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SEGAL–BARGMANN TRANSFORMS AND
HOLOMORPHIC SOBOLEV SPACES OF FRACTIONAL ORDER

SUNDARAM THANGAVELU

Dedicated to the memory of Pola Harboure

Abstract. In this note we investigate the image of Sobolev spaces of frac-
tional order on a compact Lie group K under the Segal–Bargmann transform.
We show that the image can be characterised in terms of certain weighted
Bergman spaces of holomorphic functions on the complexification extending a
theorem of Hall and Lewkeeratiyutkul. We also treat the heat kernel transform
associated to the Hermite operator.

1. Introduction

Let K be a connected, compact Lie group with Lie algebra k. Fix an Ad-K
invariant inner product 〈, 〉 on k and choose an orthonormal basis X1, X2, . . . , Xn,
which are viewed as left invariant vector fields on K. Then ∆ =

∑n
j=1X

2
j turns

out to be the Laplace–Beltrami operator for the bi-invariant metric determined
by 〈, 〉 on K. Let G stand for the universal complexification of K which is a
complex Lie group whose Lie algebra is given by k+ ik. For any irreducible unitary
representation π of K on a Hilbert space Hπ we let dπ stand for the dimension of
Hπ. For any f ∈ L2(K) we let

π(f) =
∫
K

f(k)π(k) dk

stand for the Fourier transform of f . The Plancherel theorem reads as∫
K

|f(k)|2 dk =
∑
π∈K̂

dπ‖π(f)‖2,

where K̂ is the unitary dual of K and ‖π(f)‖ stands for the Hilbert–Schmidt norm
of ‖π(f)‖.

Any π ∈ K̂ can be analytically continued to G whose entries are then holomor-
phic functions on G. Let dg stand for the Haar measure on G. By HL2(G, νdg)
we mean L2(G, νdg) ∩ O(G) for any density function ν(g) on G. In his celebrated
paper [4] Hall has proved the following Paley–Wiener type theorem for compact
Lie groups.
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Theorem 1.1 (Hall). Let ν be a K bi-invariant function on G which is locally
bounded away from zero and assume that for any π ∈ K̂ the integrals σ(π) =
d−1
π

∫
G
‖π(g−1)||2ν(g)dg are finite. Then f ∈ L2(K) has a holomorphic extension

F to G which belongs to HL2(G, νdg) if and only if∑
π∈K̂

dπ‖π(f)‖2σ(π) <∞.

Moreover, if that happens then we have the equality of norms∫
G

|F (g)|2ν(g)dg =
∑
π∈K̂

dπ‖π(f)‖2σ(π).

The above theorem contains the result on Segal–Bargmann transform on K. Let
qt stand for the heat kernel associated to 1

2∆ which is explicitly given by

qt(k) =
∑
K̂

dπe
− 1

2 tλ
2
πχπ(k),

where χπ is the character of π and λπ is determined by the condition ∆χπ(k) =
−λ2

πχπ(k). It is known that qt(k) > 0 and satisfies qt(k) = qt(k−1) and qt(kk′) =
qt(k′k). Because of these two properties f ∗ qt = qt ∗ f for any f ∈ L2(K) and
u(k, t) = f ∗ qt(k, t) solves the heat equation for 1

2∆ with initial condition f . It is
known that qt extends to G as a holomorphic function and consequently for any
f ∈ L2(K) the solution f ∗ qt also has a holomorphic extension to G. The map
Ct which takes f into the holomorphic function F (g) = f ∗ qt(g) is known as the
Segal–Bargmann transform.

The Lie algebra g of G viewed as a real Lie algebra has dimension 2n and the
inner product 〈, 〉 on k can be extended to g by setting

〈X1 + JY1, X2 + JY2〉 = 〈X1, X2〉+ 〈Y1, Y2〉, Xi, Yi ∈ k,

where J stands for multiplication by i. Then ∆G =
∑n
j=1

(
X2
j +(JXj)2) turns out

to be a left invariant differential operator on G which is K bi-invariant. Let µt(g)
stand for the heat kernel associated to 1

4∆G so that µt ∗f solves the heat equation.
We define νt(g) =

∫
K
µt(kg) dk which is K bi-invariant. Viewed as a subgroup

of G,K is maximal compact and so G/K becomes a noncompact Riemannian
symmetric space equipped with the left invariant metric defined by the above inner
product. We can identify ∆G with the Laplace–Beltrami operator on G/K and νt
is the bi-invariant heat kernel.

