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Abstract. Light spectator fields may not be dynamically relevant for the inflationary phase of
the early universe, but they can still induce interesting imprints on cosmological observables.
In this paper, we compute the cross-correlations of the inflationary perturbations, both scalar
and tensor, with the fluctuations of a non-minimally interacting spectator field using the in-in
formalism and investigate the consistency relations associated with such cross-correlations.
In particular, the scalar consistency relation is derived semi-classically by generalizing the
consistency relation obtained earlier for cosmic magnetic fields. Notably, we find that the
direct coupling between the inflaton and the spectator solely determines the local non-linearity
parameter associated with the scalar cross-correlation during slow-roll inflation, regardless of
the specific form of the Lagrangian for the spectator field. Further, we calculate the tensor
correlation with spectator fluctuations, explore the associated soft limits, and demonstrate
the violation of the conventional tensor consistency relation with a non-minimal derivative
coupling. Our analysis stresses that the violation of tensor consistency relations does not
necessarily imply the superhorizon evolution of tensor modes. Instead, such violations can
arise due to the non-minimal derivative coupling of the spectator field to gravity. Finally, we
discuss the wider implications of our results in the context of cosmological soft theorems.
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1 Introduction

The inflationary epoch in the very early universe provides a natural framework for under-
standing the large scale homogeneity and isotropy of our observed universe and the origin of
primordial density perturbations which induce the temperature anisotropies in the cosmic
microwave background (CMB) and later give rise to the formation of large scale structures
in the universe [1–7]. Inflationary cosmology also presents itself as an interesting avenue to
probe the primaeval interactions of quantum fields that may be dynamical during inflation
but need not necessarily drive inflation. The quantum fluctuations of such fields are often
assumed to be Gaussian in nature and, thus, completely described by the two-point correlation
function or the power spectrum [8–10]. However, interactions among different fields or with
gravity are only imprinted in the higher-order correlation functions and therefore, primordial
non-Gaussianities (NG) are usually considered a novel measure of quantum interactions during
inflation [11–21]. If the energy scale of inflation is very high, precise measurements of NG can
provide interesting insights into quantum interactions at energy scales that are far beyond
the reach of any laboratory experiments in the near future [22–24].

In order to probe the underlying physics of inflation and to gain further insights into the
nature of primordial field interactions, the study of higher-order NG correlators has received
enormous attention over the years within the community, leading to the development of
numerous theorems and identities associated with these correlators [25–41]. Among these,
cosmological soft theorems hold particular significance which usually indicate a relation
between an (n + 1)- and an n-point correlation function in the limit in which one of the
modes is soft, i.e. its momentum is very small as compared to the others [42–45]. These soft
theorems are often related to a non-linearly realised symmetry of the action of cosmological
perturbations, which might be spontaneously broken by the state of the underlying theory.
These symmetries are closely connected to cosmological adiabatic modes, which are crucial
for understanding the statistics of primordial fluctuation in the early universe [46–50]. An
adiabatic mode is a cosmological perturbation that, on superhorizon scales, appears locally
identical to a gauge mode and can be absorbed through a coordinate transformation [45, 51].
Their existence is significant for various reasons, including constraining the number of degrees
of freedom present during inflation and their utility in deriving cosmological soft theorems.

– 1 –
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One of the most well-known cosmological soft theorems in single field inflation is the
Maldacena consistency relation (CR) [25], which relates the bispectrum of the comoving
curvature perturbation ζ to the power spectrum in the squeezed limit as

lim
k1→0

1
Pζ(k1)⟨ζk1ζk2ζk3⟩ = −(2π)3δ(3)(k1 + k2 + k3)

(
∂ ln[k3

2Pζ ]
∂ ln k2

)
Pζ(k2), (1.1)

where Pζ is the power spectrum. This CR is derived using the background wave approach
in which the long-wavelength ζ which is conserved outside the horizon, can be absorbed
by an appropriate redefinition of coordinates. Similarly, one can also calculate the soft
theorems associated with the bispectrum ⟨γk1γk2γk3⟩ of tensor perturbations γ, as well as the
cross-correlations between the curvature and tensor perturbations such as ⟨γk1ζk2ζk3⟩ and
⟨ζk1γk2γk3⟩ [52–55]. In addition to the semi-classical Maldacena formalism, cosmological soft
theorems can be derived in different ways such as using Ward-Takahashi identities [48, 56],
Slavnov-Taylor identities [38, 39], operator-product expansion [57], and the wave functional
technique [58].

In effective field theories, it is natural to expect the presence of additional degrees of
freedom during inflation besides the inflaton [24, 59]. If their impact on the overall background
dynamics remains insignificant, they are commonly referred to as the light degrees of freedom1

or the spectator fields [60–62]. While the background expansion is driven by the energy
density of the inflaton, the quantum fluctuations of the spectator during inflation leave
remarkable imprints on the spectra of primordial perturbations. For this reason, imprints of
light spectator fields on cosmological observables both during and after inflation have been
discussed extensively in the literature which can provide new insights into the physics of the
early universe. Some of the prominent examples of spectator fields are curvaton, axions, and
primordial gauge fields. For instance, curvaton is a light scalar field during inflation which
generates curvature perturbations at late times after the inflaton field has decayed. Moreover,
the initial isocurvature perturbations of the curvaton are converted to the adiabatic curvature
perturbation after inflation when the curvaton density becomes a significant fraction of the
total energy density [63–65]. Besides being consistent with the power spectrum constraints
from the CMB, the curvaton also induces a large amount of NG which makes it distinguishable
from conventional single-field inflation [66–71]. A broadly similar conclusion applies to most of
the spectator scenarios that their NG signal is very different than single field models, however,
it crucially depends on the underlying dynamics of these models.

