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1 Introduction

Scattering amplitudes are an important set of observables in any quantum field theory in
four dimensional asymptotically flat spacetime. Usually these amplitudes are written in
momentum eigen-basis in which translation invariance is manifest. However, instead of the
momentum eigenstates if one uses the conformal primary or the boost eigen-basis, scattering
amplitudes transform as a correlation function of a 2D conformal field theory under the
(Lorentz) SL(2, C) transformations [1–5].1 The amplitudes written in the conformal primary
basis are known as celestial amplitudes. For massless particles they are obtained by Mellin
transformations with respect to the energies of the external particles [2, 3].

Now the fact that they transform like conformal correlators in 2D allows us to use
powerful techniques familiar from the study of the 2D CFT. In particular, momentum
space soft theorems can be reinterpreted as Ward identities for various current algebra
symmetries on the celestial sphere [6, 7, 9–30]. For example, the leading soft theorem for a
gluon can be interpreted as the Ward identity for the SU(N) Kac-Moody algebra [19–30].
Similarly, the subleading soft gluon theorem can also be interpreted as the Ward identity
of an infinite dimensional current algebra [7, 9–11]. The symmetry algebras coming from
leading and subleading soft gluon theorems contain null states [7]. Decoupling of these null

1The Lorentz group SL(2,C) act on the celestial sphere as the group of global conformal transformations.
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states gives rise to a set of differential equations for the celestial amplitude [7]2,3. Hence the
amplitudes are heavily constrained due to the presence of infinite dimensional symmetries
coming from soft gluon theorems. One gets these null states in case of gravitons as well as
gluons by demanding consistency of the celestial OPE with the soft theorems [6, 7, 44, 45].
For more discussions on celestial OPE please see [20, 36–43].

Now for gluons, the Mellin transform of tree level three and four point scattering
amplitudes are distributional in nature due to the momentum conserving delta function and
the conformal invariance of the tree level Yang-Mills theory. The momentum conservation
constraint can be removed by supplying background momentum to the YM theory which
breaks translational invariance explicitly [31]. In [31], this was achieved by coupling the YM
theory to background massless dilaton field. But this does not break the conformal invariance
of the YM theory. Translation invariance breaking solution was also considered in [32].

A somewhat different set up was considered in [33]. They chirally coupled the Yang-
Mills theory to a massive dilaton background. As a result the space-time translation as
well as the scale invariance of the tree-level Yang-Mills theory was explicitly broken but the
(Lorentz) 2D conformal invariance was preserved. The interesting fact about this coupled
theory is that, when written in the celestial basis, the 3-point amplitudes take the usual 2D
CFT form. It was shown [33] that the leading soft gluon theorem and the leading OPE
structure remain unchanged for this chirally coupled theory. In this paper we show that
the subleading soft gluon theorem and subleading OPE structrures also remain unchanged,
giving rise to the same null state relation as obtained in [7]. We expect this to be true
as the leading and subleading soft gluon theorems don’t require space-time translation or
scale invariance.

This paper is organized as follows. In section 3, following [33] we briefly review the
Yang-Mills amplitude chirally coupled to a massive dilaton background and Mellin transform
it to get the celestial amplitude. OPE factorisations of the 4-point celestial amplitude is
given in section 4. In section 5 we show that the subleading soft gluon theorem remains
the same for this coupled theory. By demanding the consistency of the OPE at order 1
with the soft theorem we get the same null state relation under the soft current algebra
as obtained in [7]. We also show that the 3point amplitude satisfies the BG equation in
section B. Finally we end with discussion and future directions in section 6.

2 Notations and conventions

We will work in (-,+,-,+) signature in four spacetime dimensions. This is also called
Klein space. The geometry of this space has been discussed in great detail in [34]. The
scattering amplitudes, written in the boost eigenstates, behave as a correlation functions
in a Lorentzian CFT on the celestial torus [34, 35]. We review some of the elementary
equations of the celestial amplitude for this paper to be self-contained.

In Klein space the null momentum (pi) of i-th hard massless particle is parametrized as:

pi = εiωiq(zi, z̄i) (2.1)
2Please see [46, 47] for the derivation of the differential equations in the pure YM case using BCFW shift.
3For a similar story in the case of gravitons please see [6, 44, 45].

