
Article
Effects of microRNA-mediated negative feedback on
gene expression noise
Raunak Adhikary,1 Arnab Roy,1 Mohit Kumar Jolly,2 and Dipjyoti Das1,*
1Department of Biological Sciences, Indian Institute of Science Education And Research Kolkata Mohanpur, Nadia, West Bengal, India and
2Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
ABSTRACT MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally in eukary-
otes by binding with target mRNAs and preventing translation. miRNA-mediated feedback motifs are ubiquitous in various ge-
netic networks that control cellular decision making. A key question is how such a feedback mechanism may affect gene
expression noise. To answer this, we have developed a mathematical model to study the effects of a miRNA-dependent nega-
tive-feedback loop on mean expression and noise in target mRNAs. Combining analytics and simulations, we show the exis-
tence of an expression threshold demarcating repressed and expressed regimes in agreement with earlier studies. The
steady-state mRNA distributions are bimodal near the threshold, where copy numbers of mRNAs and miRNAs exhibit enhanced
anticorrelated fluctuations. Moreover, variation of negative-feedback strength shifts the threshold locations and modulates the
noise profiles. Notably, the miRNA-mRNA binding affinity and feedback strength collectively shape the bimodality. We also
compare our model with a direct auto-repression motif, where a gene produces its own repressor. Auto-repression fails to pro-
duce bimodal mRNA distributions as found in miRNA-based indirect repression, suggesting the crucial role of miRNAs in
creating phenotypic diversity. Together, we demonstrate how miRNA-dependent negative feedback modifies the expression
threshold and leads to a broader parameter regime of bimodality compared to the no-feedback case.
SIGNIFICANCE How post-transcriptional regulation affects gene expression noise is an important open question. Small
noncoding RNAs, called microRNAs (miRNAs), bind to mRNAs, preventing translation in eukaryotes. The mRNA and
miRNA-producing genes are often coupled via feedback. Here, we focused on a miRNA-mediated negative-feedback loop
to theoretically study the mean and variance of target mRNAs. With increasing miRNA synthesis, we found that the mean
mRNA shifts from high to low levels beyond a threshold. The negative-feedback strength and the mRNA-miRNA catalytic
interaction collectively modulate these thresholds, where mRNA distributions display bimodality with enhanced number
fluctuations. Further, we compared an auto-repression motif with the miRNA-mediated repression and found that only the
latter can produce bimodality, signifying its role in phenotypic heterogeneity.
INTRODUCTION

To survive, cells actively regulate the processes of transcrip-
tion and translation in response to environmental cues (1).
However, since biological molecules are present in low
numbers in a cell and due to the heterogeneity of environ-
mental factors, large cell-to-cell fluctuations can exist in
mRNA and protein copy numbers. Thus, transcription and
translation are inherently stochastic processes leading to
the heterogeneity of gene products in genetically identical
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cell populations; this phenomenon is known as gene expres-
sion noise (2–5). Understanding how gene expression noise
is regulated has emerged as an important research area in
molecular biology (5–10).

Genes are mainly regulated via the binding and unbinding
of diverse transcription factors (TFs) at specific sites close to
the promoter. Such control on the promoter architecture
through TF binding can modulate expression noise, as found
in theoretical studies (5,11–16) and experiments (17–22).
Phenotypic consequences of expression variability were
also investigated, and it was found that gene expression
noise can control cell fate switching and have survival ben-
efits in varying environments (23–26).

Post-transcriptional regulation by short noncoding
RNAs is another common mechanism for controlling
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microRNA-mediated negative feedback
gene expression in both prokaryotes and eukaryotes. For
instance, noncoding small RNAs (sRNAs) in bacteria
bind with target mRNAs to facilitate mRNA degradation
(27–32). Similarly, eukaryotic microRNAs (miRNAs)
are about 22-nucleotide-long noncoding RNAs that
interact with mRNAs in a sequence-dependent manner.
After maturing into RNA-induced silencing complexes
(RISCs), miRNAs can bind to the 30 UTR of the target
mRNAs and then either degrade the transcript or
inhibit their translation (1,33). Such post-transcriptional
control by miRNAs affects various biological processes,
including animal development, stabilization of gene
expression as a stress response, and inhibition of cancer
metastasis (34–38).

Previous quantitative studies have suggested that the
interplay between mRNAs and miRNAs (or sRNAs) oc-
curs via a molecular titration-like mechanism (30,39).
However, the mode of interaction between miRNAs and
mRNAs is still debated. Some studies advocate an almost
catalytic interaction (40,41), and some suggest stoichio-
metric interaction (42–44). During catalytic interaction,
miRNAs recycle back, maintaining a pool (33,45,46),
whereas miRNAs and mRNAs could destroy each other
through stoichiometric interaction. On the other hand,
prokaryotic sRNAs mainly act stoichiometrically on their
target mRNAs (47,48). Nevertheless, both eukaryotic
miRNA and prokaryotic sRNA can produce a threshold-
like behavior at the mean expression level, with a sharp
demarcation of low- and high-expression regimes, due
to a competitive titration between miRNAs (or sRNAs)
and their targets (30,31,39,49). Although some theoretical
studies have focused on miRNA-mediated gene expres-
sion noise (46,49–51), there are still some differences in
opinions. For instance, one study (52) claimed that cata-
lytic interaction reduces gene expression noise compared
to stoichiometric interaction involving miRNAs, but
another study (49) asserted that both stoichiometric and
catalytic interactions produce qualitatively similar noise
in certain parameter regimes.

An exciting aspect of miRNA-mediated regulation is
that one class of miRNAs can affect many distinct genes,
leading to the competing endogenous RNA (ceRNA) hy-
pothesis, which suggests regulating the expression of
one gene by affecting the transcription of another gene
that shares the same pool of miRNAs. Theoretical and
experimental works based on the ceRNA hypothesis
have shown that multiple target mRNAs influence each
other nonlinearly through a common pool of miRNAs,
producing high variability in expression (33,45,53–55).
As reported in sRNA-dependent bimodal gene expression
(56), miRNA-dependent bimodal expression in ceRNA
networks was also predicted theoretically (33,49) and
later shown in experiments (45,46).

Notably, miRNA-dependent feedback motifs are ubiq-
uitous in regulatory networks (57), which dictate diverse
physiological and developmental processes, including
cell cycle control (58), cancer cell proliferation, chemo-
resistance, angiogenesis (59–61), and host-HIV interac-
tion (62). Feedback involving miRNAs establishes a
cross-talk between post-transcriptional and transcriptional
layers to precisely regulate some transitions of biological
states. For example, the network controlling epithelial-
mesenchymal transition during cancer progression in-
volves miRNA-mediated feedback loops. (63,64). Another
well-known example is the differentiation of precursor
cells into dopamine neurons in the midbrain, which is
governed by a negative-feedback loop involving the
miRNA, miR-133b, and the TF, pitx3 (65).

Despite mounting evidence that miRNAs are critical
downregulators of gene expression, the theoretical under-
standing of miRNA-based feedback loops in regulating
gene expression noise is still incomplete. Several theoret-
ical studies have focused on the miRNA-based feedback
loops, albeit mainly from a deterministic standpoint
focusing on the mean level (reviewed in (66)). Among
different feedback motifs, those involving negative feed-
back are of particular interest because of their capacity
to buffer gene expression noise (66–68). Using a deter-
ministic mean-field approach, Zhou et al. have studied a
miRNA-based single-negative-feedback loop (SNFL),
where a TF promotes the expression of a miRNA that,
in turn, inhibits the TF expression (69). Another study
focused on a similar SNFL to investigate both the mean
and noise of expression, but the interactions between the
miRNA-producing gene and TFs were modeled in a
coarse-grained way (70).