To study the bispectra of primordial perturbations in these models, it is important to
study the cross-correlations between the fluctuations of such light fields and the inflationary
scalar and tensor perturbations. Similar cross-correlations have already been explored in the
literature, for the case of primordial gauge field with the inflationary curvature and tensor
perturbations [72–80]. Importantly, the squeezed limit of such correlators gives rise to a new
set of CRs. Interestingly, ref. [74] proposed a new simple semi-classical derivation of the
CR for the cross-correlation between the scalar metric perturbation and two powers of the
magnetic field, for the kinetic coupling scenario that included a direct coupling between the
inflaton and gauge field. One of the key inputs for this derivation was the inherent nature of

1The light degrees of freedom can be described by scalar fields, gauge fields or even fermions. They can be
minimally or non-minimally coupled to gravity and can have various types of interactions with other light fields
and the inflaton. Light scalar spectator fields are usually characterised by the small values of the ratio m/H.
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the spectator field, specifically the conformal invariance of the gauge field in the absence of
direct coupling which played a crucial role in deriving such CR.2

To explore the significance of the nature of the spectator field in deriving such CRs, we
consider a directly coupled light scalar spectator field σ, with the following Lagrangian

Sσ =
∫

d4x
√

−g λ(ϕ)Lσ , (1.2)

where λ(ϕ) is the direct coupling between the inflaton ϕ and σ. In the lower-dimensional
effective UV complete theories, it is both expected and natural to encounter such direct
couplings to the dilaton field or the moduli of the internal dimensions. Therefore, this direct
coupling is also referred to as dilatonic coupling [81]. Such direct couplings have also been
studied in the models of inflationary magnetogenesis wherein Lσ is identified with the gauge
field Lagrangian [82–90]. In general, we can choose Lσ in many different ways such as with
minimal, non-minimal, conformal, non-conformal or even with derivative couplings. This
motivates us to set up a model of non-minimally interacting spectator which also contains
a non-trivial derivative coupling with gravity. We find that this derivative coupling plays
a very crucial role in understanding the scalar and tensor CRs and the soft limits of their
corresponding bispectra.

In this paper, we study the inflationary correlation functions of the primordial curvature
and tensor perturbations with the fluctuations of a non-minimally interacting scalar spectator
field. Using the in-in formalism, we compute the full bispectrum of the scalar correlator and
discuss in detail its squeezed limit. For the scalar cross-correlation, the associated bispectrum
in the squeezed limit is completely determined by the overall dilatonic coupling of the spectator
field and does not depend on the explicit structure of its Lagrangian. Further, we derive
a semi-classical CR associated with this scalar correlator and find that it agrees with the
soft limit of the full bispectrum. We discuss various conditions under which the scalar CR
can be violated. Besides the scalar bispectrum, we also compute the cross-correlation of
the tensor mode with the spectator field and investigate its soft limit. Interestingly, the
conventional tensor CR does not agree with the soft limit of the tensor cross-correlation.
Usually, the violation of these CRs is associated with the non-adiabatic nature of the scalar
and tensor fluctuations on superhorizon scales. However, in our case, we find that the violation
arises due to the non-minimal derivative coupling of the spectator field. The violation of
these fundamental CRs may also indicate a violation of the equivalence principle (EP) on
cosmological scales. Thus, we use our setup to highlight the boundaries of the universality of
the tensor CRs.

This paper is organised as follows: In the following section, we discuss our scenario
for the spectator field and obtain the solutions for its Fourier modes. In section 3, we
compute the cross-correlation of the primordial curvature perturbation with the spectator
perturbations and derive the associated soft theorem. In section 4, we present a similar
calculation for the tensor correlation, its soft limit and the corresponding soft theorem. Finally,
in section 5, we conclude our results and discuss the implications of scalar and tensor CRs. In
the two appendices A and B, we present the calculations of the energy-momentum exchange
relation for the spectator and the evaluation of various integrals which appear in the scalar
bispectrum, respectively.

2We are particularly indebted to Martin S. Sloth for several valuable discussions and private communications
on these topics.
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Throughout this paper, we work in natural units with ℏ = c = 1, and the Planck mass
M2

Pl = 1/8πG is set to unity. Our metric convention is (−, +, +, +).

2 Dynamics of a non-minimally interacting spectator field

It is crucial to employ certain simplified models to examine the subtleties of the cross-
correlations between inflationary perturbations and spectator fields. In this section, we shall
introduce a toy model for a non-minimally interacting spectator field σ. This particular set-up
incorporates the non-minimal and derivative coupling of the spectator to gravity, through the
Ricci scalar and the Ricci tensor, and a direct coupling with the inflaton field ϕ. The action
for σ for such a scenario can be written as [91]

Sσ = −1
2

∫
d4x

√
−g λ(ϕ)

[(
gµν + αRµν

)
∂µσ∂νσ + 2V (σ) + ξ

6Rσ2
]

, (2.1)

where ϕ is the inflaton field and λ(ϕ) characterise a direct coupling between the inflaton and
spectator. In the above action, ξ and α are constants that indicate the strength of non-minimal
and derivative coupling of σ to gravity, respectively and V (σ) is the potential of the spectator.
Moreover, we limit ourselves to work with the quadratic potential, i.e., V (σ) = 1

2m2σ2. Here,
R and Rµν are the Ricci scalar and Ricci tensor which are straightforward to calculate using
their respective definitions from the given metric of spacetime. The homogeneous and isotropic
background during inflation is described by the spatially flat Friedmann-Lemaître-Robertson-
Walker (FLRW) metric which is given as,

ds2 = −dt2 + a2(t) dx2 = a2(τ)
(
−dτ2 + dx2

)
, (2.2)

where τ is the conformal time, defined by dτ = dt/a and a(τ) is the scale factor. In the
FLRW background, the Ricci scalar R and non-zero components of Rµν are,

R = 6
(

a′′

a3

)
, R00 = −3

[
a′′

a
−
(

a′

a

)2]
, Rij = δij

[
a′′

a
+
(

a′

a

)2]
. (2.3)

Here, an overprime denotes a derivative with respect to τ . The scale factor a(τ) is determined
by the typical background dynamics associated with slow-roll inflation.

As mentioned in the introduction, we assume that the scalar spectator field σ is light3

and does not significantly affect the background dynamics. Therefore, we assume that the
classical background value of the spectator field, σ(t), is approximately zero. However, during
inflation, quantum fluctuations can occur around this background value, denoted as σ(x, τ).
Ideally, one would denote it as δσ, but for notational convenience, we denote the fluctuations
as σ since the background is zero. These fluctuations will evolve in the time-dependent
background of inflation. Therefore, it is natural to expect a cross-correlation between these
fluctuations and the inflationary perturbations. To explore these cross-correlations in our
specific model, we can use the standard quantization procedure. This involves the mode
expansion of σ(x, τ) in the following manner,

σ(x, τ) =
∫

d3k
(2π)3

[
akσk(τ) + a†

−kσ∗
k(τ)

]
eik·x , (2.4)

3For our scenario with non-trivial couplings present, we assume that the light spectator field does not
contribute to the background energy density but only induces quantum fluctuations, which will evolve during
the inflationary expansion.
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where ak and a†
k are the annihilation and creation operators, respectively, and σk(τ) represents

the mode function associated with momentum k at time τ . The mode function σk(τ) obeys
the classical equation of motion, which can be obtained by varying the action (2.1) with
respect to σ. We define the two-point correlation function of σ in Fourier space as