– 2 –



J
H
E
P
1
0
(
2
0
2
3
)
0
0
7

where ωi is a real positive number, εi = +1(−1) corresponds to an outgoing (incoming)
particle and

q(zi, z̄i) = {1 + ziz̄i, zi + z̄i, zi − z̄i, 1− ziz̄i} (2.2)

zi, z̄i are two real independent variables. The map from a creation/annihilation operator of
a massless particle in the bulk to an operator on a celestial torus is given by the Mellin
transformation

φa,ε
h,h̄

(z, z̄) =
∫ ∞

0
dω ω∆−1Aa(εω, σ, z, z̄) (2.3)

where Aa(εω, σ, z, z̄) is an annihilaton (ε = +1)/creation (ε = −1) operator in the adjoint
representation of an SU(N) gauge theory, σ is the helicity of the corresponding massless
particle and

h = ∆ + σ

2 , h̄ = ∆− σ
2 (2.4)

The momentum space amplitudes for n number of external massless states written in
the celestial conformal primary basis (2.3) then takes the form of a 2D conformal correlator

Mn({ai, εi, zi, z̄i, hi, h̄i}) =
〈

n∏
j=1

φ
aj ,εj
hj ,h̄j

(zj , z̄j)
〉

=

 n∏
j=1

∫
dωj ω

∆j−1
j

An(ai, εiωi, zi, z̄i, σi) (2.5)

For an on-shell massive scalar particle, the conformal primary wavefunction is obtained
through the bulk-to-boundary propagator [1, 2]. For concreteness we take the outgoing
particle with unit mass. In (2, 2) signature Klein space, the momentum Qµ of a massive
scalar of unit mass satisfying the onshell condition Q2 = −1 can be parametrized using the
coordinates of AdS3/Z as4

Qµ = 1
2y{1 + y2 + zz̄, z + z̄, (z − z̄), 1− y2 − zz̄} (2.6)

The mapping of a massive scalar particle to a conformal primary wavefunction is given
through the bulk-to-boundary propagator

Φε
∆(X, z, z̄) =

∫ ∞
0

dy

y3

∫
dzdz̄ G∆(y, z, z̄;w, w̄) eiεQµ·Xµ (2.7)

where the bulk-to-boundary propagator is given by

G∆(y, z, z̄;w, w̄) =
(

y

y2 + (z + w̄)(z − w̄)

)∆
(2.8)

4The metric on the AdS3/Z is given by

ds2
H3 = dy2 + dzdz̄

y2 .
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3 Celestial MHV amplitudes in the massive scalar background

An n-point MHV gluon amplitude in a massive complex scalar background was computed
in [33]. The theory considered there was a Yang-Mills theory chirally coupled to a massive
complex scalar. The massive scalar was coupled to the anti-self dual curvature tensor. An
(n+ 1)-point scalar-gluon (one scalar and n gluons) single trace, color-ordered tree-level
amplitude in this set up is given by

An+1(φ, 1ε1− , 2ε2− , 3ε3+ , · · · , n
εn
+ ) = 〈12〉4

〈12〉 〈23〉 · · · 〈n1〉δ
4
(

n∑
i=1

pi +Q

)
(3.1)

The above amplitude is exactly the same as n-point MHV amplitude except that the
scalar momentum now appears in the momentum conserving delta function. The scalar
field can be treated as a background and the amplitude (3.1) is coupled to this background
by integrating over the scalar phase space [33]

Aφn(1ε1− , 2ε2− , 3ε3+ , · · · , n
εn
+ ) =

∫
d̃3Qg(Q)An+1(φ, 1ε1− , 2ε2− , 3ε3+ , · · · , n

εn
+ ) (3.2)

where g(Q) is the Fourier coefficient of the scalar field φ(X) and d̃3Q is the invariant measure.
This amplitude is called the n-point MHV amplitude in the massive scalar background
and hence is denoted by Aφn(1a1,ε1

− , 2a2,ε2
− , 3a3,ε3

+ , · · · , nan,εn+ ). We are interested in the OPE
factorization of this amplitude on the celestial torus. Hence we Mellin transform the
amplitude (3.2) and get n-point correlators on the celestial torus. To simplify calculations
we will work with the 5-point scalar gluon amplitude, i.e., the 4-point MHV amplitude in
the massive scalar background.