With these notations we can calculate that

d−1
π

∫
G

‖π(g−1)||2νt(g)dg = etλ
2
π

and Theorem 1.1 leads to the following result for the Segal–Bargmann transform:
for any f ∈ L2(K), ∫

G

|f ∗ qt(g)|2νt(g)dg =
∫
K

|f(k)|2 dk.
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Thus the map Ct which takes f into f ∗ qt(g) is an isometry from L2(K) into
HL2(G, νtdg) and it is also known that this map is onto. We can restate this
as follows: A holomorphic function F on G belongs to L2(G, νtdg) if and only if
F = f ∗ qt for some f ∈ L2(K). This characterises the image of L2(K) under the
Segal–Bargmann transform.

Using spectral theorem we can define the fractional powers (−∆)s/2 for any
s ∈ R. The domain of this operator is the (homogeneous) Sobolev space Hs(K)
consisting of distributions f for which∑

π∈K̂

dπ λ
2s
π ‖π(f)‖2 <∞.

For s ≥ 0 we note that Hs(K) ⊂ L2(K) and hence we can restrict Ct to Hs(K)
and ask for a characterisation of its image under the Segal–Bargmann transform.
In [5] Hall and Lewkeeratiyutkul considered this problem for s = 2m an even
integer. They introduced holomorphic Sobolev spaces H2m(G, νt) and showed that
Ct takes H2m(K) ontoH2m(G, νt). These Sobolev spaces are defined as follows. By
considering ∆ as a left invariant differential operator on G, we can talk about ∆mF
for any holomorphic function on G. Note that these are defined and holomorphic
on G but it is not necessarily true that they are in L2(G, νt) even if we start with
F ∈ HL2(G, νt). We define H2m(G, νt) to be the subspace of HL2(G, νt) consisting
of those F for which ∆mF ∈ HL2(G, νt).

Theorem 1.2 (Hall–Lewkeeratiyutkul). For any non-negative integer m the Segal–
Bargmann transform Ct takes H2m(K) onto H2m(G, νt). Moreover, it is possible
to find a positive weight function w2m(g) such that H2m(G, νt) = HL2(G,w2mνt).

The same problem for s < 0 was taken up in [11], where it was shown that the
image of Hs(K) is a weighted Bergman space on G. For non-integral s > 0 the
problem remains open. The aim of this note is precisely to address this problem.
In order to define holomorphic Sobolev spaces of fractional order we make use of
the complexified Laplacian ∆C acting on HL2(G, νt). (See the next section for a
definition of ∆C.) For any γ > 0 we define a weight function

wt,γ(g) = 1
Γ(2γ)

∫ t

0
(t− r)2γ−1 νr(g) dr.

Given s > 0, fix any integer m such that 0 < s < 2m. We say that a function F
fromHL2(G, νt) belongs toHs0(G, νt) if and only if (−∆C)mF ∈ HL2(G,wt,m−s/2).
We equip this space with the norm defined by

‖F ||2(s) =
∫
G

|F (g)|2νt(g) +
∫
G

|(−∆C)mF (g)|2wt,m−s/2(g) dg.

We remark that as s→ 2m the weight function wt,m−s/2 converges to νt and hence
the new definition coincides with the original definition given in [5] for the case
s = 2m. With this definition we have

Theorem 1.3. For any s ≥ 0 the Segal–Bargmann transform Ct : Hs(K) →
Hs0(G, νt) is an isomorphism.
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In the above setting Ct is no longer an isometry. However, on Hs(K) we can
introduce an equivalent norm so that we get an isometric isomorphism. This is
easy to achieve. For any γ > 0 we set

µt,γ(π) = 1
Γ(γ)

∫ t

0
rγ−1e−rλ

2
πdr

and note that as λπ goes to infinity, µt,γ(π) behaves like λ−2γ
π . For any distribution

f on K we let
‖f‖2t,γ =

∑
π∈K̂

dπ‖π(f)‖2µt,2γ(π)

and define a new norm by ‖f‖2(t,s) = ‖f‖22 + ‖(−∆)mf‖2t,m−s/2. Then it is easily
seen that f ∈ Hs(K) if only if ‖f‖(t,s) <∞. We denote by Hs

0(K) the set Hs(K)
equipped with this new norm. Then we have the following theorem.