⟨σ(k, τ)σ(k′, τ)⟩ = (2π)3δ(3)(k + k′)Pσ(k, τ) (2.5)

where the power spectrum of σ is simply given by Pσ(k, τ) = |σk(τ)|2. To enhance the clarity
of our analysis, let’s first set α = 0 in eq. (2.1) and vary the action, which leads to the equation
of motion in the Fourier space as,

σ′′
k +

(
2a′

a
+ λ′

λ

)
σ′

k +
(

k2 + a2m2 + ξ
a′′

a

)
σk = 0 . (2.6)

One can canonically normalize the field σ by defining a variable σ̃k = aSσk with S =
√

λ and
recast the equation of motion in terms of σ̃ as a harmonic oscillator with a time-dependent
mass term,

σ̃′′
k +

(
k2 + a2m2 − (1 − ξ)a′′

a
− S′′

S
− 2a′S′

aS

)
σ̃k = 0 . (2.7)

It can be noted from the above equation that by setting ξ = 1, m = 0 and for a constant
λ, the equation for σ̃ becomes identical to that of a massless scalar field in the Minkowski
spacetime. This particular choice of parameters, known as the conformal coupling, causes
σ̃ to exhibit a behaviour resembling that of a massless scalar field propagating in the flat
spacetime. The direct coupling λ(ϕ) behaves as a dilatonic coupling which typically appears
in effective field theories or scalar-tensor theories. To proceed further, we have to specify the
functional form of λ(ϕ). We choose to work in the comoving gauge (δϕ = 0), which allows us
to express λ as only a function of time. Such a dilatonic coupling has also been studied in the
scenarios of inflationary magnetogenesis as it breaks the conformal invariance of gauge fields
which is a necessary condition to excite them during inflation. With these motivations, we
can parameterise this direct coupling as a power law in the scale factor,4 i.e., λ ∝ a2n. Then
the effective mass term in eq. (2.7) becomes,

a2m2 − (1 − ξ)a′′

a
− S′′

S
− 2a′S′

aS
= − 1

τ2

[
2(1 − ξ) + n(n + 1) + 2n −

(
m2

H2

)]
, (2.8)

where we have used a(τ) ≃ −1/(Hτ) during inflation. With this result, we find that the
solution of the differential equation (2.7) can be written in terms of Hankel functions. Assuming
the standard Bunch-Davis initial conditions for the Fourier modes, we obtain the following
solution for σ̃ as,

σ̃(k, τ) =
√

π

2 ei(ν+1/2)π/2√
−τH(1)

ν (−kτ) , (2.9)

where H
(1)
ν (x) denotes the Hankel function of the first kind of order

ν =
√

(n + 3/2)2 − 2ξ − (m2/H2). With this, the mode function solution is

σ(k, τ) =
√

π

2 ei(ν+1/2)π/2
√

−τ

a
√

λ
H(1)

ν (−kτ) . (2.10)

4In the context of inflationary magnetogenesis, a coupling function of the form λ ∝ a2n with n > 0 gives
rise to the so-called strong coupling problem and there have been several works to address and resolve this
problem [86, 87, 92, 93]. In this work, we do not restrict ourselves to any particular choice of n, and thus,
the strong coupling issue may simply be circumvented by avoiding the regimes with n > 0, as was done, for
instance, for gauge fields in ref. [86]. Moreover, this problem would not arise in the first place if σ is a scalar
field associated with the dark sector which is not necessarily coupled with the standard model.
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The time dependence in the mode function comes from the terms outside the Hankel function,
which scale as

√
−τ/a

√
λ ∼ τn+3/2, whereas the Hankel function in the superhorizon limit

(|kτ | ≪ 1) scale as ∼ τ−ν . It is important to note that other terms do not cancel the
superhorizon scaling of the Hankel function in general. Thus the Fourier modes will evolve on
superhorizon scales and will only freeze for a particular choice of parameters, i.e., ξ = 0, m = 0
or ξ = −m2/2H2.

Now, let us consider the action (2.1) with a non-zero α and vary it to derive the equation
of motion which leads to,

σ′′
k +

(
2a′

a
+ λ′

λ

)
σ′

k +
(

k2 + a2m2

1 + 3αH2 + ξ

1 + 3αH2
a′′

a

)
σk = 0 . (2.11)

To arrive at the above expression, we have used the scale factor a ≃ −1/(Hτ) in eq. (2.3) and
obtained components of the background Ricci tensor as R00 = −3a2H2 and Rij = 3a2H2δij .
By comparing this equation with eq. (2.6), we observe that they are identical under the
redefinition of the following parameters as,

m2 → m̃2 = m2

1 + 3αH2 , and ξ → ξ̃ = ξ

1 + 3αH2 . (2.12)

This indicates that we can obtain the solution of eq. (2.11) in the same manner as earlier.
But in this case, the canonically normalized field will be σ̃k = σka

√
(1 + 3αH2)λ and the

complete solution for the mode function would be,

σ(k, τ) = 1√
1 + 3αH2

√
π

2 ei(ν+1/2)π/2
√

−τ

a
√

λ
H(1)

ν (−kτ) , (2.13)

with ν =
√

(n + 3/2)2 − 2ξ̃ − (m̃2/H2). Also, in this case, the modes will evolve on super-
horizon scales but will remain frozen for ξ̃ = 0, m̃ = 0 or ξ̃ = −m̃2/2H2, as earlier, even for
the case when the derivative coupling is present and non-vanishing, i.e., α ̸= 0.

3 Cross-correlation with curvature perturbation and the consistency rela-
tion

In this section, we shall discuss our calculations of the three-point cross-correlation of the
comoving curvature perturbation with the fluctuations of the spectator field. To do so, we
use the in-in formalism, which is a standard framework for studying equal-time quantum
correlations in the early universe. In this formalism, the interaction Hamiltonian plays a
crucial role in capturing the effects of interactions between different fields. For our case, we
focus on the interaction Hamiltonian Hζσσ, which describes the coupling between the curvature
perturbation ζ and the spectator field σ. Thus, the cubic order interaction Hamiltonian can
be constructed as follows,

Hζσσ = −1
2

∫
d3x

√
−g T µνδgµν , (3.1)

where T µν represents the stress-energy tensor of the spectator σ. For a systematic analysis of
the dynamics of metric perturbations at the action level, we use the standard Arnowitt-Deser-
Misner (ADM) parametrisation of the metric as,

ds2 = −N2dt2 + hij(dxi + N idt)(dxj + N jdt) , (3.2)