4 OPE factorisation from the 4-point celestial amplitude

In this section we factorize the 4-point amplitude into 3-point amplitude and determine
the leading and subleading terms in the OPE between two positive helicity outgoing
(ε3 = ε4 = +1) gluons. We show that the OPE remains the same as the MHV case [7]. Let
us start with the full 5-point scalar-gluon amplitude, given by

A5(φ, 1a1,ε1
− , 2a2,ε2

− , 3a3,ε3
+ , 4a4,ε4

+ ) =
{
A4[1ε1−2ε2−3ε3+ 4ε4+ ] tr(T a1T a2T a3T a4) + perm (234)

}
× δ(4)

( 4∑
i=1

pi +Q

)
(4.1)

where A4[iεiσij
εj
σjk

εk
σk
lεlσl ] are color ordered partial MHV amplitudes given by

A4[iεi−j
εj
+ k

εk
− l

εl
+] = 〈ik〉4

〈ij〉 〈jk〉 〈kl〉 〈li〉
(4.2)

After substituting the explicit form of the color ordered amplitude (4.2) in (4.1) and using
[T a, T b] = ifabcT c, tr(T aT b) = δab we get

A5(φ, 1a1,ε1
− , 2a2,ε2

− , 3a3,ε3
+ , 4a4,ε4

+ ) =

〈12〉3

〈23〉 〈34〉 〈41〉

(
fa1a2xfxa3a4 − z14z23

z13z24
fa1a3xfxa2a4

)
δ(4)

( 4∑
i=1

pi +Q

)
(4.3)

– 4 –



J
H
E
P
1
0
(
2
0
2
3
)
0
0
7

Substituting this expression in (3.2) for the n = 4 and Mellin integrating over the
energies we finally get the 4-point celestial MHV amplitude in the massive scalar background,
given by [33]

M̃Φ
4

(
1a1,ε1

∆1,−, 2
a2,ε2
∆2,−, 3

a3,ε3
∆3,+, 4

a4,ε4
∆4,+

)
=

N4
(2π)4

z3
12

z23z34z41

(
fa1a2xfxa3a4 − z12z34

z13z24
fa1a3xfxa2a4

)
Γ(∆1 + 1)

× Γ(∆2 + 1)Γ(∆3 − 1)Γ(∆4 − 1)
∫
d̃3x̂(−q(z1, z̄1) · x̂)−∆1−1(−q(z2, z̄2) · x̂)−∆2−1

× (−q(z3, z̄3) · x̂)−∆3+1(−q(z4, z̄4) · x̂)−∆4+1
∫ i∞

0
dτ τ−1−β4φB(τ)

(
e2πiβ4 − 1

)
(4.4)

where β4 =
∑4
j=1 (∆j − 1) , N4 =

∏4
j=1(−iεj)∆j−σj . To clarify the notations let us note

that a bulk point Xµ is parameterized as τ x̂µ with x̂2 = −1. d̃3x̂ is a measure on the
x̂2 = −1 slice.5 One can also compute the 3-point function in the same way and it is
given by

M̃Φ
3

(
1a1,ε1

∆1,−, 2
a2,ε2
∆2,−, 4

a4,ε4
∆4,+

)
=

Ñ3
(2π)4

2z3
12

z24z41
(ifa1a2a4) Γ(∆1 + 1)Γ(∆2 + 1)Γ(∆4 − 1)

×
∫
d̃3x̂(−q(z1, z̄1) · x̂)−∆1−1(−q(z2, z̄2) · x̂)−∆2−1(−q(z4, z̄4) · x̂)−∆4+1

×
∫ i∞

0
dτ τ−1−β̃3φB(τ)

(
e2πiβ̃3 − 1

)
(4.5)

where

β̃3 =
4∑

j=1,j 6=3
(∆j − 1) , Ñ3 =

4∏
j=1,j 6=3

(−iεj)∆j−σj . (4.6)

We now take the OPE limit z3 → z4, z̄3 → z̄4 in (4.4). To do that let us first note that
in the OPE limit we have

(−q(z3, z̄3)·x̂)−∆3+1 =

(−q(z4, z̄4)·x̂)−∆3+1
[
1+ ∆3−1

y2+|z−z4|2
((z̄−z̄4)z34+(z−z4)z̄34+z34z̄34)

]
+· · ·

(4.7)

This will be useful in the next two subsections to extract the OPE from (4.4).

