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Abstract
We report the synthesis ofmetastable cobalt oxide (CoO)nanostructures via the low-temperature
microwave-assisted solvothermal (MAS) process. An alcoholic solution of cobalt (II) acetylacetonate
in a sealed vessel was irradiatedwithmicrowaves at a temperature<150 °Cand a pressure below
100 psi. As-synthesized powdermaterial was characterized in terms of its structure andmorphology.
X-ray diffractometry (XRD) indicates the formation of well-crystallizedCoOnanoparticles without
the need for post-synthesis annealing. Themean crystallite size of the nanoparticles was estimated to
be 41 nm. Themorphology of the as-prepared powder sample was evaluated byfield-emission
scanning electronmicroscopy (FESEM), which revealed the formation of densely packed nanospheres
of diameter<100 nm. TheCoOnanospheres were obtainedwithout the need for any surfactants or
capping agents; theywere found to be quite resistant to oxidation in ambient air over severalmonths.
We attribute the stability of CoOnanospheres to their dense packing, the driving force being the
minimization of surface energy and surface area. Fourier-transform infrared (FT-IR) spectroscopy
andRaman spectroscopy confirm the formation of phase-pureCoOnanostructures. The deconvolu-
tion of the activemodes in Raman spectra obtained at room temperature reveals theOh symmetry in
rock-salt CoOproduced by theMAS route.Wehave analyzed its effect on themagnetic characteristics
of theCoOnanostructures. Isothermalfield-dependentmagnetization (MH) and inversemagnetic
susceptibilitymeasurements show a phase transition from antiferromagnetic to ferromagnetic
interactions in theCoOnanostructures at around 10 K. The results indicate that the phenomenon of
magnetic phase transition as a function of temperature is unique toCoOnanoparticles. Thisfinding
reveals themagnetic behavior of CoOnanostructures and presents opportunities for its possible
application as an anisotropy source formagnetic recording.

Introduction

Transitionmetal (TM) oxide nanoparticles and other types of nanostructures [1] have attracted significant
attention due to their unique properties for energy storage [2], gas sensing [3], photovoltaics [4], catalysis [5],
semiconductormemory devices [6], and antimicrobial devices [7]. Specifically, the synthesis of stable TM-
monoxides with controlled size andmorphology is of great technological interest. As cobalt is a ferromagnetic
TM, and oxides of cobalt are dielectrics and semiconductors, which exhibitmultiplet structures that
demonstrate fascinatingmagnetic and semiconducting properties [8]. The band gap of cobalt oxides spans a
wide range,making them suitable for a number of applications, including use in energy storage [9] and
optoelectronic devices [10]. Co3O4 exhibits a spinel structure and a band gap of 1.4–1.5 eV [11]. CoO crystallizes
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in the rock salt structure, with awide band gap of 2.2–2.8 eV [12]. It should be noted that the controlled synthesis
of air-stable CoOnanoparticles is a technical challenge due to the greater thermodynamic stability associated
withCo3O4 as well as the immediate reducibility of CoO tometal Co. Thus, CoOnanoparticles are susceptible to
surface oxidation and are often contaminatedwithCo3O4 ormetal Co.

The synthesis of CoOnanoparticles has been accomplished by several growth techniques, such as sol–gel
[13], hydrothermal [14], solvothermal [15], thermal decomposition [16], and electrochemical deposition
methods [17]. Capping agents such as polyvinylpyrrolidone (PVP) [18], urea [19], and
cetyltrimethylammoniumbromide (CTAB) [20] are often employed in these processes.Most of thesemethods
require harsh reduction conditions, toxic chemicals, and high processing temperatures. Even so, high-
temperature annealing is often employed to eliminate the capping agents, surfactant, polymer, and other by-
products. However, such high-temperature treatment processes can induce significant side effects, such as the
formation ofmultiple phases in a sample. Furthermore, high-temperature processing can destroy themagnetic
ordering in thematerial [21]. Additionally, conventional ceramic synthesis routes lead to a non-uniform particle
size distribution.