– 6 –



J
C
A
P
0
9
(
2
0
2
3
)
0
4
3

where N(x, t) and N i(x, t) are called the lapse function and the shift vector, respectively.
The dynamical degrees of freedom are contained in the spatial part of the metric hij whereas
lapse and shift are like the Lagrangian multipliers which are determined by the constraint
equations. In the work, we mostly work in the comoving gauge where δϕ = 0 and the spatial
metric is parameterised as hij = a2e2ζ [eγ ]ij . In this gauge, the first-order constraint equations
give,

N = 1 + ζ̇

H
, Ni = ∂i

(
− ζ

H
+ ϵa2∂−2ζ̇

)
, (3.3)

where the overdot denotes the time derivative with respect to t, ϵ is the first slow-roll parameter,
and ∂−2 denotes the inverse Laplacian operator. Then the metric perturbations at the first
order are,

δg00 = −2 ζ̇

H
, δg0i = ∂i

(
− ζ

H
+ ϵa2∂−2ζ̇

)
, and δgij = 2a2ζδij . (3.4)

Using eq. (3.4) in eq. (3.1), and by performing some trivial integration by parts, we obtain
the following interaction Hamiltonian

Hζσσ = −
∫

d3x a3 ζ

H

(
∇µT µ0

)
+ O(ϵ) . (3.5)

This indicates that if the four divergences of the energy-momentum tensor of the spectator
field are zero, the cubic order interaction Hamiltonian is slow-roll suppressed. But, in our case,
the spectator is directly coupled to the inflaton. As a result, there will be energy momentum
exchange between the inflaton fluctuations and the spectator field. So the divergence of the
energy-momentum tensor of the spectator will not be zero, and it can be calculated,

∇µT µν = −1
2∇νλ

(
(gρκ + αRρκ) ∂ρσ∂κσ + 2V (σ) + ξ

6Rσ2
)

. (3.6)

This expression can be trivially obtained by invoking the diffeomorphic invariance of the
action (2.1), and it is outlined in detail in appendix A. To proceed further, we first set
α = 0 to ensure clarity and introduce it later, as we did in the previous section. Using the
above equation in eq. (3.5) and rewrite the leading order interaction Hamiltonian in terms of
conformal time as follows,

Hζσσ = −1
2

∫
d3xa2λ′(τ)τζ

(
σ′2 − (∂σ)2 −

(
a2m2 + ξ

a′′

a

)
σ2
)

. (3.7)

At this level, we have dropped all the terms that are proportional to slow roll parameters.
As in (2.4), curvature perturbation ζ is also mode expanded and the corresponding mode
function obtained in the standard manner with the solution,

ζk(τ) = 1√
2ϵ

H√
2k3

(1 + ikτ) e−ikτ . (3.8)

Using this interaction Hamiltonian in the in-in master formula for a three-point function O,

⟨O(τ)⟩ = −i

∫ τ

dτ ′ 〈[O(τ), Hζσσ(τ ′)
]〉

(3.9)

– 7 –
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we calculate the three-point correlator ⟨ζσσ⟩ and obtain,

⟨ζ(k1, τI)σ(k2, τI)σ(k3, τI)⟩ = (2π)3δ(3)(k1 +k2 +k3)
[
− (I1 + k2 · k3 I2) +

(
m2

H2 + 2ξ

)
I3

]
,

(3.10)
with,

I1 = 2 Im
[
ζk1(τI)σk2(τI)σk3(τI)

∫
dττa2λ′(τ)ζ∗

k1(τ)σ′∗
k2(τ)σ′∗

k3(τ)
]

, (3.11)

I2 = 2 Im
[
ζk1(τI)σk2(τI)σk3(τI)

∫
dττa2λ′(τ)ζ∗

k1(τ)σ∗
k2(τ)σ∗

k3(τ)
]

, (3.12)

I3 = 2 Im
[
ζk1(τI)σk2(τI)σk3(τI)

∫
dτ

τ
a2λ′(τ)ζ∗

k1(τ)σ∗
k2(τ)σ∗

k3(τ)
]

. (3.13)

The result in eq. (3.10) is our complete result for the correlator and the integrals can be
evaluated for the most general case. Moreover, to study the CR associated with ⟨ζσσ⟩, we
have to evaluate the integrals (3.11), (3.12) and (3.13) using the explicit form of the coupling
function, i.e., λ(τ) ∝ a2n ∝ τ−2n and the mode functions. However, in the squeezed limit, i.e.
k1 → 0, and k2 ≃ −k3, we can show that

I1 = −(2n) |ζk1(τI)|2|σk2(τI)|2 + k2
2I2 +

(
2ξ + m2

H2

)
I3 . (3.14)

The detailed derivation of this equation is given in appendix B. We have arrived at it by using
the equation of motion of mode function and the normalized Wronskian. By using eq. (3.14)
in the squeezed limit of eq. (3.10), we get the squeezed limit correlator as

lim
k1→0

⟨ζ(k1, τI)σ(k2, τI)σ(k3, τI)⟩ = 2n (2π)3δ(3)(k1 + k2 + k3)Pζ(k1)Pσ(k2) . (3.15)

This relation is precisely the form of the CR for this correlator, i.e., the three-point cross-
correlation in the squeezed limit is proportional to the product of two power spectra. The
strength of the local non-linearity parameter associated with this correlator is simply 2n
which can be expressed in terms of the direct coupling as follows,

d ln λ

d ln a
= λ̇

Hλ
= 2n . (3.16)

It is remarkable that the non-linearity parameter is independent of the other parameters of
our model, i.e., for any ξ and m, we get the same CR as in eq. (3.15). Therefore, our CR
holds true regardless of whether the spectator field is conformal or non-conformal, massive or
massless. This observation highlights the general applicability of the new CR, suggesting its
wider scope and validity across different scenarios and field properties.