In this paper, we developed a detailedmodel of themiRNA-
mediated SNFL and investigated the properties of mean and
variance of expression in the steady state. We found that the
steady-state mean mRNA shows a threshold-linear behavior;
i.e., the mean is almost zero below a threshold transcription
rate, and the mean increases almost linearly above the
threshold. This observation agreeswith earlier studies without
any feedback (39,49). Such a threshold stems from a compet-
itive titration betweenmiRNAsandmRNAs, and the threshold
point corresponds to the situation when the numbers of
mRNAs and miRNAs are comparable. Our mean-field calcu-
lation also provided an analytical expression for the threshold,
which shows that the threshold point crucially depends on
miRNA’s catalytic interaction and feedback strength. Notably,
the noise in mRNA copy numbers also peaked in the thresh-
old’s vicinity, suggesting the genetic motif’s high sensitivity
at this region. We also found bimodal mRNA distributions
near the threshold, unlike a similar theoretical study on
miRNA-mediated negative feedback (70). Such bimodal dis-
tributions correspond to large anticorrelated fluctuation in
miRNA andmRNA numbers, suggesting stochastic switching
of mRNAs between two states: miRNA bound (repressing the
target mRNAs) and miRNA unbound (expressing the
mRNAs).
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FIGURE 1 Schematic diagram of miRNA-mediated negative feedback

showing various kinetic processes with corresponding rates (see model

and Table 1). The miRNAs bind with the target mRNAs to form

miRNA-mRNA complexes. The complexes degrade with a rate ag, or

the miRNAs act catalytically, degrading only the mRNAs (rate ð1 �
aÞg). The parameter a ( 0%a% 1; called catalyticity parameter) deter-

mines the fraction of miRNAs that are degraded when they are bound to

mRNAs. The mRNAs produce a transcription factor (TF) that activates a

miRNA-coding gene and enhances its transcription rate more than the

basal rate (in general, ks > k0s ). Thus, the miRNA-coding gene toggles be-

tween on (activated) and off (basal) states. Here, b ¼ kact=kdeact can be

considered as the feedback strength, whereas g ¼ kþg=ðk� þgÞ is an

effective association rate between miRNAs and mRNAs. To see this

figure in color, go online.
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Finally, we compared the outputs of a miRNA-mediated
negative-feedback loop with a negative auto-regulatory
loop since auto-regulatory motifs are essential compo-
nents in many genetic networks often seen in various bio-
logical contexts (71–73). An auto-regulatory motif, where
a protein expressed from a gene acts as a TF for the same
gene, can be either positive or negative, depending on
whether the TF enhances or suppresses its own expres-
sion. A positive auto-regulation produces bi-stable expres-
sion, and subsequent bimodal protein distribution,
enhancing the expression noise (71,74–78), whereas nega-
tive auto-regulation can suppress noise (79–82). However,
some recent theoretical studies created a difference in
opinion using different assumptions and showed that
negative auto-regulation can also enhance noise in certain
situations (83,84). These contradictory results were
resolved by a recent study (85) where the authors decom-
posed the total noise into the feedback-free noise and the
feedback coefficient and showed that positive feedback
enhances the feedback coefficient (rather than the total
noise), whereas negative feedback reduces it.

When we compared our model of miRNA-based negative
feedback with an auto-repression, at first glance, both cir-
cuits exhibited qualitatively similar behavior of the mean
and noise as functions of respective feedback strengths.
However, we found that negative feedback involving
miRNAs produces bimodal mRNA distribution by ampli-
fying noise, but auto-repression leads to only bell-shaped
mRNA distributions. Our study thus highlights the impor-
tance of miRNA-based negative feedback in producing
phenotypic diversity.
Model

We adapted a published model (33) of miRNA-mRNA
interaction (without any feedback) to describe the
miRNA-mediated negative-feedback loop (see Fig. 1). In
the model, the mRNA molecules are synthesized from
an mRNA-coding gene at a constant rate kr, and then pro-
tein molecules are produced from the mRNAs at a rate kp.
The mRNAs and proteins degrade with rates gr and gp,
respectively. The translation of mRNAs into proteins is in-
hibited post-transcriptionally by the miRNA molecules
produced from a miRNA-coding gene at a basal rate k0s .
The miRNAs degrade at a rate gs. The proteins can acti-
vate the miRNA-coding gene and increase the miRNA
synthesis rate, establishing a negative feedback on gene
expression. Thus, the miRNA-coding gene can be in two
distinct states based on the miRNA synthesis rate: miR-
NAs are produced either at a basal rate (k0s ) or at an
enhanced rate (ks > k0s ) (see Fig. 1). These states are
termed ‘‘off’’ (basal) and ‘‘on’’ (enhanced), respectively.
The protein binds at a rate kact to the miRNA-coding
gene, making it switch from off (basal) to on (enhanced)
state. Thus, kact is termed the activation rate of the miRNA
4222 Biophysical Journal 122, 4220–4240, November 7, 2023
gene. On the other hand, the switch from the on to off
state occurs when the bound protein dissociates from the
miRNA-coding gene (rate, kdeact). Note that the nondi-
mensional ratio b ¼ kact=kdeact can be considered as the
negative-feedback strength. Since the post-transcriptional
regulation of mRNAs takes place via direct association
and dissociation between mRNAs and miRNAs, we
consider the binding (rate kþ) and unbinding (rate k�) pro-
cesses between an mRNA and a miRNA, thereby forming
an mRNA-miRNA complex. The mRNA-miRNA complex
may disintegrate in two ways: 1) either the complex fully
degrades at a rate ag, simultaneously destroying both the
mRNA and miRNA molecules, or 2) only the bound
mRNA is degraded (with a rate ð1 � aÞg) and the
miRNA is recycled back. Here, g denote a complex disin-
tegration rate, and a (0%a% 1) is the catalyticity param-
eter. Note that a determines the fraction of miRNAs
recycled after dissociating from their target mRNAs.

Based on the model, we described the time evolution of
four stochastic integer-valued variables, namely the
instantaneous numbers of mRNAs, proteins, miRNAs,
and mRNA-miRNA complexes (denoted by rðtÞ; pðtÞ;
sðtÞ, and cðtÞ, respectively). Using the framework of sto-
chastic processes, we write down below the Master equa-
tion governing the joint probability distribution, Pr;p;s;cðtÞ,
defined as the probability of observing r; p; s; and c num-
ber of mRNAs, proteins, miRNAs, and complexes, respec-
tively, at a time t.
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TABLE 1 Description of parameters and their values

Symbol Description Value

kr mRNA synthesis rate varied (0.0 s� 1 - 1.0 s� 1)

gr mRNA degradation rate 0.0004 s� 1

kp protein synthesis rate 0.4 s� 1

gp protein degradation rate 0.0005 s� 1

ks miRNA synthesis rate in the

activated (on) state
varied (0.0 s� 1 - 1.0 s� 1)

k0s miRNA synthesis rate in

the basal (off) state
0.05 s� 1

gs miRNA degradation rate 0.0003 s� 1

kþ mRNA-miRNA association rate varied (0.001 s� 1-1.0 s� 1)

k� mRNA-miRNA dissociation rate 0.0036 s� 1

g mRNA-miRNA complex

degradation rate
0.0004 s� 1

a catalyticity parameter varied (0–1)

kact activation rate (off to on) of

miRNA-coding gene
varied (0.0 s� 1 - 0.01 s� 1)

kdeact deactivation rate (on to off)

of miRNA-coding gene
0.01 s� 1

Parameter values are taken from (33,49). Also see the discussion on realistic

parameter choice in section ‘‘materials and methods.’’

microRNA-mediated negative feedback
The Master equation (Eq. 1) is constructed by ac-
counting for the ‘‘gain’’ and ‘‘loss’’ terms corr-
esponding to all possible changes in the model
variables (r; p; s, or c). Here, Pr;p;s;cðtÞ is the joint
probability distribution irrespective of the miRNA-
gene state (on or off), and hence it can be broken into
two parts: Pr;p;s;cðtÞ ¼ POFF

r;p;s;cðtÞ þ PON
r;p;s;cðtÞ (correspond-

ing to each state; see Eq. S1.1–S1.3 in Supporting
material).