On the other hand, themicrowave irradiation-assisted solvothermal synthesis (MAS) technique has
emerged as a promising technique for the synthesis of nanometric powders and thinfilms. As such,MAShas
attracted significant recent attention owing to its simplicity and reduced processing time [22, 23].Moreover,
microwave irradiation facilitates a high rate of contactless heating at themolecular level, leading to a steady rise
in temperature; as such, this process is efficient and reproducible [24]. The functionality of amaterial
synthesized via theMAS technique can be suitably tuned by controlling the choice of precursormaterials and
solvents,microwave power, duration, and temperature of the reaction [25]. In particular,MAS facilitates the
growth of TM-oxides at a relatively low temperature, offers great control over stoichiometry, and can yield
products with enhanced properties. Here, we report a novel and simple route to synthesize cobalt oxide (CoO)
nanostructures through themicrowave-assisted irradiation process. The nanostructures so formed are found to
be air-stable and resistant to oxidation for severalmonths. To the best of our knowledge, this is the first report on
surfactant-free and low-temperature synthesis of well-crystallized air-stable CoOnanostructures without
employing any post-synthesis heat treatment.We discuss the structural,morphological, andmagnetic
characteristics of theCoOnanostructures obtained using this approach.

Experimental

Unlike in traditional inorganic synthesis, we have employed aβ-diketonate cobalt complex (acetylacetonate) as
the precursor. Acetylacetonates are excellent candidates for the preparation of highly connected framework due
to their versatile bridging characteristics as well as potential hydrogen bonding donors and acceptors. Further,
themetal-oxygen bond present in acetylacetonatesmakes them suitable for the synthesis ofmetal oxide powders
and the deposition of thin films [26].

Commercial-grade powder of cobalt (II) aacetylacetonate (Co(acac)2) [99.9%, SigmaAldrich]was used
without further purification. To synthesize CoO, 1 mmol of Co(acac)2 was dissolved in a solventmixture of
ethanol (15 ml,HPLC-grade) and ethylene glycol (25 ml, AR-grade). The resulting solutionwas stirred until the
solution became clear. The solutionwas subsequently transferred to an 80-ml sealable reaction vessel, whichwas
subsequently irradiated for 15 min bymicrowave energy in a hydrothermal-like arrangement (2.45 GHz, 300W,
Discover- SP, CEMCorp., Charlotte, NCUSA). Due tomicrowave irradiation, the temperature and pressure in
the reaction vessel rose to 150 °C and 100 psi. The irradiated solutionwas centrifuged at 7500 rpm for 15 min.
The powder that precipitated from the solutionwas double-washedwith ethanol and then dried at 60 °C
overnight.

Characterization

The crystallinity and the phase composition of the powder samplewere examined by powder x-ray
diffractometry (p-XRD, Smart Lab, Rigaku, Tokyo, Japan) usingCu-Kα radiation. Fourier-transform infrared
spectroscopy (FT-IR) (Perkin Elmer, Billerica,MA,USA)was used to evaluate the purity of the sample. About
15 mg of the powder samplewas used for XRD and FTIRmeasurements. Themorphology of the sample was
examined byfield-emission scanning electronmicroscopy (FESEM,Ultra-55, Carl Zeiss, Oberkochen,
Germany). Elemental analysis of the powder sample was performed using energy-dispersive x-ray spectroscopy
in the FESEM.Raman spectroscopy (LabRAM-HR (UV), HORIBA, Kyoto, Japan,λ= 532 nm)was employed to
obtain qualitative evidence for the formation of CoO.Magneticmeasurements were undertaken using a SQUID
magnetometer (QuantumDesignMPMS, SanDiego, CA,USA) in fields up to 5 T. TheM-Hmeasurements were
performed at 5 K, 10 K, 50 K, 100 K, 200 K, 300 K, and 350 K at afield of 5 T. Zero-field cooled andfield-cooled
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measurements were undertaken from5 K to 350 K at a field of 1 T. All of themeasurements were undertaken
using the as-synthesized cobalt oxide powder sample.