To verify the generality of this CR within our toy model, we can now consider the
case with non-minimal derivative coupling (α ̸= 0). It is trivial to compute the interaction
Hamiltonian with the non-minimal derivative coupling using (3.5) and (3.6). Using this
interaction Hamiltonian in the in-in master formula (3.9), we obtain the correlator as,

⟨ζ(k1, τI)σ(k2, τI)σ(k3, τI)⟩

= (2π)3δ(3)(k1 + k2 + k3)
[
−(1 + 3αH2) (I1 + k2 · k3I2) +

(
m2

H2 + 2ξ

)
I3

]
. (3.17)
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Here the integrals I1, I2, and I3 refer to the same integrals defined in equations (3.11), (3.12),
and (3.13). However, it is important to note that in this case, the mode function given in
eq. (2.13) should be used. Now let’s compute the squeezed limit of the above correlator for
which we use the squeezed limit of I1, I2, and I3. As discussed in appendix B, even for
α ̸= 0 in the squeezed limit, the integral I1 can be expressed in terms of I2 and I3, similar to
eq. (B.9). Interestingly, even for this scenario with α ̸= 0, we obtain precisely the same CR as
in eq. (3.15). Consequently, we have also derived the squeezed limit of the cross-correlation of
curvature perturbation with the non-minimally interacting spectator field (2.1) at the leading
order in slow-roll parameters. The resulting expression is given by,

lim
k1→0

⟨ζ(k1, τI)σ(k2, τI)σ(k3, τI)⟩ = λ̇

Hλ
(2π)3δ(3)(k1 + k2 + k3)Pζ(k1)Pσ(k2) . (3.18)

This result bears a striking resemblance with the squeezed limit correlator of the curvature
perturbation with gauge fields as found in [74, 75], which is not a mere coincidence.5 In both
cases, a light degree of freedom is directly coupled to the inflaton, and this direct coupling is
realized as a power law in the scale factor.

From the above consistency relation, we observe that the corresponding local non-
linearity parameter is independent of the parameters m, ξ and α as in the earlier case. This
is an interesting and a non-trivial result. The factor λ̇/(Hλ) can be understood as the
new scale introduced by the direct coupling λ measured in the units of Hubble parameter.
Since we are naturally working in the regime λ̇/(Hλ) ≫ ϵ, η where ϵ and η are the slow
roll parameters, one can heuristically estimate the strength of the leading order interaction
Hamiltonian as Hζσσ/Hσσ ∝ λ̇/(Hλ) · P

1/2
ζ , similar to [74]. Consequently, we expect the

local non-linearity parameter to be of the order of λ̇/(Hλ). Moreover, a careful look at the
cubic order action (A.10) provides us the insight that when ζ becomes superhorizon and
frozen, the action is identical to the quadratic action of σ but with a new direct coupling
−λ̇ζ/H. It means that we can determine

〈
ζL⟨σσ⟩ζL

〉
if we know the two point correlator

of σ for an arbitrary coupling function λ. This observation allows us to derive the above
CR6 semi-classically and understand as to why the local non-linearity parameter is purely
determined by the coupling function. To do so, let’s work in the flat gauge. One can easily
see that the lapse and shifts are proportional to slow roll parameters, as shown in eq. (2.24)
of [25]. Then, the third order action can be written as,

S(3) = −1
2

∫
d4x

√
−g ∂ϕλ δϕ

[
(gµν + αRµν) ∂µσ∂νσ + 2V (σ) + ξ

6Rσ2
]

+ slow-roll suppressed terms. (3.19)

This action is consistent with the result we obtained when we appropriately translated
eq. (3.5) from the comoving gauge to the flat gauge. It is evident that the influence of inflaton
fluctuation solely comes through the coupling λ(ϕ) when we drop the slow-roll suppressed
terms. Consequently, it becomes apparent that the long-wavelength inflaton fluctuations can
be absorbed into the coupling function, resulting in the action being transformed back to a

5One may notice a sign difference in the non-linearity parameter in eq. (3.18) and ref. [75]. We recently
found that there is actually a typo in [74] which is also there in the results of [75].

6In the literature, CRs and soft theorems are often used interchangeably. It is important to note that while
CRs represent model-independent statements about cosmological observables, soft theorems are a subset of
CRs arising from the non-linear realisation of symmetries within cosmological correlators.
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second-order form but with a modified coupling. This allows us to study the effects of the
long wavelength perturbation δϕL on the short wavelength fluctuations of σ by defining the
effective coupling as λB = λ(ϕ0 + δϕL) = λ0 + ∂ϕλδϕL. Using this expansion, the two-point
correlator of the spectator field with the modified coupling can be written as,

⟨σσ⟩B = ⟨σσ⟩0 + ∂ ⟨σσ⟩B

∂δϕL

∣∣∣∣
δϕL=0

δϕL + · · · (3.20)

It is now straightforward to find the squeezed correlator of the form ⟨δϕL ⟨σσ⟩B⟩ as analogous
to the approach of Maldacena CR. For this, one has to evaluate ⟨σσ⟩ for a given form of λ(ϕ),
and in our case, the coupling function takes the form λ(ϕ) = e2ϕ/M , then λB is just a rescaled
λ0 by a constant factor 1 + δϕL∂ϕλ/λ. By observing the fact that eq. (2.7) is insensitive to a
constant rescaling of λ, we can write the correlator in the coordinate space as

⟨σ(x1, τ)σ(x2, τ)⟩B =
〈 1

a2λB
σ̃(x1, τ)σ̃(x2, τ)

〉
≈ ⟨σ(x1, τ)σ(x2, τ)⟩0 − δϕL

∂ϕλ

λ
⟨σ(x1, τ)σ(x2, τ)⟩0 . (3.21)

This two-point function can further be correlated with δϕ which, in the Fourier space, will
lead to,

lim
k1→0

⟨δϕ(k1, τI)σ(k2, τI)σ(k3, τI)⟩ = −∂ϕλ

λ
(2π)3δ(3)(k1 + k2 + k3)Pδϕ(k1)Pσ(k2) . (3.22)

Note that the above result is obtained in the flat gauge. We can translate it into the comoving
gauge by using

√
2ϵ ζ = δϕ and also using

√
2ϵ ∂ϕλ = −λ̇/H, to find

lim
k1→0

⟨ζ(k1, τI)σ(k2, τI)σ(k3, τI)⟩ = λ̇

λH
(2π)3δ(3)(k1 + k2 + k3)Pζ(k1)Pσ(k2) , (3.23)

where λ̇/Hλ = 2n for λ ∝ a2n. Here, we would like to stress that in ref. [74], the CR is derived
in the comoving gauge by using the conformal nature of the gauge field. In comparison,
our result is independent of such conformal nature of the spectator field. This CR can be
interpreted as a simple yet non-trivial consequence of direct coupling.