Theorem 1.4. For any s ≥ 0 the Segal–Bargmann transform Ct : Hs
0(K) →

Hs0(G, νt) is an isometric isomorphism.

We do not know if these Sobolev spaces Hs0(G, νt) are weighted Bergman spaces.
However we can restate the above result in the following form. Given s > 0 let us
choose m such that m− 1 < s/2 ≤ m for the sake of definiteness and define

Cst f(g) = 2m

Γ(m− s/2)

∫ t

0
rm−s/2−1∂mr (f ∗ qr+t)(g) dr

which we may call the generalised (or integrated) Segal–Bargmann transform. Then
we can prove that Cst : Hs(K)→ HL2(G, νt) is an isomorphism, see Remark 2.5.

So far we have considered Segal–Bargmann transforms on compact Lie groups
but such transforms, also known as heat kernel transforms have been studied in
non-compact situations also, see the works [6],[7],[12] and [9]. These transforms are
defined in terms of heat semigroups associated to Laplacians, sublaplacians and
certain elliptic partial differential operators. Therefore, it is natural to study frac-
tional order Sobolev spaces associated to such operators. For the sake of avoiding
repetition we only study the Segal–Bargmann transform associated to the Hermite
semigroup Tt = e−tH , where H = −∆ + |x|2 is the Hermite operator. Then it is
known that for any f ∈ L2(Rn) the function F = Ttf has an entire extension to
Cn. The image of L2(Rn) under this Segal–Bargmann or heat kernel transform has
been characterised. Let

Ut(z) = 2n(sinh(4t))−n/2e−(coth 2t)|y|2+(tanh 2t)|x|2 ;

then the following theorem was proved in [1], see also [12].

Theorem 1.5. An entire function F on Cn is of the form Ttf(z) for some f ∈
L2(Rn) if and only if F belongs to the weighted Bergman space HL2(Cn, Ut). More-
over, we have the equality of norms∫

Cn
|F (z)|2Ut(z)dz =

∫
Rn
|f(x)|2 dx.
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As in the case of compact Lie groups, we can also study the generalised heat
kernel transform associated to the Hermite semigroup. We let

T st f(z) = 1
Γ(m− s/2)

∫ t

0
rm−s/2−1∂mr (f ∗ Tr+t)(z) dr,

where we have chosen m such that (m − 1) ≤ s/2 < m. Let W s,2
H (Rn) stand for

the Hermite–Sobolev space of order s defined as the closure of the domain of the
fractional power Hs/2. We have the following theorem.

Theorem 1.6. For any s > 0, T st : W s,2
H (Rn)→ HL2(Cn, Ut) is an isomorphism.

By equipping W s,2
H (Rn) with an equivalent norm, we can make T st an isometry.

We also have an analogue of Theorem 1.4 for which we need to define holomor-
phic analogues of the Hermite–Sobolev spaces W s,2

H . We set

Ut,γ(z) = 1
Γ(2γ)

∫ t

0
(t− r)2γ−1 Ur(z) dr

and define Hs,2H (Cn, Ut) as the subspace of HL2(Cn, Ut) consisting of those F for
which ∫

Cn
|Hm

C F (z)|2Ut,m−s/2(z)dz <∞.

In the above HC =
∑n
j=1

(
− ∂2

∂z2
j

+ z2
j

)
is the complexification of the Hermite

operator. Here is the analogue of Theorem 1.4.

Theorem 1.7. For any s ≥ 0, the heat kernel transform Tt : W s,2
H (Rn) →

Hs,2H (Cn, Ut) is an isomorphism.

We remark that the case s = 2m of the above theorem has been already proved
in [8]. The proofs of the above theorems depend on the so-called Gutzmer’s formula
for the Hermite expansions established in [12].

2. Holomorphic Sobolev spaces on compact Lie groups

We begin with some general considerations. Let π be any unitary representation
of the compact Lie group K on a Hilbert space H. Given ϕ ∈ L2(K), f ∈ H and a
left invariant vector field X consider∫

K

Xϕ(k)π(k)∗f dk = −
∫
K

ϕ(k)Xπ(k)∗f dk.