Results and discussion

XRD studies
The x-ray diffraction pattern of the powder (shown infigure 1) corresponds to theCoOof the cubic rock salt
structure; it was indexed using the JCPDS file number 01-074-2391. Peaks corresponding to (111), (200), (220),
(311), and (222) facets were observed (figure 1); this result was consistent with previous reports on the
solvothermal synthesis of cubic CoO [18, 27]. The strong and relatively broad peaks in the pattern indicate the
formation of well-crystallized nanostructures. Themean crystallite size was calculated using theDebye–Scherrer
equation, given by

( )K

B
D

cos
1

l
q

=

whereD is the absolute crystallize size, K is a constant dependent on the shape of the crystal (0.91),λ is the x-ray
wavelength (1.540 Å), B is the full width at half-maximum (FWHM) of the peak considered, and θ is the
scattering angle. Themean crystallite size, considering the (200) peak, was determined to be 41 nm. The absence
of other peaks besides CoO implies that the sample is phase-pure.

FTIR studies
The composition and quality of thematerial were determined by analyzing the FTIR spectrumof cobalt oxide in
the range 4000–400 cm−1 (figure 2). The broad bands centered around 1572 and 3400 cm−1 were attributed to
O–Hstretching and bendingmodes of water, respectively [28]. The two sharp peaks located at 668 and 514 cm−1

are assigned to themetal-oxygen (Co–O) stretching vibrationmodes of CoO. Peaks around 1050 cm−1 and
1350 cm−1 are characteristic vibrations of carbonate species, which are formed by the adsorption of COonCoO
nanoparticles [29]. Based on theXRD and FTIR data, it can be concluded thatmicrowave-assisted synthesis
results in the formation of phase-pure cobaltmonoxide.

SEM-EDS
Themorphology of the as-preparedCoOpowder sample examined by FESEM is shown infigure 3. It can be
readily seen from figure 3(a) that the as-preparedmaterial consists of densely packed, polydisperse spherical
entities ofmicrometer dimensions. A highmagnification SEM image (figure 3(b)) indicates that it ismade of a
large number of nanoparticles thatmeasure less than 100 nm,which is consistent with the crystallite size
(41 nm) that was determined from theXRDdata. Themechanismof formation of orientedCoOnanostructures,
the evolution of theirmicrostructure, and the structure–property relationship are highly dependent on the
synthesis technique [22, 25]. In the current case, the solvents with high dielectric constant, such as the ones used

Figure 1.Powder XRDpattern of as-preparedCoOnanostructures.
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in the synthesis of CoOnanostructures (ethanol and ethylene glycol) via theMAS technique, produce a larger
heating effect, resulting in the aggregation ofmolecules [25]. The dielectric heating in theMAS technique is
homogeneous and rapid, due towhich the nucleation of species happens everywhere in the solution; this process
results in a high degree of crystallization of CoO [22, 30]. This result is, however, not possible through synthesis
techniques involving conventional heating processes. In addition, Kahmei et alhave shown that the heating rate
in amicrowave-assisted process can be used tomodulate the position of cationic sites in complex oxide
nanostructures, thereby altering themagnetic anisotropy in amaterial [31]. The uniformheating of the solution
in theMASprocess, as well as the reducing character of ethylene glycol, leads to the formation of cobalt
monoxide crystallites with a fairly narrow size distribution. These results indicate that the present solution-
based growth process, which utilizes amicrowave irradiation-assisted chemical reaction, is a powerful and
straightforward approach for obtainingCoOnanostructures of reasonably uniform size distributionwith
uniquemagnetic properties, which are difficult to obtain because of the higher stability of Co3O4. Furthermore,
the EDS spectrumofCoOnanospheres (Fig. S1) indicates that the crystallites are composed of Co andO. The
sample has an oxygen peak at 0.53 keV and a cobalt peak at 6.94 keV, indicating the formation of CoO.