Before we close this section, let us make a few subtle remarks about the conditions under
which the background wave method (Maldacena approach) works. It is well known that the
underlying working principle of the Maldacena CR is based on constructing an adiabatic
mode inside the Hubble radius. In inflation, an adiabatic mode is a long wavelength frozen
mode that is indistinguishable from a coordinate transformation. Using this approach, the
CR for our scenario can be written as,

lim
k1→0

1
Pζ(k1) ⟨ζk1σk2σk3⟩ = −(2π)3δ(3)(k1 + k2 + k3)∂ ln[k3

2Pσ(k2)]
∂ ln k2

Pσ(k2) . (3.24)

In the superhorizon limit, we find that k3Pσ ∼ k3−2ν and ν is given after eq. (2.13). Therefore,
this CR is in agreement with (3.18) only when 2ξ + m2/H2 = 0. In other words, the CR
obtained using the background wave method aligns with the soft limit of the in-in result
exclusively when the spectator σ becomes frozen in the superhorizon limit. However, it is
noteworthy that the CR obtained using our semi-classical approach remains applicable within
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this setup without such limitations. For scenarios involving direct dilatonic coupling, our
analysis shows that all the non-minimal gravitational interactions are suppressed by the
slow-roll parameters, and they can be ignored in the slow-roll limit. Furthermore, due to the
evolution of spectator modes on superhorizon scales (with exceptions for specific parameter
choices), one can not apply the Maldacena formalism to derive the CR. Therefore, one has
to resort to our semi-classical formalism to obtain the CR for the cross-correlation of the
curvature perturbation with spectator fields.

4 Tensor cross-correlation and the consistency relation

In this section, we shall compute the tensor cross-correlation with our non-minimal spectator
and study its squeezed limit. Contrary to the scalar CRs, it has been discussed that the
tensor CRs are more robust conditions which are preserved in most situations and reflect
the adiabatic nature of tensor modes during inflation. These CRs can only be violated in
specific situations. It is observed that tensor CRs remain valid even when there are multiple
scalar fields as long as any anisotropies decrease rapidly in an exponential manner [94]. This
is because, in an expanding universe with anisotropies decreasing rapidly in an exponential
manner, the graviton mode becomes constant on superhorizon scales. Therefore, there exists
an adiabatic tensor mode that is locally indistinguishable from a pure gauge mode i.e. it
can be absorbed by means of a suitable coordinate transformation and used to derive the
conventional tensor CRs.

Here, we explicitly compute the cross-correlation of spectator fluctuations with the tensor
perturbation using in-in formalism within our toy model and study the robustness of tensor
CR. To perform our calculation, we have to mode expand tensor perturbations. Using the
standard quantisation formalism, the mode expansion for tensor perturbations is defined as
follows,

γij(x, τ) =
∫

d3k
(2π)3

∑
s=±2

[
γk(τ) eik·x ϵs

ij(k̂) bs
k + h.c.

]
, (4.1)

where ϵs
ij represents the polarization tensor corresponding to helicity s. The normalization

condition is given by ϵs
ijϵ∗s′

ij = 2δss′ . The creation and annihilation operators satisfy the usual
commutation relation [bs

k, bs′†
k′ ] = (2π)3δ(3)(k − k′)δss′. The amplitude of the tensor mode

during inflation is obtained in the standard manner as,

γk(τ) = H√
k3

(1 + ikτ) e−ikτ . (4.2)

Note that, we often suppress the helicity index s since we do not have any parity violating
term. To proceed further, it is necessary to obtain the Ricci tensor up to the first order in
tensor perturbations (γij), which is given by

Rij = δij

[
a′′

a
+
(

a′

a

)2]
+ γij

[
a′′

a
−
(

a′

a

)2]
. (4.3)

To arrive at the above equation, we have used the equation of motion for the tensor perturba-
tions. During inflation, we can write a′′/a ≃ 2a2H2 and a′/a = aH. Then the cubic order
Lagrangian for ⟨γσσ⟩ can be trivially derived from eq. (2.1). Therefore, the corresponding
interaction Hamiltonian can be written as,

Hγσσ = −1
2

∫
d3xa2λ

(
1 − αH2

)
γij∂iσ∂jσ . (4.4)
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Similar to the earlier section, in this case as well, we assume the power law parameterisation
for the direct coupling, i.e., λ ∝ a2n ∝ τ−2n. Using the above expression for the interaction
Hamiltonian in the master in-in formula (3.9), we obtain the tensor cross-correlation as

⟨γ(k1, τI)σ(k2, τI)σ(k3, τI)⟩ = 2 (2π)3δ(3)(k1 + k2 + k3)ϵijk2ik3j(1 − αH2) (4.5)

× Im
[
γk1(τI)σk2(τI)σk3(τI)

∫
dτa2λ(τ)γ∗

k1(τ)σ∗
k2(τ)σ∗

k3(τ)
]

.

The integral involved in the above equation is analogous to the integral I2, which can be
evaluated similarly as in appendix B but using the mode function σ as in eq. (2.13) for α ̸= 0.
To investigate the tensor CR, let us consider the squeezed limit k1 → 0, and k2 ≃ −k3. Then,
we can write the integral in (4.5) similar to (B.10) as

Im
[
γk1(τI)σk2(τI)σk3(τI)

∫
dτa2λ(τ)γ∗

k1(τ)σ∗
k2(τ)σ∗

k3(τ)
]

= −|γk1(τI)|2|σk2(τI)|2Im
[
ei(ν+1/2)π

∫
dτa2λ(τ)

(
σ∗

k2(τ)
)2]

. (4.6)

Upon using the mode function (2.13), the right hand side of the above equation takes the
following form,

π

4(1 + 3αH2) |γk1(τI)|2|σk2(τI)|2Im
[∫

dττ
(
H(2)

ν (−k2τ)
)2
]

, (4.7)

where the factor 1/(1 + 3αH2) evidently appears from the normalisation of the mode function,
as given in (2.13). This can be quickly evaluated using the eq. (B.11) and we get,

Im
[
γk1(τI)σk2(τI)σk3(τI)

∫
dτa2λ(τ)γ∗

k1(τ)σ∗
k2(τ)σ∗

k3(τ)
]

= − 1
(1 + 3αH2)

ν

2k2 |γk1(τI)|2|σk2(τI)|2 (4.8)

where ν is the order of the Hankel function appearing in (2.13). With this, the final result for
the correlator in the squeezed limit, i.e. k1 → 0, and k2 ≃ −k3 ≡ k, is

lim
k1→0

⟨γ(k1, τI)σ(k2, τI)σ(k3, τI)⟩ = (2π)3δ(3)(k1+k2+k3)ϵij
kikj

k2

(
1−αH2

1+3αH2

)
νPγ(k1)Pσ(k) .

