑑+

1
2

= 𝑣(𝑑)𝑚 𝐅𝑚(𝐕𝑖, 𝐕𝑖𝑑+1) is such that 𝑣(𝑑)𝑚 𝐅𝑚(𝐕, 𝐕) = 𝑣
(𝑑)
𝑚 𝐅𝑚(𝐕). Consider the inner 

product 
(
𝜕𝐅𝑚𝐻

𝜂
𝑚

)
𝑖
⋅
(
𝑣
(𝑑)
𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2

:

(
𝜕𝐅𝑚𝐻

𝜂
𝑚

)
𝑖
⋅
(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2
= 1

2

((
𝜕𝐅𝑚𝐻

𝜂
𝑚

)
𝑖𝑑±1

+
(
𝜕𝐅𝑚𝐻

𝜂
𝑚

)
𝑖

)
⋅
(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2

−1
2

((
𝜕𝐅𝑚𝐻

𝜂
𝑚

)
𝑖𝑑±1

−
(
𝜕𝐅𝑚𝐻

𝜂
𝑚

)
𝑖

)
⋅
(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2

If the interface numerical flux 
(
𝑣
(𝑑)
𝑚 𝐅𝑚

)⋆
𝑖𝑑+

1
2

satisfies the entropy conserving condition,

⟨[[
𝜕𝐅𝑚𝐻

𝜂
𝑚

]]
𝑖𝑑+

1
2

,
(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑+

1
2

⟩
=
[[
𝜒 (𝑑)
𝑚

]]
𝑖𝑑+

1
2

(40)

then, (
𝜕𝐅𝑚𝐻

𝜂
𝑚

)
𝑖
⋅
(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2
= 1

2

((
𝜕𝐅𝑚𝐻

𝜂
𝑚

)
𝑖𝑑±1

+
(
𝜕𝐅𝑚𝐻

𝜂
𝑚

)
𝑖

)
⋅
(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2
− 1

2

(
𝜒 (𝑑)
𝑚𝑖𝑑±1

− 𝜒 (𝑑)
𝑚𝑖

)
( )
6

Thus, the inner product of eq. (39) with 𝜕𝐅𝑚𝐻
𝜂
𝑚
𝑖

gives the three-point entropy equality,
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𝑑

𝑑𝑡
𝐻𝜂𝑚𝑖

+ 1
Δ𝑥𝑑

((
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)⋆
𝑖𝑑+

1
2
−
(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)⋆
𝑖𝑑−

1
2

)
= 0 (41)

iff it satisfies eq. (40), and the interface numerical entropy fluxes 
(
𝑣
(𝑑)
𝑚 𝐻

𝜂
𝑚

)⋆
𝑖𝑑±

1
2

consistent with eq. (38) are given by,

(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)⋆
𝑖𝑑±

1
2
= 1

2

((
𝜕𝐅𝑚𝐻

𝜂
𝑚

)
𝑖
+
(
𝜕𝐅𝑚𝐻

𝜂
𝑚

)
𝑖𝑑±1

)
⋅
(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2
− 1

2

(
𝜒 (𝑑)
𝑚𝑖

+ 𝜒 (𝑑)
𝑚𝑖𝑑±1

)
(42)

It is seen that the entropy flux potentials 𝜒 (𝑑)
𝑚𝑖

enable us to consistently relate the two interfacial unknowns, numerical fluxes (
𝑣
(𝑑)
𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2

and numerical entropy fluxes 
(
𝑣
(𝑑)
𝑚 𝐻

𝜂
𝑚

)⋆
𝑖𝑑±

1
2

. Further, let us define the interface numerical fluxes for macroscopic 

model as the moment of interface numerical fluxes for vector-kinetic model as,

𝐆(𝑑)⋆

𝑖𝑑±
1
2

=
𝑀∑
𝑚=1

(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2

(43)

Theorem 1. If the three-point semi-discrete conservative scheme (eq. (39)) for vector-kinetic model with

• 𝐅𝑚𝑖 = 𝑎𝑚𝐔𝑖 + 𝑏
(𝑑)
𝑚 𝐆(𝑑)

𝑖
, ∀𝑖

• interface numerical fluxes 
(
𝑣
(𝑑)
𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2

satisfying the entropy conserving condition in eq. (40) and

• constants 𝑎𝑚, 𝑏(𝑑)𝑚 satisfying the moment constraints in eqs. (26) and (27) while rendering positivity of eigenvalues of 𝜕𝐔𝐅𝑚

is used, and if the convex entropy function corresponding to it is 𝐻𝜂𝑚𝑖 = 𝑎𝑚𝜂𝑖 + 𝑏
(𝑑)
𝑚 𝜔

(𝑑)
𝑖
, ∀𝑖, then

1.
∑𝑀
𝑚=1 (eq. (39)) becomes

𝑑

𝑑𝑡
𝐔𝑖 +

1
Δ𝑥𝑑

(
𝐆(𝑑)⋆

𝑖𝑑+
1
2

−𝐆(𝑑)⋆

𝑖𝑑−
1
2

)
= 𝟎 (44)

with 𝐆(𝑑)⋆

𝑖𝑑±
1
2

given by eq. (43),

2. the interface numerical flux 𝐆(𝑑)⋆

𝑖𝑑±
1
2

given by eq. (43) satisfies the entropy conserving condition for macroscopic model (eq. (8)), and

3. the three-point entropy equality for macroscopic model (eq. (9)) holds true with interface numerical entropy flux 𝜔(𝑑)
⋆

𝑖𝑑±
1
2

given by eq. (10).

Proof. Due to moment constraint in eq. (26), ∑𝑀𝑚=1 𝐅𝑚𝑖 = 𝐔𝑖. Therefore, ∑𝑀
𝑚=1 (eq. (39)) becomes eq. (44) with 𝐆(𝑑)⋆

𝑖𝑑±
1
2

given by 

eq. (43), thus proving 1.

By eq. (31), 
[[
𝜕𝐅𝑚𝐻

𝜂
𝑚

]]
𝑖𝑑±

1
2

= [[𝐕]]
𝑖𝑑±

1
2
=
[[
𝜕𝐔𝜂

]]
𝑖𝑑±

1
2

is not a function of 𝑚. Hence, the moment of eq. (40) gives,

⟨
[[𝐕]]

𝑖𝑑±
1
2
,

𝑀∑
𝑚=1

(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2

⟩
=

[[
𝑀∑
𝑚=1
𝜒 (𝑑)
𝑚

]]
𝑖𝑑±

1
2

(45)

From eq. (38), it can be seen that 𝜒 (𝑑)
𝑚𝑖

=𝐕𝑖.𝑣
(𝑑)
𝑚 𝐅𝑚𝑖 −𝑣

(𝑑)
𝑚 𝐻

𝜂
𝑚𝑖
, ∀𝑖. Hence, ∑𝑀𝑚=1 𝜒 (𝑑)

𝑚𝑖
=𝐕𝑖. 

∑𝑀
𝑚=1

(
𝑣
(𝑑)
𝑚 𝐅𝑚𝑖

)
−
∑𝑀
𝑚=1

(
𝑣
(𝑑)
𝑚 𝐻

𝜂
𝑚𝑖

)
, ∀𝑖. We also 

have ∑𝑀
𝑚=1 𝑣

(𝑑)
𝑚 𝐅𝑚𝑖 =𝐆(𝑑)

𝑖
and ∑𝑀

𝑚=1 𝑣
(𝑑)
𝑚 𝐻

𝜂
𝑚𝑖

= 𝜔(𝑑)
𝑖
, ∀𝑖 due to the action of moment constraint in eq. (27) on 𝐅𝑚𝑖 and 𝐻𝜂𝑚𝑖 . Therefore, 

by eq. (6), ∑𝑀
𝑚=1 𝜒

(𝑑)
𝑚𝑖

= 𝜓 (𝑑)
𝑖
, ∀𝑖. Using this and eq. (43) in eq. (45), we obtain,⟨

[[𝐕]]
𝑖𝑑±

1
2
,𝐆(𝑑)⋆

𝑖𝑑±
1
2

⟩
=
[[
𝜓 (𝑑)]]

𝑖𝑑±
1
2

(46)

This proves 2.

We know that the three-point entropy equality in eq. (41) holds true corresponding to the assumptions stated in Theorem 1. Since ∑𝑀
𝑚=1(𝐻

𝜂
𝑚)𝑖 = 𝜂𝑖, ∀𝑖 (due to the action of moment constraint in eq. (26) on (𝐻𝜂𝑚)𝑖), moment of eq. (41) gives,

𝑑

𝑑𝑡
𝜂𝑖 +

1
Δ𝑥𝑑

(
𝑀∑
𝑚=1

(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)⋆
𝑖𝑑+

1
2
−
𝑀∑
𝑚=1

(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)⋆
𝑖𝑑−

1
2

)
= 0 (47)

(
𝜂
) ( ) (

(𝑑) 𝜂
)⋆
7

Since 𝜕𝐅𝑚𝐻𝑚 𝑖
=𝐕𝑖 = 𝜕𝐔𝜂 𝑖 is not a function of 𝑚 (by eq. (31)), moment of 𝑣𝑚 𝐻𝑚

𝑖𝑑±
1
2

given by eq. (42) yields,
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𝑀∑
𝑚=1

(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)⋆
𝑖𝑑±

1
2
= 1

2

(
𝐕𝑖 +𝐕𝑖𝑑±1

)
⋅
𝑀∑
𝑚=1

(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2
− 1

2

(
𝑀∑
𝑚=1
𝜒 (𝑑)
𝑚𝑖

+
𝑀∑
𝑚=1
𝜒 (𝑑)
𝑚𝑖𝑑±1

)
(48)

We have already seen that ∑𝑀
𝑚=1 𝜒

(𝑑)
𝑚𝑖

= 𝜓 (𝑑)
𝑖
, ∀𝑖. Using this and eq. (43), we obtain,

𝑀∑
𝑚=1

(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)⋆
𝑖𝑑±

1
2
= 1

2

(
𝐕𝑖 +𝐕𝑖𝑑±1

)
⋅𝐆(𝑑)⋆

𝑖𝑑±
1
2

− 1
2

(
𝜓

(𝑑)
𝑖

+𝜓 (𝑑)
𝑖𝑑±1

)
(49)

It can be seen from eq. (10) that ∑𝑀
𝑚=1

(
𝑣
(𝑑)
𝑚 𝐻

𝜂
𝑚

)⋆
𝑖𝑑±

1
2

= 𝜔(𝑑)⋆

𝑖𝑑±
1
2

. This proves 3. □

In the light of eq. (31) resulting from Lemma 1, moments involved in the proof of above theorem become linear since 𝜕𝐅𝑚𝐻
𝜂
𝑚

is not a function of 𝑚. This plays a pivotal role in showing that entropy conserving scheme for vector-kinetic model results in an 
entropy conserving scheme for macroscopic model.