Since
Xπ(k)∗f = d

dt

∣∣∣
t=0

π(e−tXk−1)f = −dπ(X)π(k)∗f,

it follows that ∫
K

Xϕ(k)π(k)∗f dk = dπ(X)
(∫

K

ϕ(k)π(k)∗f dk
)
.
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Let ∆ =
∑n
j=1X

2
j be the Laplacian on K. Then we have∫
K

∆ϕ(k)π(k)∗f dk = π(∆)
(∫

K

ϕ(k)π(k)∗f dk
)
,

where π(∆) =
∑n
j=1 dπ(Xj)2. We are interested in defining (−π(∆))s/2 for any

s ≥ 0.
Apart from using spectral theory, there are other ways of defining fractional

powers of Laplacians, see [3]. One such useful definition is provided by solving the
extension problem for the Laplacian. By assuming 0 < s < 1, let us consider the
initial value problem(

∆ + ∂2
ρ + 1− s

ρ
∂ρ

)
u(k, ρ) = 0, u(k, 0) = f(k),

where f ∈ L2(K). An explicit solution of the above problem is given in terms of
the heat semigroup et∆. Indeed, the function

u(k, ρ) = ρs
1

Γ(s/2)

∫ ∞
0

e−
ρ2
4t et∆f(k)t−s/2−1dt

solves the extension problem, see [10]. If u is the solution given by the integral
above, then it has been shown that ρ1−s∂ρu(k, ρ) converges to a constant multiple
of (−∆)s/2f as ρ tends to zero, see [2]. As et∆f = q2t ∗ f (remember: qt is the
kernel of e t2 ∆) we can represent the solution as u(k, ρ) = ρsϕs,ρ ∗ f(k), where

ϕs,ρ(k) = 1
Γ(s/2)

∫ ∞
0

e−
ρ2
4t q2t(k)t−s/2−1 dt.

By direct calculation we can show that ϕs,ρ ∈ L1(K) and satisfies the equation(
∆ + ∂2

ρ + 1− s
ρ

∂ρ

)(
ρsϕs,ρ

)
(k) = 0.

Moreover, using the spectral expansion of the heat kernel, it is not hard to show
that

lim
ρ→0

ρ1−s∂ρ
(
χπ ∗ ρsϕs,ρ)(k) = csλ

s
πχπ(k)

for any π ∈ K̂. In view of (2.1) it then follows that for any f ∈ H the H valued
function

u(ρ) = ρs
∫
K

ϕs,ρ(k)π(k)∗f dk

solves the following extension problem for the operator π(∆):(
π(∆) + ∂2

ρ + 1− s
ρ

∂ρ

)
u(ρ) = 0, u(0) = f.

We now specialise to the case where H = HL2(G, νt) which is the image of
L2(K) under the Segal–Bargmann transform. This space is invariant under the
left action of K on KC. Thus we can define a representation π of K on HL2(G, νt)
by setting π(k)F (g) = F (k−1g), g ∈ G. We denote the operator π(∆) by ∆C and
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call it the complexified Laplacian. From the above discussions it follows that a
solution of the extension problem(

∆C + ∂2
ρ + 1− s

ρ
∂ρ

)
U(g, ρ) = 0, U(g, 0) = F (g) (2.1)

is given by the integral representation

U(g, ρ) = ρs
∫
K

ϕs,ρ(k)F (kg) dk.

We now define D((−∆C)s/2) as the subspace ofHL2(G, νt) consisting of those F for
which ρ1−s∂ρU(g, ρ) with U defined as above has a limit in HL2(G, νt) as ρ → 0.
For any F ∈ D((−∆C)s/2) we then define (−∆C)s/2F as a (suitable) constant
multiple of the above limit.

Proposition 2.1. Let 0 < s < 2. For any F ∈ HL2(G, νt), F = f ∗ qt we have the
relation (−∆C)s/2F (g) = (−∆)s/2f ∗ qt(g).

Proof. Given F = f ∗ qt, consider the solution U(g, ρ) of the extension problem
given in (2.1). Since ϕs,ρ(k) = ϕs,ρ(k−1) (a property inherited from the heat kernel)
we see that U(k, ρ) = ρs

(
ϕs,ρ ∗ f

)
∗ qt(k) for all k ∈ K. But the same is true for

any g ∈ G; indeed,

U(g, ρ) = ρs
∫
K

ϕs,ρ(k)(f ∗ qt)(kg) dk.