We obtained the time-evolution equations for means and
variances of our variables (i.e., first- and second-order mo-
ments) from the Master equation described above (see Eq.
S2.1–S2.29 in Supporting material). However, the moment
equations do not close themselves since each equation con-
tains the next higher-order moment. Due to this challenge,
we obtained approximate equations for the means and vari-
ances (by neglecting higher-order moments) that can be
tackled analytically (Eq. S3.1–S3.5 and Eq. S6.1–S6.20).
Alternatively, we performed exact stochastic simulations
(Gillespie simulations) (86) of our model using previously
used kinetic rates (see Table 1) and the following set of
reactions:
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where, GmRNA, G
OFF
miRNA, and GON

miRNA denote the mRNA-cod-
ing gene, the miRNA-coding gene in off and on states,
respectively. We calculated the moments of mRNA and
miRNA distributions from simulations in the steady state.
Below we summarize the results.
RESULTS

Feedback strength tunes the expression
threshold exhibited by target mRNAs and
enhances the noise around the threshold

Using the stochastic framework outlined before, we first
investigated how the negative feedback affects the mean
of mRNA copy numbers (CrD) in the steady state. Fig. 2 A
shows the mean mRNA obtained from the simulations as
a function of the mRNA transcription rate (kr) for different
feedback strengths. Both in the absence and presence of the
feedback, we found a threshold-like behavior of the mean;
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FIGURE 2 Varying negative-feedback strength modifies the expression threshold and enhances mRNA noise around the threshold. (A and B) The steady-

state mean mRNA and its Fano factor are shown against mRNA transcription rate for various feedback strengths (kact was varied, whereas kdeact was kept
fixed). In (A) and (B), data points are from simulations, whereas solid curves represent solutions of the approximate moment equations (see Eq. 2 in main text;

Eqs. S2.1–S2.9 and S6.1–S6.20 in Supporting material). Dashed slanted lines in (A) are the tangents to the mean mRNA curves (solid curves) at a point where

the change in slopes are maximum; these tangents intersect the kr axis at the threshold points. The vertical straight lines in (A) and (B) indicate respective

threshold values (kthr from Eq. 3 and Eq. 5). In (B), the Fano factors peak near the thresholds. (C–H) Heat plots show mRNA means (C–E) and Fano factors

(F–H) for different kact in the plane of catalyticity parameter (a) and mRNA transcription rate (kr). Color bars represent magnitudes of means and Fano

factors. Analytical formula of kthr (Eq. 3 and Eq. 5) yields respective separation boundaries between low- and high-expression regimes (white curves in

C–H). For the cases of no feedback (F) and high feedback (H), the high-noise regime coincides with the threshold boundaries. However, for low feedback

strength (G), the high-noise regime is broadened and lies between the threshold boundaries corresponding to the limiting cases of no feedback and very high

feedback (white dash curves in G re-plotted from F and H). For all panels, ks ¼ 0:5s� 1;kþ ¼ 1s� 1, whereas a ¼ 0:95 for (A) and (B). Other parameters

were from Table 1. To see this figure in color, go online.
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the miRNAs repress the target mRNAs making the mRNA
mean almost zero up to a threshold transcription rate, and
the mean increases almost linearly above the threshold.
This behavior was already reported in previous studies
of miRNA-based repression in the absence of feedback
(33,39,49). However, when the feedback strength
ðb ¼ kact =kdeactÞ is varied (by changing the miRNA-gene
4224 Biophysical Journal 122, 4220–4240, November 7, 2023
activation rate, kact), the location of the threshold changes
(Fig. 2 A). The mean mRNA number sharply transits from
low to high levels across the thresholds in the limits of no
feedback and very high feedback (see the curves for
b ¼ 0 and b ¼ 1 in Fig. 2 A), whereas the sharpness of
transitions around thresholds decreases for intermediate
feedback strengths.



microRNA-mediated negative feedback
To obtain the thresholds in mRNA transcription rate
analytically, we derived the time-evolution equations
for the mean variables from the Master equation (Eq 1)
under the mean-field approximation. The mean-field equa-
tions (MFEs) are as below (see Supporting material for
details):
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vt
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Here, the notation C/D denotes the average of respective
variables, and PON is the probability of the miRNA gene
to be in on state. We also introduce an ‘effective’
mRNA-miRNA association rate defined as g ¼ kþg=
ðk� þgÞ. Despite the mean-field approximation, the steady
state solutions of Eq. 2 matched with the exact simulation
data (see the solid curves and data points in Fig. 2 A).

The effect of negative feedback on the threshold behavior
can be understood intuitively in the limit g/N (i.e., strong
binding of miRNAs to mRNAs). In this limit, solving Eq. 2,
we can show
lim
g/N
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where

PON ¼ bCpD
ðbCpDþ 1Þ and POFF ¼ �

1 � PON
�

(4)

From Eq. 3, the threshold mRNA transcription rate is
given by kthr ¼ ðksPON þk0s P

OFFÞ=a (under mean-field
approximation), and this mainly depends on the state
probabilities of the miRNA gene (PON and POFF). The
state probabilities, in turn, depend on the feedback strength
(b ¼ kact=kdeact) and the mean protein level (CpDz
ðkp =gpÞCrD). Thus, when the feedback strength is varied,
the threshold position shifts between two extreme limits:
1) in the absence of the feedback (b ¼ 0), the threshold
is kthr ¼ k0s =a as reported previously (33,49), and 2) in the
limit of extremely high feedback (b/N), the threshold be-
comes kthr ¼ ks=a.
However, we can derive a general expression of the
threshold mRNA transcription rate for any nonzero feed-
back strength. To this end, we first solved the MFE
(Eq. 2) to obtain CrD as an explicit function of kr, and then
we defined the threshold (kthr ) to be the intersection point
of the kr axis and the tangent to the mean mRNA curve
drawn at a point where the change in slope is the maximum
(see the dashed lines in Fig. 2 A, and details are in Support-
ing material Section S5.1). When the mRNA-miRNA effec-
tive association rate is high (g/N), the general kr
threshold is given by
kthr ¼ ks
a
þ grgp

bkp
� 2gr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ks � k0s

�
agr

�
gp
bkp

	s
(5)

The expression of the threshold, kthr , (Eq. 5) fairly locates
the transition from low to high mean mRNA level (see the
vertical lines in Fig. 2 A representing respective thresholds).

We next explored how the feedback strength affects the
noise in mRNA copy number quantified by the mRNA
Fano factor, which is the ratio of variance to the mean
Biophysical Journal 122, 4220–4240, November 7, 2023 4225
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(varðrÞ=CrD). As reported previously (33,49), Fano factors
showed peaks around the threshold points when plotted
against the mRNA transcription rate (Fig. 2 B). We found
that negative feedback enhances the noise (i.e., peaks in
Fano factors are higher) compared to the no-feedback
case. Moreover, our expression of the threshold (Eq. 5)
can roughly locate the positions of the peaks in Fano factors
(Fig. 2 B). In addition to our simulation results, we numer-
ically solved the approximate second-order moment equa-
tions (SOMEs) derived from the Master equation (Eqs.
S2.1–S2.9 and S6.1–S6.20), though these solutions poorly
aligned with the simulation data except for extreme cases
of no feedback and very high feedback (Fig. 2 B, solid
curves).

To understand how the catalyticity parameter (a) affects
the threshold behavior, we plotted both the mean and
Fano factors of mRNA copy number in the two-dimensional
parameter space of kr � a (see the heatmaps in Fig. 2 C–
H). Note that our derived expression of the threshold (Eqs.
3 and 5) represents a curve in the kr � a plane separating
the expressed and repressed regimes in the heatmaps of
mean mRNA (see solid curves in Fig. 2 C–E). In the
Fano-factor heat maps, the high-noise regions are concen-
trated around the threshold curves for the limiting cases of
no feedback and very high feedback (Fig. 2 F and H). For
intermediate feedback strengths, the high-noise regime
broadly spans around the threshold curve (see the high-in-
tensity zone in Fig. 2 G). Nevertheless, the high-noise
regime remains bounded within the threshold curves corre-
sponding to the limiting cases of no feedback and very high
feedback (dashed curves in Fig. 2 G).