Remark 1. In the above proof, the three-point entropy equality for macroscopic model (eq. (9)) with interface numerical entropy 
flux 𝜔(𝑑)⋆

𝑖𝑑±
1
2

given by eq. (10) is obtained as moment of three-point entropy equality for vector-kinetic model. Unlike this, we can also 

obtain eq. (9) directly at the macroscopic level as a consequence of 𝐆(𝑑)⋆

𝑖𝑑±
1
2

=
∑𝑀
𝑚=1

(
𝑣
(𝑑)
𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2

satisfying the entropy conserving 

condition for macroscopic model (eq. (8)).

The entropy conserving fluxes satisfying eq. (40) can be evaluated using an integral along the path 𝐕
𝑖𝑑+

1
2
(𝜉) =𝐕𝑖 + 𝜉Δ𝐕𝑖𝑑+ 1

2
as,

(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2
=

1

∫
0

(
𝑣(𝑑)𝑚 𝐅𝑚

)(
𝐕
𝑖𝑑+

1
2
(𝜉)

)
𝑑𝜉 = 1

2

(
𝑣(𝑑)𝑚 𝐅𝑚𝑖 + 𝑣

(𝑑)
𝑚 𝐅𝑚𝑖𝑑±1

)
− 1

2
𝐐(𝑑)⋆
𝑚
𝑖𝑑±

1
2

[[𝐕]]
𝑖𝑑±

1
2

(50)

where

𝐐(𝑑)⋆
𝑚
𝑖𝑑+

1
2

=

1

∫
0

(2𝜉 − 1)𝜕𝐕
(
𝑣(𝑑)𝑚 𝐅𝑚

)(
𝐕
𝑖𝑑+

1
2
(𝜉)

)
𝑑𝜉 (51)

Although 𝜕𝐕
(
𝑣
(𝑑)
𝑚 𝐅𝑚

)(
𝐕
𝑖𝑑+

1
2
(𝜉)

)
is symmetric positive-definite, the term 𝐐(𝑑)⋆

𝑚
𝑖𝑑+

1
2

is only symmetric (need not be positive-definite). 

This is considered as numerical viscosity coefficient matrix that counterbalances the dispersion from average flux. Integration by 
parts of 𝐐(𝑑)⋆

𝑚
𝑖𝑑+

1
2

yields,

𝐐(𝑑)⋆
𝑚
𝑖𝑑+

1
2

=

1

∫
0

(
𝜉 − 𝜉2

)
𝜕𝐕𝐕

(
𝑣(𝑑)𝑚 𝐅𝑚

)(
𝐕
𝑖𝑑+

1
2
(𝜉)

)
𝑑𝜉 [[𝐕]]

𝑖𝑑±
1
2

(52)

Thus,

(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2
= 1

2

(
𝑣(𝑑)𝑚 𝐅𝑚𝑖 + 𝑣

(𝑑)
𝑚 𝐅𝑚𝑖𝑑±1

)
+𝑂

(||||[[𝐕]]𝑖𝑑+ 1
2

||||2
)

(53)

and hence for smooth functions, we have

1
Δ𝑥𝑑

((
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑+

1
2
−
(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑−

1
2

)
= 1

2Δ𝑥𝑑

((
𝑣(𝑑)𝑚 𝐅𝑚

)
𝑖𝑑+1

−
(
𝑣(𝑑)𝑚 𝐅𝑚

)
𝑖𝑑−1

)
+𝑂

(||||[[𝑥𝑑]]𝑖𝑑+ 1
2

||||2
)

(54)

Therefore, the entropy conserving scheme for vector-kinetic model given by eq. (50) is second accurate in space. However, evaluation 
of a closed form interface flux function using eq. (50) is algebraically tedious for a general hyperbolic system.

The closed form expression can be obtained along the same lines as macroscopic model in [41]. Let 
{
𝐥𝑗
𝑖𝑑+

1
2

∈ℝ𝑝
}𝑝
𝑗=1

and {
𝐫𝑗
𝑖𝑑+

1
2

∈ℝ𝑝
}𝑝
𝑗=1

be two orthogonal sets of vectors such that 
⟨
𝐥𝑗
𝑖𝑑+

1
2

, 𝐫𝑘
𝑖𝑑+

1
2

⟩
= 𝛿𝑗𝑘. Let 𝐕1

𝑖𝑑+
1
2

=𝐕𝑖 and

𝐕𝑗+1
𝑖𝑑+

1
2

=𝐕𝑗
𝑖𝑑+

1
2

+
⟨
𝐥𝑗
𝑖𝑑+

1
2

, [[𝐕]]
𝑖𝑑+

1
2

⟩
𝐫𝑗
𝑖𝑑+

1
2

; 𝑗 ∈ {1,2, .., 𝑝} (55)
8

Then, we have a path connecting 𝐕𝑖 and 𝐕𝑖𝑑+1 since
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𝐕𝑝+1
𝑖𝑑+

1
2

=𝐕1
𝑖𝑑+

1
2
+

𝑝∑
𝑗=1

⟨
𝐥𝑗
𝑖𝑑+

1
2

, [[𝐕]]
𝑖𝑑+

1
2

⟩
𝐫𝑗
𝑖𝑑+

1
2

=𝐕𝑖 + [[𝐕]]
𝑖𝑑+

1
2
=𝐕𝑖𝑑+1 (56)

Now, it can be seen that the numerical flux given by,

(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑+

1
2
=

𝑝∑
𝑗=1

𝜒
(𝑑)
𝑚

(
𝐕𝑗+1
𝑖𝑑+

1
2

)
− 𝜒 (𝑑)

𝑚

(
𝐕𝑗
𝑖𝑑+

1
2

)
⟨
𝐥𝑗
𝑖𝑑+

1
2

, [[𝐕]]
𝑖𝑑+

1
2

⟩ 𝐥𝑗
𝑖𝑑+

1
2

(57)

satisfies the entropy conserving condition in eq. (40). However, for the purpose of numerical simulations, we use robust entropy 
conserving fluxes (satisfying eq. (40)) that are derived by defining averages of certain primitive variables and by balancing the 
coefficients corresponding to jumps in these primitive variables. These fluxes are described in section 8.

Remark 2. Higher order entropy conserving (HOEC) fluxes for vector-kinetic model can be constructed as linear combinations of 
second order entropy conserving fluxes derived in this paper (along the same lines as in [23] for macroscopic model). Since linear 
combinations are used, as a consequence of Theorem 1, the moments of HOEC fluxes for vector-kinetic model will result in HOEC 
fluxes for macroscopic model.

Corollary 1. If the assumptions stated in Theorem 1 hold and entropy conserving flux of the form in eq. (50) is used, then

𝑀∑
𝑚=1

𝐐(𝑑)⋆
𝑚
𝑖𝑑±

1
2

=𝐐(𝑑)⋆

𝑖𝑑±
1
2

(58)

Proof. By eqs. (43) and (50), we obtain

𝐆(𝑑)⋆

𝑖𝑑±
1
2

=
𝑀∑
𝑚=1

(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2
= 1

2

(
𝐆(𝑑)
𝑖

+𝐆(𝑑)
𝑖𝑑±1

)
− 1

2

𝑀∑
𝑚=1

𝐐(𝑑)⋆
𝑚
𝑖𝑑±

1
2

[[𝐕]]
𝑖𝑑±

1
2

(59)

since ∑𝑀
𝑚=1 𝑣

(𝑑)
𝑚 𝐅𝑚𝑖 =𝐆(𝑑)

𝑖
, ∀𝑖 due to the action of moment constraint in eq. (27) on 𝐅𝑚𝑖 . Further,

𝑀∑
𝑚=1

𝐐(𝑑)⋆
𝑚
𝑖𝑑±

1
2

=

1

∫
0

(2𝜉 − 1)
𝑀∑
𝑚=1
𝜕𝐕

(
𝑣(𝑑)𝑚 𝐅𝑚

)(
𝐕
𝑖𝑑+

1
2
(𝜉)

)
𝑑𝜉 (60)

and

𝑀∑
𝑚=1
𝜕𝐕

(
𝑣(𝑑)𝑚 𝐅𝑚

)(
𝐕
𝑖𝑑+

1
2
(𝜉)