Since
f ∗ qt(kg) =

∫
K

f(y)qt(y−1kg) dy =
∫
K

f(ky)qt(y−1g) dy,

in view of the relation
∫
K
ϕs,ρ(k)f(ky) dk = ϕs,ρ ∗ f(y) we see that

U(g, ρ) = ρs
∫
K

ϕs,ρ ∗ f(y)qt(y−1g) dy =
∫
K

u(y, ρ)qt(y−1g) dy.

Thus we have formula

(−∆C)s/2F (g) = cs lim
ρ→0

∫
K

ρ1−s∂ρu(y, ρ)qt(y−1g) dy = (−∆)s/2f ∗ qt(g),

where the convergence happens in HL2(G, νt) under the assumption on F . This
proves the proposition. �

We have proved this relation (−∆C)s/2(f ∗ qt)(g) = (−∆)s/2f ∗ qt(g) for all
0 ≤ s < 2. We claim that the same holds for s = 2 as well. Recall that we have

∆π(k)∗F (g) = d

dt

∣∣∣
t=0

π(e−t∆k−1)F (g) = −π(∆)π(k)∗F (g),

where ∆ is applied in the k variable and π(∆) in the g variable. A simple calculation
shows that π(k)∗F (g) = π(k−1)f ∗ qt(g) and hence with Ry standing for right
translation

∆π(k)∗F (g) =
∫
K

∆(Ryf(k))qt(y−1g) dy =
∫
K

(∆f)(ky)qt(y−1g) dy,
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where we have used the bi-invariance of ∆. This proves that π(∆)(π(k)∗F )(g) =
(∆f) ∗ qt(kg). Evaluating at the identity we get ∆C(f ∗ qt) = (∆f) ∗ qt.

The above has some interesting consequences. Observe that f ∗ qt(g) is an
eigenfunction of ∆C whenever f is an eigenfunction of ∆. In particular, for any
f ∈ L2(K) and π ∈ K̂ the holomorphic function f ∗ χπ(g) is an eigenfunction of
∆C with eigenvalue −λ2

π. The spectral decomposition of ∆C is given by

−∆CF (g) =
∑
π∈K̂

dπ λ
2
πe
− 1

2λ
2
πf ∗ χπ(g)

whenever F = f ∗ qt. In view of this we can define the fractional powers (−∆C)s/2
by spectral theorem as

(−∆C)s/2F (g) =
∑
π∈K̂

dπ λ
s
πe
− 1

2λ
2
πf ∗ χπ(g) = ((−∆)s/2f) ∗ qt(g).

Therefore, for any s ≥ 0 we can now define Hs(G, νt) as the subspace of HL2(G, νt)
consisting of F for which (−∆C)s/2 ∈ HL2(G, νt). In view of the above it follows
that Ct : Hs(K)→ Hs(G, νt) is an isometric isomorphism.

Thus we have defined the holomorphic Sobolev spaces Hs(G, νt) for any s ≥ 0
as the image of Hs(K) under Ct. However, we would like to come up with an
intrinsic definition which does not use any information on the function f . Recall
that when s = 2m the definition does not involve f explicitly as it only requires
that (−∆C)mF belong to L2(G, νt). We are interested in coming up with such a
definition for fractional order Sobolev spaces.

In order to motivate what we plan to do, observe that for any s, t ≥ 0 we have the
semigroup property (−∆C)s/2(−∆C)t/2 = (−∆C)(s+t)/2. Assuming that we can de-
fine negative powers of−∆C we expect the relation (−∆C)s/2 = (−∆C)(−∆C)−1+s/2.
This suggests that we need to look at (−∆C)−γ and hence (−∆)−γ for γ > 0. Recall
that (−∆)−γ is defined by the gamma integral

(−∆)−γf = 1
Γ(γ)

∫ ∞
0

rγ−1 er∆f dr.

Since constants are annihilated by ∆, they do not belong to the domain of (−∆)−γ .
Instead of excluding constants we consider the truncated Gamma integral

Rγt f = 1
Γ(γ)

∫ t

0
rγ−1 er∆f dr.

Observe that Rγt f is defined for any f ∈ L2(K) and as t tends to ∞ it converges
to (−∆)−γf for all f with integral zero.

We would like to replace (−∆C)s/2F in the definition of Hs(G, νt) by
(−∆C)R1−s/2

t F where we set Rγt F = (Rγt f) ∗ qt. Observe that (−∆C)R1−s/2
t F =

R
1−s/2
t (−∆C)F . We will now show that a given function F ∈ HL2(G, νt) belongs to

the weighted Bergman spaceHL2(G,wt,1−s/2) if and only if R1−s/2
t F ∈ HL2(G, νt).