Since the miRNA transcription rate in the on state (ks) is
another important parameter, we next explored how the vari-
ation of ks modulates the expression threshold and the
mRNA noise around the threshold (Fig. 2). Similarly to
the derivation of a threshold mRNA transcription rate, we
also derived an approximate expression of the threshold
miRNA transcription rate (kths ), given by (for any nonzero
feedback strength)

kths ¼ agr

�
kr
gr

� gp
bkp

	
þ 2agr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gp
�
akr � k0s

�
abgrkp

s
(6)
For very high feedback (b/N), the expression of kths
simplifies to kths ¼ akr (however, ks has no role for the
no-feedback case as the miRNA production happens always
at the basal rate, k0s ). The expression of kths again correctly
identified the separation between the expressed and
repressed regimes in the ks � a plane (see heat plots of
the mean mRNA in Fig. 3 A–C). Also, the high-noise re-
gimes spanned around the curves of kths in heat plots of
Fano factors (Fig. 3 D–F). As before, for intermediate feed-
back strengths, the high-noise regime is broader than the
limiting cases, and it is bounded within the corresponding
4226 Biophysical Journal 122, 4220–4240, November 7, 2023
threshold curves of the limiting cases (see dashed curves
in Fig. 3 E).

We further investigated the role of the association be-
tween mRNAs and miRNAs in the transitions of expression
levels around the thresholds (Figs. S1 and S2). We found
that a higher effective association rate (g) mainly led to a
more sharpened transition (see Fig. S1 A). Moreover,
lowering the effective association rate decreases the overall
mRNA noise (see Figs. S1 F–H and S2 D–F).

Together, we conclude that tuning the negative-feed-
back strength modifies the threshold locations separating
the high and low mean expressions. On the other hand,
the effective association of miRNAs with the mRNAs
largely determines the sharpness of the transition at the
thresholds. Moreover, the mRNA noise peaks near the
thresholds, suggesting that the mRNA distributions could
pass through qualitatively distinct regimes across the
threshold points.
Bimodal mRNA distributions around the threshold

We next asked how the mRNA distribution changes across
the expression threshold in the steady-state when the
miRNA transcription rate is varied. We first focused on a
regime where the miRNA-mRNA association is strong
(i.e., kþ [ ðk� þgÞ, implying a high g) and the feedback
strength is high (i.e., high b ¼ kact=kdeact). In this regime,
the steady state means of mRNA and miRNA showed sharp
transitions around the threshold (kths � akr), and they ex-
hibited opposing trends with increasing miRNA transcrip-
tion rate (ks); see Fig. 4 A. The mean mRNA (CrD) is
higher than the mean miRNA (CsD) below kths , whereas CsD
is higher than CrD above kths (kths � 0:655s� 1). The miRNAs
and mRNAs are equal to each other on average at the
threshold (Fig. 4 A), where both are present in small copy
numbers, suggesting that their coupled number fluctuations
become vital near the threshold. Correspondingly, the corre-
lation between mRNAs and miRNAs (quantified by the
Pearson correlation coefficient, r ¼ ðCrsD � CrDCsDÞ=srss,
where sr and ss are standard deviations) showed a sharp
deep at the threshold point (Fig. 4 B), signifying high anti-
correlation between mRNAs and miRNAs. Thus, due to
strongly coupled and enhanced number fluctuation near
the threshold, mRNAs randomly switch between ‘miRNA-
bound’ and ‘miRNA-unbound’ states biasing either repres-
sion or expression respectively, which in turn could generate
substantial expression variability. Accordingly, the steady-
state mRNA distribution became bimodal near the threshold
(Fig. 4 C); however, the distribution was bell-shaped (ap-
proaching a Poisson-like shape) above the threshold, and
it was like an exponential below the threshold (in the
repressed regime). This shape transition of mRNA distribu-
tions could be further elucidated by simulating the time
traces of the free miRNA and mRNA molecules across the
threshold (see Fig. 4 D–F). As anticipated, both miRNAs
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FIGURE 3 Effects of varying miRNA transcription rate on expression thresholds and Fano factors for different feedback strengths. Heat plots of steady-

state means (A–C) and Fano factors (D–F) are shown in the ks � a plane for different kact . Similar to Fig. 2, we observed expression thresholds and high noise

around these thresholds. The solid white line in each plot locates the threshold curves (kths from Eq. 6). In (E), the high-noise regime lies between two limiting

threshold boundaries corresponding to no-feedback and high-feedback cases (white dashed lines in E are re-plotted from D and F). Parameters are kr ¼
0:7s� 1; kþ ¼ 1s� 1, and others were taken from Table 1. To see this figure in color, go online.

microRNA-mediated negative feedback
and mRNAs showed high anticorrelated fluctuations near
the threshold, toggling stochastically between almost zero
and nonzero numbers (see Fig. 4 E). However, only one spe-
cies (either mRNA or miRNA) dominated the other away
from the threshold (Fig. 4 D and F).

Since the miRNA-coding gene switches between on (acti-
vated) and off (basal) states due to negative feedback, we also
checked how the miRNA gene states behave across the
threshold where bimodal expression was observed. Note
that free mRNAs dominate over the miRNAs below the
threshold (Fig. 4 A), and hence the proteins translated from
free mRNAs could push the miRNA gene mostly into the
on state. This expectation was consistent with the observed
behavior of state probabilities (PON and POFF) across the
threshold (Fig. 4 B). We further monitored the time traces
of miRNA gene states (denoted by 1 for on and 0 for off),
shown in Fig. 4 G–I. Below the threshold, the miRNA gene
was in on state (Fig. 4G), and it mostly was in off state above
the threshold (Fig. 4 I). The time traces of miRNA gene states
further raise the question: how does the protein-dependent
state switching of the miRNA gene modulate the ‘‘bursty’’
behavior of miRNA synthesis across the threshold?
Bursty nature of miRNA synthesis across the
threshold

It is well known that the waiting time distribution for indi-
vidual transcription events markedly deviates from a sim-
ple exponential when the RNA synthesis is bursty, giving
rise to multiple timescales (12,87). Following Dobrzynski
et al. (87), we calculated the distribution of waiting times
(i.e., intervals between consecutive miRNA production
events). Interestingly, when the miRNA synthesis rate
goes above the threshold (kths ), the waiting time distribution
is biphasic (described by a sum of two exponentials), but it
becomes a simple exponential below the threshold (see
Fig. 4 J). This behavior stems from the fact that the miRNA
gene is mainly in the activated (on) state below the
threshold (silencing the target mRNAs) but often switches
between off and on states above the threshold (Fig. 4 G–I).
Biophysical Journal 122, 4220–4240, November 7, 2023 4227



Adhikary et al.
We also derived an approximate expression for the waiting
time distribution by considering a two-state miRNA gene
without protein-dependent activation (see in Supporting
material), given by

qðtÞzu1k1e
� k1t þ u2k2e

� k2t (7)
where k1;2 ¼ 1
2
½ðkdeact þCpDkact þk0s þksÞ5d� and
u1 ¼ 1

k1

�
ksCpDkact
2ld


kdeact

�
ks � 2k0s

�þ ks
�
d � CpDkact � k0s þ ks

��
þk0s kdeact

2ld


k0s
�
d � kdeact þ CpDkact þ k0s

� � ks
�
2CpDkact þ k0s

���
;

u2 ¼ 1

k2

�
ksCpDkact
2ld

� kdeact
�
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�þ ks
�
dþ CpDkact þ k0s � ks

��
þk0s kdeact

2ld


k0s
�
dþ kdeact � CpDkact � k0s

�þ ks
�
2CpDkact þ k0s

���
;

with

l ¼ �
ksCpDkact þ k0s kdeact

�
;

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
kdeact þ CpDkact þ k0s þ ksÞ2 � 4

�
ksCpDkact þ kdeactk

0
s þ k0s ks

�q
Here, CpD is the mean protein number, which is calculated

from the solution of the approximate SOMEs (Eqs. S2.1–
S2.9 and S6.1–S6.20 in Supporting material). Note that
Eq. 7 is a weighted sum of two exponentials, signifying
two timescales above the threshold: a short timescale repre-
senting the interval between successive miRNA synthesis
during rapid synthetic activity and a longer timescale of syn-
thetic inactivity. Thus, we can define a point of timescale
separation as ts ¼ 1

ðk1 � k2Þ ln


u1

u2
$k1k2

�
, where two terms in

Eq. 7 become equal. Due to the timescale separation, we
can define the burst size as (87,88)

b ¼ number of total miRNA synthesis events

number of intervals longer thants

Using this definition, we can express b from Eq. 7 as
below

b ¼
"
u1

�
u2

u1

$
k2
k1

	 k1
k1 � k2 þ u2

�
u2

u1

$
k2
k1

	 k2
k1 � k2

#� 1

(8)

Moreover, following (87), we define the burst duration as
tb ¼ bCT% ts D; (9)
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where CT% tsD denotes the average intervals shorter than ts,
yielding the average waiting time of miRNA production
within a burst (or, equivalently, the mean of the fast
timescale).