4.1 Leading order

The leading order OPE between two positive helicity gluons was computed in [33] and it was
shown that the leading term doesn’t get any correction in the massive scalar background.
Here for the sake of completeness we reproduce their results and then we move to the

5For more details please see [33].
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subleading terms in the next subsection. The leading order term of (4.4) in the OPE
expansion is

M̃Φ
4

(
1a1,ε1

∆1,−, 2
a2,ε2
∆2,−, 3

a3,ε3
∆3,+, 4

a4,ε4
∆4,+

)
=

N4
(2π)4

z3
12

z24z41

1
z34

fa1a2xfxa3a4Γ(∆1 + 1)Γ(∆2 + 1)Γ(∆3 − 1)Γ(∆4 − 1)

×
∫
d̃3x̂(−q(z1, z̄1) · x̂)−∆1−1(−q(z2, z̄2) · x̂)−∆2−1(−q(z4, z̄4) · x̂)−∆3−∆4+2

×
∫ i∞

0
dτ τ−1−β4φB(τ)

(
e2πiβ4 − 1

)
(4.8)

Replacing ∆4 → ∆3 + ∆4 − 1 in the 3-point amplitude (4.5), we get

M̃Φ
3

(
1a1,ε1

∆1,−, 2
a2,ε2
∆2,−, 4

a4,ε4
∆3+∆4−1,+

)
=

N4
(2π)4

2z3
12

z24z41
(ifa1a2a4) Γ(∆1 + 1)Γ(∆2 + 1)

× Γ(∆3 + ∆4 − 2)
∫
d̃3x̂(−q(z1, z̄1) · x̂)−∆1−1(−q(z2, z̄2) · x̂)−∆2−1(−q(z4, z̄4) · x̂)−∆3+∆4+2

×
∫ i∞

0
dτ τ−1−β4φB(τ)

(
e2πiβ4 − 1

)
(4.9)

Hence at leading order we can write

M̃Φ
4

(
1a1,ε1

∆1,−, 2
a2,ε2
∆2,−, 3

a3,ε3
∆3,+, 4

a4,ε4
∆4,+

)
= − 1

2z34
B(∆3 − 1,∆4 − 1)ifxa3a4M̃Φ

3

(
1a1,ε1

∆1
, 2a2,ε2

∆2
, 4x,ε4∆3+∆4−1

)
⇒
〈
Oa1,ε1

∆1,−(z1, z̄1)Oa2,ε2
∆2,−(z2, z̄2)Oa3,ε3

∆3,+(z3, z̄3)Oa4,ε4
∆4,+(z4, z̄4)

〉
= − 1

2z34
B(∆3 − 1,∆4 − 1)ifxa3a4

〈
Oa1,ε1

∆1,−(z1, z̄1)Oa2,ε2
∆2,−(z2, z̄2)Oa4,ε4

∆3+∆4−1,+(z4, z̄4)
〉

At the level of OPE the above equation reads

Oa3,+1
∆3,+ (z3, z̄3)Oa4,+1

∆4,+ (z4, z̄4)∼− 1
2z34

B(∆3−1,∆4−1)ifa3a4xOx,+1
∆3+∆4−1,+(z4, z̄4) (4.10)

4.2 Subleading terms: O(1)

In this section we show that the subleading (O(1)) term in the OPE expansion remains same
as the MHV case. As we know from the study of MHV gluon amplitudes [7], the descendants
of the leading soft gluon symmetry algebra appears at O(1) in the OPE expansion. Here
we only write down the action of the relevant operators on the celestial gluon amplitude.
The leading conformally soft gluon operator [9–11, 20–24] for positive helicity is defined as

R1,a
0 (z) = lim

∆→1
(∆− 1)Oa∆,+(z, z̄) (4.11)

where Oa∆,+(z, z̄) is a positive helicity primary gluon operator with scaling dimension ∆.
The soft current R1,a

0 (z) is a Kac-Moody current [19, 25–30]. The modes of the current
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R1,a
0 (z) are denoted by R1,a

p,0. For our purpose we only mention the correlation function of
the descendants R1,a

−p,0Ob∆,σ(z, z̄), p ≥ 1 with a collection of gluon primaries. These are
given by6 [7]〈

R1,a
−p,0O

b
∆,σ(z, z̄)

n∏
i=1
Oai∆i,σi

(zi, z̄i)
〉

= R1,a
−p,0(z)

〈
Ob∆,σ(z, z̄)

n∏
i=1
Oai∆i,σi

(zi, z̄i)
〉

(4.12)

where the operator R1,a
−p,0(z) is defined as

R1,a
−p,0(z)

〈
Ob∆,σ(z, z̄)

n∏
i=1
Oai∆i,σi

(zi, z̄i)
〉

=
n∑
k=1

T ak
(zk − z)p

〈
Ob∆,σ(z, z̄)

n∏
i=1
Oai∆i,σi

(zi, z̄i)
〉

(4.13)