Raman spectroscopy
TheCoOnanostructures were also examined further using Raman scattering. In fcc-CoO, theCo2+ ions are
octahedrally coordinatedwith sixO2− ions. It should be noted that theOh symmetry should lead to the
formation of at least three Raman-activemodes (referred to as A1g, Eg, andT2g) at room temperature [32, 33].
The Raman spectrumofCoO (figure 4) shows a small peak at 469 cm−1 and two prominent peaks at around

Figure 2. FTIR transmittance spectrumof as-preparedCoOnanostructures.

Figure 3. FESEM (lowmagnification and highmagnification) images of (a and b)CoOnanospheres.
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521 cm−1 and 672 cm−1, whichwere identified as the Eg, T2g, andA1gmodes, respectively [34]. The shoulder
peaks centered around 482 and 590 cm−1 were assigned toCo-O stretching vibration [35]. Thus, the Raman
spectrum further confirms the phase purity of the CoOnanospheres.

Magnetic characterization
Figure 5(a) shows theM-Hdata for CoOnanostructuresmeasured at 10 K in afield of 5 T. The curve shows
hysteresis at low temperature. The temperature dependence of themagnetization characteristics of the sample
(figure 5(b)) indicates that hysteresis occurs only at a temperature�10 K, indicating ferromagnetic (FM)
interactions in nano-CoOoccur at low temperatures. This result is generally suspected to be a consequence of
the presence of Co clusters andCo3+ ions in theCoO lattice [36]. However, our XRD results andRaman spectra
confirm that the as-synthesized nanoparticles are phase-purewith no contamination. Thus, ferromagnetic
interactions inCoOnanostructures are intrinsic to the nanoparticle system. Furthermore, Néel et al have shown
that antiferromagnetic particles exhibit ferromagnetismwith permanentmagneticmoments [37]. Given that
CoO is reported to be antiferromagnetic (AFM) in its bulk form (TN∼ 298 K) [38], this phenomenon is believed
to be a consequence of the uncompensated spins at the surface of the smaller nanoparticles [39]. In addition,
Makhlouf et al attribute the origin of permanentmagneticmoments in nanoscale antiferromagneticmaterials to

Figure 4.Raman scattering spectrumof the as-preparedCoOnanostructures.

Figure 5. (a)MversusH curve at 10 K ofCoOnanoparticles, and (b)magnetization data as the function of temperature for the CoO
nanoparticles. The inset in (a) shows themagnified viewof the lowhysteresis at 10 K.
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broken symmetry at the surface [40]. Thus, ferromagnetism in cobalt oxide nanostructures at low temperatures
could be correlatedwith the surface anisotropy of the nanostructures [36].

Temperature dependence associatedwith the dcmagnetic susceptibility (χ) and the inversemagnetic
susceptibility (χ−1) for theCoOnanostructures is provided infigure 6. A ‘broke point,’whichwas noted around
300 K in the inverse susceptibility data, indicates the transition to the antiferromagnetic (AFM) state from the
paramagnetic (PM) state near room temperature. The transition toAFM is not noticeable at lower temperatures,
possibly due to increased FM interactions in the sample. BulkCo3O4 is reported to show anAFM transition at
33 K; however, nano-Co3O4 shows ferromagnetic features (including hysteresis) below 10 K [41]. Thus, the
phenomenon ofmagnetic phase transition fromFM toAFMas a function of temperature is unique to cobalt
oxide nanoparticles. This result suggests the possibility of cobalt oxide nanoparticles serving as potential
anisotropicmaterials formagnetic recording and othermemory devices.

Conclusions

We report a novel, rapid, and simple route to synthesize air-stable cobaltmonoxide nanostructures with the
rock salt structure. The structural and compositional features of thesemagnetic nanostructures have been
systematically studied usingXRD, SEM-EDS, FTIR, Raman spectroscopy, and SQUIDmagnetometry. The
results indicate that the as-preparedCoOnanostructures are phase-pure andwell-crystallizedwith the rock salt
structure. Thematerials are resistant to oxidation and are chemically stable;moreover, they exhibit unique
magnetic properties that can be tuned as a function of temperature.We envisage that thesewell-characterized
and stable cobalt oxide nanostructures hold promise formagnetic recording-related applications.
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