(4.9)
For those acquainted with the conventional background wave method, it is evident that such
methods can only capture the result for the case without the derivative coupling. To illustrate
it further, let’s write eq. (4.9) for α = 0,

lim
k1→0

⟨γ(k1, τI)σ(k2, τI)σ(k3, τI)⟩ = (2π)3δ(3)(k1 + k2 + k3)ϵij
kikj

k2 νPγ(k1)Pσ(k) . (4.10)

On the other hand, the semi-classical derivation using the background wave approach gives,

lim
k1→0

1
Pγ(k1) ⟨γk1σk2σk3⟩ = −(2π)3δ(3)(k1 + k2 + k3)ϵij

kikj

k2
∂

∂ ln k2 Pσ(k) (4.11)

It can be derived from eq. (2.13) that the power spectrum of the spectator field in the
superhorizon limit scales as Pσ ∼ k−2ν and the derivative term in the above equation gives
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∂Pσ
∂ ln k2 = −νPσ. This clearly indicates that both in-in and the semi-classical results are in
agreement with each other only for α = 0, but they disagree for α ≠ 0. In the limit α = 0,
ν =

√
(n + 3/2)2 − 2ξ − (m2/H2) and thus, we observe that, for the two approaches to be

in agreement, we only require α = 0 irrespective of ξ and m. This shows the universality
of tensor CRs. However, our analysis shows a violation of tensor CRs in the presence of a
non-minimal derivative coupling. In such cases, it is anticipated that the violation of tensor
CR occurs due to the violation of adiabaticity caused by the presence of a non-minimal
derivative coupling. This violation does not occur in the conventional sense of a tensor mode
evolving on superhorizon scales, but rather in a manner where the superhorizon mode cannot
be regarded as a pure gauge mode due to its distinguishability in a local inertial frame. As a
result, even if the superhorizon tensor mode appears frozen, it is not classified as an adiabatic
mode, leading to an expected violation of tensor CRs. From a different perspective, this
violation of tensor CR alongside a frozen tensor mode might be a distinctive signature of
the presence of such non-minimal interactions with the tensor mode. This analysis can also
be easily extended to other non-minimal derivative couplings. In general, a violation of the
Maldacena CR might also indicate a violation of the EP so CRs also provide an interesting
way to test the EP on large cosmological scales [95].

5 Conclusions and discussions

In this paper, we have studied the cross-correlations of the inflationary scalar and tensor
perturbations with the fluctuations of a non-minimally coupled spectator field with dilatonic
coupling, providing valuable insights into correlation functions beyond the minimal setup.
Firstly, we observed that during slow-roll inflation, the leading order interaction of the
spectator and the scalar metric fluctuations in the comoving gauge originates from the
dilatonic coupling, highlighting its significance, and found that the additional gravitational
interaction from the non-minimal coupling is subject to slow-roll suppression. Notably, this
fact became more apparent when considering the flat gauge. This observation led us to derive
the CR for the scalar cross-correlation through a straightforward semi-classical approach.
Importantly, this derivation represents a generalization of the CR for the cross-correlation of
scalar metric fluctuations with gauge fields established in [74]. Our analysis demonstrated
that the conformal nature of the spectator field is irrelevant to such semi-classical derivation,
and it can be easily established in the flat gauge. In addition, these relations hold true in
a generic manner, even in scenarios wherein the conventional semi-classical derivation, e.g.,
the Maldacena approach fails. We emphasise that these CRs have enormous potential which
could be explored in various contexts. For instance, if we identify the spectator field as a
potential isocurvature mode, then in cases where the isocurvature mode is directly coupled
with the inflaton, these CRs become particularly valuable. They can also capture the NG
associated with the isocurvature fluctuations within the inflationary context. The nature of
these relations and their connection with non-linearly realized symmetries pose interesting
questions for further exploration. Soft theorems (CRs) often arise as a result of such non-linear
realizations, prompting an enticing avenue of investigation into the underlying symmetry and
its non-linear manifestation within the framework of these novel CRs. We defer the pursuit
of these interesting directions to our future work.

Further, we have also explored the cross-correlation of tensor perturbation with the
spectator field and associated CRs. It is often observed that the tensor CRs are more robust
relations and have remarkable universality compared to those for scalars. They remain valid
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even when there are multiple scalar fields as long as any anisotropies decrease rapidly in an
exponential manner [94]. Contrary to the usual lore, our analysis shows that the violation of
the tensor CR does not necessarily imply the existence of a non-freezing tensor mode. But
this is not surprising because if we consider our working definition of an adiabatic mode
as a specific superhorizon cosmological perturbation that is locally indistinguishable from a
pure gauge mode, i.e., it can be absorbed by means of a suitable coordinate transformation.
In the presence of a non-minimal derivative coupling, one can not treat the superhorizon
mode as a pure gauge mode because it can be distinguished in a local inertial frame. Thus,
even if the superhorizon tensor mode is frozen, it is not an adiabatic mode, and we expect a
violation of the tensor CRs which can be considered a specific signature of the non-minimal
derivative coupling.

It is well known that light spectator fields usually induce isocurvature perturbations
which might leave interesting imprints on cosmological observables [96]. In some specific
scenarios such as the curvaton, they are converted to adiabatic perturbations at a later stage.
The power spectrum of isocurvature modes is well constrained on large scales which are probed
by CMB observations. However, they are not constrained on smaller scales. For instance,
a scale-invariant or a very blue isocurvature perturbation spectrum may leave large effects
on the short wavelength scales. Detection of such imprints will reveal the underlying high
energy physics of the isocurvature sector. Moreover, the NG associated with the isocurvature
perturbations [97], either in the form of a three-point correlation or a cross-correlation with
curvature perturbations will also provide deeper insights into their generation mechanism. It
might be interesting to explore if such isocurvature NG can help in the formation of primordial
black holes on smaller scales. We leave these interesting directions for future work.
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A Energy-momentum exchange relation for the spectator

In this section, we provide a detailed proof of eq. (3.6). The energy-momentum tensor T
(σ)
µν

corresponds to the spectator field σ is obtained from action (2.1) as,

T (σ)
µν = λ

(
∇µσ∇νσ − 1

2gµν∇ασ∇ασ

)
+ αΘ(1)

µν + ξ

6Θ(2)
µν , (A.1)
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with,

Θ(1)
µν = 1

2gµν (∇α∇β − Rαβ) λ∇ασ∇βσ + 1
2□ (λ∇µσ∇νσ) + 2λRµα∇ασ∇νσ

− 1
2∇α∇µ (λ∇νσ∇ασ) − 1

2∇α∇ν (λ∇µσ∇ασ) , (A.2)

Θ(2)
µν = (Gµν + gµν□ − ∇µ∇ν) λσ2 . (A.3)

In this work, we only have to deal with the energy-momentum tensor of the spectator field.
Therefore, we shall omit the superscript (σ) and denote it with Tµν for convenience.