Let us now consider the O(1) term in the OPE expansion of (4.4), given by

M̃Φ
4

(
1a1,ε1

∆1,−,2
a2,ε2
∆2,−,3

a3,ε3
∆3,+,4

a4,ε4
∆4,+

)∣∣
O(1) =

N4

(2π)4
z3

12
z24z41

Γ(∆1+1)Γ(∆2+1)Γ(∆3−1)Γ(∆4−1)

×
∫
d̃3x̂

[
fa1a2xfxa3a4

z14
+ fa2a3xfxa4a1

z24
+(∆3−1) (z̄−z̄4)

y2+|z−z4|2
fa1a2xfxa3a4

]
(−q(z1, z̄1)·x̂)−∆1−1

× (−q(z2, z̄2)·x̂)−∆2−1 (−q(z4, z̄4)·x̂)−∆3−∆4+2
∫ i∞

0
dτ τ−1−β4φB(τ)

(
e2πiβ4−1

)
With the help of the operator (4.13), r.h.s. of the above equation can be written as

M̃Φ
4

(
1a1,ε1

∆1,−, 2
a2,ε2
∆2,−, 3

a3,ε3
∆3,+, 4

a4,ε4
∆4,+

) ∣∣
O(1) =

1
2B(∆3 − 1,∆4 − 1)

[
− (∆3 − 1)

(∆3 + ∆4 − 2) if
xa3a4L−1(4)

×M̃Φ
3

(
1a1,ε1

∆1
, 2a2,ε2

∆2
, 4x,ε4∆3+∆4−1

)
+ (∆4 − 1)

(∆3 + ∆4 − 2)R
1,a3
−1,0(4)M̃Φ

3

(
1a1,ε1

∆1
, 2a2,ε2

∆2
, 4a4,ε4

∆3+∆4−1

)
+ (∆3 − 1)

(∆3 + ∆4 − 2)R
1,a4
−1,0(4)M̃Φ

3

(
1a1,ε1

∆1
, 2a2,ε2

∆2
, 4a3,ε4

∆3+∆4−1

)]
(4.14)

where the argument (4) in the operators L−1,R1,a
−1,0 implies that these modes are acting on

the last particle of the 3-point amplitude. At the level of the OPE we have7

Oa3,+1
∆3,+ (z3, z̄3)Oa4,+1

∆4,+ (z4, z̄4)
∣∣
O(1) ∼

1
2B(∆3 − 1,∆4 − 1)

[
− (∆3 − 1)

(∆3 + ∆4 − 2) if
xa3a4L−1

+
( (∆4 − 1)

(∆3 + ∆4 − 2)δ
a3yδa4x + (∆3 − 1)

(∆3 + ∆4 − 2)δ
a4yδa3x

)
R1,y
−1,0

]
Ox,+1

∆3+∆4−1,+(z4, z̄4)

(4.15)

6Here we are using the notation of [10].
7We would like to emphasize that (4.15) does not hold beyond MHV sector. In the NkMHV sector the

soft symmetry algebra changes because of the existence of the negative helicity soft gluons and as a result
the O(z0z̄0) term in the OPE has to change. This is also the case for pure YM theory and has nothing to
do with the existence of the massive scalar background.

– 7 –



J
H
E
P
1
0
(
2
0
2
3
)
0
0
7

One can recognize that this is the O(1) term in the OPE obtained by [7, 8] in the MHV
case. Thus we can see that O(1) OPE also doesn’t change in the presence of the massive
scalar background.

5 Subleading soft gluon theorem in massive scalar background

In this section we show that the subleading conformal soft gluon theorem remains same in
a massive scalar background. More precisely, we show that the subleading conformal soft
limit, ∆4 → 0, of (4.4) is equivalent to the action of the subleading soft operator [20–24] of
the 4-th particle, on the 3-pt correlation function (4.5).