)
=
𝑀∑
𝑚=1
𝑣(𝑑)𝑚 𝜕𝐕

(
𝑎𝑚𝐔+ 𝑏𝑗𝑚𝐆

𝑗
)(

𝐕
𝑖𝑑+

1
2
(𝜉)

)
= 𝜕𝐕𝐆(𝑑)

(
𝐕
𝑖𝑑+

1
2
(𝜉)

)
(61)

due to the action of moment constraint in eq. (27) on 𝜕𝐕𝐅𝑚. Thus, comparing eqs. (12) and (60), we obtain ∑𝑀𝑚=1𝐐(𝑑)⋆
𝑚
𝑖𝑑±

1
2
=𝐐(𝑑)⋆

𝑖𝑑±
1
2

. □

6. Entropy stable scheme for vector-kinetic model

Consider the three-point semi-discrete conservative scheme on structured grid,

𝑑

𝑑𝑡
𝐅𝑚𝑖 +

1
Δ𝑥𝑑

((
𝑣(𝑑)𝑚 𝐅𝑚

)
𝑖𝑑+

1
2
−
(
𝑣(𝑑)𝑚 𝐅𝑚

)
𝑖𝑑−

1
2

)
= 𝟎 (62)

The interface numerical flux 
(
𝑣
(𝑑)
𝑚 𝐅𝑚

)
𝑖𝑑±

1
2

is given by,

(
𝑣(𝑑)𝑚 𝐅𝑚

)
𝑖𝑑±

1
2
=
(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2
− 1

2
𝐃(𝑑)
𝑚
𝑖𝑑±

1
2

[[
𝜕𝐅𝑚𝐻

𝜂
𝑚

]]
𝑖𝑑±

1
2

(63)

Here, 𝐃(𝑑)
𝑚
𝑖𝑑±

1
2
=𝐐(𝑑)

𝑚
𝑖𝑑±

1
2
−𝐐(𝑑)⋆

𝑚
𝑖𝑑±

1
2

. 𝐐(𝑑)
𝑚
𝑖𝑑±

1
2

and 𝐐(𝑑)⋆
𝑚
𝑖𝑑±

1
2

are the numerical viscosity coefficient matrices corresponding to entropy stable 

and entropy conserving schemes respectively. 𝐐(𝑑)⋆
𝑚
𝑖𝑑±

1
2

is given by eq. (51).

Then, the inner product of eq. (62) with 
(
𝜕𝐅𝑚𝐻

𝜂
𝑚

)
𝑖

gives the entropy in-equality,

𝑑

𝑑𝑡
𝐻𝜂𝑚𝑖

+ 1
Δ𝑥𝑑

((
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)
𝑖𝑑+

1
2
−
(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)
𝑖𝑑−

1
2

)
= − 1

([[
𝜕𝐅𝑚𝐻

𝜂
𝑚

]]
1 ⋅𝐃(𝑑)

𝑚 1

[[
𝜕𝐅𝑚𝐻

𝜂
𝑚

]]
1 +

[[
𝜕𝐅𝑚𝐻

𝜂
𝑚

]]
1 ⋅𝐃(𝑑)

𝑚 1

[[
𝜕𝐅𝑚𝐻

𝜂
𝑚

]]
1

)
≤ 0 (64)
9

4Δ𝑥𝑑 𝑖𝑑+ 2 𝑖𝑑+ 2
𝑖𝑑+ 2 𝑖𝑑− 2 𝑖𝑑− 2

𝑖𝑑− 2



Applied Mathematics and Computation 465 (2024) 128410M. Anandan and S.V. Raghurama Rao

iff 𝐃(𝑑)
𝑚
𝑖𝑑±

1
2

is positive-definite. The interface numerical entropy flux 
(
𝑣
(𝑑)
𝑚 𝐻

𝜂
𝑚

)
𝑖𝑑+

1
2

consistent with eq. (38) becomes,

(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)
𝑖𝑑+

1
2
=
(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)⋆
𝑖𝑑+

1
2
− 1

4

((
𝜕𝐅𝑚𝐻

𝜂
𝑚

)
𝑖
+
(
𝜕𝐅𝑚𝐻

𝜂
𝑚

)
𝑖𝑑+1

)
⋅𝐃(𝑑)
𝑚
𝑖𝑑+

1
2

[[
𝜕𝐅𝑚𝐻

𝜂
𝑚

]]
𝑖𝑑+

1
2

(65)

Further, let us define the interface numerical fluxes for macroscopic model as the moment of interface numerical fluxes for vector-

kinetic model as,

𝐆(𝑑)
𝑖𝑑±

1
2

=
𝑀∑
𝑚=1

(
𝑣(𝑑)𝑚 𝐅𝑚

)
𝑖𝑑±

1
2

(66)

Theorem 2. If the three-point semi-discrete conservative scheme (eq. (62)) for vector-kinetic model with

• 𝐅𝑚𝑖 = 𝑎𝑚𝐔𝑖 + 𝑏
(𝑑)
𝑚 𝐆(𝑑)

𝑖
, ∀𝑖

• interface numerical fluxes 
(
𝑣
(𝑑)
𝑚 𝐅𝑚

)
𝑖𝑑±

1
2

satisfying eq. (63) and

• constants 𝑎𝑚, 𝑏(𝑑)𝑚 satisfying the moment constraints in eqs. (26) and (27) while rendering the positivity of eigenvalues of 𝜕𝐔𝐅𝑚

is used, and if the convex entropy function corresponding to it is 𝐻𝜂𝑚𝑖 = 𝑎𝑚𝜂𝑖 + 𝑏
(𝑑)
𝑚 𝜔

(𝑑)
𝑖
, ∀𝑖, then

1.
∑𝑀
𝑚=1 eq. (62) becomes

𝑑

𝑑𝑡
𝐔𝑖 +

1
Δ𝑥𝑑

(
𝐆(𝑑)
𝑖𝑑+

1
2

−𝐆(𝑑)
𝑖𝑑−

1
2

)
= 𝟎 (67)

with 𝐆(𝑑)
𝑖𝑑±

1
2

given by eq. (66),

2. the interface numerical flux 𝐆(𝑑)
𝑖𝑑±

1
2

given by eq. (66) is equal to eq. (13), and

3. the three-point entropy in-equality for macroscopic model (𝑒𝑞. (14)) holds true with interface numerical entropy flux 𝜔(𝑑)
𝑖𝑑±

1
2

given by 

eq. (15).

Proof. Due to moment constraint in eq. (26), ∑𝑀
𝑚=1 𝐅𝑚𝑖 =𝐔𝑖. Therefore, ∑𝑀

𝑚=1 eq. (62) becomes eq. (67) with 𝐆(𝑑)
𝑖𝑑±

1
2

given by eq. (66), 

thus proving 1.

Since 
(
𝑣
(𝑑)
𝑚 𝐅𝑚

)
𝑖𝑑±

1
2

follows eq. (63) and 
[[
𝜕𝐅𝑚𝐻

𝜂
𝑚

]]
𝑖𝑑±

1
2

= [[𝐕]]
𝑖𝑑±

1
2
=
[[
𝜕𝐔𝜂

]]
𝑖𝑑±

1
2

is not a function of 𝑚 (by eq. (31)), eq. (66) becomes,

𝐆(𝑑)
𝑖𝑑±

1
2

=
𝑀∑
𝑚=1

(
𝑣(𝑑)𝑚 𝐅𝑚

)
𝑖𝑑±

1
2
=
𝑀∑
𝑚=1

(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2
− 1

2

𝑀∑
𝑚=1

𝐃(𝑑)
𝑚
𝑖𝑑±

1
2

[[𝐕]]
𝑖𝑑±

1
2

(68)

By Theorem 1, ∑𝑀
𝑚=1

(
𝑣
(𝑑)
𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2

satisfies entropy conserving condition in eq. (8) and hence it is equal to 𝐆(𝑑)⋆

𝑖𝑑±
1
2

. We also have ∑𝑀
𝑚=1𝐐

(𝑑)⋆
𝑚
𝑖𝑑±

1
2
=𝐐(𝑑)⋆

𝑖𝑑±
1
2

by Corollary 1. Further, ∑𝑀𝑚=1𝐃(𝑑)
𝑚
𝑖𝑑±

1
2

is positive-definite as 𝐃(𝑑)
𝑚
𝑖𝑑±

1
2

is positive-definite ∀𝑚. Therefore, 𝐃(𝑑)
𝑖𝑑±

1
2

=∑𝑀
𝑚=1𝐃

(𝑑)
𝑚
𝑖𝑑±

1
2
=
∑𝑀
𝑚=1𝐐

(𝑑)
𝑚
𝑖𝑑±

1
2
−𝐐(𝑑)⋆

𝑖𝑑±
1
2

is positive-definite, and hence

𝐆(𝑑)
𝑖𝑑±

1
2

=𝐆(𝑑)⋆

𝑖𝑑±
1
2

− 1
2
𝐃(𝑑)
𝑖𝑑±

1
2

[[𝐕]]
𝑖𝑑±

1
2

(69)

This proves 2.