As shown in Fig. 4 K–L, we calculated the burst size and
burst duration from simulations and compared them with
our approximate expressions (Eqs. 8 and 9, along with
Eq. S9.4–S9.6; see Section 9 in Supporting material),
which matched reasonably well. Note that burst size and
duration are undefined below kths as there is no timescale
separation; hence, these quantities diverge near the
threshold (Fig. 4 K–L), indicating an alternative way of
locating the threshold point. We further derived simple
asymptotic expressions of burst size and duration for
high values of miRNA synthesis rate (ks). At ks/N, these
quantities become

bz
CpDkactks

kdeact
�
k0s þ CpDkact

� (10)

CpDkact

tbz

kdeact
�
k0s þ CpDkact

� ; (11)

which also matched well with simulation data (Fig. 4 K–L).
Intuitively, the miRNA gene is expected to be in the off
state when the feedback is negligible, whereas it could be
mostly in the on state for very high feedback (see Eq. 4). Be-
tween these two extreme limits, the state switching of the
miRNA gene could be much more frequent, leading to
expression variability. Therefore, two different processes
could collectively modulate the emergence of bimodality:
1) the switching between miRNA-bound and miRNA-un-
bound states of free mRNAs near the threshold, i.e., the
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FIGURE 4 Bimodal mRNA distribution and bursty miRNA synthesis near the threshold. (A) Transitions of mean mRNA and mean miRNA are shown

against miRNA transcription rate (ks). (B) The mRNA-miRNA Pearson correlation (r) versus ks. The probabilities of the miRNA gene to be in the activated

state (PON) or basal state (POFF) are also shown. The black vertical lines in (A) and (B) indicate the threshold (kths ), where mRNA-miRNA correlation showed

a sharp deep in (B). (C) Steady-state mRNA distributions spanning the threshold region. Note the bimodal distribution near the threshold (red curve). (D–F)

Temporal evolution of mRNA copy number (rðtÞ) and miRNA copy number (sðtÞ) at different ks values across the threshold. Around the threshold, miRNAs

and mRNAs are present in small numbers and show large anticorrelated fluctuations (E). Away from the threshold, either mRNA or miRNA dominates over

the other (D and F). (G–I) Time traces of the miRNA-gene state at different ks values spanning the threshold, k
th
s . Here, 1 and 0 denote activated (on) and basal

(off) states, respectively. In (D)–(I), the same time windows were chosen to make correspondence. (J) Log-log plots of waiting time distributions for miRNA

synthesis across the threshold, showing biphasic nature above the threshold (kths � 0:66s� 1 here). (K and L) Burst size (K) and burst duration (L) are plotted

against ks. Data points are from simulations, solid curves are from approximate analytical formulas (Eqs. 8 and 9 in the text), and dashed curves represent

asymptotic expressions (Eqs. 10 and 11). Vertical lines denote the threshold locations. We used high feedback and high miRNA-mRNA association strength

(kact=kdeact ¼ 1 and kþ=k�z278), whereas other parameters were from Table 1. To see this figure in color, go online.
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complex formation and dissociation dynamics (governed by
the effective association rate, g), and 2) the switching be-
tween on (activated) and off (basal) states of the miRNA
gene (governed by the feedback strength, b).
Tuning miRNA-mRNA association and feedback
strength modulate the emergence of bimodality

We asked how the effective association rate (g ¼ kþg=
ðk� þgÞ) and the feedback strength (b ¼ kact=kdeact) affect
the emergence of bimodal mRNA distributions in the steady
state. To this aim, we systematically varied the mRNA-
miRNA binding/unbinding rate (kþ or k�) and the miRNA
gene activation rate (kact) to monitor how the mRNA distri-
butions change across the expression threshold. Specifically,
for a wide range of g (0:0001s� 1 � 0:1s� 1) and b (0 � 1),
we first identified the threshold mRNA transcription rate
(kthr ) and then investigated the mRNA distributions across
the threshold (see Fig. 5). For a strong miRNA-mRNA asso-
ciation (g � 0:01s� 1 � 0:1s� 1), bimodal mRNA distribu-
tions appeared near the threshold irrespective of the
absence and presence of feedback (i.e., for both b ¼ 0

and bs0) (see Fig. 5 A–F). Thus, for a strong miRNA-
mRNA association, the switching between miRNA-bound
and unbound states of the mRNAs primarily leads to
bimodal distributions since bimodality was already present
in the no-feedback case (Fig. 5 A and D), and bimodality
persisted when feedback was introduced. On the other
hand, for a minimal miRNA-mRNA association (g ¼
0:0001s� 1 ), bimodality disappeared both in the presence
and absence of feedback (see Fig. 5 M–O) as
miRNAs hardly bound with mRNAs in this regime. More
interestingly, for intermediate level of miRNA-mRNA asso-
ciation (g � 0:0004s� 1 � :001s� 1), bimodal distributions
emerged only when the feedback strength was intermediate
(see Fig. 5H and K), whereas bimodality disappeared for the
extreme cases of no feedback (Fig. 5 G and J) and very high
feedback (Fig. 5 I and L). These observations suggest that
the switching between on (activated) and off (basal) states
of the miRNA gene could be the determining factor for
the bimodality when the miRNA-mRNA association (g)
was intermediate. Note that the miRNA gene was always
in the off (basal) state in the no-feedback case. However,
for an intermediate feedback strength, the miRNA gene’s
average residency time in the off and on states kept chang-
ing across the threshold (see Fig. 6 A–F, corresponding to
Fig. 5 H). Below the threshold (kr < kthr ), the mean mRNA
(and correspondingly translated TFs) was low, and hence
the miRNA gene mainly was in the off state (Fig. 6 A and
D). Conversely, the miRNA gene was largely in the on state
above the threshold as the mean mRNA and translated TFs
were high (Fig. 6 C and F). Near the threshold, the miRNA
gene spent almost the same amount of time in on and off
states, leading to the mRNA copy number variability and
subsequent bimodality. In contrast, such frequent toggling
4230 Biophysical Journal 122, 4220–4240, November 7, 2023
between on and off states could not occur when the feedback
strength was very high; here, the miRNA gene mostly stayed
in the on state across the threshold (see Fig. 6 G–L, corre-
sponding to Fig. 5 I), reducing the heterogeneity in expres-
sion. Therefore, the miRNA-gene state switching (due to
negative feedback) plays a key role in modulating bimo-
dality for an intermediate miRNA-mRNA association rate.

We thus conclude that 1) negative-feedback strength (b,
controlling the miRNA gene state switching) and 2) the
effective association rate (g, controlling the mRNA-miRNA
binding strength) are the main governing factors for bimodal
distributions. Following Jia et al. (89), we further quantified
the strength of bimodality by a parameter k (0< k< 1),
defined as

k ¼ �
Hlow � Hvalley

� �
Hhigh: (12)

Here, Hlow, Hhigh, and Hvalley denote the lower peak
height, the higher peak height, and the height of the valley
between them, respectively. We represented the k values
as a heat map in the kr � kþ parameter space (see Fig. 6
M–O). In the intermediate feedback strength, the parameter
regime of observing bimodality gets broadened (Fig. 6 N)
compared to no-feedback and high-feedback cases. Thus,
for intermediate feedback, prominent bimodality could
also be observed for low miRNA-mRNA association
strength, not only for a strong miRNA-mRNA association
(Fig. 5 H, K, and 6 M).