Hence we start with the 4-point amplitude (4.4) and take the conformal soft limit
∆4 → 0 to get

lim
∆4→0

∆4M̃Φ
4

(
1a1,ε1

∆1,−, 2
a2,ε2
∆2,−, 3

a3,ε3
∆3,+, 4

a4,ε4
∆4,+

)
=

− i N3
(2π)4

z3
12

z23z34z41

(
fa1a2xfxa3a4 − z12z34

z13z24
fa1a3xfxa2a4

)
× Γ(∆1 + 1)Γ(∆2 + 1)Γ(∆3 − 1)

∫
d̃3x̂(−q(z1, z̄1) · x̂)−∆1−1(−q(z2, z̄2) · x̂)−∆2−1

× (−q(z3, z̄3) · x̂)−∆3+1(−q(z4, z̄4) · x̂)
∫ i∞

0
dτ τ−β3φB(τ)

(
e2πiβ3 − 1

)
(5.1)

The above result can be written as

lim
∆4→0

∆4M̃Φ
4 (1a1,ε1

∆1,−, 2
a2,ε2
∆2,−, 3

a3,ε3
∆3,+, 4

a4,ε4
∆4,+) =

(
c1
z14

+ c2
z24

+ c3
z34

)
i
N3

(2π)4
z3

12
z23z31

× Γ(∆1 + 1)Γ(∆2 + 1)Γ(∆3 − 1)
∫
d̃3x̂(−q(z1, z̄1) · x̂)−∆1−1(−q(z2, z̄2) · x̂)−∆2−1

× (−q(z3, z̄3) · x̂)−∆3+1(−q(z4, z̄4) · x̂)
∫ i∞

0
dτ τ−β3φB(τ)

(
e2πiβ3 − 1

)
(5.2)

where c1 = fxa2a3fa4a1x, c2 = fa1xa3fa4a2x and c3 = fa1a2xfa4a3x.
We shall now show that the above expression for the conformal soft limit of the celestial

correlation function is the same as the action of the subleading soft operator on the 3-pt
correlation function. The subleading soft gluon theorem in Mellin space is given by [36],〈
R0,a4(z4, z̄4)

3∏
i=1
Oai,εi∆i,σi

(zi, z̄i)
〉

=−
3∑

k=1

εk
z4k

(−2h̄k+1+z̄4k∂̄k) T a4
k P

−1
k

〈 3∏
i=1
Oai,εi∆i,σi

(zi, z̄i)
〉

(5.3)

where R0,a(z, z̄) is the subleading conformally soft gluon operator defined by

R0,a(z, z̄) = lim
∆→0

∆Oa∆,+(z, z̄) (5.4)

T ak is the lie algebra generator in the adjoint representation of the gauge group and P−1
k is

a dimension lowering operator acting on the k-th primary field. The action of both is

T akO
ai,εi
∆i,σi

(zi, z̄i) = ifaaixOx,εi∆i,σi
(zi, z̄i) δk,i, P−1

k O
ai,εi
∆i,σi

(zi, z̄i) = Oai,εi∆i−1,σi(zi, z̄i)δki (5.5)
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By repeated use of the following equation,

(−qi · x̂) = y2 + (z − zi)(z̄ − z̄i)
y

(5.6)

and the explicit expression for 3-point function given in (4.5) on the r.h.s. of (5.3), one can
show that (appendix A)

−
3∑

k=1

εk
z4k

(−2h̄k + 1 + z̄4k∂̄k) T a4
k P

−1
k

〈 3∏
i=1
Oai,εi∆i,σi

(zi, z̄i)
〉

=

(
c1
z14

+ c2
z24

+ c3
z34

)
i
N3

(2π)4
2z3

12
z23z31

× Γ(∆1 + 1)Γ(∆2 + 1)Γ(∆3 − 1)
∫
d̃3x̂(−q(z1, z̄1) · x̂)−∆1−1(−q(z2, z̄2) · x̂)−∆2−1

× (−q(z3, z̄3) · x̂)−∆3+1(−q(z4, z̄4) · x̂)
∫ i∞

0
dτ τ−β3φB(τ)

(
e2πiβ3 − 1

)
(5.7)

Comparing (5.2), (5.3) and (5.7) we get

lim
∆4→0

∆4M̃Φ
4 (1a1,ε1

∆1,−, 2
a2,ε2
∆2,−, 3

a3,ε3
∆3,+, 4

a4,ε4
∆4,+)

=
〈
R0,a4(z4, z̄4)

3∏
i=1
Oai,εi∆i,σi

(zi, z̄i)
〉

= −1
2

3∑
k=1

εk
z4k

(−2h̄k + 1 + z̄4k∂̄k) T a4
k P

−1
k

〈 3∏
i=1
Oai,εi∆i,σi

(zi, z̄i)
〉 (5.8)

Thus we see that subleading soft gluon theorem for a positive helicity soft gluon does
not change if we couple the Yang-Mills with the massive complex scalar in a chiral way
mentioned in section 3.

