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1. Introduction

The rapid technological advancements in sensor
technologies, communication systems and intelligent data-
driven techniques make the CNC machines and their 
processes more intelligent. These new-generation CNC 
machines can yield machining data faster from the in-built 
machine sensors. As a result, these data can be used to build 
predictive models that would guide better process planning as 
well as machine maintenance activities. Typically, data-driven 
methods such as machine learning (ML) techniques are 
directly applied to these machining data and build the required 
data-driven models [1]. Moreover, there is a growing practice 
of connecting the theory behind the physical phenomena and 
data-driven techniques for better model performance and 
thereby address data insufficiency [2]. Hence, these physics-
guided data-driven techniques can be extended to build 
predictive models for evaluating the performance of CNC 
machining process by fusing the reported theories behind the 
corresponding machining outputs and data-driven techniques.                                   

1.1. Key performance indicators (KPIs) of CNC machining 
operations 

Generally, industries assess the effectiveness of their 
selection of cutting parameters on output by calculating the 
key performance indicators (KPIs) of machining process [3]. 
Therefore, their machining objectives can be optimized by 
appropriately choosing the machining parameters at the 
process level [4]. The primary categories of process KPIs in 
CNC machining processes are productivity, quality, and 
sustainability factors [5]. Fig. 1. shows the list of KPI 
categories and its major indicators of the CNC machining 
process that are impacted by selection of cutting parameters.  

Machining time, which is an indicator for productivity 
assessment, depends upon the material removal rate. That can 
be improved by better combination of feed rate, width of cut 
and depth of cut [6]. Similarly machining quality parameters 
such as surface quality and accuracy can also be improved by 
properly selecting cutting parameters [7]. Nowadays, 
organizations are implementing sustainable practices to 
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reduce their energy consumption. Controlling the cutting 
parameters during process planning stage can improve the 
energy efficiency of machining process [8]. Therefore, 
accurate predictive models of these performance indicators 
can be used to predict the machining outputs and thereby 
optimize the machining operations.  

Fig. 1. Major process KPIs in CNC machining.

1.2. Model building methods of process KPIs in CNC 
machining 

The classical methods of calculating the machining KPIs 
were calculating them from the physics-based equations with 
cutting parameters data. However, these modeling methods 
are made generic in theory because of the difficulties involved 
in building relationship between cutting parameters of 
complex machining phenomena [9]. Alternatively, empirical 
modeling techniques are predominantly used for building the 
predictive models of performance indicators. In that 
technique, experiments are conducted, and empirical methods 
draw the relationships between the cutting parameters and 
machining outputs [10]. With the large amount of machining 
data from the sensors and process planning systems, data-
driven models such as ML algorithms derive better accurate 
models for predicting the performance indicators [11]. Among 
those techniques, Gaussian process regression (GPR) is used 
for building predictive models of energy consumption with 
NC level data preparation with its cutting parameters [12]. 
Deep neural networks (DNNs) are used for building 
predictive models for machining time in the cases where the 
feed fluctuation leads to increased machining time [13]. 
Artificial neural networks (ANNs) and support vector 
machines (SVM) have been used for building surface 
roughness prediction models [14, 15]. These data-driven 
models provide accurate results within the specified limit of 
collected data without the inclusion of theory behind the 
machining processes. 

2. Physics-guided data-driven approaches in predictive
modeling

The scientific community has started applying the 
theoretical knowledge along with data-driven techniques to 
generalise the models. This leads to include the scientific 
findings in the process to the learning mechanism of data-
driven techniques. There are several methods reported to 
include the physical phenomena in the data-driven techniques. 
Fig. 2. explains the list of methodologies reported to combine 
the theoretical knowledge and the data-driven techniques [16].  

 In the manufacturing process as well, these techniques can 

be extended to apply with physics of metal cutting. With 
physics-guided data-driven techniques, tool wear prediction of 
machining can be made to avoid the physical inconsistencies 
in the conventional data-driven methods to predict the tool 
wear [17]. Similarly, a physics-guided neural network was 
introduced for predicting tool wear, which shows that its 
results are better than the accuracy of a data-driven model 
[18]. A physics-guided logistic classification technique is 
reported, and it needs a lower data set to optimise the 
machining conditions in the production environment than a 
data-driven method [19]. A self-machining system with a 
physics-guided data-driven method is proposed for improved 
accuracy by fusing the decades of knowledge gained with the 
experimental data with data-driven methods [20]. Similarly, a 
growing practice to use these physics-guided data-driven 
techniques are there in operations of cyber-physical systems 
(CPSs), where sensor data and scientific knowledge of 
process can be fused together with data-driven methods [21]. 
New generation CNC machines are considered as a CPS 
system that can be extended to work with physics-guided 
data-driven methods for predictive modelling of KPIs. 

Fig. 2. Physics-guided data-driven methods.