One trivial way to prove eq. (3.6) is by explicitly working out the four divergences of
the above-mentioned energy-momentum tensor using the equation of motion of σ. However,
there exists a more general way of proving it without using the detailed form of the spectator
Lagrangian. We just have to use the fact that it is directly coupled to the inflaton. For this
purpose, let’s assume the form of spectator action as,

Sσ =
∫

d4x
√

−g λ(ϕ)Lσ . (A.4)

Demanding the diffeomorphic invariance of this action gives us the desired result. To see
that, let us consider an infinitesimal coordinate transformation from xµ to x′µ = xµ + ξµ.
Under this transformation, one finds δgµν = ∇µξν + ∇νξµ and the corresponding change in
the action Sσ can be written in the variational sense as,

δSσ =
(

δSσ

δϕ

)
g,σ

δϕ +
(

δSσ

δσ

)
g,ϕ

δσ +
(

δSσ

δgµν

)
ϕ,σ

δgµν . (A.5)

Note that, the second term vanishes when the equation of motion of σ is satisfied. For the
first term, we find δϕ = −ξν∂νϕ, and thus

δSσ

δϕ
=
∫

d4x
√

−g
dλ

dϕ
Lσδϕ = −

∫
d4x

√
−g Lσ(∇νλ)ξν (A.6)

and the third term can be seen as
δSσ

δgµν
δgµν = −1

2

∫
d4x

√
−g Tµνδgµν =

∫
d4x

√
−g (∇µT µ

ν )ξν −
∫

d4x
√

−g ∇µ(T µ
ν ξν) . (A.7)

The last term is a total divergent term and the natural boundary conditions on ξµ set it to be
zero. Then, if we demand the diffeomorphic invariance of Sσ left-hand side can be set to zero.

δSσ =
∫

d4x
√

−g

(
∇µT µ

ν − (∇νλ)Lσ

)
ξν = 0 (A.8)

This proves,
∇µT µν = (∇νλ)Lσ . (A.9)

This result can be used to easily derive the cubic order action as follows

δSζσσ = 1
2

∫
d4x

√
−g T µνδgµν =

∫
d4x

√
−g

ζ

H
∇µT µ0 + O(ϵ) ≃ −

∫
d4x

√
−gλ̇

ζ

H
Lσ .

(A.10)
We again stress that the above results only apply to the action written in the form of eq. (A.4)
and does not depend on the explicit form of the Lagrangian.
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B Evaluation of integrals in the squeezed limit

In this section, we evaluate the integrals (3.11), (3.12) and (3.13) in squeezed limit, i.e.,
k1 → 0. Thus throughout this section, we can approximate

lim
k1→0

ζk1(τ) = H√
4ϵk3

≈ ζk1(τI) , (B.1)

and we use eq. (2.10) as mode function σk(τ). However, all of the following analyses can also
be trivially performed with eq. (2.13). Utilizing these in all the integrals and considering the
fact that in the squeezed limit k3 ≈ k2 = k, we can express the integrals as follows:

I1 = −(4n) |ζk1(τI)|2 Im
[
σ2

k(τI)
∫ τI

dτa2λ
(
σ′∗

k(τ)
)2
]

, (B.2)

I2 = −(4n) |ζk1(τI)|2 Im
[
σ2

k(τI)
∫ τI

dτa2λ (σ∗
k(τ))2

]
, (B.3)

I3 = −(4n) |ζk1(τI)|2 Im
[
σ2

k(τI)
∫ τI dτ

τ2 a2λ (σ∗
k(τ))2

]
. (B.4)

Here we have used λ′/λ = −2n/τ , and τI denotes very late times at which we evaluate the
correlator. In addition, one can also rewrite the eq. (2.6) as follows,

d

dτ

(
a2λσ′

k

)
+
(

k2 + a2m2 + ξ
a′′

a

)
a2λσk = 0 . (B.5)

This equation can now be used to rewrite the integral involved in eq. (B.2) as,∫
dτa2λ

(
σ′∗

k(τ)
)2

= a2λσ∗
kσ′∗

k −
∫

dτσ∗
k

d

dτ

(
a2λσ′∗

k

)
= a2λσ∗

kσ′∗
k +

∫
dτ a2λ

(
k2 + 2ξ + (m2/H2)

τ2

)
(σ∗

k(τ))2 . (B.6)

Upon using this result in eq. (B.2), we get

I1 = −(4n) |ζk1(τI)|2 Im
[
σ2

k(τI)
[
a2λ σ∗

k(τ)σ′∗
k(τ)

] ∣∣∣∣τI

−∞

]
+ k2I2 +

(
2ξ + m2

H2

)
I3 . (B.7)

It can be easily shown that the lower limit will not contribute with in-in time contour, and
this leads to the following relation

I1 = −(4n) |ζk1(τI)|2|σk(τI)|2 Im
[
a2(τI)λ(τI) σk(τI)σ′∗

k(τI)
]

+ k2I2 +
(

2ξ + m2

H2

)
I3 . (B.8)

The Wronskian corresponds to the equation of motion (2.6) and the Bunch-Davis initial
condition determines, Im

[
σk(τI)σ′∗

k(τI)
]

= 1/(2a2
IλI). Here the subscript ‘I’ denotes the

corresponding quantities evaluated at time τ = τI . Then we obtain,

I1 = −(2n) |ζk1(τI)|2|σk(τI)|2 + k2I2 +
(

2ξ + m2

H2

)
I3 . (B.9)

This result is sufficient to evaluate the squeezed limit of the correlator given in eq. (3.10).
Upon utilizing this result in the squeezed limit of (3.10), one can see that the integrals I2
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and I3 nicely cancel out. So we do not need to evaluate these integrals explicitly to compute
the squeezed limit of the correlator. However, let’s demonstrate the evaluation of I2 below
because the same procedure can be used to evaluate the integral involved in section 4. Such
integrals can be evaluated using the same method as previously outlined in [75, 80]. Thus, let
us express the integral I2 in the squeezed limit as,

I2 = −2|ζk1(τI)|2|σk2(τI)|2 Im
[
ei(ν+1/2)π

∫
dττa2λ′(τ)

(
σ∗

k2(τ)
)2]

, (B.10)

where we have used σ2
k(τI) ≈ −|σk(τI)|2eiπ(ν+1/2) in above equation. Now, using the explicit

form of the mode function and

Im
[∫ ∞

0
dxx

(
H(2)

ν (x)
)2
]

= 2ν

π
, (B.11)

we obtain
I2 =

(2nν

k2
2

)
|ζk1(τI)|2|σk2(τI)|2 . (B.12)
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