5.1 BG equations in massive scalar background

A set of differential equations for the gluon MHV amplitudes were obtained in [7] by
demanding the consistency between the subleading soft gluon theorem and OPE factorisation
at O(1).8 Here we have shown that, even in the case of MHV amplitudes in a massive
scalar background the subleading soft gluon theorem and the OPE factorisation at O(1) do
not change. Hence we conclude that the celestial MHV amplitudes coupled to a massive
scalar background also satisfy BG equations. This is not surprising because the existence of
the null state, which gives rise to the differential equations, is guaranteed by the leading
and the subleading soft gluon theorems and SL(2, C) invariance. The presence of a massive
dilaton background breaks the scaling as well as translational invariance but the soft gluon
theorems remain unchanged. So the BG equations should also not change.

8Although these equations look very similar to the KZ equation which appears in WZW models, they are
qualitatively different. In particular, they cannot be derived by any Sugawara construction on the celestial
sphere. One way to see this is the following. Sugawara construction leads to the quantization of dimensions
of primary operators which we know is not the case in celestial holography.
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6 Discussions

In this paper we extracted the OPE between two positive helicity outgoing gluons from the
Mellin amplitude of the Yang-Mills theory chirally coupled to massive scalar background.
The leading order term was already computed in [33]. Here we have computed a subleading
term. One of our motivation behind this work was to check if the scattering amplitudes in
this theory is also a solution of the BG equations. We have shown in this paper that this
is indeed the case.9 Though the scaling and translation symmetry were explicitly broken
for the theory we considered, the leading and subleading soft theorems remain unchanged.
The OPE factorization at O(1) is completely determined in terms of the descendants of the
SL(2, C) and the leading soft symmetry algebra in the same way as the MHV amplitudes.
On the other hand we have also shown that the subleading soft gluon theorem does not
change in the massive background. Thus by comparing the O(1) OPE with the subleading
soft gluon theorem we get the same BG equations as the MHV amplitudes. More generally,
we can say that the scattering amplitudes of all the theories which respect the symmetries
coming from the leading and subleading soft gluon theorems should satisfy the BG equations.

However, if one considers the graviton scattering amplitude and breaks some of the
symmetries considered here, the situation will change completely. This is because of the
fact that the leading soft graviton theorem is a consequence of supertranslation invariance.
So if in a gravitational theory the translation symmetry is broken, the leading soft graviton
theorem would no longer holds. Then one can ask the question that what happens to the
decoupling equations obtained for the MHV graviton scattering amplitudes in [6].

It would also be interesting to check how the analysis of our work would change in the
context of deformed soft algebras for gauge theories recently considered in [48]. We hope to
answer some of these questions in the near future.
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A Subleading soft gluon theorem

In this appendix we derive (5.7). Let us start with the 3-point correlation function given
by (4.5),

M̃Φ
3

(
1a1,ε1

∆1,−, 2
a2,ε2
∆2,−, 3

a3,ε3
∆3,+

)
=

N3
(2π)4

2z3
12

z23z31
(ifa1a2a3) Γ(∆1 + 1)Γ(∆2 + 1)Γ(∆3 − 1)

×
∫
d̃3x̂(−q(z1, z̄1) · x̂)−∆1−1(−q(z2, z̄2) · x̂)−∆2−1(−q(z3, z̄3) · x̂)−∆3+1

×
∫ i∞

0
dτ τ−1−β3φB(τ)

(
e2πiβ3 − 1

)
(A.1)

where

β3 =
3∑
j=1

(∆j − 1) , N3 =
3∏
j=1

(−iεj)∆j−σj (A.2)

.
So, the action of the subleading soft operator on the 3-point correlation function is

−
3∑
k=1

εk
z4k

(−2h̄k+1+z̄4k∂̄k) T a4
k P

−1
k M̃

Φ
3

(
1a1,ε1

∆1,−,2
a2,ε2
∆2,−,3

a3,ε3
∆3,+

)
= ε1

c1
z41

(−∆1+z̄41∂̄1) M̃Φ
3 (1∆1−1,−,2∆2,−,3∆3,+)+ε2

c2
z42

(−∆2+z̄42∂̄2) M̃Φ
3 (1∆1,−,2∆2−1,−,3∆3,+)

+ε3
c3
z43

(−∆3+2+z̄43∂̄3) M̃Φ
3 (1∆1,−,2∆2,−,3∆3−1,+)

(A.3)