Once this is done, we will redefine Hs0(G, νt) as the space of F ∈ HL2(G, νt) such
that ∆CF ∈ HL2(G,wt,1−s/2). Of course we need to check that both definitions
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coincide and this new definition can be extended for all s > 0. We begin with our
first claim. For γ > 0 we define the weight function

wt,γ(g) = 1
Γ(2γ)

∫ t

0
r2γ−1 νt−r(g) dr = 1

Γ(2γ)

∫ t

0
(t− r)2γ−1 νr(g) dr,

which is just the Riemann–Liouville fractional integral of νt.

Theorem 2.2. Let γ > 0. For any F ∈ HL2(G, νt), Rγt F ∈ Hs0(G, νt) if and only
if F ∈ HL2(G,wt,γ).

Proof. We prove this theorem by an application of Theorem 1.1. So we need to
compute

σt,γ(π) = d−1
π

∫
G

‖π(g−1)‖2wt,γ(g)dg = 1
Γ(2γ)

∫ t

0
(t− r)2γ−1σr(π) dr,

where σr(π) has been already calculated:

σr(π) = d−1
π

∫
G

‖π(g−1)‖2νr(g) = erλ
2
π .

Thus σt,γ(π) is explicitly given by

σt,γ(π) = 1
Γ(2γ)

∫ t

0
(t− r)2γ−1erλ

2
πdr = etλ

2
π

1
Γ(2γ)

∫ t

0
r2γ−1e−rλ

2
πdr.

Therefore, in view of Theorem 1.1 we have the equality∫
G

|F (g)|2wt,γ(g)dg =
∑
π∈K̂

dπ‖π(f)‖2e−tλ
2
πσt,γ(π). (2.2)

In view of the easily verifiable estimate

Cλ−4γ
π ≤ 1

Γ(2γ)

∫ t

0
r2γ−1e−rλ

2
πdr ≤ λ−4γ

π

we conclude that the left hand side of (2.2) is finite if and only if∑
π∈K̂

dπ‖π(f)‖2λ−4γ
π <∞.

And this happens precisely when Rγt F belongs to HL2(G, νt). Indeed, Rγt F (g) =
(Rγt f) ∗ qt(g) and hence we need to check if Rγt f ∈ L2(K). But

π(Rγt f) = π(f) 1
Γ(γ)

∫ t

0
rγ−1 e−rλ

2
π dr.

As the integral behaves like λ−2γ
π our claim is proved. Hence so is the theorem. �

Corollary 2.3. For any 0 < s < 2 a function F ∈ HL2(G, νt) belongs to Hs0(G, νt)
if and only if ∆CF ∈ HL2(G,wt,1−s/2).
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We are ready to define Hs0(G, νt) for any s > 0. Fix any integer m such that
0 < s < 2m. We say that a function F from HL2(G, νt) belongs to Hs0(G, νt) if and
only if ∆m

C F ∈ HL2(G,wt,m−s/2). We remark that as s→ 2m the weight function
wt,m−s/2 converges to νt and hence the new definition coincides with the original
definition given in [5]. From the above proof, we can also restate the definition
as follows: F ∈ Hs0(G, νt) if and only if (−∆C)mRm−s/2t F ∈ HL2(G, νt). Since
∆m

C F makes sense for any F ∈ HL2(G, νt), it is the integrability condition, namely
that ∆m

C F is square integrable with respect to the measure wt,m−s/2(g) dg, that
determines whether F ∈ Hs0(G, νt) or not.

Corollary 2.4. For any s ≥ 0 the Segal–Bargmann transform Ct : Hs(K) →
Hs0(G, νt) is an isomorphism.

Remark 2.5. Consider the operators (−∆C)mRm−s/2t acting on HL2(G, νt). By
definition, if F = f ∗ qt we have (−∆C)mRm−s/2t F = ((−∆)mRm−s/2t f) ∗ qt. Thus

∆m
C R

m−s/2
t (f ∗ qt)(g) = 1

Γ(m− s/2)

∫ t

0
rm−s/2−1(∆mf ∗ qr+t)(g) dr.