    For the prediction of KPIs of machining process the 
physics-guided data-driven methods can be applied with 
existing scientific knowledge in the machining process. The 
method used in this work is the hybrid physics-ML method, in 
which the output from the physics equations is supplied as a 
feature in the data-driven method as illustrated in Fig. 3.  

Fig. 3. Architecture of hybrid physics-ML model.

Therefore, the derived scientific knowledge that are 
available for the prediction of performance indicators can be 
made use with hybrid-physics ML method for better model 
accuracy. To check the feasibility of hybrid physics– ML 
method for predicting machining KPIs, predictive models of 
energy consumption and surface roughness with the 
experimental data is built in this work.  
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3. Data preparation model building

Data required for the model building was prepared by 
conducting machining experiments in a milling machine. The 
experiment was planned, and the process planning data was 
also included for building the models. The output of the 
machining experiments was captured from the execution and 
quality measurement system. 

3.1. Data generation 

Initially, a contoured surface was modelled in the NX 
software modelling environment. After that, a 3-axis contour 
machining strategy was applied over the surface to generate a 
toolpath. Fig. 4. shows the generated CAD surface and the 
toolpath on the NX software platform. Sixteen samples were 
made to apply the combination of cutting parameters with 
different levels of variables, as given in Table 1. The NC code 
was generated for all the 16 toolpaths, and it was executed in 
the CNC milling machine. The chosen material was 
aluminium and 16 mm diameter ball end mill was used for 
machining. The data generated from the CNC machine was 
collected through the TRACE function of the SIEMENS 
controller. Power data of the axes was collected with a sample 
rate of 4 milliseconds. At the end of the machining, the 
surface roughness value (Ra value) of all samples was 
measured with a profilometer. Finally, these collected data 
processed for building the models. 

Fig. 4. Toolpath generation on contour surface.

Table 1. Levels of variables used for the experiments.

Speed 

(rpm) 

Feed 

(mm/min) 

Width of 
cut 

(mm) 

Depth 
of cut 

(mm) 

Cutting 
direction 

Coolant 

1000 200 0.2 0.5 Up On 

2000 800 0.6 1.5 Down Off 

3000 1400 1.0 2.5 - - 

4000 2000 1.4 3.5 - - 

3.2. Data cleaning 

The dataset for building the hybrid model is prepared 
according to the executed NC block in the machine. That is, 
each NC block is taken as a dataset. Against each data set, all 
the input parameters and output are mentioned by cleaning the 
sensor and process planning data. The energy consumption 
value is calculated from the power data of all axes motors and 

the spindle motor of the CNC machine. The total power is 
summed and multiplied by the machining time of the NC 
block to get the energy consumption per NC block in Joules. 
Similarly, the Ra value of the dataset is considered at the NC 
block level. Therefore, the Ra value is taken as the same for 
all the NC blocks for a particular experiment. Fig. 5. shows a 
sample of cleaned datasets. After the datasets were prepared 
similarly across all the 16 experiments, three variants of 
models were built for Ra value and energy consumption 
prediction models. Those were physics-based models, data-
driven models, and hybrid physics-ML models. Total 3161 
datasets from 16 experiments were prepared at the NC block 
level to build these models. Among these datasets, 2012 
datasets of 10 experiments were used for training all the 
models and 504 datasets of 3 experiments were used to 
validate the models. The remaining 645 datasets of 3 
experiments are kept for testing the built models. 

Fig. 5. Sample cleaned data blocks.

3.3. Preparation of hybrid physics-ML model for energy 
prediction 

The major contributors to the energy consumption for the 
machining operation, such as feed rate, spindle speed, depth 
of cut, width of cut and the cut length, are considered for 
building the data-driven model of energy consumption. Fig. 6. 
shows the data-driven model building method for predicting 
energy with cutting parameters as input by the deep neural 
network. 

Fig. 6. Data-driven framework of energy prediction.

For the physics-based energy prediction model, the classic 
method of calculating the energy consumption for the milling 
machine process is applied. The physics-based calculation of 
the energy is prepared from the method discussed in the 
literature [22]. The equation is as follows. 

(1) 
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In the equation (1) P is cutting power in watts, ap is the 
depth of cut in mm, ae is width of cut in mm, vf is feed rate in 
mm per minute and kc is specific cutting force for the 
material. Here the material for milling was used aluminium. 
So specific cutting force value is taken as 700 N/mm2 from 
the tool databook [23]. After calculating the power, the energy 
per NC block is calculated by multiplying the machining time 
with the calculated power. These modelling techniques are 
made tested separately, and their accuracy is compared with 
the hybrid physics-ML model's accuracy. 

3.4. Preparation of hybrid physics-ML model for surface 
roughness prediction 

Fig. 7. Data-driven framework of surface roughness prediction.

Surface roughness is a complex phenomenon which are 
affected by cutting parameters and machining environment. 
The data driven formulation of surface roughness prediction is 
formed as discussed in Fig. 7. with the cutting parameters. 
The used variables for the surface roughness building are feed 
rate, spindle speed, depth of cut, and width of cut, cut 
direction and coolant status.  