Corresponding to the assumptions stated in Theorem 2, the three-point entropy in-equality in eq. (64) holds true. Since ∑𝑀
𝑚=1(𝐻

𝜂
𝑚)𝑖 =

𝜂𝑖, ∀𝑖 (due to the action of moment constraint in eq. (26) on (𝐻𝜂𝑚)𝑖), 
[[
𝜕𝐅𝑚𝐻

𝜂
𝑚

]]
𝑖𝑑±

1
2

= [[𝐕]]
𝑖𝑑±

1
2
=

[[
𝜕𝐔𝜂

]]
𝑖𝑑±

1
2

is not a function of 𝑚

(by eq. (31)) and ∑𝑀
𝑚=1𝐃

(𝑑)
𝑚
𝑖𝑑+

1
2
=𝐃(𝑑)

𝑖𝑑+
1
2

, moment of eq. (64) gives,

𝑑

𝑑𝑡
𝜂𝑖 +

1
Δ𝑥𝑑

(
𝑀∑
𝑚=1

(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)
𝑖𝑑+

1
2
−
𝑀∑
𝑚=1

(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)
𝑖𝑑−

1
2

)
= − 1

4Δ𝑥𝑑

(
[[𝐕]]

𝑖𝑑+
1
2
⋅𝐃(𝑑)
𝑖𝑑+

1
2

[[𝐕]]
𝑖𝑑+

1
2
+ [[𝐕]]

𝑖𝑑−
1
2
⋅𝐃(𝑑)
𝑖𝑑−

1
2

[[𝐕]]
𝑖𝑑−

1
2

)
(70)

Since 
[[
𝜕𝐅𝑚𝐻

𝜂
𝑚

]]
𝑖𝑑±

1
2

= [[𝐕]]
𝑖𝑑±

1
2
=

[[
𝜕𝐔𝜂

]]
𝑖𝑑±

1
2

and 
(
𝜕𝐅𝑚𝐻

𝜂
𝑚

)
𝑖
= 𝐕𝑖 =

(
𝜕𝐔𝜂

)
𝑖

are not functions of 𝑚 (by eq. (31)), moment of eq. (65)
10

yields,
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𝑀∑
𝑚=1

(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)
𝑖𝑑+

1
2
=
𝑀∑
𝑚=1

(
𝑣(𝑑)𝑚 𝐻

𝜂
𝑚

)⋆
𝑖𝑑+

1
2
− 1

4

(
𝐕𝑖 +𝐕𝑖𝑑+1

)
.

𝑀∑
𝑚=1

𝐃(𝑑)
𝑚
𝑖𝑑+

1
2

[[𝐕]]
𝑖𝑑+

1
2

(71)

Since ∑𝑀
𝑚=1

(
𝑣
(𝑑)
𝑚 𝐻

𝜂
𝑚

)⋆
𝑖𝑑+

1
2

= 𝜔(𝑑)⋆

𝑖𝑑+
1
2

(by Theorem 1) and ∑𝑀
𝑚=1𝐃

(𝑑)
𝑚
𝑖𝑑+

1
2
=𝐃(𝑑)

𝑖𝑑+
1
2

, comparison of the above equation with eq. (15) yields ∑𝑀
𝑚=1

(
𝑣
(𝑑)
𝑚 𝐻

𝜂
𝑚

)
𝑖𝑑+

1
2

= 𝜔(𝑑)
𝑖𝑑+

1
2

. This proves 3. □

Thus, an entropy stable scheme for vector-kinetic model results in an entropy stable scheme for macroscopic model, thanks to 
eq. (31) (resulting from Lemma 1) that rendered the linearity of moments in the above proof.

Remark 3. In the above proof, the three-point entropy in-equality for macroscopic model (eq. (14)) with interface numerical entropy 
flux 𝜔(𝑑)

𝑖𝑑±
1
2

given by eq. (15) is obtained as moment of three-point entropy in-equality for vector-kinetic model. Unlike this, we can 

also obtain eq. (14) directly at the macroscopic level as a consequence of 𝐆(𝑑)
𝑖𝑑±

1
2

=
∑𝑀
𝑚=1

(
𝑣
(𝑑)
𝑚 𝐅𝑚

)
𝑖𝑑±

1
2

satisfying the entropy stability 

condition for macroscopic model (eq. (13) with positive-definite 𝐃(𝑑)
𝑖𝑑±

1
2

).

6.1. High resolution scheme

Since the interface numerical flux 
(
𝑣
(𝑑)
𝑚 𝐅𝑚

)
𝑖𝑑+

1
2

contains a term with [[𝐕]]
𝑖𝑑+

1
2

which is 𝑂
(
Δ𝑥𝑑

)
, the entropy stable scheme in 

eq. (62) is only first order accurate in space. In order to attain higher order accuracy in space, the interface numerical flux in eq. (63)

is modified as,(
𝑣(𝑑)𝑚 𝐅𝑚

)
𝑖𝑑±

1
2
=
(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2
− 1

2
𝐃(𝑑)
𝑚
𝑖𝑑±

1
2

⟨⟨𝐕⟩⟩
𝑖𝑑±

1
2

(72)

where ⟨⟨𝐕⟩⟩
𝑖𝑑+

1
2
=𝐕−

𝑖𝑑+1
−𝐕+

𝑖
. Further, 𝐕−

𝑖𝑑+1
=𝐕𝑖𝑑+1

(
𝑥𝑑
𝑖𝑑+

1
2

)
and 𝐕+

𝑖
=𝐕𝑖

(
𝑥𝑑
𝑖𝑑+

1
2

)
are higher order reconstructions of 𝐕 at inter-

face 𝑖𝑑 +
1
2 . We utilise second order reconstructions in obtaining the numerical results, and the details are provided therein section 8. 

The moment of eq. (72) becomes,

𝑀∑
𝑚=1

(
𝑣(𝑑)𝑚 𝐅𝑚

)
𝑖𝑑±

1
2
=𝐆(𝑑)⋆

𝑖𝑑±
1
2

− 1
2
𝐃(𝑑)
𝑖𝑑±

1
2

⟨⟨𝐕⟩⟩
𝑖𝑑±

1
2

(73)

It can be easily seen that this is a higher order entropy stable flux for macroscopic model, and it is a consequence of linearity due to 
eq. (31) (resulting from Lemma 1).

7. Time discretisation

Let 𝑚𝑖 be − 1
Δ𝑥𝑑

((
𝑣
(𝑑)
𝑚 𝐅𝑚

)
𝑖𝑑+

1
2

−
(
𝑣
(𝑑)
𝑚 𝐅𝑚

)
𝑖𝑑−

1
2

)
where 

(
𝑣
(𝑑)
𝑚 𝐅𝑚

)
𝑖𝑑±

1
2

is entropy conserving 
( (
𝑣
(𝑑)
𝑚 𝐅𝑚

)⋆
𝑖𝑑±

1
2

satisfying eq. (40)

)
or 

entropy stable 
( (
𝑣
(𝑑)
𝑚 𝐅𝑚

)
𝑖𝑑±

1
2

satisfying eq. (63)

)
. Then, the semi-discrete entropy conserving/stable schemes in eqs. (39) and (62)

can be represented as,

𝑑

𝑑𝑡
𝐅𝑚𝑖 = 𝑚𝑖 (74)

Since we utilise second order scheme for entropy conserving/stable spatial discretisations, a third order scheme is required for the 
temporal derivative so that the entropy production/dissipation due to temporal derivative will not affect the entropy conserva-

tion/stability achieved spatially. Hence, the temporal derivative in above equation is discretised using 3-stage third order strong 
stability preserving Runge-Kutta method (SSPRK(3, 3)) [39]. After each stage of the RK method, 𝐔𝑖 is evaluated using 𝐔𝑖 =

∑𝑀
𝑚=1 𝐅𝑚𝑖 , 

and this is utilised in the evaluation of fluxes required for the next stage.

8. Numerical results

In this section, the entropy conserving (EC)/stable (ES) schemes are tested against various physical problems governed by scalar 
equations and the system of shallow water equations. For each problem, the basic ingredients such as problem description, choice of 
macroscopic entropy-entropy flux pair, fluxes satisfying entropy conserving/stability conditions in eqs. (40) and (63), second order 
reconstructions of entropy stable fluxes and CFL criteria are provided. We use the following error quantifications to study the errors 
11

in macroscopic and vector-kinetic entropies at time 𝑡.
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Table 2

EOC for linear advection at 𝑇 = 2𝜋 using EC scheme with 𝐶 = 0.1.

Number of 
cells, Nx

Δ𝑥1 𝐿2 norm 𝑂(𝐿2)

32 0.196349541 0.035757668 -

64 0.09817477 0.00781911 2.19

128 0.049087385 0.00140703 2.47

256 0.024543693 0.000249239 2.50

Signed error =
∑
𝑖

(
(.)𝑡
𝑖
− (.)𝑡−Δ𝑡

𝑖

)
𝑁

(75)

Absolute error =

∑
𝑖
|||(.)𝑡𝑖 − (.)𝑡−Δ𝑡

𝑖
|||

𝑁
(76)

Here, 𝑁 is the total number of cells or grid points in the computational domain. It can be seen that the signed error allows for 
cancellations of positive and negative errors present at different spatial locations. An equivalent of this with reference as 𝑡 = 0 instead 
of 𝑡 − Δ𝑡 is commonly used in literature in the context of global entropy preservation [34]. However, in order to understand the 
actual entropy preservation property of a spatially entropy preserving scheme, one needs to use the absolute error that does not 
allow spatial cancellations. Further, we use the signed error to identify whether the scheme is globally entropy dissipating or not. 
A positive signed error indicates global entropy production while negative signed error indicates global entropy dissipation. We 
present the numerical solutions, global entropy vs. time, and error vs. time plots for each problem.