Using the fact that 1
2∆(f ∗ qt) = ∂t(f ∗ qt) we can rewrite the above as

∆m
C R

m−s/2
t F (g) = 2m

Γ(m− s/2)

∫ t

0
rm−s/2−1∂mr (f ∗ qt+r)(g) dr.

This suggests that we consider the map Cst f(g) = f ∗ qst (g), where

qst (k) = 2m

Γ(m− s/2)

∫ t

0
rm−s/2−1∂mr qr(k) dr

and study its mapping properties. In view of Theorem 1.1, a simple calculation
shows that ∫

G

|Cst f(g)|2νt(g)dg =
∑
π∈K̂

dπ‖π(f)‖2λ4m
π (µt,m−s/2(π))2,

where Γ(γ)µt,γ(π) =
∫ t

0 r
γ−1e−

1
2 rλ

2
πdr which behaves like λ−2γ

π . Consequently, we
see that

C1‖f‖2(s) ≤
∫
G

|Cst f(g)|2νt(g)dg ≤ C2‖f‖2(s).

Hence the generalised Segal–Bargmann transform Cst : Hs(K)→ HL2(G, νt) is an
isomorphism.

3. Holomorphic Sobolev spaces for the Hermite operator

As we mentioned in the introduction, the proofs of Theorems 1.6 and 1.7 depend
on Gutzmer’s formula which we recall now. Consider a family of unitary operators
acting on L2(Rn) which are explicitly given by

π(x, u)ϕ(ξ) = ei(x·ξ+
1
2x·u)ϕ(ξ + y), ϕ ∈ L2(Rn)

indexed by (x, u) ∈ R2n. These are related to the Schrödinger representation π1
of the Heisenberg group Hn. Observe that π(z, w)F (ζ) can be defined similarly
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for (z, w) ∈ C2n when F is holomorphic. However, π(z, w)F (ξ) need not be in
L2(Rn) unless further assumptions are made on F . Assuming that F is such a
function, we are interested in finding a formula for ‖π(z, w)F (·)‖L2(Rn). In order to
state Gutzmer’s formula we need to introduce some more notation. Let Sp(n,R)
stand for the symplectic group consisting of 2n×2n real matrices that preserve the
symplectic form [(x, u), (y, v)] = (u ·y−v ·x)on R2n and have determinant one. Let
O(2n,R) be the orthogonal group and we define K = Sp(n,R) ∩ O(2n,R). Then
there is a one to one correspondence between K and the unitary group U(n). The
action of σ = a + ib ∈ U(n) on R2n is given by σ(x, u) = (ax − bu, bx + au) and
this has a natural extension to C2n. We have the following result which is known
as Gutzmer’s formula for the Hermite expansions, see [12].

Theorem 3.1. Let F be a holomorphic function on Cn whose restriction to Rn is
denoted by f. Then for any z = x+ iy, w = u+ iv in Cn we have∫
Rn

(∫
K

|π(σ(z, w))F (ξ)|2 dσ
)
dξ = e(u·y−v·x)

∞∑
k=0

k!(n− 1)!
(k + n− 1)!ϕk(2iy, 2iv)‖Pkf‖22.

In the above formula, Pk are the orthogonal projections appearing in the spectral
decomposition of the Hermite operator: thus

f =
∞∑
k=0

Pkf, H =
∞∑
k=0

(2k + n)Pkf .

If Ln−1
k (t) stand for the Laguerre polynomials of type (n − 1) then the functions

ϕk(z, w) are defined by

ϕk(z, w) = Ln−1
k (1

2(z2 + w2))e− 1
4 (z2+w2).

The normalised Hermite functions, indexed by α ∈ Nn, are of the form Φα(x) =
cαHα(x)e− 1

2 |x|
2 where Hα are the Hermite polynomials. These are eigenfunctions

of the Hermite operator H with eigenvalues (2k+n) and they form an orthonormal
basis for L2(Rn). The Hermite semigroup Tt = e−tH is then defined by

Ttf(x) =
∞∑
k=0

e−(2k+n)tPkf(x).

As Pkf is a finite linear combination of Φα, |α| = k it is clear that it has a holo-
morphic extension to Cn. It can be shown that the same is true of Ttf for all
f ∈ L2(Rn) and the map taking f into Ttf(z) is known as the heat kernel trans-
form associated to the Hermite operator. We need one more ingredient which is
the analogue of (1.1) in the Hermite setting. If we let

pt(y, v) = cn(sinh t)−ne− 1
4 (coth t)(y2+v2)

then we have the interesting formula
k!(n− 1)!