A question naturally arises as to how the miRNA-medi-
ated repression compares with a simple auto-repression
(i.e., a gene producing its own repressors) since both motifs
are ubiquitous in various biological contexts.
A comparison of miRNA-mediated negative
feedback with an auto-repression

There already exist several theoretical (77,81,82,90–92) and
experimental studies (79,80) of auto-regulatory negative
feedback where a gene expresses its repressor. A general un-
derstanding is that an auto-regulatory negative-feedback
motif can buffer the gene expression noise (79–82), but an
auto-regulatory positive-feedback motif generally exhibits
bistability in expression (71,75,76,78,93–95).

Here, we revisited a model of an auto-repression motif to
compare it with our model of miRNA-mediated negative
feedback (see Fig. 7 A and B). Note that the motif of
miRNA-mediated negative feedback represents a scenario
of indirect repression (i.e., repression through intermediate
steps of miRNA-gene activation; Fig. 7 A). In contrast, the
simple negative feedback represents direct repression or
auto-repression, where the gene produces a protein
(repressor) that binds with the same gene and reduces its tran-
scription rate from the basal rate (Fig. 7 B). In this auto-
repression motif, the binding and unbinding rates of the
repressor are koff and kon, respectively. The repressor-bound
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gene transcribes mRNAs at a lower rate (klowr ), and the tran-
scription rate for the repressor-unbound gene is higher (khighr ).

To compare the outputs of the two motifs on an equal
footing, we first set the same protein synthesis rate and the
same degradation rates of mRNAs and proteins in both motifs
(kp, gp, and gr in Fig. 7 A and B). We then chose other param-
eters in such a way that, in both motifs, the mean
mRNA levels are the same in the limit of no feedback
(when kact=kdeact/0 or koff =kon/0 in respective motifs;
see Fig. 7 A and B). These limiting means are roughly
CrDzðkr =gr � k0s =agrÞ for the miRNA-mediated repression
(Eq. 3) and CrDzkhighr =gr for the auto-repression. We further
noted that increasing koff (i.e., the deactivation rate of the
target gene by repressors) biases the auto-repression motif to-
ward a low expression regime (Fig. 7 B), whereas increasing
kact (i.e., the activation rate of the miRNA gene by proteins)
pushes the miRNA-mediated repression motif toward low
expression. Thus, increasing koff or kact in respective motifs
can increase the negative-feedback strengths (when other pa-
rameters are fixed).We, therefore, varied koff or kact in respec-
tive motifs and calculated the steady state mean mRNA and
its Fano factors, as shown in Fig. 7 C and D. As expected,
both motifs exhibited similar transitions of mean mRNAs
from high to low values when the bias toward repression
was increased by varying respective feedback strengths
(Fig. 7 C and D). The Fano factors also peaked near the
cross-over region (see insets, Fig. 7 C andD). Thus, both mo-
tifs are qualitatively indistinguishable at the mRNAmean and
noise level. However, when we monitored the steady-state
mRNA distributions across the peak regions of Fano factors,
the bimodal distribution was observed in the miRNA-medi-
ated repression (Fig. 7 E), but the auto-repression did not pro-
duce bimodality (Fig. 7 F). In fact, it was known from a
recent experiment (80) that direct negative feedback or
auto-repression does not produce bimodal distributions. On
the contrary, as discussed in the previous section, the bimo-
dality in miRNA-mediated repression stems from the
frequent switching of miRNA gene between on (activated)
and off (basal) states near the high Fano-factor region,
whereas one of the states dominated away from this region
(Fig. S3). Together, we conclude that the indirect negative
feedback via miRNAs can potentially generate phenotypic
diversity compared to direct negative feedback.
DISCUSSION

Summary

Negative-feedback loops involving miRNAs are often found
in several gene regulatory networks governing diverse
corresponding to the bimodal mRNA distribution (in Fig. 5 H). Increasing the fee

strength, the frequency of state toggling near the threshold is markedly reduced (

lated from Eq. 12), in the kr � kþ plane for different feedback strengths. Parame

from Table 1. To see this figure in color, go online.
cellular processes such as cell differentiation and cancer pro-
gression (34–38,58–61,63,65). To investigate the effects of a
miRNA-mediated SNFL, we here built a stochastic frame-
work describing the competitive titration between miRNAs
and their target mRNAs. Earlier theoretical studies have sug-
gested that there are essentially three factors governing gene
expression in miRNA-dependent SNFL (68�70): 1) activa-
tion and deactivation of the miRNA-coding gene by the TF,
2) association-dissociation between miRNAs and target
mRNAs, and 3) miRNA’s catalytic mode of action on target
mRNAs. However, previous models did not incorporate the
above three factors altogether. In contrast, our detailed model
incorporates all these factors (Fig. 1). In our model, a gene
produces a specific protein that acts as a transcriptional acti-
vator of a miRNA-coding gene and, in turn, the miRNA sup-
presses the TF itself. The output of the motif largely depends
on three key parameters: the negative-feedback strength (de-
noted by b ¼ kact=kdeact), the effective miRNA-mRNA asso-
ciation rate (g ¼ kþg=ðk� þgÞ), and the catalyticity
parameter (a). A systematic analysis by varying these param-
eters revealed some interesting aspects of miRNA-mediated
negative feedback.

With increasing mRNA transcription rate (or decreasing
miRNA transcription rate), the mean mRNA at the steady
state showed a threshold-like behavior transiting from a
low to a high level (Figs. 2 A, C–E, and 3 A–C). Such
behavior was previously observed in experiments, and theo-
retical studies that did not incorporate feedback (33,39,49).
The presence of negative feedback further modifies the
threshold points, which we found analytically using mean-
field approximation (Eqs. 5 and 6). We also quantified the
gene expression noise at the steady state by the mRNA
Fano factor (varðrÞ=CrD). This intrinsic noise displayed a
peak in the vicinity of the threshold (Fig. 2 B) similar to
the previous study in the absence of feedback (49). However,
feedback enhances the noise near the respective thresholds
(Fig. 2 B).

Away from the threshold, one species (either miRNA or
mRNA) dominates another, but, in the proximity of the
threshold, their copy numbers are low and near equal
(Fig. 4 A), representing a titration-like binding process to
form miRNA-mRNA complexes. The miRNA-mRNA titra-
tion introduces a negative correlation between these two
species that is enhanced at the expression threshold (Fig. 4
B). Either all of the miRNAs or mRNAs are fully bound
in miRNA-mRNA complexes away from the threshold.
Near the threshold, however, mRNAs stochastically become
free or miRNA bound, leading to large anticorrelated fluctu-
ations of miRNA and mRNA numbers (Fig. 4 D–F). This
stochastic fluctuation between expressed and repressed
dback strength creates a bias toward the on state (J–L). For a high feedback

compare E and K). (M–O) Heatmaps showing bimodality strength, k (calcu-

ters: ks ¼ 0:5s� 1;kþ ¼ 0:01s� 1 for A � L;a ¼ 0:95. Other parameters
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states (Fig. 4 E) is manifested as a noise-induced bimodality
in mRNA distributions (Fig. 4 C) in the proximity of the
threshold. This emergence of bimodality can be further
tuned by the strength of negative feedback and the
miRNA-mRNA association rate (Figs. 5 and 6 M).
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Next, we quantitatively compared our model with an auto-
repression (Fig. 7 A and B). In miRNA-mediated negative
feedback, the suppression of transcription factors occurs indi-
rectly via miRNAs, whereas, in auto-repression, TFs directly
suppress themselves, acting as repressors of their gene. In
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both circuits, as expected, the mean mRNA displayed a tran-
sition from high to low expression with increasing negative-
feedback strength, and the mRNA Fano factor increased
around the transition region (Fig. 7 C and D). Comparing
the peak heights of themRNAFano factor,we could conclude
that miRNA-mediated feedback is noisier than auto-repres-
sion; this is in line with previous results that auto-repression
suppresses heterogeneity of gene expression (79–82).
Although the target gene expression exhibited similar charac-
teristics at the mean and noise level, the contrast between
these two types of negative-feedback circuits lies at the distri-
bution level (Fig. 7 E and F). The miRNA-mediated negative
feedback produced bimodality in mRNA distributions,
whereas auto-repression did not, suggesting the crucial roles
of miRNAs in generating phenotypic diversity.
Biophysical relevance