8.1. Scalar equations

We consider scalar equations of the form,

𝜕𝑡𝑈 + 𝜕𝑥𝑑𝐺
(𝑑)(𝑈 ) = 0 (77)

with initial condition 𝑈 (𝑥1, .., 𝑥𝑑, .., 𝑥𝐷, 0) =𝑈0(𝑥1, .., 𝑥𝑑, .., 𝑥𝐷). We choose suitable convex entropy-entropy flux pair specific to 𝐺(𝑑)(𝑈 ). 
The constants 𝑎𝑚, 𝑏

(𝑑)
𝑚 in eqs. (25) and (28) are chosen as described in Appendix A. The time step is chosen as

Δ𝑡 ≤ 𝐶 Δ𝑥
𝜆

; Δ𝑥 =𝑚𝑖𝑛
(
Δ𝑥𝑑

)
(78)

Here, 𝐶 is the CFL number. The choice of 𝜆 is described in Appendix A. The flux

(
𝑣(𝑑)𝑚 𝐹𝑚

)⋆
𝑖𝑑+

1
2
=
𝜒
(𝑑)
𝑚𝑖𝑑+1

− 𝜒 (𝑑)
𝑚𝑖

𝑉𝑖𝑑+1 − 𝑉𝑖
(79)

satisfies the entropy conserving condition in eq. (40). This is used when 𝑉𝑖𝑑+1 ≠ 𝑉𝑖. When 𝑉𝑖𝑑+1 = 𝑉𝑖, we do not update the flux, as 
any value of flux satisfies the entropy conserving condition (eq. (40)). Here, the entropy variable is 𝑉𝑖 =

(
𝜕𝑈𝜂

)
𝑖
and the vector-kinetic 

entropy flux potential is given by 𝜒 (𝑑)
𝑚𝑖

= 𝑉𝑖. 
(
𝑣
(𝑑)
𝑚 𝐹𝑚

)
𝑖
−
(
𝑣
(𝑑)
𝑚 𝐻

𝜂
𝑚

)
𝑖
.

For entropy stable scheme, we use 𝐃(𝑑)
𝑚
𝑖𝑑+

1
2
⟨⟨𝐕⟩⟩

𝑖𝑑+
1
2
= 1
𝑀
𝐑(𝑑)
𝑖𝑑+

1
2

𝚲(𝑑)
𝑖𝑑+

1
2

⟨⟨
𝐖

⟩⟩
𝑖𝑑+

1
2

. For scalar equations, 𝐑(𝑑)
𝑖𝑑+

1
2

= 1 and 𝚲(𝑑)
𝑖𝑑+

1
2

is the 

absolute wave speed obtained using the average (arithmetic) value of 𝑈 at cells 𝑖 and 𝑖𝑑 + 1. We use the second order reconstruction 
of 

⟨⟨
𝐖

⟩⟩
𝑖𝑑+

1
2

as explained in section 8.2.

8.1.1. Linear advection

For the one-dimensional linear advection problem with 𝐺(1)(𝑈 ) = 𝑈 , we choose 𝜂(𝑈 ) = 1
2𝑈

2, and correspondingly 𝜔(1)(𝑈 ) = 1
2𝑈

2

satisfies the compatibility condition in eq. (2). The initial condition is 𝑈0
(
𝑥1

)
=
(
𝑠𝑖𝑛(𝑥1)

)4
. The domain of the problem is [0, 2𝜋), and 

it is discretised using 256 uniform cells. Periodic boundary conditions are used here. Numerical solutions are obtained at 𝑇 = 2𝜋.

It can be seen from Fig. 1a that the numerical solution matches well with the exact solution. Fig. 1b shows the global entropies over 
time. It can be seen that the entropies remain nearly constant. The signed and absolute errors in entropies are shown in Figs. 1c 
and 1d respectively. Since we use second order accurate entropy conserving scheme for vector-kinetic model and Δ𝑥 is of 𝑂(10−2), 
we expect an absolute error of 𝑂(10−4) in the vector-kinetic entropies. This is observed in Fig. 1d. The negative signed errors in 
Fig. 1c indicate that the 𝑂(Δ𝑥2) error is globally dissipative in nature. Due to the symmetric nature of the periodic profile, there may 
be cancellations in errors spatially and we observe a very low signed error of 𝑂(10−12).
In order to study the convergence of the problem, we use very low CFL of 𝐶 = 0.1. Second order accuracy of the scheme is evident 
12

from the results presented in Table 2. The exact solution is used as reference for the convergence study.
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Fig. 1. Linear advection at 𝑇 = 2𝜋 using EC scheme with 𝐶 = 0.1 and 𝑁𝑥 = 256.

Fig. 2. Linear rotation at 𝑇 = 0.5 using EC scheme with 𝐶 = 0.9 and 𝑁𝑥,𝑁𝑦 = 256.

8.1.2. Linear rotation

For the two dimensional linear rotation problem, 𝐺(1)(𝑈 ) = − 
(
𝑥2 −

1
2

)
𝑈 and 𝐺(2)(𝑈 ) =

(
𝑥1 −

1
2

)
𝑈 . The entropy function is chosen 

as 𝜂(𝑈 ) = 𝑈2, and correspondingly the entropy flux functions become 𝜔(1)(𝑈 ) = − 
(
𝑥2 −

1
2

)
𝑈2 and 𝜔(2)(𝑈 ) =

(
𝑥1 −

1
2

)
𝑈2. The initial 

condition is shown in Fig. 2a. The domain of the problem is [−1, 1) × [−0.5, 1.5), and it is discretised using 256 × 256 uniform cells. 
The value of 𝑈 at the boundary is kept fixed throughout the computation, and a CFL of 𝐶 = 0.9 is used.

The numerical solution at 𝑇 = 0.5 is shown in Fig. 2b. Since Δ𝑥 is of 𝑂(10−2), one would expect an error of 𝑂(10−4) in the absolute 
errors due to the usage of second order accurate entropy conserving scheme. We observe better error of 𝑂(10−5) in Fig. 2e. Further, 
it is interesting to observe the symmetries in errors of 𝐻𝜂2 , 𝐻

𝜂

4 and 𝐻𝜂1 , 𝐻
𝜂

3 in Fig. 2d. However, these symmetries may not be located 
on the same spatial point. If they were, then the absolute error of macroscopic entropy 𝜂 would be much smaller than 𝑂(10−7) (due 
to cancellations) since it is the sum of vector-kinetic entropies.

8.1.3. Non-linear inviscid Burgers’ test
For this non-linear one-dimensional problem with 𝐺(1)(𝑈 ) = 1

2𝑈
2, we choose 𝜂(𝑈 ) = 𝑈2, and correspondingly 𝜔(1)(𝑈 ) = 2

3𝑈
3

satisfies the compatibility condition in eq. (2). The initial condition is 𝑈0
(
𝑥1

)
= 𝑠𝑖𝑛(2𝜋𝑥1). The domain of the problem is [0, 1), and 

it is discretised using 256 uniform cells. Periodic boundary conditions are used here. We use entropy conserving and entropy stable 
schemes respectively for obtaining numerical solutions at 𝑇 = 0.1

2𝜋 and 𝑇 = 0.25 in Figs. 3 and 4.

Figs. 3a and 4a show that the numerical solutions match well with the exact solutions. Figs. 3b and 4b show that macroscopic 
and vector-kinetic entropy functions are conserved and dissipated respectively in the smooth (𝑇 = 0.1

2𝜋 ) and non-smooth (𝑇 = 0.25) 
cases. The signed and absolute errors for 𝑇 = 0.1

2𝜋 are shown in Figs. 3c and 3d. Since we use second order accurate entropy conserving 
scheme for vector-kinetic model and Δ𝑥 is of 𝑂(10−3), we expect an absolute error of 𝑂(10−6) in the vector-kinetic entropies. However, 
13

we observe an absolute error of 𝑂(10−4) in Fig. 1d. This might be because the terms multiplying 𝑂(Δ𝑥2) in the M-PDE of entropy 
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Table 3

EOC for non-linear inviscid Burgers’ test at 𝑇 = 0.1
2𝜋

using EC scheme with 𝐶 = 0.1.

Number of cells, Nx Δ𝑥1 𝐿2 norm 𝑂(𝐿2)

64 0.015625 0.000281831 -

128 0.0078125 0.000118395 1.89

256 0.00390625 4.37E-05 3.24

Fig. 3. Non-linear inviscid Burgers’ test at 𝑇 = 0.1
2𝜋

using EC scheme with 𝐶 = 0.1 and 𝑁𝑥 = 256.

Fig. 4. Non-linear inviscid Burgers’ test at 𝑇 = 0.25 using first order ES scheme with 𝐶 = 0.1 and 𝑁𝑥 = 256.

equality are not 𝑂(1) due to non-linearities. The negative signed errors in Fig. 1c indicate that the error is globally dissipative in 
nature. Due to the symmetric nature of periodic profile, there may be cancellations in errors spatially and we observe a very low 
signed error of 𝑂(10−13).
Further, the signed and absolute errors for 𝑇 = 0.25 are shown in Figs. 4c and 4d. Here too, we observe an absolute error of 𝑂(10−4). 
Negative signed error of 𝑂(10−4) indicates entropy dissipation after the formation of discontinuity.

In order to study the convergence of the problem, a very low CFL of 𝐶 = 0.1 is chosen. The reference solution is the exact solution 
obtained by employing Newton-Raphson iteration with tolerance of 10−15. It is seen from Table 3 that more than second order 
accuracy is attained as the grid is refined.