(k + n− 1)!

∫
Rn

∫
Rn
ϕk(2iy, 2iv)p2t(2y, 2v) dydv = e2(2k+n)t.
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We refer the reader to [13] for a proof of this and to [12] to see how it is used along
with Gutzmer’s formula to deduce Theorem 1.5.

Proof of Theorem 1.6. We start with the following observation: it is easily seen
that the weight function Ut(z) is equal to the integral

Ut(ξ + iv) =
∫
Rn
p2t(2y, 2v)e−2y·ξ dy = cn(sinh 4t)−n/2e−(coth 2t)|v|2+(tanh 2t)|ξ|2 .

Now Gutzmer’s formula applied to T st f gives us∫
R2n

(∫
Rn

∫
K

|π(σ(iy, iv))T st f(ξ)|2 dσdξ
)
p2t(2y, 2v) dydv

=
∞∑
k=0

e2t(2k+n)(2k + n)2m(at,m−s/2(k))2‖Pkf‖22,

where

at,γ(k) = 1
Γ(γ)

∫ t

0
rγ−1e−(r+t)(2k+n)dr = e−t(2k+n) 1

Γ(γ)

∫ t

0
rγ−1e−r(2k+n)dr.

Observe that et(2k+n)at,m−s/2(k) behaves like (2k +m)−m+s/2 and hence
∞∑
k=0

e2t(2k+n)(2k + n)2m(at,m−s/2(k))2‖Pkf‖22

is equivalent to the norm in W s,2
H (Rn). On the other hand, as p2t(2y, 2v) is invariant

under the action of K we have∫
R2n

(∫
Rn

∫
K

|π(σ(iy, iv))T st f(ξ)|2 dσdξ
)
p2t(2y, 2v) dydv

=
∫
R2n

(∫
Rn
|π((iy, iv))T st f(ξ)|2 dξ

)
p2t(2y, 2v) dydv.

Recalling the definition of π(iy, iv) and making use of (3.2) we see that the above
integral simplifies to the square of the norm of T st f(z) in L2(Cn, Ut). This completes
the proof of Theorem 1.6.

Proof of Theorem 1.7. Recall that we have defined the complexified Hermite oper-
ator as HC =

∑n
j=1(− ∂2

∂z2
j

+ z2
j ). When F is holomorphic, ∂

∂zj
F (z) = ∂

∂xj
F (z) and

hence the restriction of HCF to Rn is just HF . Consequently, if F is an eigenfunc-
tion of H having a holomorphic extension to Cn we see that F (z) is an eigenfunction
of HC. In particular, applied to Pkf(z) we conclude that HCPkf(z) = Pk(Hf)(z)
and this leads to the relation HCTtf(z) = Tt(Hf)(z).(∫

Rn

∫
K

|π(σ(iy, iv))Hm
C (Ttf)(ξ)|2 dσdξ

)
=
∞∑
k=0

e−2t(2k+n)(2k + n)2m k!(n− 1)!
(k + n− 1)!ϕk(2iy, 2iv)‖Pkf‖22.
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Integrating the above against the K-invariant weight function

1
Γ(2m− s)

∫ t

0
(t− r)2m−s−1p2r(2y, 2v) dr

we obtain the following identity:

1
Γ(2m− s)

∫ t

0
(t−r)2m−s−1

(∫
R2n

∫
Rn
|π((iy, iv))Hm

C (Ttf)(ξ)|2p2r(2y, 2v) dξdydv
)

=
∞∑
k=0

e−2t(2k+n)(2k + n)2m
( 1

Γ(2m− s)

∫ t

0
(t− r)2m−s−1e2r(2k+n)dr

)
‖Pkf‖22.

Now the right hand side is equivalent to the square of the W s,2
H (Rn) norm of f

whereas the left hand simplifies to∫
Rn

∫
Rn
|Ttf(ξ + iv)|2Ut,m−s/2(ξ + iv) dξdv,

where Ut,m−s/2(ξ + iv) is given by the integral

1
Γ(2m− s)

∫ t

0
(t− r)2m−s−1

(∫
Rn
e−2y·ξp2r(2y, 2v) dy

)
dr

= 1
Γ(2m− s)

∫ t

0
(t− r)2m−s−1Ur(ξ + iv) dr.

This completes the proof of Theorem 1.7.
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