The miRNA-mediated negative-feedback loop for TFs has
been reported in various biological contexts. For instance,
in midbrain dopaminergic neuron maturation, the TF
PITX3 activates miR-133, which inhibits PITX3 (65).
Similar feedback loops have been reported in cell cycle
regulation between the TF E2F and its targets (96). Such
feedback loops can prevent abnormal accumulation of
TFs, thus fine-tuning dynamic cellular responses. In this
scenario, the bimodality of gene expression can allow mul-
tiple metastable cell states to coexist with two different
expression values associated with distinct phenotypes.

We showed that two distinct processes control the
bimodality of mRNA distributions in a miRNA-based
negative-feedback loop: 1) switching of target mRNAs be-
tween miRNA-bound and miRNA-free states (captured by
the effective miRNA-target association rate, g), and 2) the
TF-dependent switching of miRNA-coding gene between
basal (off) and activated (on) states (quantified by the feed-
back strength b). Thus, two parameters (g and b) collec-
tively modulate the emergence of bimodal mRNA
distributions (Fig. 5). We also quantified the bimodality
strength (k) in a 2D phase diagram (Fig. 6 M–O), linking
model parameters with quantitative prediction. We further
investigated if the bimodality observed at the mRNA level
would also be translated at the protein level. We found
that the steady-state protein distributions became promi-
nently bimodal with increasing protein degradation rate at
a fixed protein synthesis rate (Fig. S4).

We checked how bimodality changes by systematically
increasing the switching rates of miRNA gene states (kact
and kdecat). We numerically investigated the limits kact/ N
and kdeact/N by keeping the feedback strength constant at
an intermediate level (b ¼ kact=kdecat ¼ 10� 5). The bimo-
dality persisted for high miRNA-mRNA association strength
even when kact and kdecat were large (see Fig. S5 A–C). In
contrast, for low miRNA-mRNA association strength, the
bimodality is visible only when kact and kdecat are small, and
bimodality vanishes for very large kact and kdecat (Fig. S5 D–
F). Since, irrespective of the state of the miRNA-coding
gene, the switching of target mRNAs between ‘miRNA-
bound’ and ‘miRNA-unbound’ states modulates the propor-
tion of blocked and free mRNAs; bimodality can always be
observed if the miRNA-mRNA effective association rate (g)
is high enough (as in Fig. S5 A–C). On the other hand, when
miRNA-mRNA association is weaker, the feedback strength
(b) mainly modulates the target-protein-dependent switching
of the miRNA-coding gene between off and on states. Hence,
bimodality can only be observed in the medium feedback,
where the state switching dominates near the threshold (rather
than remaining mostly in the basal or activated states). In this
case,when the state-switching rates arevery large compared to
other parameters, the miRNA gene cannot stay in one partic-
ular state (either basal or activated) for a sufficiently long
time, and hence the system cannot sample the relative abun-
dances of targetmRNAs regulated by the distinct synthetic ac-
tivity of the miRNA gene. The above understanding provides
an insightful distinction between ourmodel and a simple auto-
regulation.

In contrast to our findings, another theoretical study on
miRNA-based negative feedback reported bell-shaped or
long-tailed unimodal distributions of proteins (70). This dif-
ference may arise due to the coarse-grained modeling in the
latter study as compared to our detailed modeling. On the
other hand, deterministic modeling of miRNA-based nega-
tive feedback (69) missed the rich interplay between nega-
tive feedback and miRNA-target titration in modulating
gene expression noise, as elucidated here.
Effect of parameter variations on model prediction

In Table 1, we used parameter values from previously
published models (33,49), but the kinetic rate parameters
vary widely for different cell and miRNA types (97–99).
Following (100), we estimated kþ � 0:1s� 1 for miR-21 and
kþ � 0:005s� 1 for miR-93, whereas measured value of
k� � 0:0006s� 1 for mammalian cells. Further, for human
cells, themRNA degradation rate is about 10 times the protein
degradation rate (101). Nevertheless, based on experimental
studies, we varied the parameters near the realistic regime to
check the robustness of our predictions (see ‘‘realistic param-
eter choices’’ inMaterials andmethods). If k� decreases or kþ
increases (i.e., when the miRNA-mRNA association becomes
stronger), the bimodality strength (k) increases for the cases of
no feedback and high feedback (see Fig. S6 D–F and J–L).
However, the k values are similar for the medium feedback.
The variation in protein and miRNA-mRNA complex degra-
dation rates did not alter k values too much (Fig. S6 A–C
and G–I). The variation in miRNA degradation rate (gs) did
not affect k values too much for the no-feedback case,
although k quantitively depends on gs with feedback
(Fig. S6 M–O). Together, our qualitative predictions of
observing bimodality near the threshold remain unchanged;
Biophysical Journal 122, 4220–4240, November 7, 2023 4235
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however, the bimodality strength and threshold locations
depend on the exact parameter values (see Fig. S6).

We further checked if the alteration in protein bursting af-
fects the bimodality. Previous studies (11,102) showed that
the two-step protein production from a single gene (via tran-
scription and translation) becomes bursty when the mRNA
degradation rate (gr) is much larger than the protein degrada-
tion rate (gp). In this case, it is known that the burst size and
burst frequency are controlled by the protein synthesis rate
(kp) and the protein degradation rate (gp), respectively
(11,102). We thus tuned the protein burst size and frequency
by varying kp or gp by an order of magnitude. The time traces
of protein numbers indeed showed that changing gp (Fig. S7
A) or kp (Fig. S7 C) affects the protein burst frequency or the
burst size, respectively.Nevertheless, the bimodality strength
was similar in both cases (Fig. S7 B and D), although the
threshold locations changed noticeably. Thus, altering pro-
tein bursting does not change our qualitative prediction of
observing bimodality near the threshold.
Limitation and future directions

In some parameter regimes, mean-field and moment-closure
approximations used for our highly nonlinear system can
yield significant errors in finding the threshold locations
(see Figs. S8 and S9). Previous models on miRNA-based
regulation (39,49,33) showed that a mean-field approxima-
tion works well to locate a very sharp transition. In our
case, transitions are sharp only for no-feedback and high-
feedback cases; otherwise, there is a shallow cross-over
from low to high expression (see Fig. 2 A). Thus, the
mean-field formula for the thresholds (kthr in Eq. 5) may
hold at least in the limiting cases (b ¼ 0 and high b).

Additionally, since the mRNA Fano factor peaks near the
threshold (suggesting the system’s high sensitivity near a tran-
sition), wemay define the threshold as the peak position of the
Fano factor. These peak positions determined from the exact
Gillespie simulations are more rigorous definitions of thresh-

olds (denoted by kpeakrjGillespie).We can also calculate the peak po-

sitions from the approximate SOMEs, denoted by kpeakrjSOME (see

Section 6 in Supporting material). Thus, we can define
two types of errors in estimating the thresholds corresponding
to two different approximation methods: error1 ¼���kpeakrjGillespie � kthr

���=kpeakrjGillespie (for mean field), and error2 ¼���kpeakrjGillespie � kpeakrjSOME

���=kpeakrjGillespie (for moment closure). We

compared these errors inFig. S9.As expected, bothmean-field
and SOME solutions worked for no-feedback and high-feed-
back limits (i.e., where cross-overs in mRNA mean are very
sharp and the Fano factors are sharply peaked). In these cases,
errors can be much less than 5% � 10% for SOME, and less
than 20% for mean field, although the error is higher for me-
dium feedback. The error also increases for low values of cat-
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alyticity parameter (a), i.e., when the miRNAs and mRNAs
mostly do not co-degrade, and miRNAs often recycle
back in the system. Overall, the moment closure is a better
approximation in locating the actual threshold than the
mean field.