Empirical and geometrical research findings are reported 
for calculation of roughness value in milling operation using 
ball end mill. In this work a geometry-based calculation of 
surface roughness is that was reported is considered as 
physics input for the hybrid model. The calculation is as 
follows [24].  

(2) 
Value y is given from equation (3). 

(3) 

Value h is given from equation (4). 

(4) 

Here value R is the radius of the ball end mill used for the 
experiment. That is 8 mm since the diameter was 16 mm. Ae 
is the width of cut which is varied as per the experiments. 
After obtaining the Ra value from this equation it is converted 
to micrometres by multiplying by factor of 1000 since the 
equation output is in mm. These data-driven model and 

physics-based models are used for predicting the surface 
roughness values for comparing with the hybrid physics-ML 
model. 

4. Model building and result discussion

The models are developed with a deep neural network and 
its hyper parameters were kept the same for all the models for 
the comparison purpose. The hyper parameters of the model 
are explained in Table 2. For building the hybrid model for 
predicting energy consumption, initially the energy is 
calculated with physics equation, and its output is given as a 
feature input to the data driven model as an additional feature. 
Fig. 8. explains the methodology of fusing the theory of 
energy calculation with the data-driven techniques. The 
prediction output is tested with the test data samples and its 
accuracy is plotted in Fig. 9. For comparing the accuracy with 
physics and data-driven methods, MSE and RMSE of all the 
three models are discussed in Table 3. The results show that 
the addition of physics-based calculation as an input to the 
data-driven modelling is improving the model performance. 

Fig. 8. Hybrid physics-ML architecture of energy prediction.

Similarly for the surface roughness prediction, the 
geometry-based calculation is used to calculate the physical 
value of the surface roughness and it is fed into the data-
driven framework as a new feature. Fig. 10. explains the 
methodology of fusing the theory of surface roughness 
geometry with the data-driven techniques. Fig. 11. shows the 
prediction accuracy of the surface roughness models after 
testing. Table 4. shows the comparison of all three models of 
surface roughness prediction.  

Fig. 9. Testing result of energy prediction with models.
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Similar to hybrid method of energy prediction model, the 
surface roughness hybrid model accuracy also getting 
improved by fusing the theoretical knowledge. Therefore, the 
results show that the accuracy of both surface roughness 
prediction and energy consumption prediction is getting 
improved by adding theory behind those phenomena, in the 
hybrid physics-ML method. 

Fig. 10. Hybrid physics-ML architecture of surface roughness prediction.

Table 2. Hyperparameters of fully connected deep neural network.

Parameter Value/Method 

No: of Hidden layers  

No: of units per hidden layer  

Activation function  

Loss function 

Optimizer  

Dropout  

Batch size  

Epoch  

4 

{32,512,128,32} 

ReLU  

Mean square error  

Adam  

0.4  

10 

100 

Table 3. Accuracy comparison: energy prediction models.

Model MAE(Joules) RMSE(Joules) 

Physics-based 

Data-driven 

Hybrid physics-ML 

10.68 

3.73 

2.44 

12.56 

5.01 

3.04 

Fig. 11. Testing result of surface roughness prediction with models.

Table 4. Accuracy comparison: surface roughness prediction models.

Model MAE (µm) RMSE (µm) 

Physics-based 

Data-driven 

Hybrid physics-ML 

1.02 

1.61 

0.95 

1.15 

1.68 

0.96 

5. Conclusion

The data-driven techniques are widely used for predictive
modelling applications in manufacturing with the plentiful 
data collected from the manufacturing systems. Similarly, 
years of research in the theoretical and empirical findings are 
also functional to make use for manufacturing applications. 
This scientific information in manufacturing and data-driven 
methods can make the predictive models more robust by 
integrating them. This growing practice of developing 
physics-guided data-driven models would generalise the 
model with better accuracy, and thereby it can address the 
data insufficiency in data-driven modelling applications. 

This paper uses the hybrid physics-ML method to build the 
predictive models for KPIs in the CNC machining process for 
better accuracy. Subsequently, the accuracy obtained for the 
hybrid physics-ML model of the surface roughness and the 
energy consumption is compared with a physics-based and 
data-driven model. This work can also be extended to predict 
other KPIs of the CNC machining process, with the respective 
theoretical findings in predictive modelling. This work uses a 
deep neural network to compare the hybrid physics-ML 
model with the physics-based and the data-driven models. 
Similarly, other ML methods can also be applied to build 
hybrid data-driven models. Also, additional theories and 
empirical models of surface roughness and energy 
calculations can be added to this hybrid physics-ML models 
for better results. Other than hybrid physics-ML method, 
techniques reported to build physics-guided data-driven 
techniques, can be applied to build predictive models of 
machining process KPIs. Finally, the models which are 
derived by the hybrid physics-ML method can be utilised for 
the real-time predictions in the digital twin of CNC machining 
processes, in future work. 
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