8.2. Shallow water equations

We consider the shallow water equations,

𝜕𝑡

[
𝜌

𝜌𝑢𝑗

]
+ 𝜕𝑥𝑑

[
𝜌𝑢𝑑

𝜌𝑢𝑗𝑢𝑑 + 𝑝𝛿𝑑𝑗

]
= 𝟎 ; 𝑝 = 𝜅𝜌2 ; 𝑗 ∈ {1,2, ..,𝐷} (80)

with initial condition 𝐔(𝑥1, .., 𝑥𝑑, .., 𝑥𝐷, 0) =𝐔𝟎(𝑥1, .., 𝑥𝑑, .., 𝑥𝐷). Here, 𝐔 =
[
𝜌

𝜌𝑢𝑗

]
, 𝐆(𝑑) (𝐔) =

[
𝜌𝑢𝑑

𝜌𝑢𝑗𝑢𝑑 + 𝑝𝛿𝑑𝑗

]
and 𝜅 = 1

2 . The notation ℎ, 𝑔

with ℎ = 𝜌, 𝑔 = 2𝜅 = 1 is commonly used in the shallow water community. In this case, 𝑝 = 1
2𝑔ℎ

2.

The entropy function is 𝜂 (𝐔) = 1
2𝜌𝑢𝑗𝑢𝑗 + 𝜅𝜌

2, and correspondingly the entropy flux functions become 𝜔(𝑑) (𝐔) = 𝑢𝑑
(
1
2𝜌𝑢𝑗𝑢𝑗 + 2𝜅𝜌2

)
. 

𝐅𝑚 and 𝐻𝜂𝑚 of vector-kinetic model are found using eq. (25) and eq. (28) respectively. The constants 𝑎𝑚, 𝑏
(𝑑)
𝑚 and 𝜆 are chosen as 

described in Appendix A. The time step is chosen as

Δ𝑡 ≤ 𝐶 Δ𝑥
𝜆

; Δ𝑥 =𝑚𝑖𝑛
(
Δ𝑥𝑑

)
(81)

Here, 𝐶 is the CFL number. Let us construct the entropy conserving flux 
(
𝑣
(𝑑)
𝑚 𝐅𝑚

)⋆
𝑖𝑑+

1
2

satisfying eq. (40). Consider the arithmetic 

average 𝐴
𝑖𝑑+

1
2
= 1

2

(
𝐴𝑖 +𝐴𝑖𝑑+1

)
. This average satisfies [[𝐴𝐵]]

𝑖𝑑+
1
2
= 𝐴

𝑖𝑑+
1
2
[[𝐵]]

𝑖𝑑+
1
2
+𝐵

𝑖𝑑+
1
2
[[𝐴]]

𝑖𝑑+
1
2
. Hence, the entropy conserving 
14

condition in eq. (40) can be expressed as,
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2𝜅 [[𝜌]]

𝑖𝑑+
1
2
− 𝑢𝑘𝑖𝑑+ 1

2

[[
𝑢𝑘

]]
𝑖𝑑+

1
2[[

𝑢𝑗
]]
𝑖𝑑+

1
2

⎤⎥⎥⎦ ,
(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑+

1
2

⟩
=

𝑣(𝑑)𝑚

(
2𝜌
𝑖𝑑+

1
2

(
𝑎𝑚 [[𝜌]]𝑖𝑑+ 1

2
+ 𝑏𝑘𝑚𝑢𝑘𝑖𝑑+ 1

2
[[𝜌]]

𝑖𝑑+
1
2

)
+ 𝜌2

𝑖𝑑+
1
2

(
𝑏𝑘𝑚

[[
𝑢𝑘

]]
𝑖𝑑+

1
2

))
(82)

Equating the terms corresponding to [[𝜌]]
𝑖𝑑+

1
2

and 
[[
𝑢𝑗
]]
𝑖𝑑+

1
2
, we obtain

(
𝑣(𝑑)𝑚 𝐅𝑚

)⋆
𝑖𝑑+

1
2
=
⎡⎢⎢⎢⎣

𝑣
(𝑑)
𝑚 𝜌𝑖𝑑+

1
2

(
𝑎𝑚 + 𝑏𝑘𝑚𝑢𝑘𝑖𝑑+ 1

2

)
𝑣
(𝑑)
𝑚

(
𝜌
𝑖𝑑+

1
2
𝑢𝑗 𝑖𝑑+

1
2

(
𝑎𝑚 + 𝑏𝑘𝑚𝑢𝑘𝑖𝑑+ 1

2

)
+ 𝜅𝑏𝑗𝑚𝜌2𝑖𝑑+ 1

2

)⎤⎥⎥⎥⎦ (83)

This EC flux is second order accurate in space. Let us now derive the entropy stable flux given by eq. (63). We know that ∑𝑀
𝑚=1𝐃

(𝑑)
𝑚
𝑖𝑑+

1
2
=𝐃(𝑑)

𝑖𝑑+
1
2

, a positive-definite matrix. We use the robust 𝐃(𝑑)
𝑖𝑑+

1
2

described in [14]. That is,

𝐃(𝑑)
𝑖𝑑+

1
2

=𝐑(𝑑)
𝑖𝑑+

1
2

𝚲(𝑑)
𝑖𝑑+

1
2

𝐑(𝑑)𝑇

𝑖𝑑+
1
2

(84)

where 𝐑(𝑑)
𝑖𝑑+

1
2

is a suitably scaled matrix whose columns are eigenvectors of 𝜕𝐔𝐆(𝑑), and 𝚲(𝑑)
𝑖𝑑+

1
2

is the Roe-type diffusion matrix 

(arithmetic averages are used). The matrices 𝐑(𝑑)
𝑖𝑑+

1
2

and 𝚲(𝑑)
𝑖𝑑+

1
2

for shallow water equations can be found in [13]. Then, we use 

𝐃(𝑑)
𝑚
𝑖𝑑+

1
2
= 1
𝑀
𝐃(𝑑)
𝑖𝑑+

1
2

, ∀𝑚, and these are positive-definite.

This results in a first order accurate ES flux. Let us derive the second order accurate ES flux given by eq. (72). As in [14], we express 
𝐃(𝑑)
𝑖𝑑+

1
2

⟨⟨𝐕⟩⟩
𝑖𝑑+

1
2
=𝐑(𝑑)

𝑖𝑑+
1
2

𝚲(𝑑)
𝑖𝑑+

1
2

⟨⟨
𝐖

⟩⟩
𝑖𝑑+

1
2

where 
⟨⟨

𝐖
⟩⟩
𝑖𝑑+

1
2

= 𝐁(𝑑)
𝑖𝑑+

1
2

𝐑(𝑑)𝑇

𝑖𝑑+
1
2

[[𝐕]]
𝑖𝑑+

1
2
. Here, 𝐁(𝑑)

𝑖𝑑+
1
2

is a positive diagonal matrix. Now, 

consider the min-mod limiter

𝜇(𝐴,𝐵) =
{

s 𝑚𝑖𝑛(|𝐴|, |𝐵|) if s = 𝑠𝑖𝑔𝑛(𝐴) = 𝑠𝑖𝑔𝑛(𝐵)
0 otherwise

(85)

Then, the reconstruction⟨⟨
𝐖

⟩⟩
𝑖𝑑+

1
2

=𝐑(𝑑)𝑇

𝑖𝑑+
1
2

[[𝐕]]
𝑖𝑑+

1
2
− 1

2

(
𝜇

(
𝐑(𝑑)𝑇

𝑖𝑑+
1
2

[[𝐕]]
𝑖𝑑+

1
2
,𝐑(𝑑)𝑇

𝑖𝑑+
1
2

[[𝐕]]𝑖
𝑑+ 3

2

)
+ 𝜇

(
𝐑(𝑑)𝑇

𝑖𝑑+
1
2

[[𝐕]]
𝑖𝑑−

1
2
,𝐑(𝑑)𝑇

𝑖𝑑+
1
2

[[𝐕]]
𝑖𝑑+

1
2

))
(86)

results in a second order accurate ES flux. Since 𝐁(𝑑)
𝑖𝑑+

1
2

is a positive diagonal matrix, the sign property

𝑠𝑖𝑔𝑛

(⟨⟨
𝐖

⟩⟩
𝑖𝑑+

1
2

)
= 𝑠𝑖𝑔𝑛

(
𝐑(𝑑)𝑇

𝑖𝑑+
1
2

[[𝐕]]
𝑖𝑑+

1
2

)
(87)

holds true, and the entropy stability is maintained. For vector-kinetic entropy stability, we use 𝐃(𝑑)
𝑚
𝑖𝑑+

1
2
⟨⟨𝐕⟩⟩

𝑖𝑑+
1
2
= 1
𝑀
𝐃(𝑑)
𝑖𝑑+

1
2

⟨⟨𝐕⟩⟩
𝑖𝑑+

1
2
, 

∀𝑚.

It may be noted that we have derived the EC fluxes for vector-kinetic model from the vector-kinetic framework. Unlike this, we 
obtained the ES fluxes for vector-kinetic model based on the diffusion matrices commonly used in literature for macroscopic model. 
This is because the only requirement for entropy stability is positive-definiteness of 𝐃(𝑑)

𝑚
𝑖𝑑+

1
2

, and we achieve this simply by employing 

the robust 𝐃(𝑑)
𝑖𝑑+

1
2

used for macroscopic model.

8.2.1. 1D expansion problem

This test case is taken from [13]. The domain of the problem is [−1, 1), and it is discretised using 128 uniform cells. The initial 
condition is,

𝜌(𝑥1,0) = 1, 𝑢1(𝑥1,0) =
{

−4 if 𝑥1 < 0
4 if 𝑥1 ≥ 0 (88)

Since the density can become very small, non-robust schemes will crash due to the inability to maintain positivity of density. Both 
entropy conserving and second order entropy stable schemes do not maintain the positivity. Hence, we utilise the first order entropy 
stable flux for vector-kinetic model to obtain the numerical results at 𝑇 = 0.1. The boundary values are kept fixed throughout the 
computation, and a very low CFL of 𝐶 = 0.1 is used for robustness.