We have pulled out the colour factors (if) out of the amplitude and M̃Φ
3 (1∆1−1,−, 2∆2,−, 3∆3,+)

etc. are the colour stripped amplitude in eq. (A.3). The right hand side of eq. (A.3) can be
written as(

c1
z14

+ c2
z24

+ c3
z34

+ (c1 + c2 + c3)∂4

)
i
N3

(2π)4
2z3

12
z23z31

Γ(∆1 + 1)Γ(∆2 + 1)Γ(∆3 − 1)

×
∫
d̃3x̂(−q(z1, z̄1) · x̂)−∆1−1(−q(z2, z̄2) · x̂)−∆2−1(−q(z3, z̄3) · x̂)−∆3+1(−q(z4, z̄4) · x̂)

×
∫ i∞

0
dτ τ−1−β3φB(τ)

(
e2πiβ3 − 1

)
(A.4)

where we have used the following equation

z̄4k∂̄k(−qk · x̂) = −(−qk · x̂) + (1 + zk4∂4)(−q4 · x̂) (A.5)

Now using the Jacobi identity

c1 + c2 + c3 = 0 (A.6)
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we finally get

−
3∑
k=1

εk
z4k

(−2h̄k+1+z̄4k∂̄k) T a4
k P

−1
k M̃

Φ
3

(
1a1,ε1

∆1,−,2
a2,ε2
∆2,−,3

a3,ε3
∆3,+

)
=

(
c1
z14

+ c2
z24

+ c3
z34

)
i
N3

(2π)4
2z3

12
z23z31

×Γ(∆1+1)Γ(∆2+1)Γ(∆3−1)
∫
d̃3x̂(−q(z1, z̄1)·x̂)−∆1−1(−q(z2, z̄2)·x̂)−∆2−1 (−q(z3, z̄3)·x̂)−∆3+1

×(−q(z4, z̄4)·x̂)
∫ i∞

0
dτ τ−β3φB(τ)

(
e2πiβ3−1

)
(A.7)

which is same as (5.7).

B Solution of the BG equations

In subsection 5.1, we have argued that the BG equations remain same if we put the MHV
amplitudes in a massive scalar background. Here we show explicitly that the three point
MHV amplitude in the massive background satisfies the BG equations. We first write down
the most general form of the 3-point amplitude using the SL(2, C) symmetry and then
derive the constraints for the 3-point coefficient imposed by the BG equations.

Let us start with the color ordered SL(2, C)-covariant 3-point amplitude given by,

M̃3(1−∆1
2−∆2

3+
∆3

) =C(∆1,∆2,∆3)zh3−h1−h2
12 zh2−h1−h3

13 zh1−h2−h3
23 z̄h̄3−h̄1−h̄2

12 z̄h̄2−h̄1−h̄3
13 z̄h̄1−h̄2−h̄3

23
(B.1)

There are two sets of decoupling equations for the color ordered amplitudes [7, 46, 47].
They are(

∂3 −
∆3
z13
− 1
z23

)
M̃3(1−∆1

2−∆2
3+

∆3
) + ε1ε3

∆1 − σ1 − 1 + z̄13∂̄1
z13

M̃3(1−∆1−12−∆2
3+

∆3+1) = 0

(
∂3 −

∆3
z23
− 1
z13

)
M̃3(1−∆1

2−∆2
3+

∆3
) + ε2ε3

∆2 − σ2 − 1 + z̄23∂̄2
z23

M̃3(1−∆1
2−∆2−13+

∆3+1) = 0

(B.2)

Using (B.1) in (B.2) we get the following constraints on the 3-point coefficient

C(∆1 − 1,∆2,∆3 + 1) = ε1ε3
(∆1 −∆2 −∆3 + 1)
(∆3 −∆1 −∆2 − 1)C(∆1,∆2,∆3) (B.3)

C(∆1,∆2 − 1,∆3 + 1) = ε2ε3
(∆2 −∆1 −∆3 + 1)
(∆3 −∆1 −∆2 − 1)C(∆1,∆2,∆3) (B.4)

Now, one can check that the 3-point coefficient given by [33]

C(∆1,∆2,∆3) =

N3 Γ
(∆1+∆2−∆3+3

2

)
Γ
(∆1−∆2+∆3−1

2

)
Γ
(−∆1+∆2+∆3−1

2

)
f(β)

(B.5)

satisfies (B.3), (B.4), where f(β) is any function with β =
∑3
i=1 ∆i and N3 is given by (A.2).
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