We further compared our Gaussian moment closure with
another approximation scheme, the Conditional Gaussian
Moment Closure (103). Under this approximation, we
solved the moment equations using a published package
(104) in the parameter regime where our Gaussian approxi-
mation markedly differed from the Gillespie simulation (at a
medium feedback strength). However, Conditional
Gaussian Closure did not produce notably better results
than our Gaussian closure (see Fig. S10).

Due to the complexity of our model, solving the highly
nonlinear chemical Master equation (Eq. 1) would be an
open problem. A recent theoretical paper advocated the
linear mapping approximation (LMA), a helpful method
by which bimolecular interactions can be substituted by
zeroth or first-order reactions, reducing a nonlinear Master
equation into a linear one and making the solution easier
(105). Applying LMA in our model would be an interesting
theoretical direction to pursue.

Our model focused on direct miRNA-mRNA interaction
and neglected some other aspects of miRNA biogenesis.
For instance, precursor miRNAs ultimately transform into
mature miRNAs via several intermediate steps, and the pre-
cursor miRNAs also compete with mature miRNAs over the
same target mRNA population (106). The miRNA matura-
tion could lead to time delays that, combined with negative
feedback, may generate interesting features such as stochas-
tic oscillations in expression (107,108). Moreover, during
the miRNA maturation process, a single miRNA locus can
generate a series of sequences, typically known as isomiRs
(109,110), which can bind with the same target mRNAs.
Such competitive dynamics of precursor miRNAs or iso-
miRs with matured mRNAs are still unexplored. Note that
such competition between several kinds of noncoding
RNA sequences sharing a common target mRNA pool is
conceptually different from the ceRNA network, where
several target mRNAs share the same miRNAs.

Another aspect ignored in our model is that target
mRNAs can have multiple miRNA binding sites, leading
to additional roles in gene regulation, as shown in experi-
ments (50,111). Recent theoretical and experimental studies
(112,113) also found that multi-site miRNA binding can
generate bimodality and oscillation even without a feedback
loop. Thus, comparing the transcriptional feedback-driven
bimodality and the multiple binding site-driven bimodality
in miRNA-based motifs can be important for future work.
Also, by extending our model, it can be interesting to
explore how a two-state miRNA-producing gene regulates
its own TFs synthesized from another two-state promoter.

Several experimental techniques, including synthetic
design of genetic circuits, fluorescent microscopy, and
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flow cytometry, have been used in single-cell experiments
and bulk expression measurements related to miRNA-
dependent gene expression (39,45,67). Such experiments
can provide accurate quantitative testing of theoretical pre-
dictions as described in this paper. Our results further sug-
gests that cells may chemically control many processes
involving miRNAs, such as the catalytic mode of repression,
miRNA-mRNA association rate, and the feedback strength
to tune the gene expression noise. For instance, experi-
mental studies have shown that the phosphorylation of
RISC proteins can control the mature miRNA binding to
target mRNAs (114), creating a regulating knob for the
effective miRNA-mRNA association rate. Our study re-
vealed the key tuning parameters that may be connected
with experiments to know how expression diversity is regu-
lated in a miRNA-based negative-feedback loop.
MATERIALS AND METHODS

We simulated the model using the Gillespie algorithm (86). The codes were

written in FORTRAN90, and they are freely available in the following link:

https://github.com/PhyBi/miRNA-negative-feedback.
Realistic parameter choices

Although we used parameter values (in Table 1) from previously published

models (33,49), there are large variations in the kinetic rate parameters for

different cell and miRNA types and different target genes (97–99). Never-

theless, based on experimental studies, we present below a discussion on

choosing realistic kinetic rates, which we used to check the robustness of

our predictions.
mRNA-miRNA association and dissociation rates
(kD and k�)

Wee et al. (100) have measured the dissociation constant (Kd) for the

miRNA-mRNA complex corresponding to mouse and fly Ago2 proteins

(these guide miRNAs to silence target mRNAs). The Kd values ranged

from 13 to 26pM. The authors also separately measured the miRNA-

mRNA dissociation rates (k�). Using these measurements, the authors esti-

mated the complex formation rate (kon ¼ k�=Kd). Note that the measured

Kd , kon, and k� values are expressed in units of pM, M� 1s� 1, and s� 1,

respectively (see Fig. 7 in Ref. (100)). To understand these units, we note

kon½s�½m� ¼ k�½c� at kinetic equilibrium (following the mass-action princi-

ple), where ½s�; ½m�, and ½c� are equilibrium concentrations of miRNAs,

mRNAs, and complexes. Thus, we can estimate the miRNA-mRNA associ-

ation rate (kþ in s� 1) used in our stochastic framework as kþ ¼ kon½s�.
Here, ½s� can be taken as the cellular concentration of miRNAs. Using

this relation, we can estimate kþ values from the measured kon values,

namely kon ¼ 0:36� 108M� 1s� 1 (corresponding to 13 pM Kd) and

kon ¼ 0:2� 108M� 1s� 1 (corresponding to 26 pM Kd). Moreover, the con-

centration of highly abundant miRNAs such as miR-21 in HeLa cells is

4 nM, whereas some low-abundant miRNAs such as miR-93 have a concen-

tration of 140 pM (100). Thus, we estimated kþ ¼ 0:08s� 1&0:1s� 1 for

miR-21 (corresponding to 26 and 13 pM Kd , respectively) and kþ ¼
0:002s� 1&0:005s� 1 for miR-93. As shown in Table 1, we thus varied kþ
from 0.001 to 0.1.

The authors also separately measured the miRNA-mRNA dissociation

rates (k�), given by k� ¼ 0:00077s� 1&0:00046s� 1 for mouse Ago2 and

k� ¼ 0:045s� 1 and 0:088s� 1 for fly Ago2. This gives a mean of k� ¼
0:0006s� 1 for the mouse and 0:066s� 1 for the fly. In Table 1, we used

k� ¼ 0:0036s� 1, which is an order of magnitude higher than mouse

Ago2 but lower than fly Ago 2. In Fig. S6, we used k� ¼ 0:0006s� 1 (cor-

responding to the mammalian value) to check the effect of realistic

parameters.
miRNA degradation rate (gs)

It was shown that the median half-life of miRNAs (for most abundant miR

strands that are bound by Ago proteins) is about 11.4 h (115,116). Thus, the

miRNA degradation rate (gs) can be given by gs ¼ ln 2=11:4h ¼
0:000017s� 1. This value is an order of magnitude lower than the

value used in Table 1. We nevertheless varied gs and found that our quali-

tative observation of bimodality near the threshold remains unchanged,

although the bimodality strength depends on the values of gs.
Degradation rates of target mRNAs and proteins
(gr and gp)

It was known that mRNA degradation rates are an order of magnitude faster

than protein degradation rates in eukaryotes (see Table 1 in Ref. (101)).

Following Jia (101), we estimated that the protein degradation rates of

budding yeast, fission yeast, and human cells are similar, about

gp � 0:00002=s. On the other hand, the mRNA degradation rates for

budding yeast, fission yeast, and human cells are 0:0002=s, 0:0004=s, and
0:0006=s, respectively; i.e., gr ¼ 0:0004=s on average for these eukaryotic

cells, consistent with Table 1. Thus, for human cells, gr � 10gp (101), and

we maintained this relation for choosing a realistic parameter set.

Based on the above discussion, in Fig. S6, we used a realistic parameter

set given by gr ¼ 0:0004s� 1; gp ¼ 0:00002s� 1; gs ¼ 0:000017s� 1;

kþ ¼ 0:1s� 1;and k� ¼ 0:0006s� 1.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.
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