It can be seen from Fig. 5a that the density remains non-negative. Further, the numerical solutions of density, momentum and entropy 
match well with the exact solution as shown in Figs. 5a to 5c. Figs. 5d to 5f show entropy functions, their signed and absolute errors 
over time (for both macroscopic and vector-kinetic entropies). Since Δ𝑥 is of 𝑂(10−2), one would expect an absolute error of 𝑂(10−2)
due to the usage of first order entropy stable flux. In Fig. 5f, we observe a better absolute error of 𝑂(10−3) in vector-kinetic entropies. 
15

Macroscopic entropy which is the sum of vector-kinetic entropies has an absolute error of 𝑂(10−2). The negative signed errors in 
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Fig. 5. SW 1D expansion problem at 𝑇 = 0.1 using first order ES scheme with 𝐶 = 0.1 and 𝑁𝑥 = 128.

Fig. 5e indicate the global dissipation of macroscopic and vector-kinetic entropies. This can also be seen in Fig. 5d from the decrease 
in global macroscopic and vector-kinetic entropies over time. It may be noted that the magnitudes of signed and absolute errors of all 
entropies in Figs. 5e and 5f are same. This indicates that the first order entropy stable fluxes are dissipating the entropies at almost 
all spatial points, and not just globally.

8.2.2. 1D dam break problem

This test case is also from [13]. The domain of the problem is [−1, 1), and it is discretised using 128 uniform cells. The initial 
condition is,

𝜌(𝑥1,0) =
{

15 if 𝑥1 < 0
1 if 𝑥1 ≥ 0 , 𝑢1(𝑥1,0) = 0. (89)

The numerical results obtained using first and second order entropy stable schemes at 𝑇 = 0.15 are shown in Figs. 6 and 7 respectively. 
The second order entropy stable reconstruction need not produce monotone solutions near discontinuities. Hence, a minmod flux 
limiter (that combines first and second order entropy stable fluxes) is employed to produce monotone solution near discontinuities. 
The boundary values are kept fixed throughout the computation, and a CFL of 𝐶 = 0.4 is used.

It can be seen that both first and second order (with minmod limiter) schemes capture the solution profile reasonably well. A positive 
signed error for 𝐻𝜂1 in Figs. 6e and 7e indicates that the numerical diffusion added for the flux corresponding to 𝐻𝜂1 is not sufficient 
to account for the entropy dissipation across discontinuities. This is because we have added equal weights of robust 𝐃(𝑑)

𝑖𝑑+
1
2

to each 

of the vector-kinetic entropies, irrespective of their entropy dissipation requirements. Nevertheless, the error in macroscopic entropy 
which is obtained as the sum of vector-kinetic entropies is still negative (indicating entropy dissipation).

8.2.3. 2D periodic flow

This test case is taken from the literature on asymptotic preserving schemes [22]. In order to be useful in our context, we have 
taken the value of asymptotic parameter to be 1. The domain of the problem is [0, 1) × [0, 1), and it is discretised using 256 × 256
uniform cells. The initial condition shown in Fig. 8a is given by,

𝜌(𝑥1, 𝑥2,0) = 1 + 𝑠𝑖𝑛2
(
2𝜋

(
𝑥1 + 𝑥2

))
(90)

𝑢1(𝑥1, 𝑥2,0) = 𝑢2(𝑥1, 𝑥2,0) = 𝑠𝑖𝑛
(
2𝜋

(
𝑥1 − 𝑥2

))
(91)

The numerical results obtained using entropy conserving scheme at 𝑇 = 0.1 are shown in Fig. 8b. Periodic boundary conditions are 
employed, and a CFL of C = 0.5 is used. It can be seen from Fig. 8c that the macroscopic and vector-kinetic entropy functions remain 
almost constant over time. From Figs. 8d and 8e, we observe absolute and signed errors of 𝑂(10−3) and 𝑂(10−10) respectively. This 
huge difference implies that there are spatial cancellations between positive and negative errors. This may be due to the symmetric 
nature of periodic profile. Nevertheless, there is global dissipation of both macroscopic and vector-kinetic entropies as indicated by 
the negative errors in Fig. 8d. Order of convergence studies show that the accuracy attained is more than second order, and the 
16

results are shown in Table 4. The reference solution for convergence studies is the numerical solution with refined grid of 512 × 512.
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Fig. 6. SW 1D dambreak problem at 𝑇 = 0.15 using first order ES scheme with 𝐶 = 0.4 and 𝑁𝑥 = 128.

Fig. 7. SW 1D dambreak problem at 𝑇 = 0.15 using second order ES scheme (using minmod limiter) with 𝐶 = 0.4 and 𝑁𝑥 = 128.

Table 4

EOC for 2D periodic flow at 𝑇 = 0.1 using EC scheme with 𝐶 = 0.5.

𝑁 Δ𝑥 ||𝜌||𝐿2
𝑂(||𝜌||) ||𝜌𝑢1||𝐿2

𝑂(||𝜌𝑢1||) ||𝜌𝑢2||𝐿2
𝑂(||𝜌𝑢2||)

32 0.03125 0.00162 - 0.00255 - 0.00255 -

64 0.015625 0.000378 2.10 0.000362 2.82 0.000362 2.82

128 0.0078125 5.64 × 10−5 2.74 5.54 × 10−5 2.71 5.54 × 10−5 2.71

256 0.00390625 7.62 × 10−6 2.89 7.33 × 10−6 2.92 7.33 × 10−6 2.92

8.2.4. 2D travelling vortex

This test case is also taken from the literature on asymptotic preserving schemes [22]. We have taken the value of asymptotic 
parameter to be 0.8, so that it will be useful in our context. The domain of the problem is [0, 1) × [0, 1), and it is discretised using 
17

256 × 256 uniform cells. The initial condition shown in Fig. 9a is given by,
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Fig. 8. SW 2D periodic flow at 𝑇 = 0.1 using EC scheme with 𝐶 = 0.5 and 𝑁𝑥,𝑁𝑦 = 256 (Blue, red and green lines are beneath the yellow line).

Table 5

EOC for 2D travelling vortex at 𝑇 = 0.1 using EC scheme with 𝐶 = 0.5.

𝑁 Δ𝑥 ||𝜌||𝐿2
𝑂(||𝜌||) ||𝜌𝑢1||𝐿2

𝑂(||𝜌𝑢1||) ||𝜌𝑢2||𝐿2
𝑂(||𝜌𝑢2||)

32 0.03125 0.000156 - 0.00339 - 0.00709 -

64 0.015625 4.39 × 10−5 1.83 0.000505 2.75 0.00105 2.75

128 0.0078125 2.033 × 10−5 1.11 0.000105 2.26 0.000174 2.60

𝜌
(
𝑥1, 𝑥2,0

)
= 110 +

(
0.64

( 1.5
4𝜋

)2)
𝐷𝑟𝑐

(
𝑥1, 𝑥2

)
(𝑘 (𝑟𝑐) − 𝑘 (𝜋)) (92)

𝑢1
(
𝑥1, 𝑥2,0

)
= 0.6 + 1.5

(
1 + 𝑐𝑜𝑠

(
𝑟𝑐

(
𝑥1, 𝑥2

)))
𝐷𝑟𝑐

(
𝑥1, 𝑥2

)(
0.5 − 𝑥2

)
(93)

𝑢2
(
𝑥1, 𝑥2,0

)
= 0 + 1.5

(
1 + 𝑐𝑜𝑠

(
𝑟𝑐

(
𝑥1, 𝑥2

)))
𝐷𝑟𝑐

(
𝑥1, 𝑥2

)(
𝑥1 − 0.5

)
(94)

with

𝑘 (𝑞) = 2𝑐𝑜𝑠 (𝑞) + 2𝑞 𝑠𝑖𝑛 (𝑞) + 1
8
𝑐𝑜𝑠 (2𝑞) + 1

4
𝑞 𝑠𝑖𝑛 (2𝑞) + 3

4
𝑞2 (95)

𝑟𝑐
(
𝑥1, 𝑥2

)
= 4𝜋

((
𝑥1 − 0.5

)2 + (
𝑥2 − 0.5

)2) 1
2

(96)

𝐷𝑟𝑐
(
𝑥1, 𝑥2

)
=
{

1 if 𝑟𝑐
(
𝑥1, 𝑥2

)
< 𝜋

0 otherwise
(97)

The second order entropy conserving and entropy stable schemes do not distort the structure of vortex, while the first order entropy 
stable scheme does. We present the numerical results obtained using second order entropy conserving scheme at 𝑇 = 0.1 as shown in 
Fig. 9b. Periodic boundary conditions are employed, and a CFL of C = 0.5 is used.

From Fig. 9d, we observe that the absolute errors of macroscopic and vector-kinetic entropies are of 𝑂(10−3). On the other hand, 
the signed errors in 𝐻𝜂2 and 𝐻𝜂4 are of 𝑂(10−11) (Fig. 9g), while those in 𝐻𝜂1 and 𝐻𝜂3 are of 𝑂(10−5) (Fig. 9f). Moreover, the signed 
error profiles of vector-kinetic entropies are symmetric resulting in a much lower signed error of 𝑂(10−14) for 𝜂 (not shown in plot). 
However, these symmetries in signed errors must be located at different spatial points. If they were located at the same spatial points, 
then we would observe a much lower absolute error in macroscopic entropy, unlike 𝑂(10−3) in Fig. 9d.

Order of convergence studies are shown in Table 5. It is seen that the accuracy attained is more than second order for 𝜌𝑢1 and 𝜌𝑢2. 
For 𝜌, the required order of accuracy is observed in coarser mesh rather than in fine mesh, and this matches the conclusion made in 
[37] where the analyses concerning types of vortices (based on their regularity) and their usage for validation of orders of accuracy 
18

of numerical methods are discussed.
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Fig. 9. SW 2D travelling vortex at 𝑇 = 0.1 using EC scheme with 𝐶 = 0.5 and 𝑁𝑥,𝑁𝑦 = 256.

Fig. 10. SW 2D cylindrical dam-break at 𝑇 = 0.2 using first order ES scheme with 𝐶 = 0.4 and 𝑁𝑥,𝑁𝑦 = 100.

Fig. 11. SW 2D cylindrical dambreak at 𝑇 = 0.2 using second order ES scheme (using minmod limiter) with 𝐶 = 0.4 and 𝑁𝑥,𝑁𝑦 = 100.

8.2.5. 2D cylindrical dambreak

This test case is taken from [13]. The domain of the problem is [−1, 1) × [−1, 1), and it is discretised using 100 × 100 uniform cells. 
The initial condition is given by,

𝜌
(
𝑥1, 𝑥2,0

)
=

{
2 if

(
𝑥21 + 𝑥

2
2
) 1
2 < 0.5

1 otherwise
, 𝑢1

(
𝑥1, 𝑥2,0

)
= 𝑢2

(
𝑥1, 𝑥2,0

)
= 0 (98)

The numerical results of first and second order (with minmod limiter) entropy stable schemes at 𝑇 = 0.2 are shown in Figs. 10a 
and 11a respectively. A CFL of 𝐶 = 0.4 is used, and periodic boundary conditions are employed. From Figs. 10d and 11d, we observe 
that the absolute errors in entropies are of 𝑂(10−3). Further, from Figs. 10c and 11c, we observe that the signed errors in entropies 
19

are of 𝑂(10−4). The negative signed errors indicate that there is global dissipation of entropy.
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9. Summary and conclusions

The following are the major highlights of the paper.

• We provided a modification to the vector-BGK model, and this allows us to obtain entropy flux potentials that are required in the 
consistent definition of interface numerical entropy fluxes. Lemmas 1 and 2 are essential in obtaining the entropy flux potentials.

• We showed in Theorems 1 and 2 that the moment of entropy conserving/stable schemes for vector-kinetic model results in 
entropy conserving/stable schemes for macroscopic model. Lemma 1 plays a crucial role by rendering the linearities in the 
involved moments.

• In the numerical tests of scalar smooth problems, we employed our entropy conserving scheme and observed that the macro-

scopic and all the vector-kinetic entropies involved are conserved (up to absolute error). We also used signed error to observe 
global entropy dissipation/production due to higher order terms for which conservation does not apply.

• For shallow water equations, we derived an entropy conserving flux for vector-kinetic model by considering arithmetic averages 
of primitive variables. We used this entropy conserving scheme on smooth problems such as periodic flow and travelling vortex. 
In both cases, we observed the conservation of macroscopic and vector-kinetic entropies.

• We considered the 1D expansion problem where non-positivity of density can easily occur in non-robust schemes. For this, we 
employed the first order entropy stable scheme for vector-kinetic model and observed that the macroscopic and all vector-kinetic 
entropies involved are dissipative in nature. We also do not encounter non-positivity.

• In the non-smooth category, we considered scalar non-linear inviscid Burgers’ test, 1D and 2D cylindrical dam-break problems. 
The second order entropy stable scheme employed for scalar case dissipates macroscopic and all vector-kinetic entropies. For the 
shallow water case, we employed the first and second order entropy stable schemes for vector-kinetic model. In 1D dam-break 
problem, we observed that some of the vector-kinetic entropies are not really dissipative, as their dissipation matrices are not 
built based on the dissipation requirements near discontinuities. Further research is required on the choice of appropriate robust 
dissipation matrices for vector-kinetic model.

Thus, the entropy preserving scheme developed in this paper preserves both vector-kinetic and macroscopic entropy functions. It is 
interesting to observe that the entropic numerical solutions of macroscopic model do not experience a notable difference when two 
different routes (via vector-kinetic and macroscopic) are taken.

If the proposed entropy conserving scheme for vector-kinetic model is applied to the Euler’s system, the vector-kinetic entropy 
conserving condition in eq. (40) can be satisfied analogous to the ways available in literature to satisfy entropy conserving condition 
for macroscopic model in eq. (8). One can derive the fluxes by utilising an elegant and non-costly route available in literature (for 
instance, by defining primitive variables, substituting for entropy variables and entropy flux potentials in terms of these primitive 
variables into eq. (40), and equating the coefficients of the jumps in the primitive variables, as introduced in [20] for satisfaction 
of the condition in eq. (8)), and this is a work in progress. It is expected that the moment of such entropy conserving flux functions 
for vector-kinetic model derived using a particular method (say, [20]) will be an entropy conserving flux function for macroscopic 
model derived using the same method ([20]).
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Appendix A. Choice of constants 𝒂𝒎, 𝒃
(𝒅)
𝒎

We know that the moment of eq. (24) becomes the given hyperbolic system in eq. (1), if the constants 𝑎𝑚, 𝑏
(𝑑)
𝑚 in eq. (25) satisfy 

the moment constraints in eqs. (26) and (27). We also know that, if the convex entropy function for vector-kinetic model (eq. (28))
is used, then the moment of eq. (30) becomes eq. (3) with equality. Further, positivity of eigenvalues of 𝜕𝐔𝐅𝑚 is an important 
requirement for obtaining the entropy flux potentials and the results of Theorems 1 and 2. Therefore, in order for the formulation to 
hold, the constants 𝑎𝑚, 𝑏

(𝑑)
𝑚 are required to satisfy eqs. (26) and (27) along with the positivity of eigenvalues of 𝜕𝐔𝐅𝑚.

For one dimensional hyperbolic systems, we consider two discrete velocities, i.e., 𝑀 = 2. Let

𝑎1 =
1
2
, 𝑎2 =

1
2

(A.1)

𝑏
(1)
1 = 1

2𝜆
, 𝑏

(1)
2 = − 1

2𝜆
(A.2)
20

If 𝑣(1)1 = 𝜆 and 𝑣(1)2 = −𝜆, then the moment constraints in eqs. (26) and (27) are satisfied. Further,
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eig
(
𝜕𝐔𝐅1

)
= eig

(1
2
𝐈+ 1

2𝜆
𝜕𝐔𝐆(1)

)
(A.3)

eig
(
𝜕𝐔𝐅2

)
= eig

(1
2
𝐈− 1

2𝜆
𝜕𝐔𝐆(1)

)
(A.4)

Thus, eigenvalues of 𝜕𝐔𝐅𝑚 are 12 ± 1
2𝜆 eig

(
𝜕𝐔𝐆(1)). Therefore, for positivity, we require 𝜆 > sup

(|||eig
(
𝜕𝐔𝐆(1))|||). The supremum is 

taken over all grid points/cells in the computational domain.

For two dimensional systems, we consider four discrete velocities, i.e., 𝑀 = 4. Let

𝑎1 =
1
4
, 𝑎2 =

1
4
, 𝑎3 =

1
4
, 𝑎4 =

1
4

(A.5)

𝑏
(1)
1 = 1

2𝜆
, 𝑏

(1)
2 = 0, 𝑏(1)3 = − 1

2𝜆
, 𝑏

(1)
4 = 0 (A.6)

𝑏
(2)
1 = 0, 𝑏(2)2 = 1

2𝜆
, 𝑏

(2)
3 = 0, 𝑏(2)4 = − 1

2𝜆
(A.7)

If the following holds,

𝑣
(1)
1 = 𝜆, 𝑣(1)2 = 0, 𝑣(1)3 = −𝜆, 𝑣(1)4 = 0 (A.8)

𝑣
(2)
1 = 0, 𝑣(2)2 = 𝜆, 𝑣(2)3 = 0, 𝑣(2)4 = −𝜆 (A.9)

then the moment constraints in eqs. (26) and (27) are satisfied. Further,

eig
(
𝜕𝐔𝐅1

)
= eig

(1
4
𝐈+ 1

2𝜆
𝜕𝐔𝐆(1)

)
(A.10)

eig
(
𝜕𝐔𝐅2

)
= eig

(1
4
𝐈+ 1

2𝜆
𝜕𝐔𝐆(2)

)
(A.11)

eig
(
𝜕𝐔𝐅3

)
= eig

(1
4
𝐈− 1

2𝜆
𝜕𝐔𝐆(1)

)
(A.12)

eig
(
𝜕𝐔𝐅4

)
= eig

(1
4
𝐈− 1

2𝜆
𝜕𝐔𝐆(2)

)
(A.13)

Thus, eigenvalues of 𝜕𝐔𝐅𝑚 are 14 ±
1
2𝜆 eig

(
𝜕𝐔𝐆(1)) and 14 ±

1
2𝜆 eig

(
𝜕𝐔𝐆(2)). Therefore, for positivity, we require 𝜆 > 2 sup

(|||eig
(
𝜕𝐔𝐆(1)

)|||,|||eig
(
𝜕𝐔𝐆(2)

)|||). The supremum is taken over all grid points/cells in the domain.
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